JP5050594B2 - Spectrometer - Google Patents

Spectrometer Download PDF

Info

Publication number
JP5050594B2
JP5050594B2 JP2007072826A JP2007072826A JP5050594B2 JP 5050594 B2 JP5050594 B2 JP 5050594B2 JP 2007072826 A JP2007072826 A JP 2007072826A JP 2007072826 A JP2007072826 A JP 2007072826A JP 5050594 B2 JP5050594 B2 JP 5050594B2
Authority
JP
Japan
Prior art keywords
diffraction grating
grating
light
optical
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007072826A
Other languages
Japanese (ja)
Other versions
JP2008233528A (en
Inventor
龍一郎 清水
好晴 大井
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007072826A priority Critical patent/JP5050594B2/en
Publication of JP2008233528A publication Critical patent/JP2008233528A/en
Application granted granted Critical
Publication of JP5050594B2 publication Critical patent/JP5050594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複数の波長を使用する回折格子および光学装置に関し、詳しくは、波長分割多重光通信や分光測定などに用いられ、入射光の波長の相違に応じて回折作用により光の出射方向を変化させる反射型回折格子およびこれを用いた分光装置に関する。   The present invention relates to a diffraction grating and an optical device that use a plurality of wavelengths, and more specifically, is used for wavelength division multiplexing optical communication, spectroscopic measurement, and the like. The present invention relates to a reflective diffraction grating to be changed and a spectroscopic device using the same.

回折格子に代表される回折光学素子は、分光分析機器において光スペクトルの解析のために広く利用されている。分光分析においては広い波長範囲に亘り高い光利用効率が要求される。断面が鋸波形状で奥行き方向に直線状で等間隔の微細な溝からなる反射型ブレーズ回折格子は、特定の波長範囲で特定の回折次数に対して比較的高い回折効率が得られるとともに、波長に対する回折角度の変化割合である波長角度分散が大きいため、分光分析機器に広く用いられている。   A diffractive optical element represented by a diffraction grating is widely used for analyzing an optical spectrum in a spectroscopic analysis instrument. In spectroscopic analysis, high light utilization efficiency is required over a wide wavelength range. A reflection-type blazed diffraction grating consisting of fine grooves with a sawtooth cross-section, straight lines in the depth direction, and equidistant spacing provides a relatively high diffraction efficiency for a specific diffraction order in a specific wavelength range, and a wavelength Since the wavelength angle dispersion, which is the change rate of the diffraction angle with respect to, is large, it is widely used in spectroscopic analyzers.

従来の反射型回折格子の断面図の一例を図9に示す。断面が鋸波形状で奥行き方向に直線状で等間隔の微細な溝からなるブレーズ格子が形成された金型を用い、基板41の表面に塗布された樹脂層にブレーズ格子形状を転写してレプリカ格子42を作製し、その表面に金属反射膜43を成膜して反射型ブレーズ回折格子200としている。   An example of a sectional view of a conventional reflective diffraction grating is shown in FIG. Using a mold in which the cross section is sawtooth, straight in the depth direction and formed with a blazed grating consisting of fine grooves at equal intervals, the blazed grating shape is transferred to the resin layer applied to the surface of the substrate 41 and replicated A grating 42 is prepared, and a metal reflection film 43 is formed on the surface thereof to form a reflective blazed diffraction grating 200.

ここで、溝の傾きθをブレーズ角と呼び、1mm当たりの溝本数をNとすると、ブレーズ波長λ=2×sin(θ)/Nの波長近傍で高い+1次回折効率が得られる。このときの入射角iおよび+1次回折角θはブレーズ角θとほぼ等しく、リトロー配置と呼ばれる。 Here, when the groove inclination θ B is called a blaze angle and the number of grooves per 1 mm is N, a high + 1st order diffraction efficiency is obtained in the vicinity of the blaze wavelength λ B = 2 × sin (θ B ) / N. . The incident angle i and the + 1st-order diffraction angle θ at this time are almost equal to the blaze angle θ B and are called a Littrow arrangement.

しかし、従来の反射型ブレーズ回折格子では、回折格子の溝方向と入射光の電場振動方向が平行であるS偏光(TE波)に対してはブレーズ波長λ近傍の波長域で高い+1次回折効率が得られるが、回折格子の溝方向と入射光の電場振動方向が垂直であるP偏光(TM波)に対しては+1次回折効率の波長依存性が大きく波長損失特性が安定しない問題があった。その結果、偏光依存損失(PDL)が少ない高い+1次回折効率を実現できる反射型回折格子が得られていない。 However, in the conventional reflective blazed diffraction grating, + 1st order diffraction is high in the wavelength region near the blaze wavelength λ B for S-polarized light (TE wave) in which the groove direction of the diffraction grating and the electric field vibration direction of incident light are parallel. Although efficiency can be obtained, there is a problem that the wavelength dependence of the + 1st order diffraction efficiency is large and the wavelength loss characteristic is not stable for P-polarized light (TM wave) in which the groove direction of the diffraction grating and the electric field oscillation direction of incident light are perpendicular. there were. As a result, a reflective diffraction grating capable of realizing a high + 1st order diffraction efficiency with little polarization dependent loss (PDL) has not been obtained.

N=1000本(すなわち、格子間隔1/N=1μm)で、ブレーズ角θ=50°のレプリカ格子42の表面に、光学反射面として屈折率n=0.188、減衰係数k=11.218で表記される金(Au)反射膜43が形成された反射型ブレーズ回折格子200について、波長1460〜1620nmにおける+1次回折効率の計算結果を図10に示す。格子間隔が波長以下となる領域の回折効率は、偏光方向である電磁界ベクトル成分を考慮してマクスウェル方程式を厳密に解く必用があり、例えば非特許文献1に記載された厳密結合波理論(RCWA)を用いて計算する。 N = 1000 (that is, the lattice spacing 1 / N = 1 μm), the surface of the replica grating 42 having a blaze angle θ B = 50 °, a refractive index n = 0.188 as an optical reflecting surface, and an attenuation coefficient k = 11.1. FIG. 10 shows the calculation result of the + 1st order diffraction efficiency in the wavelength range of 1460 to 1620 nm for the reflective blazed diffraction grating 200 on which the gold (Au) reflective film 43 represented by 218 is formed. The diffraction efficiency in the region where the grating interval is equal to or smaller than the wavelength needs to strictly solve the Maxwell equation in consideration of the electromagnetic field vector component which is the polarization direction. For example, the exact coupled wave theory (RCWA) described in Non-Patent Document 1 ) To calculate.

S偏光に対しては広い波長範囲に渡り高い+1次回折効率となっているが、P偏光に対しては20%以下の低い回折効率に留まっている。   The S-polarized light has a high + 1st order diffraction efficiency over a wide wavelength range, but the P-polarized light has a low diffraction efficiency of 20% or less.

また、図9に示すブレーズ格子が形成された金型を正確に作製することは難しく、鋸波断面の凸部および凹部の形状ダレが生じやすく、+1次回折効率の低下および迷光発生の原因となりやすい。   Also, it is difficult to accurately manufacture a mold having a blazed grating as shown in FIG. 9, and the shape of the convex and concave portions of the sawtooth cross section is likely to occur, which causes a decrease in + 1st order diffraction efficiency and generation of stray light. Cheap.

さらに、樹脂からなるレプリカ格子42および金属反射膜43は高温および高温・高湿度下で特性経時変化を招きやすく、信頼性上問題があるため、限られた環境でしか使用できなかった。   Further, the replica grating 42 and the metal reflective film 43 made of resin are likely to cause a change in characteristics over time at high temperatures, high temperatures and high humidity, and have a problem in reliability. Therefore, they can be used only in a limited environment.

