JP2005121938A - Diffraction grating with polarization control film, and diffraction optical device using same - Google Patents

Diffraction grating with polarization control film, and diffraction optical device using same Download PDF

Info

Publication number
JP2005121938A
JP2005121938A JP2003357406A JP2003357406A JP2005121938A JP 2005121938 A JP2005121938 A JP 2005121938A JP 2003357406 A JP2003357406 A JP 2003357406A JP 2003357406 A JP2003357406 A JP 2003357406A JP 2005121938 A JP2005121938 A JP 2005121938A
Authority
JP
Japan
Prior art keywords
diffraction grating
incident
light
light beam
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003357406A
Other languages
Japanese (ja)
Inventor
Naoko Hikichi
奈緒子 引地
Kenichi Nakama
健一 仲間
Katsuhide Shinmo
勝秀 新毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003357406A priority Critical patent/JP2005121938A/en
Publication of JP2005121938A publication Critical patent/JP2005121938A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffraction grating with polarization control film which is high in utilization efficiency of light and low in polarization dependence in a wide wavelength region and at various incident angles, and to provide a diffraction optical device using the diffraction grating on proper conditions. <P>SOLUTION: The diffraction grating with polarization control film is a reflection type diffraction grating which has parallel grooves arranged at regular intervals on the surface of a planar base plate and has a reflective layer on the surface of the grooves. The groove side surfaces have at least two flat surface parts inclined to the surface of the base plate, a polarization control film 50 which is transparent at a prescribed wavelength λ and has a refractive index n is disposed on one side of the flat surface parts 14 and the average film thickness is in the range of 0.8 to 1.1 λ/4n. Further, the average film thickness of the film on the groove side surface on the other part is ≤0.1 λ/4n . <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光通信分野、分析光学分野などで使用される回折光学素子および装置に関し、とくに反射型回折格子の光の利用効率の偏光特性制御に関する。   The present invention relates to a diffractive optical element and apparatus used in the fields of optical communication, analytical optics, and the like, and more particularly to polarization characteristic control of light utilization efficiency of a reflective diffraction grating.

光の回折効果を利用した回折光学素子は、分析機器の分光素子や光通信分野における合分波素子として幅広く応用されている。典型的な回折光学素子としては基板上に等間隔で多数の平行な溝を配列した回折格子があげられる。   A diffractive optical element using the diffraction effect of light is widely applied as a spectroscopic element for analytical instruments and a multiplexing / demultiplexing element in the field of optical communication. A typical diffractive optical element is a diffraction grating in which a large number of parallel grooves are arranged at equal intervals on a substrate.

回折格子の光の利用効率、すなわち回折効率は、光の波長と単位長さ当たりの溝本数の関係に大きく依存し、さらには光の偏光状態、入射角、溝の形状などによっても影響を受けることが知られている。   The light utilization efficiency of the diffraction grating, that is, the diffraction efficiency, depends greatly on the relationship between the wavelength of light and the number of grooves per unit length, and is also affected by the polarization state of light, the incident angle, the shape of the grooves, etc. It is known.

特に回折格子の溝ピッチ(溝間隔)と入射波長がほぼ等しいような使用条件下では、回折効率は入射光の偏光状態に強く依存して変化する。この偏光状態は、回折格子の溝に平行な方向に電界振幅をもつ状態をTE偏光、溝に垂直な方向に電解振幅をもつ状態をTM偏光とよび、一般に波長と溝ピッチがほぼ等しい条件下ではTE偏光の回折効率が著しく低下することが知られている(例えば、非特許文献1参照)。   In particular, the diffraction efficiency changes strongly depending on the polarization state of the incident light under use conditions in which the groove pitch (groove interval) of the diffraction grating and the incident wavelength are substantially equal. In this polarization state, a state having an electric field amplitude in a direction parallel to the groove of the diffraction grating is referred to as TE polarization, and a state having an electrolytic amplitude in a direction perpendicular to the groove is referred to as TM polarization. In general, the wavelength and the groove pitch are substantially equal. Then, it is known that the diffraction efficiency of TE-polarized light is significantly reduced (see, for example, Non-Patent Document 1).

このような問題点を回避し、入射光の波長や偏光状態に依存せず比較的安定な光の利用効率を得るには、波長に比して溝ピッチが広い回折格子を使用すればよい。しかし波長変化に対する回折角の変化である角分散の値は、溝ピッチの逆数、すなわち単位長さあたりの溝本数に比例するため、溝ピッチの広い回折格子では角分散が小さくなるという欠点がある。   In order to avoid such problems and obtain a relatively stable use efficiency of light without depending on the wavelength or polarization state of incident light, a diffraction grating having a wider groove pitch than the wavelength may be used. However, since the value of angular dispersion, which is the change in diffraction angle with respect to wavelength change, is proportional to the reciprocal of the groove pitch, that is, the number of grooves per unit length, there is a drawback that the angular dispersion becomes small in a diffraction grating with a wide groove pitch. .

回折格子の角分散は波長分解能に大きな影響を与えることから、大きな角分散を有する回折格子が望まれる。また最近では光学機器への小型化要求に応えるため溝本数が多く角分散の大きい回折格子で光学系の省スペース化を図る設計が増えている。
さらに使用される波長範囲も広くなっているため、広波長域で偏光依存が小さく、かつ光の利用効率が高い回折格子が求められている。
Since the angular dispersion of the diffraction grating greatly affects the wavelength resolution, a diffraction grating having a large angular dispersion is desired. Recently, in order to meet the demand for miniaturization of optical devices, there are increasing designs for space-saving optical systems using diffraction gratings with a large number of grooves and large angular dispersion.
Furthermore, since the wavelength range to be used is also widened, there is a need for a diffraction grating that has low polarization dependence and high light utilization efficiency in a wide wavelength range.

これらの問題に対して従来、回折光学素子に関しては次のような技術がある。低い光の利用効率に対しては、例えば特許文献1に開示されているように溝の形状を最適化する試みがなされている。また、溝の上に屈折率nの透明体材を設け、入射波長λをλ/nと透過にすることで回折効率の高い波長で回折させる手法も提案されている(特許文献2、参照)。さらにこの技術を特許文献3に開示されるように広い波長範囲に適用したものもある。   Conventionally, there are the following techniques regarding the diffractive optical element with respect to these problems. For low light utilization efficiency, for example, as disclosed in Patent Document 1, an attempt is made to optimize the groove shape. Further, a method of diffracting at a wavelength with high diffraction efficiency by providing a transparent material having a refractive index n on the groove and transmitting the incident wavelength λ as λ / n has been proposed (see Patent Document 2). . Further, there is a technique in which this technique is applied to a wide wavelength range as disclosed in Patent Document 3.

また回折光学素子それ自体によるのではなく、回折光学素子の偏光依存性をフィルタなど別の光学部品との組み合わせによって補償する手法も一般によく用いられる。
特開2002−224889号公報 特開昭62−61002号公報 特開平6−317705号公報 ロジェ・プチ(Roger Petit)編、「回折格子の電磁理論(Electromagnetic Theory of Gratings)」、(米国)、シュプリンガー・フェアラグ(Springer-Verlag)、1980年
In general, a method of compensating for the polarization dependence of the diffractive optical element not only by the diffractive optical element itself but also in combination with another optical component such as a filter is often used.
JP 2002-224889 A JP-A-62-61002 JP-A-6-317705 Roger Petit, “Electromagnetic Theory of Gratings”, (USA), Springer-Verlag, 1980

しかしながら、形状を最適化することや透明体材の屈折率で見かけ上の波長を調節することだけでは回折格子の光利用効率の改善は不十分であり、偏光依存性も十分に小さくすることはできなかった。   However, simply optimizing the shape and adjusting the apparent wavelength with the refractive index of the transparent material is not enough to improve the light utilization efficiency of the diffraction grating, and the polarization dependence cannot be reduced sufficiently. could not.

また、上記特許文献3に示されるように、使用波長帯を広くするために素子の両面を使用する構成では光学系の自由度が低く取り扱いも難しかった。   Further, as shown in Patent Document 3, the configuration using both sides of the element in order to widen the wavelength band used has a low degree of freedom in the optical system and is difficult to handle.

