JP5049726B2 - Tidal current measuring device - Google Patents

Tidal current measuring device Download PDF

Info

Publication number
JP5049726B2
JP5049726B2 JP2007265047A JP2007265047A JP5049726B2 JP 5049726 B2 JP5049726 B2 JP 5049726B2 JP 2007265047 A JP2007265047 A JP 2007265047A JP 2007265047 A JP2007265047 A JP 2007265047A JP 5049726 B2 JP5049726 B2 JP 5049726B2
Authority
JP
Japan
Prior art keywords
tidal current
speed
ship
absolute
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007265047A
Other languages
Japanese (ja)
Other versions
JP2009092578A (en
Inventor
修 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2007265047A priority Critical patent/JP5049726B2/en
Publication of JP2009092578A publication Critical patent/JP2009092578A/en
Application granted granted Critical
Publication of JP5049726B2 publication Critical patent/JP5049726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

この発明は、船舶から水中に超音波を送信し、その反射波のドップラ効果を利用して得られる対水船速と、航法装置から得られる絶対船速との差より潮流を演算する潮流測定装置に関する。   The present invention relates to a tidal current measurement in which a tidal current is calculated from a difference between an absolute ship speed obtained from a navigation apparatus and an absolute ship speed obtained by transmitting ultrasonic waves from a ship into water and using the Doppler effect of the reflected wave. Relates to the device.

従来より、潮流測定装置では、船舶から水中の斜め下方向に超音波を送信し、その反射波のドップラ効果に基づいて任意の水深における水の流れ(潮流)を求めている(特許文献1〜3参照)。すなわち、前記水深にて反射した超音波(反射波)のドップラ効果を利用して得られた前記水深に対する前記船舶の船速(対水船速)と、海底からの反射波より得られた該海底に対する前記船舶の船速(対地船速)との差を演算することで、前記水深における潮流を求めることができる。   Conventionally, in a tidal current measurement device, ultrasonic waves are transmitted obliquely downward in water from a ship, and a water flow (tidal current) at an arbitrary water depth is obtained based on the Doppler effect of the reflected wave (Patent Documents 1 to 3). 3). That is, the ship speed (vs. water speed) with respect to the water depth obtained by using the Doppler effect of the ultrasonic wave (reflected wave) reflected at the water depth, and the wave obtained from the reflected wave from the seabed The tidal current at the water depth can be obtained by calculating the difference between the ship's ship speed relative to the seabed (ground ship speed).

ところで、前記船舶に搭載され、GPS(Global Positioning System)等を利用した航法装置は、絶対測位により得られた前記船舶の船速(絶対船速)を出力している。そのため、潮流測定装置では、海底の水深が比較的浅く、対地船速を容易に得ることができる場合には、対地船速と対水船速との差、あるいは、絶対船速と対水船速との差から潮流を演算し、一方で、海底の水深が比較的深く、対地船速を容易に得ることができない場合には、絶対船速と対水船速との差から潮流を演算している。   By the way, a navigation device mounted on the ship and using GPS (Global Positioning System) or the like outputs a ship speed (absolute ship speed) of the ship obtained by absolute positioning. Therefore, in the tidal current measurement device, when the seabed depth is relatively shallow and the ship speed can be easily obtained, the difference between the ship speed and the ship speed or the absolute ship speed and the ship Calculates the tidal current from the difference between the speed and, on the other hand, calculates the tidal current from the difference between the absolute ship speed and the water speed when the water depth at the seabed is relatively deep and the ship speed against the ground cannot be obtained easily. is doing.

また、上記した各船速は所定時間間隔で得られるため、潮流測定装置では、潮流を演算する際に、各船速の値のばらつきを少なくするための平均化処理(第1の処理又は第2の処理)を行っている。すなわち、第1の処理では、航法装置において絶対測位により得られた船速に対して平均化処理を行い、平均化処理後の船速を絶対船速として出力し、一方で、反射波のドップラ効果を利用して得られた対水船速に対し平均化処理を行い、その後、平均化処理された絶対船速と対水船速との差を演算して潮流を求める。第2の方法では、航法装置は平均化処理前の船速を絶対船速として出力し、一方で、反射波のドップラ効果を利用して得られた対水船速に対しては平均化処理を行わず、その後、絶対船速と対水船速との差に対して平均化処理を行うことで潮流を求める。   In addition, since each ship speed described above is obtained at predetermined time intervals, the tidal current measurement apparatus calculates an averaging process (first process or first process) for reducing variation in each ship speed value when calculating the tidal current. 2). In other words, in the first process, the ship speed obtained by absolute positioning in the navigation device is averaged, and the ship speed after the averaging process is output as the absolute ship speed, while the Doppler of the reflected wave is output. An averaging process is performed on the speed of the watercraft obtained using the effect, and then the difference between the averaged ship speed and the speed of the watercraft is calculated to obtain the tidal current. In the second method, the navigation device outputs the ship speed before the averaging process as an absolute ship speed, while the average speed process is performed for the ship speed against water obtained using the Doppler effect of the reflected wave. After that, the tidal current is obtained by performing the averaging process on the difference between the absolute ship speed and the water speed.

特開平4−357463号公報JP-A-4-357463 特開平5−80151号公報Japanese Patent Laid-Open No. 5-80151 特開2006−284242号公報JP 2006-284242 A

ところで、船舶が停船し、あるいは、一定速度及び一定進路にて航行している場合に、上記の潮流測定装置は、正確な潮流を求めることが可能である。しかしながら、前記船舶の速度が変化(加減速)し、あるいは、針路が変化(回頭)した場合には、演算した潮流に大きな誤差が含まれることになる。   By the way, when the ship is stopped or navigating at a constant speed and a constant course, the tidal current measuring device described above can obtain an accurate tidal current. However, when the speed of the ship changes (acceleration / deceleration) or the course changes (turns over), the calculated tidal current includes a large error.