また、ブレーズ格子形状を転写して作製されたレプリカ格子表面に金属反射膜を形成する場合、使用波長範囲で金属反射膜の高い反射率を確保するために、膜厚0.1μm以上となるように金属反射膜を成膜することが好ましい。しかし、ブレーズ形状の傾斜面に均一に成膜することは難しいため、金属反射膜の膜厚分布が生じやすく、精密に成形されたレプリカ格子が最適形状から逸脱し、回折効率性能の劣化を招くおそれがあった。   In addition, when a metal reflection film is formed on the surface of a replica grating produced by transferring a blazed grating shape, the film thickness should be 0.1 μm or more in order to ensure a high reflectance of the metal reflection film in the operating wavelength range. It is preferable to form a metal reflective film. However, since it is difficult to form a uniform film on a blazed inclined surface, the film thickness distribution of the metal reflective film is likely to occur, and the precisely formed replica grating deviates from the optimum shape, resulting in deterioration of diffraction efficiency performance. There was a fear.

M.G.Moharam, D.A.Pommet, E.B.Grann, and T.K.Gayload, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmittance matrix approach” Journal of the Optical Society of America A, vol.12, no.5, PP.1077-1086 (May 1995)MGMoharam, DAPommet, EBGrann, and TKGayload, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmittance matrix approach” Journal of the Optical Society of America A, vol.12, no.5, PP.1077-1086 (May 1995)

本発明はこのような問題点を解決するためになされたもので、簡単なプロセスで量産性に優れ、光学特性の安定した反射型回折格子を提供することも目的とする。さらに、広い波長範囲で高い回折効率と大きな波長角度分離効果を実現するとともに、信頼性に優れた反射型回折格子を提供することを目的とする。   The present invention has been made to solve such problems, and it is also an object of the present invention to provide a reflective diffraction grating that is excellent in mass productivity and stable in optical characteristics by a simple process. It is another object of the present invention to provide a reflection type diffraction grating that realizes high diffraction efficiency and a large wavelength angle separation effect in a wide wavelength range and is excellent in reliability.

本発明では、光学反射面上に形成される断面が凹凸状でかつ凸部上面が実質的に平坦であり凸部が対称な透光性材料からなる格子としているため、平面微細加工技術として汎用的なフォトリソグラフィと等方性ドライエッチング法を用いて、安定した格子形状作製が可能であり、安定した光学特性が得られやすい。表面に格子形状が加工された金型を用いて、レプリカ格子を転写する場合でも、精密な金型の加工が可能となり、安定した光学特性が得られやすい。   In the present invention, since the cross-section formed on the optical reflecting surface is uneven, the upper surface of the convex portion is substantially flat, and the convex portion is made of a light-transmitting material that is symmetrical, it is widely used as a planar micromachining technique. A stable lattice shape can be produced by using typical photolithography and isotropic dry etching, and stable optical characteristics can be easily obtained. Even when a replica grating is transferred using a mold whose surface is processed with a grating shape, a precise mold can be processed, and stable optical characteristics are easily obtained.

また、光学反射面が光学反射面が相対的に屈折率の大きな透明誘電膜と相対的に屈折率の小さな透明誘電膜とを交互に積層した誘電体多層膜からなることを特徴とする上記の反射型回折格子を提供する。このような構成の反射型回折格子は、従来の反射型ブレーズ回折格子に比べ、広い波長範囲で高い+1次回折効率および大きな波長角度分離効果を有する反射型回折格子として用いることができる。   Further, the optical reflecting surface is composed of a dielectric multilayer film in which the optical reflecting surface is alternately laminated with a transparent dielectric film having a relatively large refractive index and a transparent dielectric film having a relatively small refractive index. A reflective diffraction grating is provided. The reflection type diffraction grating having such a configuration can be used as a reflection type diffraction grating having high + 1st order diffraction efficiency and a large wavelength angle separation effect in a wide wavelength range as compared with a conventional reflection type blazed diffraction grating.

また、前記格子凸部または、前記光学反射面および前格子凸部の透光性材料が、TiO、SiO、Ta、Nb、Al、Si、SiONおよびSiからなる群から選ばれた1種以上であることを特徴とする上記反射型回折格子を提供する。 Further, the grid projection or translucent material of the optical reflecting surface and the front Symbol grating protrusions, TiO 2, SiO 2, Ta 2 O 5, Nb 2 O 5, Al 2 O 3, Si 3 N 4 There is provided the above reflection type diffraction grating, which is at least one selected from the group consisting of SiON and Si.

このような構成とすることにより、環境変化に対して光学特性の経時変化が生じることなく、高温および高温・高湿度下での信頼性および安定性の高い反射型回折格子が得られる。   By adopting such a configuration, a reflective diffraction grating having high reliability and high stability under high temperature, high temperature and high humidity can be obtained without causing a change in optical characteristics over time with environmental changes.

また、表面に光学反射面を有する基板上に形成された、断面が凹凸状でかつ凸部上面が実質的に平坦な透光性材料からなる格子を有する反射型回折格子の使用方法において、入射光の波長λに対する前記反射型回折格子の格子間隔Pの比率P/λが0.55以上かつ1.45以下であって、前記反射型回折格子は、前記反射型回折格子の光反射面に対して斜めに光が入射するような配置で分光素子として用いるものであって、前記反射型回折格子への入射角をi、前記格子凸部の透光性材料の平均屈折率をn、高さをTとすると、(式1)、又は(式5)を満たすことを特徴とする反射型回折格子の使用方法を提供する。 In addition, in a method of using a reflection type diffraction grating formed on a substrate having an optical reflection surface on its surface and having a grating made of a translucent material having a concavo-convex cross section and a substantially flat top surface of the convex portion, The ratio P / λ of the grating interval P of the reflection type diffraction grating to the wavelength λ of light is 0.55 or more and 1.45 or less, and the reflection type diffraction grating is formed on the light reflection surface of the reflection type diffraction grating. In contrast, it is used as a spectroscopic element in an arrangement where light is incident obliquely, the incident angle to the reflective diffraction grating is i, the average refractive index of the translucent material of the grating convex portion is n, When T a is, to provide a (formula 1), or the use of reflection type diffraction grating you and satisfies the equation (5).

0.80≦n×T/{λ×cos(i')}≦1.25 (式1)
ただし、角度i'は、sin(i)=n×sin(i') を満たす。
0.97≦n×T/{λ×cos(i')}≦1.21 (式5)
0.80 ≦ n × T / {λ × cos (i ′)} ≦ 1.25 (Formula 1)
However, the angle i ′ satisfies sin (i) = n × sin (i ′).
0.97 ≦ n × T / {λ × cos (i ′)} ≦ 1.21 (Formula 5)

このような構成とすることにより、さらに広い波長範囲で高い+1次回折効率を有する反射型回折格子が得られる。   By adopting such a configuration, a reflective diffraction grating having high + 1st order diffraction efficiency in a wider wavelength range can be obtained.

また、基板上に誘電体多層膜からなる光学反射面および格子の凸部となる透光性材料層を成膜し、透光性材料層をその断面が凹凸状でかつ凸部上面が実質的に平坦な格子となるように加工することを特徴とする反射型回折格子の製造方法を提供する。   In addition, an optical reflecting surface made of a dielectric multilayer film and a light-transmitting material layer to be a convex portion of the lattice are formed on the substrate, and the light-transmitting material layer has an uneven cross section and substantially has an upper surface of the convex portion. The present invention provides a method for manufacturing a reflection type diffraction grating, which is processed so as to be a flat grating.

このような製造方法とすることにより、光学反射面および格子凸部を成膜プロセスおよび微細加工プロセスにより精度良く形成できるため、安定した光学特性が得られる。   By adopting such a manufacturing method, the optical reflecting surface and the grating convex portion can be formed with high accuracy by the film forming process and the microfabrication process, so that stable optical characteristics can be obtained.