さらに、偏光依存性をフィルタなどの部品を追加して補償する方法では、光の損失が大きくなり、利用効率が小さくなってしまう問題や、部品点数が増えることにより組立が煩雑になる問題がある。   Furthermore, the method of compensating for the polarization dependence by adding components such as a filter has a problem that the loss of light increases and the utilization efficiency decreases, and the assembly becomes complicated due to an increase in the number of components. .

本発明はこれらの課題を解決するためになされたもので、広い波長域かつさまざまな入射角において、回折格子の溝本数によらず、光の利用効率を高くし、かつ特性の偏光依存を小さくするために必要な偏光制御膜付き回折格子を提供し、かつそれを適切な条件で用いた回折光学装置を提供することを目的としている。   The present invention has been made to solve these problems. In a wide wavelength range and various incident angles, the light utilization efficiency is increased and the polarization dependence of the characteristics is reduced regardless of the number of grooves of the diffraction grating. An object of the present invention is to provide a diffraction grating with a polarization control film necessary for the purpose, and to provide a diffractive optical apparatus using the diffraction grating under appropriate conditions.

本発明の偏光制御膜付き回折格子は、平板状基板の表面に1mm当たりN本の平行な溝を等間隔で配列した構造を基礎とし、その溝側面は基板表面に対して傾斜した少なくとも2つの平面部分を有している。そしてその表面に反射層を備えた反射型回折格子である。このような回折格子の各溝側面のうち、一方の互いに平行な平面部分に所定波長λに対して透明で屈折率がnである偏光制御膜を設け、その平均膜厚を0.8λ/4nから1.1λ/4nの範囲とする。またこの他の部分の溝側面における同膜の平均膜厚を0.1λ/4n以下とする。   The diffraction grating with a polarization control film of the present invention is based on a structure in which N parallel grooves per 1 mm are arranged at equal intervals on the surface of a flat substrate, and the side surfaces of the grooves are inclined with respect to the substrate surface. It has a flat part. And it is a reflection type diffraction grating provided with the reflection layer on the surface. A polarization control film that is transparent with respect to a predetermined wavelength λ and has a refractive index n is provided on one of the parallel plane portions of each groove side surface of such a diffraction grating, and the average film thickness is 0.8λ / 4n. To 1.1λ / 4n. Further, the average film thickness of the film on the other side of the groove is 0.1λ / 4n or less.

この構成の偏光制御膜付き回折格子を適切な条件で使用することにより、偏光依存性の小さい回折光学装置を提供することができる。   By using the diffraction grating with a polarization control film having this configuration under appropriate conditions, it is possible to provide a diffractive optical apparatus with little polarization dependency.

本発明の回折光学装置は、上記の偏光制御膜付き回折格子と、この回折格子の偏光制御膜を備えた溝側面に平行光束を入射させる光学手段と、この回折格子による1次回折光の光束を受光する光学手段とを少なくとも備える。そして回折格子の1つの溝側面に入射する平行光束に垂直に交わる任意の平面から0次回折光の光束に垂直に交わる任意の平面に至るこの光束中の光線の光路長のうち、最長光路長と最短光路長の差を、0.825λから1.175λの範囲とする。   The diffractive optical apparatus of the present invention comprises the above-described diffraction grating with a polarization control film, optical means for allowing a parallel light beam to be incident on the side surface of the groove provided with the polarization control film of the diffraction grating, and the light beam of the first-order diffracted light by the diffraction grating. And at least optical means for receiving light. Of the optical path lengths of the light rays in this light beam from an arbitrary plane perpendicular to the parallel light beam incident on one groove side surface of the diffraction grating to an arbitrary plane perpendicular to the light beam of zero-order diffracted light, The difference between the shortest optical path lengths is in the range of 0.825λ to 1.175λ.

0次回折光の光束における最長光路長と最短光路長の差をほぼ1波長とする、すなわち、位相差をほぼ2πに等しくすることにより、0次回折光が存在しない条件となる。したがって回折光はほとんど1次回折光となり、高い1次回折効率を得ることができる。   By setting the difference between the longest optical path length and the shortest optical path length in the light beam of the 0th-order diffracted light to be approximately one wavelength, that is, making the phase difference substantially equal to 2π, the condition that the 0th-order diffracted light does not exist is established. Therefore, the diffracted light is almost first-order diffracted light, and high first-order diffraction efficiency can be obtained.

また、回折格子に入射する平行光束の基板表面に対する入射角をα(°)とし、この平行光束が入射する回折格子の溝側面の基板表面に対する傾斜角をθ(°)とするとき、
α≦90−θ
の関係が成り立つように回折光学装置を構成することが望ましい。
この条件が満たされていないと、幾何光学的な0次回折光の方向が回折格子内部へ向かうことになり、上記の光路長が定義できない。
In addition, when the incident angle of the parallel light beam incident on the diffraction grating with respect to the substrate surface is α (°), and the inclination angle of the groove side surface of the diffraction grating on which the parallel light beam is incident with respect to the substrate surface is θ (°),
α ≦ 90−θ
It is desirable to configure the diffractive optical apparatus so that the above relationship holds.
If this condition is not satisfied, the geometric optical zero-order diffracted light is directed toward the inside of the diffraction grating, and the optical path length cannot be defined.

さらに回折格子の溝側面をなす2つの平面の交わる角度がθ’(°)であるとき、
θ’≦90+α−θ
の関係が成り立つように回折光学装置を構成することが望ましい。
この条件が満たされることにより、入射光の光束が偏光制御膜のほとんどない側の溝側面に入射することが避けられ、光路長差が最適となるようにできる。
Furthermore, when the angle between two planes forming the groove side surface of the diffraction grating is θ ′ (°),
θ ′ ≦ 90 + α−θ
It is desirable to configure the diffractive optical apparatus so that the above relationship holds.
By satisfying this condition, it is possible to avoid the incident light beam from entering the side surface of the groove where there is almost no polarization control film, and to optimize the optical path length difference.

またさらに、0次回折光の光束が偏光制御膜から出射する際、その光束のすべてを偏光制御膜の溝側面に平行な表面でない側面から出射させることが望ましい。
この条件が満たされることにより、光路長差が最適になるように光学的条件を設定できる。
Furthermore, when the 0th-order diffracted light beam is emitted from the polarization control film, it is desirable to emit all of the light beam from a side surface that is not parallel to the groove side surface of the polarization control film.
By satisfying this condition, the optical condition can be set so that the optical path length difference is optimized.

上記の回折格子の0、+1以外の回折次数mに対して、
|Nmλ−sinα|≧1
の条件が成り立つように回折光学装置を構成することが望ましい。
この条件が満たされることにより、0次、+1次以外の次数の回折光は発生することができなくなるため、上記の各条件が満たされることにより、+1次回折光のみが生じ、その回折効率を最大限に高めることができる。
For diffraction orders m other than 0 and +1 in the above diffraction grating,
| Nmλ-sinα | ≧ 1
It is desirable to configure the diffractive optical apparatus so that the above condition is satisfied.
When this condition is satisfied, diffracted light of orders other than 0th order and + 1st order cannot be generated. Therefore, when each of the above conditions is satisfied, only + 1st order diffracted light is generated, and the diffraction efficiency is maximized. Can be increased to the limit.

本発明の回折格子では、溝の入射光側斜面にTE偏光の0次光の位相を調節するような偏光制御膜を設けることにより、0次光を弱め、1次回折光を強める。これにより、TEモード、TMモードの両偏光に対する回折効率差を小さくすることができ、かつ非常に高い回折効率を維持することができる。   In the diffraction grating of the present invention, by providing a polarization control film that adjusts the phase of TE-polarized zero-order light on the incident light side slope of the groove, the zero-order light is weakened and the first-order diffracted light is strengthened. Thereby, the diffraction efficiency difference with respect to both TE mode and TM mode polarized light can be reduced, and a very high diffraction efficiency can be maintained.

本発明が対象とする回折光学素子は、基板上に多数の平行な溝を等間隔で配列した回折格子であり、表面に使用する入射波長域の光を反射する反射膜を設けた反射型回折格子である。   The diffractive optical element targeted by the present invention is a diffraction grating in which a large number of parallel grooves are arranged at equal intervals on a substrate, and a reflection type diffraction provided with a reflective film for reflecting light in the incident wavelength range used on the surface. It is a lattice.