図3A及び図3Bは、潮流がない状態で船舶を加減速したときの絶対船速G1、対水船速W1及び潮流C1の時系列グラフである。この場合、絶対船速G1及び対水船速W1は、平均化処理後の船速を示しており、以下同様とする。図3Aにおいて、平均化処理後の絶対船速G1及び対水船速W1は、時刻t0から時刻t1の時間帯では時間経過に伴って増加し、時刻t1以降の時間帯では時間経過に伴って減少する。ここで、絶対船速G1に対する平均化処理の時定数と、対水船速W1に対する平均化処理の時定数とが互いに異なっていると、対水船速W1と絶対船速G1との差である潮流C1(図3B参照)は、時刻t0〜t1の時間帯において正の値となり、一方で、時刻t1以降の時間帯においては負の値となる。しかしながら、前述したように、現実には潮流がない状態であるので、潮流測定装置は、偽の潮流C1を演算していることになる。すなわち、偽の潮流C1は、前記各時定数に起因した誤差を含んだものである。   FIGS. 3A and 3B are time series graphs of the absolute ship speed G1, the water speed W1 against water, and the tidal current C1 when the ship is accelerated and decelerated in a state where there is no tidal current. In this case, the absolute ship speed G1 and the water ship speed W1 indicate the ship speed after the averaging process, and so on. In FIG. 3A, the average boat speed G1 and the water speed W1 after the averaging process increase with time in the time zone from time t0 to time t1, and increase with time in the time zone after time t1. Decrease. Here, if the time constant of the averaging process for the absolute boat speed G1 and the time constant of the averaging process for the water speed W1 are different from each other, the difference between the water speed W1 and the absolute speed G1 A certain tidal current C1 (see FIG. 3B) has a positive value in the time zone from time t0 to t1, while it has a negative value in the time zone after time t1. However, as described above, since there is actually no tidal current, the tidal current measuring device calculates a false tidal current C1. That is, the false tidal current C1 includes an error caused by each time constant.

図4A及び図4Bは、潮流がない状態で船舶1(図4C参照)が針路を変更(回頭)したときの絶対船速G2及び対水船速W2の針路と、潮流C2との時系列グラフであり、図4Cは、時刻t2における絶対船速G2、対水船速W2及び潮流C2のベクトルを示している。図4Aにおいて、絶対船速G2及び対水船速W2の針路は、時刻t0から時間経過に伴って変化し、所定時刻以降は一定の針路を維持する。しかしながら、絶対船速G2に対する平均化処理の時定数と、対水船速W2に対する平均化処理の時定数とが互いに異なっていると、現実には潮流がない状態であっても、潮流測定装置は、偽の潮流C2(図4B参照)を演算することになる。すなわち、偽の潮流C2は、船舶1の針路変更(回頭)及び前記各時定数に起因した誤差を含んだものである。   FIGS. 4A and 4B are time series graphs of the course of the tidal current C2 and the course of the absolute ship speed G2 and the water speed W2 when the ship 1 (see FIG. 4C) changes (turns) the course in the absence of a tidal current. FIG. 4C shows the vectors of the absolute ship speed G2, the water ship speed W2 and the tidal current C2 at time t2. In FIG. 4A, the courses of the absolute ship speed G2 and the anti-water ship speed W2 change with time from the time t0, and maintain a constant course after a predetermined time. However, if the time constant of the averaging process with respect to the absolute ship speed G2 and the time constant of the averaging process with respect to the water speed W2 are different from each other, even if there is actually no tidal current, the tidal current measuring device Will calculate a false tidal current C2 (see FIG. 4B). That is, the false tidal current C2 includes an error caused by the course change (turning) of the ship 1 and the time constants.

一方、航法装置から出力される絶対船速の信号は、例えば、IEC61162で規定されるシリアル信号である場合が多い。このシリアル信号の長さと、前記航法装置から前記シリアル信号が出力される間隔とから、潮流の演算時には前記絶対船速が対水船速と比べて1s〜3s程度遅延し、この結果、該遅延に起因した誤差が潮流に含まれることになる。   On the other hand, the absolute ship speed signal output from the navigation device is often a serial signal defined by IEC61162, for example. Based on the length of the serial signal and the interval at which the serial signal is output from the navigation device, the absolute ship speed is delayed by about 1 s to 3 s compared to the speed of the water ship when calculating the tidal current. The error caused by is included in the current.

図5A及び図5Bは、潮流がない状態で対水船速W3に対して絶対船速G3が遅延しているときの絶対船速G3、対水船速W3及び潮流C3の時系列グラフである。図5Aにおいて、対水船速W3は、時刻t0から時刻t4までの時間帯では時間経過に伴って増加し、時刻t4以降の時間帯では時間経過に伴って減少している。一方、絶対船速G3は、時刻t0より所定時間遅延した時刻t3から時刻t5までの時間帯では時間経過に伴って増加し、時刻t5以降の時間帯では時間経過に伴って減少している。この場合、対水船速W3に対して絶対船速G3は(t3−t0)及び(t5−t4)の時間遅れを有するので、現実には潮流がない状態であっても、図5Bの潮流C3には、前記各時間遅れに起因した誤差が含まれることになる。   5A and 5B are time series graphs of the absolute ship speed G3, the water ship speed W3, and the tidal current C3 when the absolute ship speed G3 is delayed with respect to the water ship speed W3 in the absence of a tidal current. . In FIG. 5A, the speed V3 with water increases with time in the time zone from time t0 to time t4, and decreases with time in the time zone after time t4. On the other hand, the absolute boat speed G3 increases with time in the time zone from time t3 to time t5 delayed by a predetermined time from time t0, and decreases with time in the time zone after time t5. In this case, since the absolute ship speed G3 has a time delay of (t3-t0) and (t5-t4) with respect to the water speed W3, the tidal current of FIG. C3 includes an error caused by each time delay.

また、図6A及び図6Bは、潮流がない状態で絶対船速G4と対水船速W4との間に図5A及び図5Bと同様の時間遅れがあり、さらに、対水船速W4に対する平均化処理の時定数と、絶対船速G4に対する平均化処理の時定数とが互いに異なるときの絶対船速G4、対水船速W4及び潮流C4の時系列グラフである。図6Aにおいて、対水船速W4に対して絶対船速G4が(t3−t0)及び(t5−t4)の時間遅れを有し、さらに、前記各時定数が異なることにより、現実には潮流がない状態であっても、図6Bの潮流C4には、前記各時間遅れに起因した誤差に加え、前記各時定数の違いに起因した誤差が含まれることになるので、該潮流C4の誤差はさらに大きくなる。   6A and 6B show that there is a time delay similar to that in FIGS. 5A and 5B between the absolute boat speed G4 and the watercraft speed W4 in the absence of a tidal current, and the average with respect to the watercraft speed W4. It is a time series graph of the absolute ship speed G4, the water speed V4 with respect to water, and the tidal current C4 when the time constant of the conversion process and the time constant of the averaging process with respect to the absolute ship speed G4 are different from each other. In FIG. 6A, the absolute ship speed G4 has a time delay of (t3-t0) and (t5-t4) with respect to the water speed W4, and the time constants are different. 6B, the current C4 in FIG. 6B includes an error due to the difference in each time constant in addition to the error due to each time delay. Becomes even bigger.

この発明は、このような問題を考慮してなされたものであり、絶対船速と対水船速との差から潮流を演算する際に、船舶の加減速や回頭等があっても、常に安定した潮流を得ることができる潮流測定装置を提供することを目的とする。   The present invention has been made in consideration of such a problem, and when calculating the tidal current from the difference between the absolute ship speed and the speed of the watercraft, even if there is acceleration / deceleration or turning of the ship, it is always An object of the present invention is to provide a tidal current measuring device capable of obtaining a stable tidal current.