さらに、誘電体多層膜からなる光学反射面と透光性材料からなる格子凸部を同じ成膜プロセスにて作製することにより、反射型回折格子を形成するプロセスが簡素化され量産性が優れるとともに、安定した光学特性が得られる。   Furthermore, the optical reflection surface made of a dielectric multilayer film and the grating convex portion made of a light-transmitting material are produced by the same film forming process, thereby simplifying the process of forming a reflective diffraction grating and improving mass productivity. Stable optical characteristics can be obtained.

また、表面に光学反射面を有する基板上に形成された、断面が凹凸状でかつ凸部上面が実質的に平坦な透光性材料からなる格子を有する反射型回折格子を含む分光装置において、入射光の波長λに対する前記反射型回折格子の格子間隔Pの比率P/λが0.55以上かつ1.45以下であって、前記反射型回折格子は、前記反射型回折格子の光反射面に対して斜めに光が入射するような配置で分光素子として用いるものであって、前記光学反射面が相対的に屈折率の大きな透明誘電膜と相対的に屈折率の小さな透明誘電膜とを交互に積層してなる誘電体多層膜からなるものであって、前記格子凸部の透光性材料が、TiO 、Ta 、Nb 、Al 、Si およびSiからなる群から選ばれた1種以上であって、前記反射型回折格子への入射角をi、前記格子凸部の透光性材料の平均屈折率をn、高さをTとすると、(式5)を満たすことを特徴とする分光装置を提供する。
0.97≦n×T/{λ×cos(i’)}≦1.21(式5)
ただし、角度i’は、sin(i)=n×sin(i’)を満たす。
In addition, in a spectroscopic device including a reflective diffraction grating having a grating made of a light-transmitting material having a concavo-convex cross section and a substantially flat top surface of a convex portion, formed on a substrate having an optical reflective surface on the surface. The ratio P / λ of the grating interval P of the reflective diffraction grating to the wavelength λ of incident light is 0.55 or more and 1.45 or less, and the reflective diffraction grating is a light reflecting surface of the reflective diffraction grating. The optical reflection surface is a transparent dielectric film having a relatively high refractive index and a transparent dielectric film having a relatively low refractive index. It is composed of dielectric multilayer films laminated alternately, and the translucent material of the lattice convex portions is TiO 2 , Ta 2 O 5 , Nb 2 O 5 , Al 2 O 3 , Si 3 N 4. And at least one selected from the group consisting of Si and The incident angle to the reflection type diffraction grating i, an average refractive index of the translucent material of the grid convex portion n, when the height is T, providing a spectroscopic apparatus characterized by satisfying the equation (5) To do.
0.97 ≦ n × T / {λ × cos (i ′)} ≦ 1.21 (Formula 5)
However, the angle i ′ satisfies sin (i) = n × sin (i ′).

このような分光装置とすることにより、波長分解能に相当する波長角度分離効果および光利用効率の高い分光装置が得られる。   By using such a spectroscopic device, a spectroscopic device having a wavelength angle separation effect corresponding to the wavelength resolution and high light utilization efficiency can be obtained.

本発明の構成とすることにより、光学反射面は基板平坦面に均一膜厚で安定して形成することができるとともに、膜厚に制約は無く、使用波長範囲で充分高い反射率を確保できる膜厚で成膜することができる。   By adopting the configuration of the present invention, the optical reflecting surface can be stably formed with a uniform film thickness on the flat surface of the substrate, and there is no restriction on the film thickness, and a film that can secure a sufficiently high reflectance in the operating wavelength range. A film can be formed with a thickness.

また、簡単なプロセスで量産性に優れ、広い波長範囲で高い回折効率と大きな波長角度分離効果を実現するとともに、信頼性に優れた反射型回折格子を提供できる。   In addition, it is possible to provide a reflective diffraction grating having excellent mass productivity with a simple process, realizing high diffraction efficiency and a large wavelength angle separation effect in a wide wavelength range, and having excellent reliability.

また、光学反射面の誘電体多層膜と格子凸部の構成を最適化することにより、偏光依存損失(PDL)の少ない反射型回折格子を提供できる。   Further, by optimizing the configuration of the dielectric multilayer film and the grating convex portion on the optical reflecting surface, it is possible to provide a reflective diffraction grating with less polarization dependent loss (PDL).

また、金属反射膜はレプリカ格子との密着性が悪く剥がれやすいとともに、材料自体が柔らかいため表面に傷が生じやすく、金属反射膜表面にゴミが汚れが付着した場合に、光学性能を劣化させることなく洗浄することが難しいといった問題があったが、光学反射面に誘電体多層膜を使用する態様においては、かかる問題も解決することができる。   In addition, the metal reflective film has poor adhesion to the replica grating and is easy to peel off, and the material itself is soft, so the surface is prone to scratches, and the optical performance deteriorates when dirt is attached to the metal reflective film surface. However, in the embodiment in which the dielectric multilayer film is used for the optical reflecting surface, such a problem can be solved.

本発明の反射型回折格子の構成の一例の断面図を図1に、斜視図を図2に示す。   A cross-sectional view of an example of the configuration of the reflective diffraction grating of the present invention is shown in FIG. 1, and a perspective view is shown in FIG.

基板11上に光学反射面12を成膜し、さらにその上に透光性材料層を形成する。次に、透光性材料層を断面が凹凸状でかつ凸部上面が実質的に平坦であり、基板に垂直な直線に対して線対称性を有する凸部を、格子間隔Pの格子13に加工し、反射型回折格子100とする。格子間隔Pに対する凸部の幅Dの比率D/Pをデューティ比という。   An optical reflecting surface 12 is formed on the substrate 11, and a light transmissive material layer is further formed thereon. Next, a convex portion having a cross section of the translucent material layer and an upper surface of the convex portion being substantially flat and having line symmetry with respect to a straight line perpendicular to the substrate is formed into a lattice 13 having a lattice interval P. The reflection type diffraction grating 100 is processed. A ratio D / P of the width D of the convex portion to the lattice interval P is referred to as a duty ratio.

ここで、光学反射面12が形成される基板11は、石英ガラスや白板ガラス、シリコーン、ポリカーボネートなど使用波長域で透明な材料でもよいし、セラミクスや金属などの不透明な材料を用いてもよい。光学反射面12上に形成される格子13の格子間隔Pは、環境温度変化に応じて基板の熱膨張により変化する。したがって、温度変化に伴う格子間隔Pの変動を抑制するために、熱膨張率の小さな石英ガラスや結晶化ガラスなどの低膨張基板を用いることが好ましい。   Here, the substrate 11 on which the optical reflecting surface 12 is formed may be a transparent material such as quartz glass, white plate glass, silicone, or polycarbonate, or an opaque material such as ceramics or metal. The lattice spacing P of the lattice 13 formed on the optical reflecting surface 12 changes due to the thermal expansion of the substrate according to the environmental temperature change. Therefore, it is preferable to use a low expansion substrate such as quartz glass or crystallized glass having a low coefficient of thermal expansion in order to suppress fluctuations in the lattice spacing P due to temperature changes.