本発明の回折格子の理想的な形態を図1(a)に示す。この回折格子10は基板20の表面22に対して傾斜した2つの溝側面14、16をもっており、その表面全体に反射膜40が設けられている。さらに入射光100が照射される側の溝側面14上にのみ、透明体被膜50が設けられている。   An ideal form of the diffraction grating of the present invention is shown in FIG. The diffraction grating 10 has two groove side surfaces 14 and 16 which are inclined with respect to the surface 22 of the substrate 20, and a reflective film 40 is provided on the entire surface. Furthermore, the transparent body film 50 is provided only on the groove side surface 14 on the side irradiated with the incident light 100.

上記回折格子の入射光100が照射される側の溝側面14の反射膜40上に設けられた透明体被膜50は、屈折率nを有し、入射光に対し平行な方向の膜厚tが、使用波長λに対して
t=λ/4n・・・(1)
を満たすように設定されている。この膜は、金属反射面上に設けられた光学膜厚λ/4の光学膜として振る舞い、回折格子の基板面に対する反射光である0次回折光を打ち消す無反射膜の効果を持つ。これにより0次回折光は弱められ、相対的に1次回折光が強められることになる。
The transparent body film 50 provided on the reflective film 40 on the groove side surface 14 on the side where the incident light 100 of the diffraction grating is irradiated has a refractive index n and a film thickness t in a direction parallel to the incident light. , For operating wavelength λ
t = λ / 4n (1)
It is set to satisfy. This film behaves as an optical film having an optical film thickness of λ / 4 provided on the metal reflecting surface, and has the effect of a non-reflective film that cancels the 0th-order diffracted light that is reflected on the substrate surface of the diffraction grating. As a result, the 0th-order diffracted light is weakened, and the 1st-order diffracted light is relatively strengthened.

図2は回折格子の1つの溝側面14に入射角αで入射し得る平行光束102とその光束が0次回折光として反射された平行光束104を示している。ここで、入射する平行光束102と垂直に交わる平面Iから反射された平行光束104と垂直に交わる平面Oまでの最長光路202(実線で表す)と最短光路204(破線で表す)の光路長差が入射光の波長λに等しい場合を考える。   FIG. 2 shows a parallel light beam 102 that can be incident on one groove side surface 14 of the diffraction grating at an incident angle α and a parallel light beam 104 in which the light beam is reflected as zero-order diffracted light. Here, the optical path length difference between the longest optical path 202 (represented by a solid line) and the shortest optical path 204 (represented by a broken line) from the plane I perpendicular to the incident parallel light beam 102 to the plane O perpendicular to the reflected parallel light beam 104. Is equal to the wavelength λ of the incident light.

光束内の光路長は、最長光路202と最短光路204の間では、連続的に変化している。これはつまり最短光路204から最長光路202に向かって位相差が0から2πまで連続的に変化していることになるので、0次回折光の光束104全体を積分すると0となり、0次回折光が存在しない条件となる。したがって入射光は1次回折光へ向かい、高い1次回折効率を得ることができる。   The optical path length in the light beam continuously changes between the longest optical path 202 and the shortest optical path 204. This means that the phase difference continuously changes from 0 to 2π from the shortest optical path 204 to the longest optical path 202. Therefore, when the entire light beam 104 of the 0th order diffracted light is integrated, it becomes 0, and the 0th order diffracted light exists. It is a condition that does not. Accordingly, the incident light travels toward the first-order diffracted light, and high first-order diffraction efficiency can be obtained.

このような構成とすることで、TE偏光の0次回折光を打ち消す効果が得られ、1次回折光の強度が増大する。これにより光の利用効率が高く、かつ偏光依存性が小さい回折格子を得ることができる。   With such a configuration, an effect of canceling the TE-polarized zeroth-order diffracted light is obtained, and the intensity of the first-order diffracted light is increased. As a result, it is possible to obtain a diffraction grating with high light utilization efficiency and low polarization dependence.

また、0次回折光が連続的な位相変化をもつためには、幾何光学的に0次回折光が存在する条件を考慮する必要がある。0次回折光の出射角β0は、−αに等しいので、溝側面の傾斜角によっては図3に示すように0次回折光の光束104の方向が溝側面14の表面より下側になってしまう場合があり、この場合は0次回折光が存在できないことになる。したがって0次回折光が存在するような入射角および溝形状である必要がある。 In addition, in order for the 0th-order diffracted light to have a continuous phase change, it is necessary to consider the condition that the 0th-order diffracted light exists geometrically. Since the emission angle β 0 of the 0th-order diffracted light is equal to −α, the direction of the light beam 104 of the 0th-order diffracted light is below the surface of the groove side surface 14 as shown in FIG. In this case, zero-order diffracted light cannot exist. Therefore, the incident angle and groove shape must be such that zero-order diffracted light exists.

回折格子に入射する平行光束102の基板の表面に平行な面24に対する入射角をα(°)とし、この平行光束102が入射する回折格子の溝側面14の基板表面に平行な面24に対する傾斜角をθ(°)とするとき、
α≦90−θ
の関係が成り立つように光学系を設計すれば、0次回折光は溝側面14より上方に出射される。
The incident angle of the parallel light beam 102 incident on the diffraction grating with respect to the surface 24 parallel to the surface of the substrate is α (°), and the groove side surface 14 of the diffraction grating on which the parallel light beam 102 enters is inclined with respect to the surface 24 parallel to the substrate surface. When the angle is θ (°),
α ≦ 90−θ
If the optical system is designed so that the above relationship holds, the 0th-order diffracted light is emitted above the groove side surface 14.

さらに、0次回折光が連続的な位相変化をもつためには、入射光の光束102が、溝の一側面だけを照射し、逆側の側面を照射しないような使用条件が必要である。すなわち、図4に示すように、入射光束102の端部の光線206が入射光が溝側面16に入射する配置は望ましくない。   Further, in order for the 0th-order diffracted light to have a continuous phase change, it is necessary to have a use condition in which the incident light beam 102 irradiates only one side surface of the groove and does not irradiate the opposite side surface. That is, as shown in FIG. 4, the arrangement in which the light ray 206 at the end of the incident light beam 102 is incident on the groove side surface 16 is not desirable.

これを避けるためには、回折格子の溝側面をなす2つの平面の交わる角度をθ’(°)とすると、
θ’≦90+α−θ
の関係が成り立つように光学系を構成すればよい。
In order to avoid this, assuming that the angle between two planes forming the groove side surface of the diffraction grating is θ ′ (°),
θ ′ ≦ 90 + α−θ
The optical system may be configured so that

加えて、0次回折光の光束104が図2に示すように、すべて透明体被膜50の側面52から出射するような使用条件が必要である。図5に示すように0次回折光の光束104の一部が、透明体被膜50の溝側面14に平行な表面51から出射するのは好ましくない。   In addition, as shown in FIG. 2, a use condition is required in which all the light beams 104 of the 0th-order diffracted light are emitted from the side surface 52 of the transparent body coating 50. As shown in FIG. 5, it is not preferable that a part of the 0th-order diffracted light beam 104 is emitted from the surface 51 parallel to the groove side surface 14 of the transparent body coating 50.

もちろん、このような回折格子を0次および1次の回折光のみが存在するような条件下で使用することが望ましい。2次以上の高次の回折光が存在する条件では、入射光の一部が高次の回折光となるので、望ましくない。基板上に1mm当たりN本の平行な溝を等間隔で配列した回折格子においては、波長λの光を入射角αで入射したとき、回折次数mに対する回折光は、
sinα+sinβm=Nmλ・・・(2)
の関係が成立するような角度βmの方向に得られる。
Of course, it is desirable to use such a diffraction grating under conditions where only 0th-order and 1st-order diffracted light exists. Under the condition that second order or higher order diffracted light exists, a part of the incident light becomes higher order diffracted light, which is not desirable. In a diffraction grating in which N parallel grooves per 1 mm are arranged at equal intervals on a substrate, when light having a wavelength λ is incident at an incident angle α, the diffracted light for the diffraction order m is
sinα + sinβ m = Nmλ (2)
Is obtained in the direction of the angle β m such that

したがって0次回折光(m=0)の角度β0は、上述のように
β0=−α
であり、1次回折光(m=+1)の角度β1は、
β1=−sin-1(Nλ−sinα)
である。なお、ここでmの符号は、図1(a)に示したように、0次回折光に対して入射光側に生じる回折光の次数を正とする。
Therefore, the angle β 0 of the 0th -order diffracted light (m = 0) is β 0 = −α as described above.
The angle β 1 of the first -order diffracted light (m = + 1) is
β 1 = −sin −1 (Nλ−sin α)
It is. Here, as for the sign of m, the order of the diffracted light generated on the incident light side with respect to the 0th order diffracted light is positive as shown in FIG.