この発明では、潮流演算回路にて潮流を演算する際に、前記潮流演算回路に対する対水船速の入力と、前記潮流演算回路に対する絶対船速の入力との間で時間差がある場合に、遅延補正手段が前記時間差を補正し、一方で、対水船速計測回路又は前記潮流演算回路での前記対水船速に対する平均化処理の時定数と、航法装置又は前記潮流演算回路での前記絶対船速に対する平均化処理の時定数とが互いに異なる場合に、平均化時定数補正手段が前記各時定数のうち少なくとも一方の時定数を補正する。   In the present invention, when the tidal current is calculated by the tidal current calculation circuit, if there is a time difference between the input of the water speed to the tidal current calculation circuit and the input of the absolute boat speed to the tidal current calculation circuit, The correction means corrects the time difference, while the time constant of the averaging process for the anti-water vessel speed in the anti-water vessel speed measurement circuit or the tidal current arithmetic circuit and the absolute value in the navigation device or the tidal current arithmetic circuit When the time constant of the averaging process with respect to the boat speed is different from each other, the averaging time constant correcting means corrects at least one of the time constants.

この発明によれば、船舶の加減速及び回頭や、絶対船速及び対水船速に対する平均化処理の時定数の違いや、潮流演算回路における対水船速計測回路からの対水船速の入力と、航法装置からの絶対船速の入力との間で時間差が発生する場合においても、遅延補正手段及び平均化時定数補正手段における各補正処理によって、上記の各要因に起因した潮流の誤差を排除することができるので、前記加減速及び前記回頭や、前記各時定数の違いや、前記時間差の発生に関わらず、潮流測定装置から潮流を常に安定して出力することができる。   According to the present invention, the acceleration / deceleration and turning of the ship, the difference in the time constant of the averaging process with respect to the absolute ship speed and the water speed, and the water speed from the water speed measurement circuit in the tidal current calculation circuit Even when there is a time difference between the input and the absolute ship speed input from the navigation device, the error in the tidal current caused by each of the above factors is achieved by the correction processing in the delay correction means and the averaging time constant correction means. Therefore, the power flow can always be stably output from the power flow measuring device regardless of the acceleration / deceleration, the turning, the difference of each time constant, and the occurrence of the time difference.

この発明の実施形態に係る潮流測定装置4は、船舶1(図4C参照)に搭載され、図1に示すように、送受波器40、送受信回路41、対水船速計測回路42、潮流演算回路43、潮流値出力回路44、加減速検出手段45、回頭状態検出手段46、平均化時定数補正手段47、遅延補正手段48及び演算停止手段49を有する。演算停止手段49は、加算器50及びスイッチ51を備える。また、船舶1には、潮流測定装置4に加え、GPS等を利用した航法装置3及び方位センサとしてのジャイロコンパス2が搭載されている。   A tidal current measurement device 4 according to an embodiment of the present invention is mounted on a ship 1 (see FIG. 4C), and as shown in FIG. 1, a transducer 40, a transmission / reception circuit 41, an anti-water vessel speed measurement circuit 42, a tidal current calculation, and the like. A circuit 43, a power flow value output circuit 44, an acceleration / deceleration detecting means 45, a turning state detecting means 46, an averaging time constant correcting means 47, a delay correcting means 48, and an operation stopping means 49. The calculation stop means 49 includes an adder 50 and a switch 51. In addition to the tidal current measuring device 4, the ship 1 is equipped with a navigation device 3 using GPS and a gyro compass 2 as a direction sensor.

送受波器40は、船舶1の船底に複数配置され、該船舶の斜め下方向に向けて水中に超音波ビームを送波(送信)し、送波した超音波ビームが任意の水深又は海底にて反射したときの反射波を受波(受信)する。送受信回路41は、前記超音波ビームの送信信号を送受波器40に出力し、一方で、前記反射波の受信信号を対水船速計測回路42に出力する。対水船速計測回路42は、前記反射波のドップラシフトを含む前記受信信号と、ジャイロコンパス2から出力される船舶1の船首方位とに基づいて、任意の水深に対する船舶1の船速(対水船速)を演算し、演算した対水船速を潮流演算回路43及び平均化時定数補正手段47に出力する。潮流演算回路43は、前記対水船速と、航法装置3から出力される絶対測位により得られた船舶1の船速(絶対船速)との差を前記任意の水深における水の流れ(潮流)として演算する。潮流値出力回路44は、潮流演算回路43から演算停止手段49のスイッチ51を介して入力された前記潮流の値を潮流測定装置4に接続された船舶1内の各種装置に出力する。   A plurality of transducers 40 are arranged on the bottom of the ship 1 and transmit (transmit) an ultrasonic beam in the water in an obliquely downward direction of the ship, and the transmitted ultrasonic beam reaches an arbitrary depth or seabed. Receives (receives) the reflected wave when reflected. The transmission / reception circuit 41 outputs the transmission signal of the ultrasonic beam to the transmitter / receiver 40, while outputting the reception signal of the reflected wave to the watercraft speed measurement circuit 42. Based on the received signal including the Doppler shift of the reflected wave and the bow direction of the ship 1 output from the gyrocompass 2, the ship speed measurement circuit 42 against the water (vs. ship speed (vs. The water vessel speed) is calculated and the calculated water vessel speed is output to the tidal current calculation circuit 43 and the averaging time constant correcting means 47. The tidal current calculation circuit 43 calculates the difference between the ship speed against water and the ship speed (absolute ship speed) of the ship 1 obtained by the absolute positioning output from the navigation device 3 as the water flow (tidal current) at the arbitrary water depth. ). The tide value output circuit 44 outputs the tide value input from the tide calculation circuit 43 via the switch 51 of the calculation stop means 49 to various devices in the ship 1 connected to the tide measurement device 4.

加減速検出手段45は、航法装置3から出力された絶対船速に基づいて、船舶1が加速状態又は減速状態にあることを検出し、検出結果を演算停止手段49の加算器50に出力する。なお、加減速検出手段45では、船舶1が加速状態又は減速状態にあることを検出できればよいので、前記絶対船速に代えて、図1の破線で示すように、対水船速に基づいて船舶1が加速状態又は減速状態にあることを検出することも可能である。   The acceleration / deceleration detection unit 45 detects that the ship 1 is in an acceleration state or a deceleration state based on the absolute boat speed output from the navigation device 3, and outputs the detection result to the adder 50 of the calculation stop unit 49. . The acceleration / deceleration detecting means 45 only needs to be able to detect that the ship 1 is in an accelerating state or a decelerating state. Therefore, instead of the absolute ship speed, as shown by a broken line in FIG. It is also possible to detect that the ship 1 is in an acceleration state or a deceleration state.