また、光学反射面12は、使用波長範囲で安定して高い反射率を得るために、相対的に屈折率の大きな透明誘電体膜と相対的に屈折率の小さな透明誘電体膜とを交互に積層した誘電体多層膜を用いることが好ましい。具体的には、高屈折率透明誘電体膜としてTiO、Ta、Nb、Al、Si、SiON、Siなどが用いられ、低屈折率透明誘電体膜としてSiO、SiONなどが用いられる。ここで、SiONはSiOとSiの混合組成からなる膜を示し、OとNに比率を調整することによりSiON膜の屈折率を調整することができる。所定の入射角iおよび波長λの入射光の波長範囲に対し、高い反射率を得るために必用な各誘電体膜の膜厚構成は公知の多層膜設計技術を用いて実現できるため説明を省略する。 In addition, the optical reflecting surface 12 alternately includes a transparent dielectric film having a relatively large refractive index and a transparent dielectric film having a relatively small refractive index in order to obtain a stable high reflectance in the wavelength range of use. It is preferable to use a laminated dielectric multilayer film. Specifically, TiO 2 , Ta 2 O 5 , Nb 2 O 5 , Al 2 O 3 , Si 3 N 4 , SiON, Si, etc. are used as the high refractive index transparent dielectric film, and the low refractive index transparent dielectric is used. For the film, SiO 2 , SiON, or the like is used. Here, SiON indicates a film having a mixed composition of SiO 2 and Si 3 N 4 , and the refractive index of the SiON film can be adjusted by adjusting the ratio of O and N. The film thickness configuration of each dielectric film necessary for obtaining a high reflectivity with respect to the wavelength range of incident light having a predetermined incident angle i and wavelength λ can be realized by using a known multilayer film design technique, and thus description thereof is omitted. To do.

なお、誘電体多層膜に比べ反射率の経時変化や機械的強度の点で信頼性は劣るが、光学反射面12としてAu、Ag、Alなどの金属反射膜を基板上に形成して用いてもよい。この場合、基板11と金属反射膜との密着性を向上するためCrやNiなどの金属膜を基板上にあらかじめ成膜することが好ましい。   Although the reliability is inferior in terms of change in reflectance with time and mechanical strength as compared with the dielectric multilayer film, a metal reflective film such as Au, Ag, Al or the like is formed on the substrate as the optical reflecting surface 12 and used. Also good. In this case, a metal film such as Cr or Ni is preferably formed in advance on the substrate in order to improve the adhesion between the substrate 11 and the metal reflective film.

光学反射面12上の格子13は、光学反射面上に形成された透光性材料層を加工することにより得られる。   The grating 13 on the optical reflection surface 12 is obtained by processing a light-transmitting material layer formed on the optical reflection surface.

高い信頼性を実現するためには、格子材料である透光性材料層としてSiO、TiO、Ta、Si、SiON、Si等を主成分としたものや、これらの混合膜や多層膜を用いることが好ましい。フォトリソグラフィーおよびドライエッチングにより透光性材料層を断面が凹凸形状の格子13に加工するため、エッチング特性に優れた透光性材料を用いることが好ましい。 In order to achieve high reliability, a light-transmitting material layer that is a lattice material is mainly composed of SiO 2 , TiO 2 , Ta 2 O 5 , Si 3 N 4 , SiON, Si, etc. It is preferable to use a mixed film or a multilayer film. In order to process the translucent material layer into the lattice 13 having an uneven cross section by photolithography and dry etching, it is preferable to use a translucent material having excellent etching characteristics.

なお、無機材料からなる格子13に比べて信頼性は劣るが、断面が凹凸形状で奥行き方向に直線状で等間隔の微細な溝からなる直線状の格子が表面に形成された金型を用いて、光学反射面上に塗布された樹脂層を加熱あるいは紫外線照射により硬化後に離形し、樹脂からなる凸状格子13を形成してもよい。   Although the reliability is inferior to that of the lattice 13 made of an inorganic material, a mold having a concave and convex cross section, a straight lattice in the depth direction, and a linear lattice made of fine grooves at equal intervals is used on the surface. Then, the resin layer coated on the optical reflection surface may be released after curing by heating or ultraviolet irradiation to form the convex grating 13 made of resin.

前述の透明誘電体多層膜からなる光学反射面12と同じ材料あるいはその一部を用い、同じ成膜装置にて基板上に光学反射面用の多層膜と格子形成用の透光性材料層を連続して成膜することにより、光学反射面12と格子13との界面が汚染されることなく、反射型回折格子を効率よく作製することができる。その結果、光学特性の安定化および信頼性が向上する。   Using the same material or a part thereof as the optical reflective surface 12 made of the transparent dielectric multilayer film described above, a multilayer film for the optical reflective surface and a translucent material layer for forming the lattice are formed on the substrate by the same film forming apparatus. By continuously forming the film, the reflection type diffraction grating can be efficiently manufactured without contamination of the interface between the optical reflection surface 12 and the grating 13. As a result, stabilization and reliability of optical characteristics are improved.

例えば、真空蒸着法、スパッタリング法、化学気相成長(CVD)法などを用い、光学反射面の誘電体多層膜と格子形成用の透光性材料層を連続成膜する。さらに、光学反射面上に成膜された格子形成用の透光性材料層の上に塗布された感光性レジストを格子パターンに対応したフォトマスクを用いたフォトリソグラフィーによりパターニングした後、反応性イオンエッチングにより透光性材料層を断面が凹凸状の格子形状に加工する。   For example, using a vacuum deposition method, a sputtering method, a chemical vapor deposition (CVD) method, or the like, a dielectric multilayer film on the optical reflecting surface and a light-transmitting material layer for forming a lattice are continuously formed. Further, after patterning a photosensitive resist coated on a light-transmitting material layer for forming a lattice formed on the optical reflecting surface by photolithography using a photomask corresponding to the lattice pattern, reactive ions are formed. The translucent material layer is processed into a lattice shape with an uneven cross section by etching.

格子間隔がPで与えられる格子13の光学反射面12に対する法線方向となす角度iで入射した波長λの光は、(式2)で定義される回折角度θの方向にm次の回折光(m=±1、±2、・・・)を生じる。   The light of wavelength λ incident at an angle i formed with the normal direction to the optical reflecting surface 12 of the grating 13 given by the grating interval P is m-order diffracted light in the direction of the diffraction angle θ defined by (Equation 2). (M = ± 1, ± 2,...) Is generated.

sin(θ)+sin(i)=m×λ/P (式2)
(式2)から、反射型回折格子100の光学反射面に対して垂直に入射した場合(i=0°)、波長λよりも小さな格子間隔Pの反射型回折格子の回折光は存在しない。しかし、斜め方向から光を入射した場合、すなわち0°<i<90°では、波長λよりも格子間隔Pが小さい場合でも次数mをもつ回折光が存在できる。このため、格子凸部の断面が対称な形状を有していても、非対称な回折特性を示すことがわかる。
sin (θ) + sin (i) = m × λ / P (Formula 2)
From (Equation 2), when the light is incident perpendicularly to the optical reflection surface of the reflective diffraction grating 100 (i = 0 °), there is no diffracted light of the reflective diffraction grating having a grating interval P smaller than the wavelength λ. However, when light is incident from an oblique direction, that is, when 0 ° <i <90 °, diffracted light having an order m can exist even when the grating interval P is smaller than the wavelength λ. For this reason, even if the cross section of a grating convex part has a symmetrical shape, it turns out that asymmetrical diffraction characteristics are shown.

この斜め入射による効果を利用することで、作製が容易である断面形状が対称な回折格子でも、充分に高い回折効率と大きな波長角度分離効果を得ることができる。また、+1次回折効率が最大となる反射型回折格子とすることにより、格子凸部の高さを低減できるため、作製が容易となるので好ましい。   By utilizing the effect of the oblique incidence, a sufficiently high diffraction efficiency and a large wavelength angle separation effect can be obtained even with a diffraction grating having a symmetrical cross-sectional shape that is easy to manufacture. In addition, it is preferable to use a reflection type diffraction grating that maximizes the + 1st order diffraction efficiency because the height of the grating convex portion can be reduced, and manufacturing becomes easy.