そして0と+1以外のmについては(2)式を満たすβmが存在しないことが望ましい。すなわち、mが0、+1以外の整数に対して
|sinβm|=|Nmλ−sinα|≧1
の条件が成り立つことが望ましい。
For m other than 0 and +1, it is desirable that there is no β m satisfying the expression (2). That is, for integers other than m = 0 or +1
| Sinβ m | = | Nmλ−sinα | ≧ 1
It is desirable to satisfy the following conditions.

つぎに、上記の構成を有する回折格子の特性を有限要素法による電磁波解析により計算し求めた結果について説明する。
入射光、0次回折光を上記に示したように光線で表わし光路長を求めるためには、次に示すいくつかの近似、および回折格子の溝形状や使用条件に関する限定を行った。
Next, the results obtained by calculating the characteristics of the diffraction grating having the above-described structure by electromagnetic wave analysis by the finite element method will be described.
In order to obtain the optical path length by expressing the incident light and the 0th-order diffracted light as light rays as described above, the following approximations and limitations on the groove shape and use conditions of the diffraction grating were performed.

まず、本発明の回折格子は、入射光が入射される溝側面に屈折率nの透明体被膜が偏光制御膜として設けられているが、この透明体被膜に入射光が斜めに入射することで生じる光路の屈折や実効的な屈折率の変化については、この場合影響が小さいと見なしてこれを無視する。すなわち、図2で示すように、透明体被膜50に入射した光の光路は屈折率nの媒質中を屈折せずに進むものとする。   First, in the diffraction grating of the present invention, a transparent film having a refractive index n is provided as a polarization control film on the side surface of the groove where incident light is incident. However, the incident light is incident obliquely on the transparent film. The refraction of the optical path that occurs and the effective change in the refractive index are considered to be small in this case and are ignored. That is, as shown in FIG. 2, it is assumed that the optical path of the light incident on the transparent film 50 travels without being refracted in a medium having a refractive index n.

溝本数Nが、900本/mmおよび1100本/mmの回折格子に対し、波長λの範囲が1270nm〜1925nmの入射光を、入射角αを44°〜60°の範囲で入射したとき、上記条件が成立するような条件で計算を行った。   When the number N of grooves is 900 / mm and 1100 / mm, when incident light having a wavelength λ in the range of 1270 nm to 1925 nm is incident at an incident angle α in the range of 44 ° to 60 °, Calculations were performed under conditions that would satisfy the conditions.

計算においては、透明体皮膜の膜厚tを一定とし、膜の屈折率nを調整して、それぞれの波長λに対して光学膜厚ntがλ/4に等しくなるよう、すなわち(1)式が満たされるようにした。もちろん、屈折率を一定にし、膜厚を調整してもよい。比較のため、透明体皮膜がない場合についても計算を行っている。またいずれの場合も2次以上の回折は生じないように入射角の条件を設定した。   In the calculation, the film thickness t of the transparent body film is made constant and the refractive index n of the film is adjusted so that the optical film thickness nt becomes equal to λ / 4 for each wavelength λ. To be satisfied. Of course, the refractive index may be kept constant and the film thickness may be adjusted. For comparison, the calculation is also performed for the case where there is no transparent film. In either case, the incident angle condition was set so that second-order or higher diffraction would not occur.

N=900本/mmで、入射角αが44°、52°、60°の場合の計算結果を表1〜3、および図6〜8に、N=1100本/mm、α=44°、52°、60°の場合の計算結果を表4〜6、図9〜11に示す。   The calculation results when N = 900 lines / mm and the incident angle α is 44 °, 52 °, 60 ° are shown in Tables 1 to 3 and FIGS. 6 to 8, N = 1100 lines / mm, α = 44 °, The calculation results in the case of 52 ° and 60 ° are shown in Tables 4 to 6 and FIGS.

なお、N=900本/mmで入射角αを44°とした図6、表1に対応する光学系は、入射波長1550nmの場合、1次回折光の回折角がほぼ入射角と等しい、いわゆるリトロー光学系である。光通信分野ではこの系がしばしば用いられる。   The optical system corresponding to FIG. 6 and Table 1 in which N = 900 lines / mm and the incident angle α is 44 ° is a so-called Littrow where the diffraction angle of the first-order diffracted light is substantially equal to the incident angle when the incident wavelength is 1550 nm. It is an optical system. This system is often used in the optical communication field.

図6を参照すると、この系においては、本発明の効果が顕著に得られていることがわかる。透明体皮膜がない場合には、TM偏光に対する回折効率が約95%であるのに対し、TE偏光に対する回折効率は20%にも満たず、偏光依存損失は約7dBと大きい。   Referring to FIG. 6, it can be seen that the effect of the present invention is remarkably obtained in this system. In the absence of the transparent film, the diffraction efficiency for TM polarized light is about 95%, whereas the diffraction efficiency for TE polarized light is less than 20%, and the polarization dependent loss is as large as about 7 dB.

これに対して透明体皮膜を設けた場合には、TE偏光、TM偏光とも回折効率は90%前後となり、PDLは0.5dB以下となっている。またこの特性は波長に対する依存性が少なく、本発明の効果が顕著に表れていると言える。   On the other hand, when a transparent body film is provided, the diffraction efficiency is about 90% for both TE-polarized light and TM-polarized light, and the PDL is 0.5 dB or less. This characteristic has little dependency on the wavelength, and it can be said that the effect of the present invention is remarkably exhibited.

もちろん、この系から離れた入射角、回折格子の溝本数においても、図7〜11に示されるように、透明体被膜がない場合に比べて大幅に偏光依存特性が改善されている。入射角αを52°とした場合はリトロー光学系からは外れるが、図7に示すように短波長側でやや回折効率が低下し、偏光依存性が増加するが、透明体皮膜がない場合に比べると良好な特性を示している。溝本数が1100本/mmの場合も同様に本発明の効果が顕著に見られる(図9および図10参照)。   Of course, also in the incident angle away from this system and the number of grooves of the diffraction grating, as shown in FIGS. 7 to 11, the polarization dependence characteristics are greatly improved as compared with the case where there is no transparent film. When the incident angle α is set to 52 °, it is out of the Littrow optical system, but as shown in FIG. 7, the diffraction efficiency slightly decreases on the short wavelength side and the polarization dependence increases, but there is no transparent film. Compared to this, it shows good characteristics. Similarly, when the number of grooves is 1100 / mm, the effect of the present invention is also noticeable (see FIGS. 9 and 10).

これらのシミュレーション結果により、透明体被膜すなわち偏光制御膜を設けることにより、十分に低い偏光依存特性を有する回折格子が提供できることが示された。
なお、上記の各条件は理想的な条件であって、実際にはこれらの条件からやや外れても十分な効果が得られる場合がある。
From these simulation results, it was shown that a diffraction grating having sufficiently low polarization dependence characteristics can be provided by providing a transparent film, that is, a polarization control film.
Note that each of the above conditions is an ideal condition, and in fact, a sufficient effect may be obtained even if the conditions are slightly deviated from these conditions.

図12は入射波長λ=1550nmにおいて(1)式の条件を満たす回折格子に対して、λを1270nmから1880nmまで変化させた場合の、TEモードに対する回折格子効率を示している。λがおよそ1200〜1700nmの範囲では回折効率は50%以上が得られている。すなわち、入射波長が0.8λから1.1λ程度の範囲でずれても効果が維持される。   FIG. 12 shows the diffraction grating efficiency for the TE mode when λ is changed from 1270 nm to 1880 nm with respect to the diffraction grating satisfying the expression (1) at the incident wavelength λ = 1550 nm. When λ is in the range of about 1200 to 1700 nm, a diffraction efficiency of 50% or more is obtained. In other words, the effect is maintained even when the incident wavelength is deviated in the range of about 0.8λ to 1.1λ.