回頭状態検出手段46は、ジャイロコンパス2から出力された船首方位に基づいて、船舶1が回頭状態にあることを検出し、検出結果を加算器50に出力する。   The turning state detection means 46 detects that the ship 1 is in a turning state based on the heading output from the gyrocompass 2 and outputs the detection result to the adder 50.

演算停止手段49の加算器50は、加減速検出手段45からの検出結果又は回頭状態検出手段46からの検出結果が入力されたときに、スイッチ51における潮流演算回路43と潮流値出力回路44との接続状態をオン状態からオフ状態に切り替えるように、該スイッチ51を制御する。従って、前記各検出結果が加算器50に入力される時間帯では、スイッチ51における潮流演算回路43と潮流値出力回路44との接続状態はオフ状態であり、一方で、前記各検出結果が加算器50に入力されていない時間帯では、前記接続状態はオン状態である。すなわち、船舶1が加速状態又は減速状態にあるときや、船舶1が回頭状態にあるときには、スイッチ51がオフ状態となって、潮流演算回路43から潮流値出力回路44に潮流を出力することができない。一方、船舶1が加速状態又は減速状態ではないときや、船舶1が回頭状態ではないときには、スイッチ51がオン状態となって、潮流演算回路43から潮流値出力回路44への潮流の出力が可能である。   When the detection result from the acceleration / deceleration detection unit 45 or the detection result from the turning state detection unit 46 is input, the adder 50 of the calculation stop unit 49 receives the power flow calculation circuit 43 and the power flow value output circuit 44 in the switch 51. The switch 51 is controlled so as to switch the connection state from the on state to the off state. Therefore, in the time zone in which the detection results are input to the adder 50, the connection state between the power flow calculation circuit 43 and the power flow value output circuit 44 in the switch 51 is off, while the detection results are added. In a time zone not input to the device 50, the connection state is an on state. That is, when the ship 1 is in an accelerating state or a decelerating state, or when the ship 1 is in a turning state, the switch 51 is turned off, and the power flow can be output from the power flow calculation circuit 43 to the power flow value output circuit 44. Can not. On the other hand, when the ship 1 is not in an accelerated state or a decelerated state, or when the ship 1 is not in a turning state, the switch 51 is turned on so that the power flow can be output from the power flow calculation circuit 43 to the power flow value output circuit 44. It is.

また、絶対船速及び対水船速は、所定時間間隔で得られるので、潮流測定装置4内では、前記各船速の値のばらつきを少なくするために、航法装置3又は潮流演算回路43において絶対船速に対する平均化処理を行い、一方で、対水船速計測回路42又は潮流演算回路43において対水船速に対する平均化処理を行っている。そこで、平均化時定数補正手段47は、対水船速に対する平均化処理の時定数と、絶対船速に対する平均化処理の時定数とが互いに異なる場合に、前記各時定数のうち少なくとも一方の時定数を補正するための所定の補正処理を行う。また、遅延補正手段48は、潮流演算回路43にて潮流を演算する際に、潮流演算回路43に対する対水船速の入力と、潮流演算回路43に対する絶対船速の入力との間で時間差がある場合に、前記時間差を補正する。   In addition, since the absolute ship speed and the water ship speed are obtained at predetermined time intervals, in the tidal current measuring device 4, the navigation device 3 or the tidal current calculation circuit 43 is used to reduce the variation in the values of the respective ship speeds. On the other hand, the averaging process for the water speed is performed in the anti-water speed measurement circuit 42 or the tidal current calculation circuit 43. Therefore, the averaging time constant correcting means 47, when the time constant of the averaging process with respect to the water speed and the time constant of the averaging process with respect to the absolute ship speed are different from each other, at least one of the time constants. A predetermined correction process for correcting the time constant is performed. Further, when the tidal current calculating circuit 43 calculates the tidal current, the delay correcting means 48 has a time difference between the input of the speed of the water vessel to the tidal current calculating circuit 43 and the input of the absolute boat speed to the tidal current calculating circuit 43. In some cases, the time difference is corrected.

次に、上述した加減速検出手段45、回頭状態検出手段46、平均化時定数補正手段47、遅延補正手段48及び演算停止手段49の機能について、図1〜図6Bを参照しながら具体的に説明する。   Next, the functions of the acceleration / deceleration detection means 45, the turning state detection means 46, the averaging time constant correction means 47, the delay correction means 48, and the calculation stop means 49 described above will be specifically described with reference to FIGS. explain.

船舶1に加減速等の速度変化があるときに、航法装置3又は潮流演算回路43において絶対船速に対する平均化処理を行い、一方で、対水船速計測回路42又は潮流演算回路43において対水船速に対する平均化処理を行うと、潮流演算回路43では、前述したように、絶対船速に対する平均化処理の時定数及び対水船速に対する平均化処理の時定数の違いに基づく偽の潮流C1(図3B参照)を演算することになる。   When the ship 1 has a speed change such as acceleration / deceleration, the navigation apparatus 3 or the tidal current calculation circuit 43 performs an averaging process on the absolute ship speed, while the anti-water ship speed measuring circuit 42 or the tidal current arithmetic circuit 43 When the averaging process is performed on the water vessel speed, the tidal current calculation circuit 43, as described above, generates false values based on the difference between the time constant of the averaging process for the absolute vessel speed and the time constant of the averaging process for the water vessel speed. The tidal current C1 (see FIG. 3B) is calculated.

そこで、加減速検出手段45は、絶対船速の時間微分値の絶対値、あるいは、前回得られた絶対船速の値と今回得られた絶対船速の値との変化量の絶対値が、一定値を上回るか否かを判定し、前記時間微分値の絶対値又は前記変化量の絶対値が前記一定値を上回る場合に、船舶1が加速状態又は減速状態にあると判断して、その判断結果(検出結果)を演算停止手段49の加算器50に出力する。加算器50は、加減速検出手段45からの判断結果に基づいて、スイッチ51での接続をオン状態からオフ状態に切り替えるように該スイッチ51を制御する。これにより、潮流演算回路43から潮流値出力回路44への潮流の出力が停止して、潮流演算回路43における潮流演算は、実際上、一時的に停止するに至る。この結果、潮流値出力回路44は、前回演算された潮流の値を外部に出力することになり、偽の潮流値C1が外部に出力されることを防止することができる。   Therefore, the acceleration / deceleration detecting means 45 has the absolute value of the time differential value of the absolute ship speed, or the absolute value of the change amount between the absolute ship speed value obtained last time and the absolute ship speed value obtained this time, It is determined whether or not it exceeds a certain value, and when the absolute value of the time differential value or the absolute value of the change amount exceeds the certain value, it is determined that the ship 1 is in an acceleration state or a deceleration state, The determination result (detection result) is output to the adder 50 of the calculation stop means 49. The adder 50 controls the switch 51 so that the connection at the switch 51 is switched from the on state to the off state based on the determination result from the acceleration / deceleration detecting means 45. Thereby, the output of the power flow from the power flow calculation circuit 43 to the power flow value output circuit 44 is stopped, and the power flow calculation in the power flow calculation circuit 43 is actually temporarily stopped. As a result, the power flow value output circuit 44 outputs the previously calculated power flow value to the outside, and can prevent the false power flow value C1 from being output to the outside.