このような反射型回折格子100の構成とすることにより、簡単なプロセスでありながら量産性に優れ、高い回折効率でしかも大きな波長角度分離効果を有する反射型回折格子が実現できる。大きな波長角度分離効果を有するため、分光用の回折格子として使用することができる。   By adopting such a configuration of the reflective diffraction grating 100, it is possible to realize a reflective diffraction grating that is excellent in mass productivity while having a simple process, has high diffraction efficiency, and has a large wavelength angle separation effect. Since it has a large wavelength angle separation effect, it can be used as a diffraction grating for spectroscopy.

ここで、入射光の波長λに対する反射型回折格子の格子間隔Pの比率P/λを0.55以上かつ1.45以下の範囲とし、光学反射面に対する入射角度iを適切に選ぶことで+1次回折光のみが発生するため、高い+1次回折効率を実現できる。   Here, the ratio P / λ of the grating interval P of the reflective diffraction grating to the wavelength λ of the incident light is set in the range of 0.55 or more and 1.45 or less, and the incident angle i with respect to the optical reflection surface is appropriately selected to be +1. Since only the second order diffracted light is generated, high + 1st order diffraction efficiency can be realized.

比率P/λが0.5以下の場合、(式2)より回折光の発生する回折角度が存在しないため回折現象は発現せず、正規反射光のみ生じる。比率P/λが0.5より大きな値であれば、回折光は発生するが、0.55より小さな場合は高い回折効率が得られる波長範囲が限定されるおそれがある。比率P/λが1.45から1.50の場合は+1次回折光のみ発生する波長範囲が限定されるおそれがあり、特に、比率P/λが1.50以上の場合、+1次回折光以外の回折光が発生し、+1次回折光率の低下を招くとともに、迷光発生の原因となる。   When the ratio P / λ is 0.5 or less, since there is no diffraction angle at which diffracted light is generated from (Equation 2), the diffraction phenomenon does not occur and only regular reflected light is generated. If the ratio P / λ is larger than 0.5, diffracted light is generated, but if it is smaller than 0.55, the wavelength range in which high diffraction efficiency can be obtained may be limited. When the ratio P / λ is 1.45 to 1.50, the wavelength range in which only the + 1st order diffracted light is generated may be limited. In particular, when the ratio P / λ is 1.50 or more, other than the + 1st order diffracted light. Diffracted light is generated, causing a decrease in the + 1st order diffracted light rate and causing stray light.

また、光学反射面に対して斜めに入射するとは、反射型回折格子100の光学反射面12の法線に対し、図1に示す格子断面における入射角iが15〜80°までの角度で入射することを示し、特に25〜65°までの入射角度範囲において、本発明の効果を充分に達成できる。   In addition, incident obliquely with respect to the optical reflecting surface means that the incident angle i in the grating cross section shown in FIG. 1 is 15 to 80 ° with respect to the normal line of the optical reflecting surface 12 of the reflective diffraction grating 100. In particular, in the incident angle range of 25 to 65 °, the effect of the present invention can be sufficiently achieved.

反射型回折格子100の格子13の断面が凹凸状でかつ凸部上面が実質的に平坦であれば、断面形状が矩形以外に台形などでも本発明における効果を有するが、凸部が基板に垂直な直線に対して線対称を有するものが、さらには、矩形に近いものが作製上好ましい。   If the cross section of the grating 13 of the reflective diffraction grating 100 is concave and convex and the top surface of the convex portion is substantially flat, the effect of the present invention can be obtained even if the cross sectional shape is a trapezoidal shape in addition to the rectangular shape, but the convex portion is perpendicular to the substrate. Those having a line symmetry with respect to a straight line are more preferable in terms of production.

図3に格子凸部の断面形状が台形の反射型回折格子110の断面図を示す。光学反射面12の法線に対する格子凸部23の壁面の角度α(以下テーパー角という)を調整することにより、+1次回折効率の波長依存性および偏光依存性を調整できる。ここで、テーパー角αは10度以下が好ましい。この場合の凸部の幅Dは高さが凸部の高さの半分となる点での凸部の幅として定義でき、回折格子のピッチPは高さが各凸部の高さの半分となる点の各凸部間の間隔として定義できる。   FIG. 3 shows a sectional view of the reflective diffraction grating 110 in which the sectional shape of the grating convex portion is trapezoidal. By adjusting the angle α (hereinafter referred to as taper angle) of the wall surface of the grating convex portion 23 with respect to the normal line of the optical reflecting surface 12, the wavelength dependency and polarization dependency of the + 1st order diffraction efficiency can be adjusted. Here, the taper angle α is preferably 10 degrees or less. The width D of the convex portion in this case can be defined as the width of the convex portion at a point where the height is half of the height of the convex portion, and the pitch P of the diffraction grating is equal to half the height of each convex portion. It can be defined as the interval between each convex part of the point.

このような反射型回折格子100の構成とすることにより、簡単なプロセスでありながら量産性に優れ、高い回折効率でしかも大きな波長角度分離効果を有する反射型回折格子が実現できる。大きな波長角度分離効果を有するため、分光用の回折格子として使用することが好ましい。   By adopting such a configuration of the reflective diffraction grating 100, it is possible to realize a reflective diffraction grating that is excellent in mass productivity while having a simple process, has high diffraction efficiency, and has a large wavelength angle separation effect. Since it has a large wavelength angle separation effect, it is preferably used as a diffraction grating for spectroscopy.

以下に、凸部の形状が矩形であるとして、反射型回折格子100の断面図を示す図1を参照しながら、本発明を具体的な設計結果に基づく実施例について説明する。   Hereinafter, the present invention will be described based on specific design results with reference to FIG. 1 showing a sectional view of the reflective diffraction grating 100 assuming that the shape of the convex portion is rectangular.

[実施例1]
図1の反射型回折格子100において、石英ガラス基板11の表面に屈折率n=2.11のTaと屈折率n=1.44のSiOを交互に積層し、波長1525〜1565nmおよび入射角度i=50°の入射光に対して反射率が99%以上となる誘電体多層膜からなる光学反射面12を形成する。なお、nは相対的に屈折率の大きな透明誘電膜の屈折率を、nは相対的に屈折率の小さな透明誘電膜の屈折率を示す。
[Example 1]
In the reflective diffraction grating 100 of FIG. 1, Ta 2 O 5 having a refractive index n H = 2.11 and SiO 2 having a refractive index n L = 1.44 are alternately stacked on the surface of the quartz glass substrate 11, and a wavelength 1525 is obtained. The optical reflection surface 12 is formed of a dielectric multilayer film having a reflectance of 99% or more with respect to incident light having a wavelength of ˜1565 nm and an incident angle i = 50 °. Note that n H represents the refractive index of a transparent dielectric film having a relatively large refractive index, and n L represents the refractive index of a transparent dielectric film having a relatively small refractive index.

少ない層数および総膜厚で高い反射率を得るためには、Taの膜厚dとSiOの膜厚dを以下の条件とすることが望ましい。 In order to obtain a high reflectance with a small number of layers and a total film thickness, it is desirable that the Ta 2 O 5 film thickness d H and the SiO 2 film thickness d L be set as follows.

×d×cos(i)=n×d×cos(i)=λ/4 (式3)
ただし、iおよびiは(式4)のスネル則を満たす膜中の屈折角とする。
n H × d H × cos ( i H) = n L × d L × cos (i L) = λ / 4 ( Equation 3)
However, i H and i L are the refractive angle in the film which satisfies the Snell law (Equation 4).

×sin(i)=n×sin(i)=sin(i) (式4)
具体的には、i=50°の場合、i=21.3°、i=32.1°となり、λ=1545nmとすると、d=195nm、d=317nmとなる。石英ガラス基板側よりTa、SiOの順番で交互に26層積層すると、1460〜1630nmの波長域で99%以上の反射率を有する光学反射面12となる。
n H × sin (i H) = n L × sin (i L) = sin (i) ( Equation 4)
Specifically, when i = 50 °, i H = 21.3 °, i L = 32.1 °, and when λ = 1545 nm, d H = 195 nm and d L = 317 nm. When 26 layers are alternately laminated in the order of Ta 2 O 5 and SiO 2 from the quartz glass substrate side, the optical reflecting surface 12 having a reflectance of 99% or more in the wavelength range of 1460 to 1630 nm is obtained.