言い換えれば、(1)式の膜厚tはλ/4nから、つぎの範囲程度外れても、効果は維持される。
0.8λ/4n≦t≦1.1λ/4n
また、tとλが正確で、屈折率nが(1)式の関係からずれる場合も同様に考えることができる。なお、TM偏光の場合は、透明体被膜の影響を受けにくいので、TE偏光の場合と同等またはそれ以上の効率が保たれる。
In other words, the effect is maintained even when the film thickness t in the expression (1) deviates from λ / 4n by about the following range.
0.8λ / 4n ≦ t ≦ 1.1λ / 4n
Similarly, the case where t and λ are accurate and the refractive index n deviates from the relationship of the expression (1) can be considered similarly. In the case of TM polarized light, since it is hardly affected by the transparent film, the efficiency equal to or higher than that of TE polarized light is maintained.

また、使用波長範囲で上記条件をちょうど満たすような屈折率の分散を有する材料を使用すれば、単一波長だけではなく幅広い波長範囲で効果が得られる。   Moreover, if a material having a refractive index dispersion that just satisfies the above conditions in the operating wavelength range is used, an effect can be obtained not only in a single wavelength but also in a wide wavelength range.

透明体被膜は、入射光が照射される側の溝側面にのみ設けられるのが望ましく、逆側の側面にも付着すると、本発明の効果は若干減少する。例えば、上記の計算に用いた条件を実現するため、溝本数N=900本/mm、入射光が照射される側の溝側面と基板のなす角が32.7度、2つの溝側面がなす角が90度である回折格子の片側斜面にスパッタリング法でTiO2膜を入射角に平行な方向に膜厚t=183nmだけ成膜した場合に、逆側の斜面へ付着する膜厚はおよそ10nm(約0.06t)となる。 The transparent film is desirably provided only on the side surface of the groove on the side where the incident light is irradiated. If the transparent body film is also attached to the side surface on the opposite side, the effect of the present invention is slightly reduced. For example, in order to realize the conditions used in the above calculation, the number of grooves N = 900 / mm, the angle formed between the groove side surface irradiated with incident light and the substrate is 32.7 degrees, and the two groove side surfaces are formed. When a TiO 2 film having a thickness of t = 183 nm is formed on one side of the diffraction grating having an angle of 90 degrees by sputtering in the direction parallel to the incident angle, the film thickness adhering to the opposite side is about 10 nm. (About 0.06 t).

このように透明体被膜が付着した回折格子に、TE偏光を入射角α=44°で入射させた場合の回折効率は83.8%と計算され、入射光が照射される側の溝側面にのみ被膜がある場合に比べて、回折効率の低下は2.1%、PDLの増加は0.1dB以内と見積もれる。またTM偏光に対してはほとんど影響がない。したがって、逆側の側面に付着する透明体被膜の膜厚が、入射光が照射される側に比べて1/10以下、すなわち0.1λ/4n以下であれば、十分な効果が得られると言える。   In this way, the diffraction efficiency when TE polarized light is incident on the diffraction grating having the transparent film attached thereto at an incident angle α = 44 ° is calculated to be 83.8%, and the groove side on the side irradiated with incident light is calculated. Compared to the case where only the coating is present, the decrease in diffraction efficiency is estimated to be 2.1%, and the increase in PDL is estimated to be within 0.1 dB. There is almost no effect on TM polarized light. Therefore, if the film thickness of the transparent body film adhering to the opposite side surface is 1/10 or less, that is, 0.1λ / 4n or less compared to the side irradiated with incident light, sufficient effects can be obtained. I can say that.

また、最短光路と最長光路の光路差がλから±λ/8(±0.175λ)程度ずれていてもその影響は小さく、本発明の効果は維持される。すなわち、0.825λから1.175λの範囲であればよい。   Even if the optical path difference between the shortest optical path and the longest optical path is deviated by about ± λ / 8 (± 0.175λ) from λ, the effect is small, and the effect of the present invention is maintained. That is, it may be in the range of 0.825λ to 1.175λ.

さらに、上述のように、図3に示すような0次回折光の光束の方向が溝側面の表面より下側になってしまうのは好ましくない。しかし図8および図11に示す入射角α=60°、θ=32.7°の場合は、α>90−θであり、0次回折光の光束の方向は、溝側面の表面より下側になる。この場合、0次回折光の方向が反射膜表面から深さ最大約0.02λ程度反射膜の下側を通っている。   Further, as described above, it is not preferable that the direction of the light beam of the 0th-order diffracted light as shown in FIG. 3 is lower than the surface of the groove side surface. However, when the incident angles α = 60 ° and θ = 32.7 ° shown in FIGS. 8 and 11, α> 90−θ, and the direction of the light beam of the 0th-order diffracted light is lower than the surface of the groove side surface. Become. In this case, the direction of the 0th-order diffracted light passes through the lower side of the reflective film by a depth of about 0.02λ from the reflective film surface.

この場合の回折効率は、図8または図11に示すように、短波長側で低下する傾向があり、偏光依存性もやや増大する。しかし長波長側では0次回折光が透明体被膜中を通る場合と遜色のない値が得られている。   As shown in FIG. 8 or FIG. 11, the diffraction efficiency in this case tends to decrease on the short wavelength side, and the polarization dependence slightly increases. However, on the long wavelength side, a value comparable to that obtained when the 0th-order diffracted light passes through the transparent film is obtained.

しかし浅い角度、すなわち大きな入射角で入射光を入射させると、特性は急激に悪化する。比較のために溝本数N=900および1100本/mmの回折格子にα=72°で入射光を入射させた場合の回折効率を図13、図14並びに表7、表8に示す。この場合、0次回折光の方向は反射膜表面から深さ約0.04λ程度になる。図よりこの場合には回折効率が著しく低下してしまうことがわかる。   However, when incident light is incident at a shallow angle, that is, at a large incident angle, the characteristics deteriorate rapidly. For comparison, FIGS. 13 and 14 and Tables 7 and 8 show diffraction efficiencies when incident light is incident on a diffraction grating having N = 900 grooves and 1100 grooves / mm at α = 72 °. In this case, the direction of the 0th-order diffracted light is about 0.04λ from the reflective film surface. From this figure, it can be seen that in this case the diffraction efficiency is significantly reduced.

したがって、0次回折光の方向については、0次回折光が反射膜表面から深さ0.04λ以内を通るような場合は、透明体被膜中を通る場合と等価に扱うことができ、本発明の効果を得ることができると言える。   Therefore, regarding the direction of the 0th-order diffracted light, when the 0th-order diffracted light passes through the depth of 0.04λ from the reflecting film surface, it can be handled equivalently to the case where the 0th-order diffracted light passes through the transparent film. Can be said.

入射光が照射される側と逆側の側面への入射光照射については、入射方向に垂直な入射光束の幅の1/20に相当する光線が、逆側の側面に照射されたとしても影響は小さく、本発明の効果を得ることができる。   Incident light irradiation on the side opposite to the side irradiated with incident light is affected even when a light beam equivalent to 1/20 of the width of the incident light beam perpendicular to the incident direction is irradiated on the opposite side surface. Is small and the effects of the present invention can be obtained.

また、上述の図5に示したように0次回折光の光束の一部が、透明体被膜の溝側面に平行な表面から出射するのは好ましくない。しかし、図6の特性が得られる系、すなわち溝本数N=900本/mm、入射光が照射される側の溝側面と基板のなす角32.7度、2つの溝側面がなす角が90度である回折格子の片側斜面にn=2.2である透明体被膜を膜厚t=183nmだけ成膜した場合、0次回折方向に向かう光束の幅の0.025に相当する部分の光線は透明体被膜の上面から出射していることになる。   Further, as shown in FIG. 5 described above, it is not preferable that a part of the light beam of the 0th-order diffracted light is emitted from the surface parallel to the groove side surface of the transparent body coating. However, the system in which the characteristics of FIG. 6 are obtained, that is, the number of grooves N = 900 / mm, the angle formed by the groove side surface to which the incident light is irradiated and the substrate is 32.7 degrees, and the angle formed by the two groove side surfaces is 90 degrees. When a transparent coating film with n = 2.2 is formed on the one side slope of the diffraction grating having a thickness of t = 183 nm, a portion of the light beam corresponding to 0.025 of the light flux width in the 0th-order diffraction direction Is emitted from the upper surface of the transparent film.