また、船舶1の針路の変更(回頭)によっても、潮流演算回路43では、偽の潮流C2(図4B参照)を演算することになる。   In addition, the tidal current calculation circuit 43 calculates a false tidal current C2 (see FIG. 4B) even when the course of the ship 1 is changed (turning).

そこで、回頭状態検出手段46は、船首方位の時間微分値の絶対値、あるいは、前回得られた船首方位の値と今回得られた船首方位の値との変化量の絶対値が、一定値を上回るか否かを判定し、前記時間微分値の絶対値又は前記変化量の絶対値が前記一定値を上回る場合に、船舶1の針路の変更(回頭)が発生しているものと判断して、その判断結果(検出結果)を加算器50に出力する。加算器50は、回頭状態検出手段46からの判断結果に基づいて、スイッチ51における接続をオン状態からオフ状態に切り替えるように該スイッチ51を制御する。この場合でも、潮流演算回路43から潮流値出力回路44への潮流の出力が停止して、潮流演算回路43における潮流の演算は、実際上、一時的に停止するに至るので、潮流値出力回路44から前回演算された潮流の値を外部に出力することで、偽の潮流値C2が外部に出力されることを防止することができる。   Therefore, the turning state detection means 46 has a constant value of the absolute value of the time differential value of the heading or the absolute value of the change amount between the previous heading value and the current heading value. It is determined whether or not it is exceeded, and when the absolute value of the time differential value or the absolute value of the change amount exceeds the constant value, it is determined that the course change (turning) of the ship 1 has occurred. The determination result (detection result) is output to the adder 50. The adder 50 controls the switch 51 so as to switch the connection in the switch 51 from the on state to the off state based on the determination result from the turning state detecting means 46. Even in this case, since the output of the power flow from the power flow calculation circuit 43 to the power flow value output circuit 44 is stopped and the calculation of the power flow in the power flow calculation circuit 43 actually stops temporarily, the power flow value output circuit By outputting the tidal current value calculated last time from 44 to the outside, it is possible to prevent the false tidal current value C2 from being output to the outside.

また、潮流演算回路43において潮流の演算を行う時点で、潮流演算回路43に対する対水船速の入力と、潮流演算回路43に対する絶対船速の入力との間で時間差(時間遅れ)があると、潮流演算回路43では、前述したように、偽の潮流C3(図5B参照)を演算することになる。さらに、前記時間遅れに加え、前記対水船速に対する平均化処理の時定数と、前記絶対船速に対する平均化処理の時定数とが互いに異なっていると、潮流演算回路43では、より大きな誤差を含む偽の潮流C4(図6B参照)を演算することになる。   Further, at the time when the tidal current calculation circuit 43 performs the tidal current calculation, if there is a time difference (time delay) between the input of the ship speed against water to the tidal current calculation circuit 43 and the input of the absolute ship speed to the tidal current calculation circuit 43. As described above, the tidal current calculation circuit 43 calculates the false tidal current C3 (see FIG. 5B). Furthermore, if the time constant of the averaging process with respect to the water speed and the time constant of the averaging process with respect to the absolute ship speed are different from each other in addition to the time delay, the tidal current calculation circuit 43 causes a larger error. A false tidal current C4 (see FIG. 6B) is calculated.

ここで、対水船速に対する絶対船速の遅延量(時間遅れ)や、対水船速に対する平均化処理の時定数や、絶対船速に対する平均化処理の時定数は、潮流測定装置4において固有の値である。   Here, the delay amount (time delay) of the absolute ship speed with respect to the water speed, the time constant of the averaging process with respect to the water speed, and the time constant of the averaging process with respect to the absolute ship speed are as follows: It is a unique value.

そこで、平均化時定数補正手段47は、前記各時定数が同一の時定数となるように、平均化処理後の対水船速に対して、所定の時定数による平均化処理をさらに行う。次いで、遅延補正手段48は、さらなる平均化処理を行った対水船速に対して所定時間(対水船速に対する絶対船速の遅延時間)だけ遅延させる遅延処理を行い、遅延処理後の対水船速を潮流演算回路43に出力する。潮流演算回路43は、航法装置3からの絶対船速の入力と、対水船速計測回路42からの対水船速の入力との間に時間差がある場合に、前記絶対船速と、遅延補正手段48から入力された、遅延処理後の対水船速との差を演算して潮流を求める。これにより、上記した各誤差を含まない潮流が得られる。   Therefore, the averaging time constant correction means 47 further performs an averaging process with a predetermined time constant on the speed of the watercraft after the averaging process so that the time constants are the same. Next, the delay correction means 48 performs a delay process for delaying the watercraft speed that has been further averaged by a predetermined time (a delay time of the absolute ship speed with respect to the watercraft speed), and the pair after the delay process. The water vessel speed is output to the tidal current calculation circuit 43. When there is a time difference between the input of the absolute ship speed from the navigation device 3 and the input of the anti-water ship speed from the anti-water ship speed measurement circuit 42, the tidal current calculation circuit 43 calculates the absolute ship speed and the delay. The tidal current is obtained by calculating the difference from the speed of the ship against water input from the correction means 48 after the delay process. Thereby, the tidal current which does not contain each error mentioned above is obtained.

図2A及び図2Bは、前述した時間遅れ及び前記各時定数の違いがある状態における絶対船速G4、対水船速W4、W51、W5及び潮流C4、C5の時系列グラフである。ここでは、対水船速計測回路42において対水船速に対する平均化処理を行って対水船速W4を出力し、航法装置3において絶対船速に対する平均化処理を行って絶対船速G4を出力するものとする。また、船舶1は、針路の変更(回頭)がなく、さらには、潮流の時間的な変化はないものとする。   2A and 2B are time series graphs of the absolute boat speed G4, the water speeds W4, W51, and W5, and the tidal currents C4 and C5 in the state where the time delay and the time constants are different as described above. Here, the anti-water vessel speed measurement circuit 42 performs an averaging process on the anti-water vessel speed to output the anti-water vessel speed W4, and the navigation device 3 performs an averaging process on the absolute vessel speed to obtain the absolute ship speed G4. Shall be output. Further, it is assumed that the ship 1 has no change (turning) of the course, and further, there is no temporal change of the tidal current.