さらにその光学反射面12の表面層であるSiO膜上に、高屈折率材料であるTaを膜厚Tとなるよう成膜し、凸部の断面形状が高さTの矩形となるよう格子13に加工する。 Further, Ta 2 O 5 , which is a high refractive index material, is formed on the SiO 2 film, which is the surface layer of the optical reflecting surface 12, so as to have a film thickness T, and the convex section has a rectangular shape with a height T. Then, it is processed into a lattice 13.

P=1μm、D=0.5μm(デューティ比D/P=0.5)、T=780nmで断面形状が矩形の反射型回折格子について、入射角i=50°の場合の+1次回折光率の波長依存性計算結果を図4に示す。   For a reflective diffraction grating with P = 1 μm, D = 0.5 μm (duty ratio D / P = 0.5), T = 780 nm, and a rectangular cross-section, the + 1st order diffracted light rate at an incident angle i = 50 ° The wavelength dependence calculation results are shown in FIG.

1495〜1585nmの広い波長範囲において、P偏光およびS偏光の入射光に対して95%以上の高い+1次回折効率が実現する。また、P偏光とS偏光の入射光に対する+1次回折光率の差で定義される偏光依存損失(PDL)は3%以下になっている。   In a wide wavelength range of 1495 to 1585 nm, high + 1st order diffraction efficiency of 95% or more is realized with respect to incident light of P-polarized light and S-polarized light. Further, the polarization dependent loss (PDL) defined by the difference of the + 1st order diffracted light rate with respect to the incident light of P-polarized light and S-polarized light is 3% or less.

横軸をn×T/{λ×cos(i’)}、縦軸を波長分割多重光通信におけるCバンド波長帯1525〜1565nmの+1次回折効率平均として、計算した結果を図5に示す。n×T/{λ×cos(i’)}が、(式1)に示す0.80から1.25の範囲では少なくともP偏光の+1次回折効率平均値が90%以上となり、0.97から1.21の範囲ではS偏光およびP偏光の+1次回折効率が90%以上となる。すなわち、格子凸部のTaの膜厚Tを660から820nmとすることで、高効率かつ低PDLの反射型回折格子が実現する。 The calculated results are shown in FIG. 5, where the horizontal axis is n H × T / {λ × cos (i ′)}, and the vertical axis is the average + 1st-order diffraction efficiency in the C-band wavelength band 1525 to 1565 nm in wavelength division multiplexing optical communication. . When n H × T / {λ × cos (i ′)} is in the range of 0.80 to 1.25 shown in (Equation 1), at least the first-order diffraction efficiency average value of P-polarized light is 90% or more. In the range from 97 to 1.21, the + 1st-order diffraction efficiency of S-polarized light and P-polarized light is 90% or more. That is, a reflective diffraction grating with high efficiency and low PDL is realized by setting the film thickness T of Ta 2 O 5 of the grating convex to 660 to 820 nm.

[実施例2]
実施例1と同じ誘電体多層膜からなる光学反射面12の表面層であるSiO膜上に、低屈折率材料であるSiOを膜厚Tとなるよう成膜し、凸部の断面形状が矩形となるようよう格子13に加工する。ここで、高い+1次回折効率を有する反射型回折格子を得るために、膜厚Tは、n×T/{λ×cos(i’)}が略1になるよう、T=1200nmとする。この場合の+1次回折光率の波長依存性計算結果を図6に示す。
[Example 2]
On the SiO 2 film, which is the surface layer of the optical reflective surface 12 made of the same dielectric multilayer film as in Example 1, a low refractive index material, SiO 2 , is formed to a film thickness T, and the cross-sectional shape of the convex portion Is processed into a lattice 13 so as to be rectangular. Here, in order to obtain a reflective diffraction grating having high + 1st order diffraction efficiency, the film thickness T is set to T = 1200 nm so that n L × T / {λ × cos (i ′)} is approximately 1. . FIG. 6 shows the wavelength dependence calculation result of the + 1st order diffracted light rate in this case.

1495〜1595nmの広い波長範囲において、S偏光の入射光に対して95%以上の高い+1次回折効率が実現する。一方、P偏光に対しては+1次回折光率は35%以下の低い効率でPDLは大きな値となっている。すなわち、光学反射面12の表面層材料の屈折率と回折格子の凸部材料の屈折率の相違により、+1次回折光率の波長依存性および偏光依存性が変化する。   In a wide wavelength range from 1495 to 1595 nm, a high + 1st order diffraction efficiency of 95% or more is realized with respect to S-polarized incident light. On the other hand, for P-polarized light, the + 1st-order diffracted light rate has a low efficiency of 35% or less, and the PDL has a large value. That is, the wavelength dependency and polarization dependency of the + 1st order diffracted light rate change depending on the difference between the refractive index of the surface layer material of the optical reflecting surface 12 and the refractive index of the convex material of the diffraction grating.

格子凸部13はTaやSiO以外の屈折率を有する材料、あるいは、屈折率の異なる膜材料を積層した構成としてもよい。光学反射面12および格子13の構成によって、広い波長範囲において高い+1次回折効率を得ることができる。また、PDLを調整することができる。 The lattice convex portion 13 may have a structure in which materials having a refractive index other than Ta 2 O 5 or SiO 2 or film materials having different refractive indexes are laminated. By the configuration of the optical reflecting surface 12 and the grating 13, high + 1st order diffraction efficiency can be obtained in a wide wavelength range. Also, the PDL can be adjusted.

[実施例3]
図7に格子凸部が屈折率の異なる2層膜からなる反射型回折格子120の断面図を示す。
[Example 3]
FIG. 7 shows a cross-sectional view of a reflective diffraction grating 120 in which the grating convex portion is formed of a two-layer film having a different refractive index.

実施例1と同じ誘電体多層膜からなる光学反射面12の表面層であるSiO膜上に、高屈折率材料であるTa33aを膜厚530nm、さらにその上に低屈折率材料であるSiO33bを膜厚760nmとなるよう成膜し、凸部の断面形状が矩形となるようTaとSiOの表面の2層部分を格子33に加工する。 On the SiO 2 film, which is the surface layer of the optical reflective surface 12 made of the same dielectric multilayer film as in Example 1, Ta 2 O 5 33a, which is a high refractive index material, has a film thickness of 530 nm, and further, a low refractive index material. SiO 2 33b is formed to a film thickness of 760 nm, and the two-layer portion of the surface of Ta 2 O 5 and SiO 2 is processed into a lattice 33 so that the cross-sectional shape of the convex portion is rectangular.

この場合の+1次回折光率の波長依存性計算結果を図8に示す。1495〜1625nmの広い波長範囲において、P偏光の入射光に対して5%以下の低い+1次回折効率となり、1470〜1570nmの広い波長範囲において、S偏光の入射光に対して95%以上の高い+1次回折効率となる。すなわち、偏光依存性の大きな反射型回折格子となる。   FIG. 8 shows the wavelength dependence calculation result of the + 1st order diffracted light rate in this case. In the wide wavelength range of 1495 to 1625 nm, the + 1st order diffraction efficiency is 5% or less lower than the incident light of P-polarized light, and in the wide wavelength range of 1470 to 1570 nm, it is higher than 95% higher than the incident light of S-polarized light. + 1st order diffraction efficiency. That is, a reflection type diffraction grating having a large polarization dependency is obtained.