しかしこの場合でも本発明の効果は保たれており、0次回折光の方向に垂直な0次回折光束の幅の1/20に相当する光線が、透明体被膜の上面から出射していても影響は小さく、本発明の効果を得ることができると言える。   However, even in this case, the effect of the present invention is maintained, and even if a light beam corresponding to 1/20 of the width of the 0th-order diffracted light beam perpendicular to the direction of the 0th-order diffracted light is emitted from the upper surface of the transparent film. It can be said that the effect of the present invention can be obtained.

以下に本発明の回折格子の実施例について詳細に説明する。はじめに回折格子の作製方法を説明する。   Examples of the diffraction grating of the present invention will be described in detail below. First, a method for manufacturing a diffraction grating will be described.

作製した回折格子は、図1に示すような断面形状が鋸歯形の溝を900本/mmの密度で平行に配列した回折格子10である。本実施例における溝の設計形状は入射光側の溝側面14と基板表面22のなす角を32.7度とし、2つの溝側面14、16がなす角(溝の頂角:θ’)を90度とした。
回折格子は任意の方法で作製すればよいが、本実施例では低コストで良好な微細構造が量産できる転写成形での作製方法を一例として採用した。
The produced diffraction grating is a diffraction grating 10 in which grooves having a sawtooth cross-sectional shape as shown in FIG. 1 are arranged in parallel at a density of 900 lines / mm. The design shape of the groove in this embodiment is such that the angle formed by the groove side surface 14 on the incident light side and the substrate surface 22 is 32.7 degrees, and the angle formed by the two groove side surfaces 14 and 16 (groove apex angle: θ ′). It was 90 degrees.
The diffraction grating may be manufactured by an arbitrary method, but in this embodiment, a manufacturing method by transfer molding capable of mass-producing a good microstructure at low cost is adopted as an example.

まずシリコンアルコキシド、及び酸水溶液を主成分とするゾル液を石英ガラス基板20上に塗布し、得られたゲル膜が柔らかい状態のときに、真空中で成形型を押し当て、約60℃で保持し、ゲル膜を硬化させた。溝形状を成形する材料としては、透明体被膜の成膜時の温度に耐えるものであれば、他の材料でよい。   First, a silicon alkoxide and a sol solution mainly composed of an acid aqueous solution are applied onto the quartz glass substrate 20, and when the obtained gel film is in a soft state, the mold is pressed in a vacuum and kept at about 60 ° C. The gel film was cured. As the material for forming the groove shape, other materials may be used as long as they can withstand the temperature at the time of forming the transparent body coating.

その後、大気圧中で成形型をゲル膜から離型し、350℃で熱処理して所定の凹凸形状を成形した成形体30からなる回折格子10を得た。
作製した凹凸構造の成形体30の表面には反射膜40としてアルミニウム(Al)膜をスパッタリング法によって成膜した。反射膜40の成膜はスパッタリング法のほか、真空蒸着法によっても行うことができる。
Thereafter, the mold was released from the gel film at atmospheric pressure, and heat treatment was performed at 350 ° C. to obtain a diffraction grating 10 composed of a molded body 30 having a predetermined uneven shape.
An aluminum (Al) film was formed as a reflective film 40 on the surface of the formed concavo-convex shaped molded body 30 by a sputtering method. The reflective film 40 can be formed not only by sputtering but also by vacuum evaporation.

Alは広い波長範囲で反射率が高く、成形材料および透明体被膜との付着性も良いため反射膜として望ましい。また、反射膜は使用波長域において高反射率を有する材料であれば金(Au)などの単層膜のほか、複数の材料による積層構造であっても構わない。反射膜の膜厚は、使用する入射角度で溝斜面に入射した場合に、使用波長域の光が透過しない膜厚であればよい。膜厚は50nm〜300nm程度が下地の溝形状を損なうことなく、かつ、十分な反射率を得られるため望ましい。   Al is desirable as a reflective film because it has a high reflectance in a wide wavelength range and has good adhesion to a molding material and a transparent film. Further, the reflective film may have a laminated structure of a plurality of materials in addition to a single layer film such as gold (Au) as long as the material has a high reflectance in the used wavelength range. The film thickness of the reflective film may be any film thickness that does not transmit light in the used wavelength region when incident on the groove slope at the incident angle used. A film thickness of about 50 nm to 300 nm is desirable because sufficient reflectivity can be obtained without impairing the underlying groove shape.

このようにして作製された反射型回折格子の回折効率を測定した。測定は波長1550nm、入射光と1次回折光の挟み角を4°(入射角46.2°、1次回折角42.2°)として測定を行った。TMモードの1次回折効率が96.4%、TEモードの回折効率が24.2%、偏光依存損失は6.0dBであった。   The diffraction efficiency of the reflection type diffraction grating thus produced was measured. The measurement was carried out with a wavelength of 1550 nm and an angle between the incident light and the first-order diffracted light of 4 ° (incident angle 46.2 °, first-order diffraction angle 42.2 °). The TM mode first-order diffraction efficiency was 96.4%, the TE-mode diffraction efficiency was 24.2%, and the polarization-dependent loss was 6.0 dB.

次に、反射膜が成膜された溝の入射光100が照射される側の側面にTEモードの0次回折光を打ち消すための位相調整効果を有する透明体被膜50を設ける。透明体被膜の材料としては酸化チタン(TiO2)を用いた。入射角に平行な方向での膜厚を183nmとし、膜厚がλ/4となり、かつ0次光の位相差が2πとなるような設計で成膜を行った。 Next, a transparent film 50 having a phase adjustment effect for canceling the TE mode zero-order diffracted light is provided on the side surface of the groove where the reflective film is formed on the side irradiated with the incident light 100. Titanium oxide (TiO 2 ) was used as a material for the transparent film. The film was formed in such a design that the film thickness in the direction parallel to the incident angle was 183 nm, the film thickness was λ / 4, and the phase difference of the 0th-order light was 2π.

透明体被膜の材料は、屈折率が本発明の使用条件を満たすだけでなく、吸収による損失を抑えるため、使用波長域でできるだけ透明であることが望ましい。   It is desirable that the transparent coating material be as transparent as possible in the wavelength range of use in order not only to satisfy the usage conditions of the present invention but also to suppress loss due to absorption.

透明体被膜の成膜はスパッタリング法で行った。片側の斜面にのみ成膜するために、ターゲットと回折格子の入射光が照射される側の側面が正対するように配置し、凹凸構造を利用して一方の側の溝側面にのみ材料を選択的に付着させるように成膜を行った。   The transparent film was formed by sputtering. In order to form a film only on one side of the slope, the target and the side of the diffraction grating that is irradiated with the incident light are placed so that the side of the target is facing directly, and the material is selected only on the side of the groove on one side using the concavo-convex structure. The film was formed so as to adhere.

この回折格子の回折効率を測定した。測定は上記同様に波長1550nmで、入射光と1次回折光の挟み角は4°とした。測定の結果、TMモードの回折効率は58.2%、TEモードの回折効率は53.9%、偏光依存損失は0.3dBとなり、透明体被膜を設けることで回折格子の偏光依存特性を大幅に改善することができた。すなわち透明体被膜が偏光制御膜として機能することが確認された。   The diffraction efficiency of this diffraction grating was measured. The measurement was performed at a wavelength of 1550 nm as described above, and the angle between the incident light and the first-order diffracted light was 4 °. As a result of measurement, the diffraction efficiency of TM mode is 58.2%, the diffraction efficiency of TE mode is 53.9%, and the polarization-dependent loss is 0.3 dB. By providing a transparent film, the polarization-dependent characteristics of the diffraction grating are greatly improved. It was possible to improve. That is, it was confirmed that the transparent film functions as a polarization control film.