平均化時定数補正手段47は、対水船速計測回路42から入力された対水船速W4に対し、さらなる平均化処理Tを行って、平均化処理T後の対水船速W51を遅延補正手段48に出力する。遅延補正手段48は、対水船速W51に対し、(t0−t3)の時間差Dに基づく所定の遅延処理を行って、遅延処理後の対水船速W5を潮流演算回路43に出力する。潮流演算回路43には、対水船速計測回路42から対水船速W4が入力され、遅延補正手段48から対水船速W51が入力され、さらに、航法装置3から絶対船速G4が入力されている。この場合、潮流演算回路43は、絶対船速G4との時間的な誤差がない対水船速W51と、該絶対船速G4との差を演算し、演算結果を潮流C5としてスイッチ51及び潮流値出力回路44を介して外部に出力する。この場合、潮流演算回路43は、平均化処理T及び遅延処理が行われた対水船速W51と、絶対船速G4との差を潮流C5として出力するので、該潮流C5は、上述した各要因に起因した誤差を含まず、従って、実際の潮流に合致した結果となる。   The averaging time constant correcting means 47 performs further averaging processing T on the anti-water vessel speed W4 input from the anti-water vessel speed measuring circuit 42, and delays the anti-water vessel speed W51 after the averaging processing T. It outputs to the correction means 48. The delay correction means 48 performs a predetermined delay process based on the time difference D of (t0−t3) with respect to the watercraft speed W51, and outputs the watercraft speed W5 after the delay process to the power flow calculation circuit 43. The tidal current calculation circuit 43 is input with the anti-water vessel speed W4 from the anti-water vessel speed measurement circuit 42, is input with the anti-water vessel speed W51 from the delay correction means 48, and is further input with the absolute vessel speed G4 from the navigation device 3. Has been. In this case, the tidal current calculation circuit 43 calculates the difference between the water speed W51 with no time error from the absolute boat speed G4 and the absolute boat speed G4, and sets the calculation result as the tidal current C5 to the switch 51 and the tidal current. The value is output to the outside via the value output circuit 44. In this case, the tidal current calculation circuit 43 outputs the difference between the watercraft speed W51 subjected to the averaging process T and the delay process and the absolute ship speed G4 as a tidal current C5. It does not include the error due to the factor, so the result matches the actual current.

このように、この実施形態に係る潮流測定装置4は、絶対船速又は対水船速に基づいて船舶1が加速状態又は減速状態であることを検出する加減速検出手段45と、加減速検出手段45の検出結果に基づいて潮流演算回路43における潮流の演算を停止させる演算停止手段49とを有する。   As described above, the tidal current measuring device 4 according to this embodiment includes the acceleration / deceleration detection means 45 that detects whether the ship 1 is in the acceleration state or the deceleration state based on the absolute ship speed or the water speed against water, and the acceleration / deceleration detection. Calculation stop means 49 for stopping the calculation of the power flow in the power flow calculation circuit 43 based on the detection result of the means 45 is provided.

これにより、船舶1が加速状態又は減速状態であるときに、潮流演算回路43における潮流演算を実際上一時的に停止させるので、船舶1の加減速により潮流に誤差が発生する時間帯では、潮流演算回路43から潮流が演算停止手段49のスイッチ51及び潮流値出力回路44を介して外部に出力されることはなく、従って、前記加減速に関わらず、見かけ上、潮流測定装置4から潮流を安定して出力することが可能となる。   Thereby, when the ship 1 is in an acceleration state or a deceleration state, the tidal current calculation in the tidal current calculation circuit 43 is actually temporarily stopped. Therefore, in the time zone in which an error occurs in the tidal current due to acceleration / deceleration of the ship 1, No tidal current is output from the arithmetic circuit 43 to the outside via the switch 51 of the arithmetic stop means 49 and the tidal value output circuit 44. Therefore, the tidal current is apparently output from the tidal current measuring device 4 regardless of the acceleration / deceleration. It becomes possible to output stably.

また、潮流測定装置4は、ジャイロコンパス2から出力される船舶1の船首方位に基づいて該船舶1が回頭状態であることを検出する回頭状態検出手段46をさらに有し、演算停止手段49は、加減速検出手段45又は回頭状態検出手段46の検出結果に基づいて潮流演算回路43における潮流の演算を停止させる。   Further, the tidal current measuring device 4 further includes a turning state detecting means 46 for detecting that the ship 1 is in a turning state based on the heading of the ship 1 outputted from the gyrocompass 2, and the calculation stopping means 49 is Based on the detection result of the acceleration / deceleration detecting means 45 or the turning state detecting means 46, the tidal current calculation in the tidal current calculating circuit 43 is stopped.

これにより、船舶1の針路の変更(回頭)によって潮流に誤差が発生する時間帯においても、潮流演算回路43から演算停止手段49のスイッチ51及び潮流値出力回路44を介して潮流が外部に出力されることはなく、従って、前記針路の変更(回頭)に関わらず、見かけ上、潮流測定装置4から潮流を安定して出力することが可能となる。   As a result, even in a time zone in which an error occurs in the tide due to a change (turning) in the course of the ship 1, the tide is output from the tide calculation circuit 43 via the switch 51 of the calculation stop means 49 and the tide value output circuit 44. Therefore, regardless of the change (turning) of the course, it is possible to output the tidal current stably from the tidal current measuring device 4 in appearance.

さらに、潮流測定装置4は、潮流演算回路43にて潮流を演算する際に、潮流演算回路43に対する対水船速の入力と、潮流演算回路43に対する絶対船速の入力との間で時間差がある場合に、前記時間差を補正する遅延補正手段48と、対水船速計測回路42又は潮流演算回路43での対水船速に対する平均化処理の時定数と、航法装置3又は潮流演算回路43での絶対船速に対する平均化処理の時定数とが互いに異なる場合に、前記各時定数のうち少なくとも一方の時定数を補正する平均化時定数補正手段47とをさらに有する。   Further, when the tidal current measuring device 4 calculates the tidal current in the tidal current calculating circuit 43, there is a time difference between the input of the ship speed against water to the tidal current calculating circuit 43 and the input of the absolute ship speed to the tidal current calculating circuit 43. In some cases, the delay correction means 48 for correcting the time difference, the time constant of the averaging process with respect to the watercraft speed in the watercraft speed measurement circuit 42 or the powerflow computation circuit 43, the navigation device 3 or the powerflow computation circuit 43 When the time constant of the averaging process with respect to the absolute ship speed is different from each other, there is further provided an averaging time constant correcting means 47 for correcting at least one of the time constants.