また、格子の1周期内に占める凸部の割合であるデューティ比D/Pを0.5以外の値とすることにより、+1次回折効率の波長依存性および偏光依存性を調整できる。デューティ比D/Pは0.45から0.55の範囲とすることが好ましい。   Further, by setting the duty ratio D / P, which is the ratio of the convex portion in one period of the grating, to a value other than 0.5, the wavelength dependency and polarization dependency of the + 1st order diffraction efficiency can be adjusted. The duty ratio D / P is preferably in the range of 0.45 to 0.55.

[実施例4]
図11に光学反射膜が金属膜からなる反射型回折格子300の断面図を示す。
[Example 4]
FIG. 11 shows a sectional view of a reflective diffraction grating 300 in which the optical reflection film is made of a metal film.

屈折率0.188を有するAu膜からなる光学反射面42の表面上に、高屈折率材料であるTa43を膜厚604nm成膜し、凸部の断面形状が矩形となるようTaの表面を格子43に加工する。Au膜は0.1μm以上成膜することにより反射率は99%以上になる。この場合の+1次回折光率の波長依存性計算結果を図12に示す。 On the surface of the optical reflecting surface 42 consisting of an Au film having a refractive index 0.188, the Ta 2 O 5 43 is a high refractive index material with a thickness of 604nm deposition, so that the cross-sectional shape of the convex portion is a rectangular Ta The surface of 2 O 5 is processed into a lattice 43. The reflectance becomes 99% or more by forming the Au film to a thickness of 0.1 μm or more. FIG. 12 shows the wavelength dependence calculation result of the + 1st order diffracted light rate in this case.

本発明の回折格子における光学反射面上の格子パターンは、フォトマスクなどを用いて作製できるため、直線形状に限定されず例えば曲線形状に格子パターンを加工することもできる。この曲線形状とすることにより、回折光が光検出器上で集光するようにレンズ機能を付加することもできる。   Since the grating pattern on the optical reflection surface in the diffraction grating of the present invention can be produced using a photomask or the like, the grating pattern is not limited to a linear shape, and for example, the grating pattern can be processed into a curved shape. By adopting this curved shape, it is possible to add a lens function so that the diffracted light is condensed on the photodetector.

上記の本発明の反射型回折格子を用いて、種々の光学装置が構成できる。この光学装置は本発明の反射型回折格子の分光回折などの特性を用いたものであれば、いずれの光学装置であってもよい。   Various optical devices can be constructed using the reflection type diffraction grating of the present invention. This optical apparatus may be any optical apparatus as long as it uses characteristics such as spectral diffraction of the reflective diffraction grating of the present invention.

本発明の分光装置としては、例えば波長多重光通信用の合分波器がある。1520nmから1620nmまでの異なる波長の信号光が単一の光ファイバ中を伝搬する場合、各波長チャネルに分波して信号光を検知あるいは他の光ファイバーに切替て伝搬する必要がある。光ファイバから出射した光は、本発明の反射型回折格子により波長に応じて異なった方向に回折・伝搬し、複数の光検出部からなる受光素子あるいは複数の光ファイバーに入射することで、各波長チャネルの信号検出あるいは光路切替伝送が可能となる。   As the spectroscopic device of the present invention, for example, there is a multiplexer / demultiplexer for wavelength multiplexing optical communication. When signal light having different wavelengths from 1520 nm to 1620 nm propagates through a single optical fiber, it is necessary to demultiplex into each wavelength channel and detect the signal light or switch to another optical fiber for propagation. The light emitted from the optical fiber is diffracted and propagated in different directions according to the wavelength by the reflective diffraction grating of the present invention, and is incident on a light receiving element composed of a plurality of light detection units or a plurality of optical fibers. Channel signal detection or optical path switching transmission is possible.

本発明の反射型回折格子は、複数の波長を使用する回折格子および光学装置特に分光装置に利用される。特にPDLの小さな回折格子であれば、波長分割多重光通信などにおいて、複数の波長チャネルからなる入射光を反射回折により出射方向を変化させるよう分光して波長チャネル毎に光を分岐する分波器や、入射角度の異なる各波長チャネルの光を反射回折により出射方向を同一角度に揃える合波器に利用できる。また、PDLの大きな回折格子の場合は、レーザ媒質を回折格子と出力ミラーからなる共振器中に配置し、回折格子の入射角度の設定で、共振光路に戻る波長光が規定することにより、発振波長可変レーザが構成できる。   The reflective diffraction grating of the present invention is used for diffraction gratings using a plurality of wavelengths and optical devices, particularly spectroscopic devices. In particular, in the case of a diffraction grating having a small PDL, in a wavelength division multiplexing optical communication, etc., a demultiplexer that splits the light for each wavelength channel by splitting the incident light composed of a plurality of wavelength channels by changing the emission direction by reflection diffraction. In addition, it can be used in a multiplexer in which light of each wavelength channel having different incident angles is aligned at the same angle by reflection diffraction. In the case of a diffraction grating with a large PDL, the laser medium is placed in a resonator composed of a diffraction grating and an output mirror, and the wavelength light returning to the resonance optical path is defined by setting the incident angle of the diffraction grating, thereby oscillating. A tunable laser can be constructed.

本発明の反射型回折格子の構成の一例を示す断面図Sectional drawing which shows an example of a structure of the reflection type diffraction grating of this invention 本発明の反射型回折格子の構成の一例を示す斜視図The perspective view which shows an example of a structure of the reflection type diffraction grating of this invention 本発明の反射型回折格子の他の構成の一例を示す断面図Sectional drawing which shows an example of the other structure of the reflection type diffraction grating of this invention 本発明の反射型回折格子の実施例1における+1次回折光率の波長依存性計算結果を示すグラフThe graph which shows the wavelength dependence calculation result of the + 1st order diffracted light rate in Example 1 of the reflection type diffraction grating of this invention 本発明の反射型回折格子の実施例1における、格子凸部膜厚と+1次回折光率の関係の計算結果を示すグラフThe graph which shows the calculation result of the relationship between the grating | lattice convex part film thickness and + 1st order diffracted light rate in Example 1 of the reflection type diffraction grating of this invention 本発明の反射型回折格子の実施例2における+1次回折光率の波長依存性計算結果を示すグラフThe graph which shows the wavelength dependence calculation result of the + 1st order diffracted light rate in Example 2 of the reflection type diffraction grating of this invention 本発明の反射型回折格子の他の構成の一例を示す断面図Sectional drawing which shows an example of the other structure of the reflection type diffraction grating of this invention 本発明の反射型回折格子の実施例3における+1次回折光率の波長依存性計算結果を示すグラフThe graph which shows the wavelength dependence calculation result of the + 1st order diffracted light rate in Example 3 of the reflective diffraction grating of this invention 従来の反射型回折格子の構成の一例を示す断面図Sectional drawing which shows an example of a structure of the conventional reflection type diffraction grating 従来の反射型回折格子の一例における+1次回折光率の波長依存性計算結果を示すグラフThe graph which shows the wavelength dependence calculation result of the + 1st order diffracted light rate in an example of the conventional reflection type diffraction grating 本発明の反射型回折格子の他の構成の一例を示す断面図Sectional drawing which shows an example of the other structure of the reflection type diffraction grating of this invention 本発明の反射型回折格子の実施例4における+1次回折光率の波長依存性計算結果を示すグラフThe graph which shows the wavelength dependence calculation result of the + 1st order diffracted light rate in Example 4 of the reflection type diffraction grating of this invention

符号の説明Explanation of symbols

11、41:基板
12:光学反射面
13、23、33:格子凸部
33a:Ta
33b:SiO
42:レプリカ格子
43:金属反射膜
100、110、120、300:反射型回折格子
200:反射型ブレーズ回折格子
11, 41: Substrate 12: Optical reflecting surface 13, 23, 33: Lattice convex portion 33a: Ta 2 O 5
33b: SiO 2
42: Replica grating 43: Metal reflective film 100, 110, 120, 300: Reflective diffraction grating 200: Reflective blaze diffraction grating