シミュレーションよりも効率が低いのは、つぎのような理由による。シミュレーションは図1(a)のような理想的な形状の回折格子に対して行われたものであるのに対し、実際に作製された回折格子の形状は図1(b)に示すように、成形体32は凹凸形状にやや鈍りがある。これは成形型自身の形状の鈍り、成形工程における形状鈍りによる。この他、透明体被膜50の屈折率のずれなども起因して効率が理想状態に比べると低下したと考えられる。   The reason why the efficiency is lower than the simulation is as follows. The simulation was performed on an ideally shaped diffraction grating as shown in FIG. 1A, whereas the actually produced diffraction grating has a shape as shown in FIG. The molded body 32 is slightly dull in the uneven shape. This is due to blunting of the shape of the mold itself and blunting in the molding process. In addition to this, it is considered that the efficiency has decreased compared to the ideal state due to the refractive index shift of the transparent body film 50 and the like.

このような場合にも図1(b)に示すように溝側面の一部が平面であれば、上記の考え方を適用できる。また、上記実施例の溝形状は2つの側面からなるものであったが、これに限られない。溝の頂部が平面である断面が台形状の場合や、溝の底部が平面である場合等であってもよい。この場合も基板表面に対して傾斜した2つの面を上記の溝側面とみなすことにより、本発明を適用できる。   Even in such a case, as shown in FIG. 1B, the above-mentioned concept can be applied if a part of the side surface of the groove is a flat surface. Moreover, although the groove shape of the said Example consisted of two side surfaces, it is not restricted to this. The case where the cross section in which the top part of the groove is a plane is trapezoidal or the bottom part of the groove is a flat surface may be used. Also in this case, the present invention can be applied by regarding two surfaces inclined with respect to the substrate surface as the groove side surfaces.

また、透明体皮膜の膜厚は一様であることが望ましいが、実際には分布している場合もある。このような場合には、溝側面の平面部分にわたる平均膜厚を上記の膜厚tとみなすことができる。   Further, the film thickness of the transparent body film is desirably uniform, but may be actually distributed. In such a case, the average film thickness over the planar portion of the groove side surface can be regarded as the film thickness t.

本発明の反射型回折格子を上記の使用条件で使用した回折光学装置には、回折格子に所定の入射角αで平行光を入射する光学手段として、例えば、光ファイバ、あるいは発光素子などから出射される発散光をコリメートレンズ系を用いて平行光に変換するような光学系を用いることができる。一方、1次回折光を受光する光学手段としては回折格子から出射する平行光を集光し、光ファイバや受光素子に入射する光学系を用いることができる。   In the diffractive optical apparatus using the reflective diffraction grating of the present invention under the above-mentioned conditions of use, as an optical means for entering parallel light at a predetermined incident angle α into the diffraction grating, for example, emitted from an optical fiber or a light emitting element It is possible to use an optical system that converts the divergent light to be converted into parallel light using a collimating lens system. On the other hand, as the optical means for receiving the first-order diffracted light, an optical system that collects the parallel light emitted from the diffraction grating and enters the optical fiber or the light receiving element can be used.

本発明の実施形態である回折格子の断面模式図である。It is a cross-sectional schematic diagram of the diffraction grating which is embodiment of this invention. 0次回折光の位相差が2πとなる条件の光線を示す図である。It is a figure which shows the light ray of the conditions from which the phase difference of 0th-order diffracted light will be 2 (pi). 0次回折光が回折格子反射面の下側にくる場合の光線を示す図である。It is a figure which shows a light ray in case 0th-order diffracted light comes under a diffraction grating reflective surface. 入射光が溝の入射する側の溝側面と逆側の側面を照射する場合の光線模式図である。It is a light ray schematic diagram in case incident light irradiates the side surface on the opposite side to the groove | channel side of the incident side of a groove | channel. 0次回折光が透明体被膜の上面から出射する場合の光線模式図である。It is a light ray schematic diagram in case 0th order diffracted light radiate | emits from the upper surface of a transparent body film. 本発明の回折格子の回折効率の計算結果を示す図である(溝本数900本/mm、入射角44°)。It is a figure which shows the calculation result of the diffraction efficiency of the diffraction grating of this invention (the number of grooves 900 / mm, incident angle 44 degrees). 本発明の回折格子の回折効率の計算結果を示す図である(溝本数900本/mm、入射角52°)。It is a figure which shows the calculation result of the diffraction efficiency of the diffraction grating of this invention (the number of grooves 900 / mm, incident angle 52 degrees). 本発明の回折格子の回折効率の計算結果を示す図である(溝本数900本/mm、入射角60°)。It is a figure which shows the calculation result of the diffraction efficiency of the diffraction grating of this invention (the number of grooves 900 / mm, incident angle 60 degrees). 本発明の回折格子の回折効率の計算結果を示す図である(溝本数1100本/mm、入射角44°)。It is a figure which shows the calculation result of the diffraction efficiency of the diffraction grating of this invention (the number of grooves 1100 / mm, incident angle 44 degrees). 本発明の回折格子の回折効率の計算結果を示す図である(溝本数1100本/mm、入射角52°)。It is a figure which shows the calculation result of the diffraction efficiency of the diffraction grating of this invention (the number of grooves 1100 / mm, incident angle 52 degrees). 本発明の回折格子の回折効率の計算結果を示す図である(溝本数1100本/mm、入射角60°)。It is a figure which shows the calculation result of the diffraction efficiency of the diffraction grating of this invention (the number of grooves 1100 / mm, incident angle 60 degrees). 本発明の回折格子における回折効率の波長依存性の計算結果を示す図である。It is a figure which shows the calculation result of the wavelength dependence of the diffraction efficiency in the diffraction grating of this invention. 回折格子の回折効率の比較例を示す図である(溝本数900本/mm、入射角72°)。It is a figure which shows the comparative example of the diffraction efficiency of a diffraction grating (the number of grooves 900 / mm, incident angle 72 degrees). 回折格子の回折効率の比較例を示す図である(溝本数1100本/mm、入射角72°)。It is a figure which shows the comparative example of the diffraction efficiency of a diffraction grating (the number of grooves 1100 / mm, incident angle 72 degrees).

符号の説明Explanation of symbols

10 回折格子
20 ガラス基板
30 成形体
40 反射膜
50 透明体被膜
10 Diffraction grating 20 Glass substrate 30 Molded body 40 Reflective film 50 Transparent body coating

Figure 2005121938
Figure 2005121938

Figure 2005121938
Figure 2005121938

Figure 2005121938
Figure 2005121938

Figure 2005121938
Figure 2005121938

Figure 2005121938
Figure 2005121938

Figure 2005121938
Figure 2005121938

Figure 2005121938
Figure 2005121938

Figure 2005121938
Figure 2005121938

Claims (6)