これにより、船舶1の加減速及び回頭や、絶対船速及び対水船速に対する平均化処理の時定数の違いや、潮流演算回路43における対水船速計測回路42からの対水船速の入力と、航法装置3からの絶対船速の入力との間で時間差が発生する場合においても、遅延補正手段48及び平均化時定数補正手段47における各補正処理によって、上記の各要因に起因した潮流の誤差を排除することができるので、前記加減速及び前記回頭や、前記各時定数の違いや、前記時間差の発生に関わらず、潮流測定装置4から潮流を常に安定して出力することができる。   As a result, the acceleration / deceleration and turning of the ship 1, the difference in the time constant of the averaging process with respect to the absolute ship speed and the water speed, and the water speed from the water speed measurement circuit 42 in the tidal current calculation circuit 43 Even in the case where a time difference occurs between the input and the absolute ship speed input from the navigation device 3, the correction processing in the delay correction means 48 and the averaging time constant correction means 47 is caused by the above factors. Since a tidal current error can be eliminated, the tidal current can always be stably output from the tidal current measuring device 4 regardless of the acceleration / deceleration and the turning, the difference in each time constant, and the occurrence of the time difference. it can.

上述した潮流測定装置4では、船舶1の加減速及び回頭に応じて、加減速検出手段45、回頭状態検出手段46、平均化時定数補正手段47、遅延補正手段48及び演算停止手段49を選択的に動作させることも可能である。例えば、船舶1の加減速及び/又は回頭が比較的に緩やかであれば、平均化時定数補正手段47及び遅延補正手段48を動作させ、加減速検出手段45、回頭状態検出手段46及び演算停止手段49を停止させる。一方、船舶1の加減速及び/又は回頭が比較的に急激であれば、加減速検出手段45、回頭状態検出手段46及び演算停止手段49を動作させて、平均化時定数補正手段47及び遅延補正手段48を停止させるか、あるいは、加減速検出手段45、回頭状態検出手段46、平均化時定数補正手段47、遅延補正手段48及び演算停止手段49を全て動作させる。   In the tidal current measuring device 4 described above, the acceleration / deceleration detecting means 45, the turning state detecting means 46, the averaging time constant correcting means 47, the delay correcting means 48 and the calculation stopping means 49 are selected according to the acceleration / deceleration and turning of the ship 1. It is also possible to operate automatically. For example, if the acceleration / deceleration and / or turning of the ship 1 is relatively slow, the averaging time constant correcting means 47 and the delay correcting means 48 are operated, and the acceleration / deceleration detecting means 45, the turning state detecting means 46, and the calculation stop. The means 49 is stopped. On the other hand, if the acceleration / deceleration and / or turning of the ship 1 is relatively abrupt, the acceleration / deceleration detecting means 45, the turning state detecting means 46, and the calculation stopping means 49 are operated, and the averaging time constant correcting means 47 and the delay are operated. The correction unit 48 is stopped, or the acceleration / deceleration detection unit 45, the turning state detection unit 46, the averaging time constant correction unit 47, the delay correction unit 48, and the calculation stop unit 49 are all operated.

なお、この発明は、上述した実施形態に限らず、種々の構成を採り得ることは勿論である。   Of course, the present invention is not limited to the above-described embodiment, and may employ various configurations.

この実施形態に係る潮流測定装置のブロック図である。It is a block diagram of the tidal current measuring device concerning this embodiment. 図2Aは、図1の潮流測定装置での絶対船速及び対水船速に対する処理を示す時系列グラフであり、図2Bは、潮流の時系列グラフである。FIG. 2A is a time-series graph showing processing for absolute ship speed and anti-water ship speed in the tidal current measuring device of FIG. 1, and FIG. 2B is a time-series graph of tidal current. 図3Aは、潮流がない状態で船舶を加減速したときの絶対船速及び対水船速の時系列グラフであり、図3Bは、図3Aの絶対船速と対水船速との差より演算される潮流の時系列グラフである。FIG. 3A is a time-series graph of absolute ship speed and anti-water ship speed when the ship is accelerated / decelerated in the absence of tidal current, and FIG. 3B shows the difference between the absolute ship speed and the anti-water ship speed of FIG. 3A. It is a time series graph of the tidal current calculated. 図4Aは、潮流がない状態で船舶の針路を変更(回頭)したときの絶対船速及び対水船速の針路の時系列グラフであり、図4Bは、図4Aの絶対船速と対水船速との差より演算される潮流の時系列グラフである。図4Cは、図4A及び図4Bの時刻t2における絶対船速、対水船速及び潮流のベクトルを示す説明図である。FIG. 4A is a time-series graph of the course of the absolute ship speed and the anti-water ship speed when the course of the ship is changed (turned) in the absence of a tidal current, and FIG. 4B shows the absolute ship speed and the anti-water ratio of FIG. It is a time-series graph of the tidal current calculated from the difference with ship speed. FIG. 4C is an explanatory diagram illustrating the absolute ship speed, the water ship speed, and the tidal current vectors at time t2 in FIGS. 4A and 4B. 図5Aは、潮流がない状態で対水船速に対して絶対船速が遅延しているときの絶対船速及び対水船速の時系列グラフであり、図5Bは、図5Aの絶対船速と対水船速との差より演算される潮流の時系列グラフである。FIG. 5A is a time-series graph of the absolute ship speed and the anti-water ship speed when the absolute ship speed is delayed with respect to the anti-water ship speed in the absence of a tidal current, and FIG. 5B is an absolute ship of FIG. 5A. It is a time series graph of the tidal current calculated from the difference between the speed and the speed against water. 図6Aは、潮流がない状態で対水船速に対して絶対船速が遅延し、さらに、絶対船速及び対水船速に対する平均化処理において各時定数が異なる場合での絶対船速及び対水船速の時系列グラフであり、図6Bは、図6Aの絶対船速と対水船速との差より演算される潮流の時系列グラフである。FIG. 6A shows the absolute ship speed and the absolute ship speed when the absolute ship speed is delayed with respect to the water ship speed in the absence of tidal current, and the time constants are different in the averaging process for the absolute ship speed and the water ship speed. FIG. 6B is a time series graph of a tidal current calculated from the difference between the absolute ship speed and the water speed of FIG. 6A.