Claims (1)

表面に光学反射面を有する基板上に形成された、断面が凹凸状でかつ凸部上面が実質的に平坦な透光性材料からなる格子を有する反射型回折格子を含む分光装置において、
入射光の波長λに対する前記反射型回折格子の格子間隔Pの比率P/λが0.55以上かつ1.45以下であって、
前記反射型回折格子は、前記反射型回折格子の光反射面に対して斜めに光が入射するような配置で分光素子として用いるものであって、
前記光学反射面が相対的に屈折率の大きな透明誘電膜と相対的に屈折率の小さな透明誘電膜とを交互に積層してなる誘電体多層膜からなるものであって、
前記格子凸部の透光性材料が、TiO 、Ta 、Nb 、Al 、Si およびSiからなる群から選ばれた1種以上であって、
前記反射型回折格子への入射角をi、前記格子凸部の透光性材料の平均屈折率をn、高さをTとすると、(式5)を満たすことを特徴とする分光装置。
0.97≦n×T/{λ×cos(i’)}≦1.21(式5)
ただし、角度i’は、sin(i)=n×sin(i’)を満たす。
In a spectroscopic device including a reflective diffraction grating formed on a substrate having an optical reflective surface on its surface and having a grating made of a light-transmitting material having a concavo-convex cross section and a substantially flat upper surface of the convex portion,
The ratio P / λ of the grating interval P of the reflective diffraction grating to the wavelength λ of incident light is 0.55 or more and 1.45 or less,
The reflective diffraction grating is used as a spectroscopic element in an arrangement in which light is incident obliquely with respect to the light reflection surface of the reflective diffraction grating,
The optical reflecting surface is composed of a dielectric multilayer film in which transparent dielectric films having a relatively large refractive index and transparent dielectric films having a relatively small refractive index are alternately laminated,
The light-transmitting material of the lattice protrusion is at least one selected from the group consisting of TiO 2 , Ta 2 O 5 , Nb 2 O 5 , Al 2 O 3 , Si 3 N 4 and Si,
A spectroscopic device satisfying (Equation 5), where i is an incident angle to the reflective diffraction grating, n is an average refractive index of the translucent material of the grating convex portion, and T is a height.
0.97 ≦ n × T / {λ × cos (i ′)} ≦ 1.21 (Formula 5)
However, the angle i ′ satisfies sin (i) = n × sin (i ′).
JP2007072826A 2007-03-20 2007-03-20 Spectrometer Active JP5050594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072826A JP5050594B2 (en) 2007-03-20 2007-03-20 Spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072826A JP5050594B2 (en) 2007-03-20 2007-03-20 Spectrometer

Publications (2)

Publication Number Publication Date
JP2008233528A JP2008233528A (en) 2008-10-02
JP5050594B2 true JP5050594B2 (en) 2012-10-17

Family

ID=39906379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072826A Active JP5050594B2 (en) 2007-03-20 2007-03-20 Spectrometer

Country Status (1)

Country Link
JP (1) JP5050594B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954524B1 (en) * 2009-12-17 2012-09-28 Ecole Polytech OPTIMIZED DIELECTRIC REFLECTING DIFFRACTION NETWORK
JP5740937B2 (en) * 2009-12-18 2015-07-01 株式会社ニコン Structural color developing body and camera using the same
JP2012027049A (en) * 2010-07-20 2012-02-09 Dainippon Printing Co Ltd Hologram
TW201401699A (en) * 2012-04-09 2014-01-01 Sony Corp Semiconductor laser device assembly
JP5962317B2 (en) * 2012-08-07 2016-08-03 株式会社島津製作所 Diffraction grating and optical pulse compressor
CN103033862A (en) * 2012-12-17 2013-04-10 武汉电信器件有限公司 Reflector device for preparing distributed feed back (DFB) laser phase-shift gratings and preparation method thereof
CN104956554B (en) 2013-01-31 2018-09-14 株式会社岛津制作所 Using the laser aid of chirped pulse amplification method
JP6356557B2 (en) * 2013-09-30 2018-07-11 株式会社豊田中央研究所 Lens and manufacturing method thereof
JP6188743B2 (en) * 2014-06-19 2017-08-30 キヤノン株式会社 Optical element having a plurality of optical functional surfaces, spectroscopic device, and manufacturing method thereof
JP2017033019A (en) * 2016-10-28 2017-02-09 株式会社島津製作所 Method for amplifying chirp pulse in laser device
KR101923821B1 (en) * 2017-06-05 2018-11-29 국방과학연구소 Design method of dielectric multilayer thin film diffraction grating
CN112578490A (en) * 2019-09-30 2021-03-30 南开大学 Low-refractive-index large-angle deflection sparse grating for 3D printing
JP7441071B2 (en) * 2020-02-20 2024-02-29 株式会社日立ハイテク Manufacturing method of concave diffraction grating
CN117406320B (en) * 2023-12-13 2024-02-13 长春理工大学 Double-layer two-dimensional grating structure with wide-spectrum wide-angle diffraction inhibition effect

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50000086D1 (en) * 2000-01-18 2002-02-21 Acterna Eningen Gmbh Optical reflection grating and method for its optimization and optical spectrometer
JP4232523B2 (en) * 2003-04-24 2009-03-04 旭硝子株式会社 Optical modulator and optical attenuator
JP4749789B2 (en) * 2004-07-26 2011-08-17 日本板硝子株式会社 Transmission type diffractive optical element
JP4901762B2 (en) * 2005-02-22 2012-03-21 ゲーエスイー ヘルムホルッツェントゥルム フュア シュヴェリオネンフォルシュンク ゲーエムベーハー Method for increasing the laser damage threshold of a diffraction grating
JP2007333826A (en) * 2006-06-13 2007-12-27 Shimadzu Corp Reflection-type diffraction element

Also Published As

Publication number Publication date
JP2008233528A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5050594B2 (en) Spectrometer
US7142363B2 (en) Diffraction element and optical device
US8165436B2 (en) Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers
US7349612B2 (en) Optical element, optical circuit provided with the optical element, and method for producing the optical element
US6665119B1 (en) Wire grid polarizer
JP5280654B2 (en) Transmission diffraction grating, and spectroscopic element and spectroscope using the same
JP2011138169A (en) Transmission diffraction optical element
WO2012157358A1 (en) Production method for optical component and optical component
JPH1144825A (en) Optical device and its production
JP4369256B2 (en) Spectroscopic optical element
JP2002169022A (en) Optical element, spectroscopic device and integrated optical device using the same
JP4749789B2 (en) Transmission type diffractive optical element
US6914715B2 (en) Optical element
JP2007101926A (en) Transmission grating and spectral element and spectroscope using the same
JP2004205880A (en) Reflective diffraction grating
JP2003084114A (en) Reflection diffraction device
JP6497699B2 (en) Light modulation device and light modulation system
JPH06317705A (en) Diffraction element and optical multiplxing/ demultiplxing device using the same
JP5313725B2 (en) 1/4 wave plate
JP2005121938A (en) Diffraction grating with polarization control film, and diffraction optical device using same
JP2006259439A (en) Demultiplexing element and demultiplexing method
Chang et al. Cascaded subwavelength resonant grating filters for flat-top spectral response
US20040218853A1 (en) Wavelength division multiplexing and de-multiplexing system
JP2004145117A (en) Optical element using linear photonic crystal and spectral device using same
JP4870728B2 (en) Diffraction element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R151 Written notification of patent or utility model registration

Ref document number: 5050594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250