平板状基板の表面に1mm当たりN本の平行な溝が等間隔で配列され、該溝の側面は前記基板表面に対して傾斜した少なくとも2つの平面部分を有し、該溝が設けられた前記基板の表面に反射層を備える反射型回折格子において、
前記各溝の側面の互いに平行な一方の平面部分に所定波長λに対して透明で屈折率がnである偏光制御膜を、平均膜厚が0.8λ/4nから1.1λ/4nの範囲になるように設け、前記以外の部分の溝側面における同膜の平均膜厚が0.1λ/4n以下であることを特徴とする偏光制御膜付き回折格子。
N parallel grooves per 1 mm are arranged at equal intervals on the surface of the flat substrate, the side surfaces of the grooves have at least two plane portions inclined with respect to the substrate surface, and the grooves are provided. In a reflective diffraction grating having a reflective layer on the surface of a substrate,
A polarization control film that is transparent with respect to a predetermined wavelength λ and has a refractive index n is formed on one of the plane portions parallel to each other on the side surfaces of the grooves, and the average film thickness is in the range of 0.8λ / 4n to 1.1λ / 4n. A diffraction grating with a polarization control film, wherein the average film thickness of the film on the side surface of the groove other than the above is 0.1λ / 4n or less.
請求項1に記載の偏光制御膜付き回折格子と、該回折格子の偏光制御膜を備える溝側面に平行光束を入射させる光学手段と、前記回折格子による1次回折光の光束を受光する光学手段とを少なくとも備える回折光学装置において、
前記回折格子に入射する前記平行光束に垂直に交わる任意の平面から0次回折光の光束に垂直に交わる任意の平面に至る前記光束中の光線の光路長のうち、最長の光路長と最短の光路長との差が、0.825λから1.175λの範囲にあることを特徴とする回折光学装置。
2. A diffraction grating with a polarization control film according to claim 1, optical means for making a parallel light beam incident on a side surface of a groove provided with the polarization control film of the diffraction grating, and optical means for receiving a light beam of primary diffraction light by the diffraction grating; In a diffractive optical apparatus comprising at least
The longest optical path length and the shortest optical path among the optical path lengths of the light beams in the light beam from an arbitrary plane perpendicular to the parallel light beam incident on the diffraction grating to an arbitrary plane perpendicular to the light beam of the 0th-order diffracted light. A diffractive optical apparatus, wherein a difference from the length is in a range of 0.825λ to 1.175λ.
前記回折格子に入射する平行光束の前記基板表面に対する入射角をα(°)とし、前記平行光束が入射する前記回折格子の溝側面の前記基板表面に対する傾斜角をθ(°)とするとき、
α≦90−θ
の関係が成り立つように構成されたことを特徴とする請求項2に記載の回折光学装置。
When the incident angle of the parallel light beam incident on the diffraction grating with respect to the substrate surface is α (°), and the inclination angle of the groove side surface of the diffraction grating on which the parallel light beam is incident with respect to the substrate surface is θ (°),
α ≦ 90−θ
The diffractive optical apparatus according to claim 2, wherein the relationship is established.
前記回折格子の溝側面をなす2つの平面の交わる角度がθ’(°)であるとき、
θ’≦90+α−θ
の関係が成り立つように構成されたことを特徴とする請求項2に記載の回折光学装置。
When the angle between two planes forming the groove side surface of the diffraction grating is θ ′ (°),
θ ′ ≦ 90 + α−θ
The diffractive optical apparatus according to claim 2, wherein the relationship is established.
前記0次回折光の光束が前記偏光制御膜から出射する際、該光束のすべてが前記偏光制御膜の溝側面に平行な表面でない側面から出射することを特徴とする請求項2に記載の回折光学装置。   3. The diffractive optical system according to claim 2, wherein when the zero-order diffracted light beam is emitted from the polarization control film, all of the light beam is emitted from a side surface that is not parallel to the groove side surface of the polarization control film. apparatus. 前記回折格子における0、+1以外の回折次数mに対して
|Nmλ−sinα|≧1
の条件が成り立つことを特徴とする請求項2〜5のいずれか一項に記載の回折光学装置。
For diffraction orders m other than 0 and +1 in the diffraction grating, | Nmλ−sinα | ≧ 1
The diffractive optical apparatus according to claim 2, wherein the following condition is satisfied.
JP2003357406A 2003-10-17 2003-10-17 Diffraction grating with polarization control film, and diffraction optical device using same Pending JP2005121938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003357406A JP2005121938A (en) 2003-10-17 2003-10-17 Diffraction grating with polarization control film, and diffraction optical device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003357406A JP2005121938A (en) 2003-10-17 2003-10-17 Diffraction grating with polarization control film, and diffraction optical device using same

Publications (1)

Publication Number Publication Date
JP2005121938A true JP2005121938A (en) 2005-05-12

Family

ID=34614301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003357406A Pending JP2005121938A (en) 2003-10-17 2003-10-17 Diffraction grating with polarization control film, and diffraction optical device using same

Country Status (1)

Country Link
JP (1) JP2005121938A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942549A1 (en) * 2009-02-25 2010-08-27 Horiba Jobin Yvon Sas Polarizing reflection diffraction grating for planar imaging/optical beam transporting system, has dielectric layer made of material with thickness and index difference preset such that magnetic polarization diffraction efficiency is high
JP2010271590A (en) * 2009-05-22 2010-12-02 Fujifilm Corp Optical system and device using diffraction optical element
WO2012018017A1 (en) * 2010-08-06 2012-02-09 旭硝子株式会社 Diffractive optical element and measurement device
WO2012157697A1 (en) * 2011-05-19 2012-11-22 株式会社日立製作所 Diffraction grating manufacturing method, spectrophotometer, and semiconductor device manufacturing method
CN108761610A (en) * 2018-06-13 2018-11-06 成都精密光学工程研究中心 Regulate and control the unrelated reflective dielectric grating of polarization of film based on refractive index
JP2022547219A (en) * 2019-09-11 2022-11-10 マジック リープ, インコーポレイテッド Display device with diffraction grating with reduced polarization sensitivity
CN118565777A (en) * 2024-08-02 2024-08-30 杭州光粒科技有限公司 Measuring method and measuring device for maximum diffraction efficiency of grating

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942549A1 (en) * 2009-02-25 2010-08-27 Horiba Jobin Yvon Sas Polarizing reflection diffraction grating for planar imaging/optical beam transporting system, has dielectric layer made of material with thickness and index difference preset such that magnetic polarization diffraction efficiency is high
JP2010271590A (en) * 2009-05-22 2010-12-02 Fujifilm Corp Optical system and device using diffraction optical element
WO2012018017A1 (en) * 2010-08-06 2012-02-09 旭硝子株式会社 Diffractive optical element and measurement device
US9477018B2 (en) 2010-08-06 2016-10-25 Asahi Glass Company, Limited Diffractive optical element and measurement device
WO2012157697A1 (en) * 2011-05-19 2012-11-22 株式会社日立製作所 Diffraction grating manufacturing method, spectrophotometer, and semiconductor device manufacturing method
CN103688198A (en) * 2011-05-19 2014-03-26 株式会社日立高新技术 Diffraction grating manufacturing method, spectrophotometer, and semiconductor device manufacturing method
CN108761610A (en) * 2018-06-13 2018-11-06 成都精密光学工程研究中心 Regulate and control the unrelated reflective dielectric grating of polarization of film based on refractive index
JP2022547219A (en) * 2019-09-11 2022-11-10 マジック リープ, インコーポレイテッド Display device with diffraction grating with reduced polarization sensitivity
JP7420926B2 (en) 2019-09-11 2024-01-23 マジック リープ, インコーポレイテッド Display device with a diffraction grating with reduced polarization sensitivity
CN118565777A (en) * 2024-08-02 2024-08-30 杭州光粒科技有限公司 Measuring method and measuring device for maximum diffraction efficiency of grating

Similar Documents

Publication Publication Date Title
JP6945954B2 (en) Grating coupler system and integrated grating coupler system
US11002893B2 (en) Transmission grating and laser device using the same, and method of producing transmission grating
JP4600579B2 (en) Diffraction grating element
Hasman et al. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics
CN107430240B (en) Unidirectional grating-based backlight employing an angularly selective reflective layer
US10175496B2 (en) Wide spectral band subwavelength diffractive component
US20150185413A1 (en) Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers
JP2018509645A5 (en)
JPS58186718A (en) Light wavelength processing device
JP2008233528A (en) Reflection type diffraction grating and spectral device
JP5461550B2 (en) Light guide substrate and optical system including the same
US20030133485A1 (en) Laser array for generating stable multi-wavelength laser outputs
JP2009260118A (en) Optical module
JP5727152B2 (en) REFLECTOR USING DIELECTRIC LAYER AND LIGHT EMITTING DEVICE
JP2005121938A (en) Diffraction grating with polarization control film, and diffraction optical device using same
US20150070774A1 (en) Wavelength-controlled diode laser module with external resonator
JP2018132728A (en) Reflection type diffraction grating, laser oscillator, and laser beam machine
JP6316940B2 (en) Optical element having wavelength selectivity and lamp device using the same
JP4238296B2 (en) Diffractive optical element
JPH0661566A (en) Optical device and its manufacture
JP2003262832A (en) Diffraction compensation using reflector with pattern
JPH07113907A (en) Diffraction optical element
JP6644357B2 (en) Polarization diffraction element and design method thereof
US9042687B2 (en) Waveguide lens for coupling laser light source and optical element
JP5837310B2 (en) Polarizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

RD05 Notification of revocation of power of attorney

Effective date: 20080411

Free format text: JAPANESE INTERMEDIATE CODE: A7425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Effective date: 20090210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707