符号の説明Explanation of symbols

1…船舶 2…ジャイロコンパス
3…航法装置 4…潮流測定装置
40…送受波器 41…送受信回路
42…対水船速計測回路 43…潮流演算回路
44…潮流値出力回路 45…加減速検出手段
46…回頭状態検出手段 47…平均化時定数補正手段
48…遅延補正手段 49…演算停止手段
50…加算器 51…スイッチ
DESCRIPTION OF SYMBOLS 1 ... Ship 2 ... Gyrocompass 3 ... Navigation apparatus 4 ... Tidal current measuring device 40 ... Transmitter / receiver 41 ... Transmission / reception circuit 42 ... Anti-water vessel speed measuring circuit 43 ... Tidal current calculation circuit 44 ... Tidal current value output circuit 45 ... Acceleration / deceleration detection means 46: Turning state detecting means 47 ... Average time constant correcting means 48 ... Delay correcting means 49 ... Calculation stop means 50 ... Adder 51 ... Switch

Claims (3)

船舶から水中に超音波を送信し、その反射波を受信する送受波器と、
前記反射波のドップラ効果より前記船舶の対水船速を演算する対水船速計測回路と、
航法装置から出力される前記船舶の絶対船速と前記対水船速との差より潮流を演算する潮流演算回路と、
前記潮流演算回路にて前記潮流を演算する際に、前記潮流演算回路に対する前記対水船速の入力と、前記潮流演算回路に対する前記絶対船速の入力との間で時間差がある場合に、前記時間差を補正する遅延補正手段と、
前記対水船速計測回路又は前記潮流演算回路での前記対水船速に対する平均化処理の時定数と、前記航法装置又は前記潮流演算回路での前記絶対船速に対する平均化処理の時定数とが互いに異なる場合に、前記各時定数のうち少なくとも一方の時定数を補正する平均化時定数補正手段とを有することを特徴とする潮流測定装置。
A transducer that transmits ultrasonic waves from a ship to the water and receives the reflected waves;
An anti-ship speed measurement circuit for calculating an anti-ship speed of the ship from the Doppler effect of the reflected wave;
A tidal current calculation circuit that calculates a tidal current from the difference between the absolute ship speed of the ship output from the navigation device and the speed of the ship against water,
When calculating the tidal current in the tidal current calculation circuit, if there is a time difference between the input of the speed of water vessel to the tidal current calculation circuit and the input of the absolute boat speed to the tidal current calculation circuit, Delay correction means for correcting the time difference;
A time constant of the averaging process for the anti-ship speed in the anti-ship speed measurement circuit or the tidal current calculation circuit, and a time constant of the averaging process for the absolute ship speed in the navigation device or the tidal current calculation circuit, And a mean time constant correcting means for correcting at least one of the time constants when the time constants are different from each other.
請求項1記載の潮流測定装置において、
前記絶対船速又は前記対水船速に基づいて前記船舶が加速状態又は減速状態であることを検出する加減速検出手段と、
前記加減速検出手段の検出結果に基づいて前記潮流演算回路における前記潮流の演算を停止させる演算停止手段とをさらに有することを特徴とする潮流測定装置。
In the tidal current measuring device according to claim 1,
Acceleration / deceleration detection means for detecting that the ship is in an accelerating state or a decelerating state based on the absolute ship speed or the water speed against water,
A tidal current measuring device further comprising calculation stop means for stopping calculation of the tidal current in the tidal current calculation circuit based on a detection result of the acceleration / deceleration detecting means.
請求項1又は2記載の潮流測定装置において、
方位センサから出力される前記船舶の方位に基づいて前記船舶が回頭状態であることを検出する回頭状態検出手段をさらに有し、
前記演算停止手段は、前記回頭状態検出手段の検出結果に基づいて前記潮流演算回路における前記潮流の演算を停止させることを特徴とする潮流測定装置。
In the tidal current measuring device according to claim 1 or 2,
Further comprising a turning state detection means for detecting that the ship is in a turning state based on the direction of the ship output from an orientation sensor,
The calculation stop means stops the calculation of the power flow in the power flow calculation circuit based on the detection result of the turning state detection means.
JP2007265047A 2007-10-11 2007-10-11 Tidal current measuring device Active JP5049726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265047A JP5049726B2 (en) 2007-10-11 2007-10-11 Tidal current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265047A JP5049726B2 (en) 2007-10-11 2007-10-11 Tidal current measuring device

Publications (2)

Publication Number Publication Date
JP2009092578A JP2009092578A (en) 2009-04-30
JP5049726B2 true JP5049726B2 (en) 2012-10-17

Family

ID=40664696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265047A Active JP5049726B2 (en) 2007-10-11 2007-10-11 Tidal current measuring device

Country Status (1)

Country Link
JP (1) JP5049726B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188767A (en) * 1984-03-07 1985-09-26 シャープ株式会社 Air conditioner
JPS60225020A (en) * 1984-04-24 1985-11-09 Yokogawa Hokushin Electric Corp Tide measuring apparatus
JPS62195578A (en) * 1986-02-24 1987-08-28 Furuno Electric Co Ltd Tidal current measuring instrument
JPS63158488A (en) * 1986-12-22 1988-07-01 Furuno Electric Co Ltd Ultrasonic ship's speedometer
JPH02296178A (en) * 1989-05-09 1990-12-06 Aloka Co Ltd Device for detecting and indicating distribution of force
JP3192448B2 (en) * 1991-02-25 2001-07-30 古野電気株式会社 Tide meter
JP2554803B2 (en) * 1991-08-27 1996-11-20 海上保安庁長官 Abnormal ship speed detection method and device
JPH0694823A (en) * 1992-02-28 1994-04-08 Mitsubishi Electric Corp Sensor bias error presuming device
JP3402383B2 (en) * 1993-07-21 2003-05-06 株式会社ザナヴィ・インフォマティクス Vehicle current position detection device
JPH10160746A (en) * 1996-11-29 1998-06-19 Yokogawa Denshi Kiki Kk Measuring apparatus for tidal flow
JP3949932B2 (en) * 2001-10-30 2007-07-25 三井造船株式会社 Autonomous underwater vehicle navigation control system
JP2006284242A (en) * 2005-03-31 2006-10-19 Furuno Electric Co Ltd Tidal current measuring apparatus and tidal current measuring method

Also Published As

Publication number Publication date
JP2009092578A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP2009227086A (en) Control type underwater information collecting system and underwater cruising vessel control system
JP2006313087A (en) Method and system for correcting position of detection of underwater vehicle
JP4737893B2 (en) Underwater detector
JP2009025042A (en) Marine apparatus for tracking target
JP5049726B2 (en) Tidal current measuring device
JP5221097B2 (en) Tidal current measuring device
JP5381773B2 (en) Position calibration method and apparatus for underwater vehicle
JP3850950B2 (en) Doppler sonar
KR101707498B1 (en) Dynamic positioning system having active type noize removing apparatus
JP2009236503A (en) Speed measuring system of underwater navigation object
JP6755677B2 (en) Underwater altitude detection device, underwater vehicle, and underwater altitude detection method
JP2006292435A (en) Multi-static measuring method and system
JP5381772B2 (en) Position calibration method for underwater vehicle
JPS63158488A (en) Ultrasonic ship's speedometer
JP2009180575A (en) Gps fish finder system
JP2006119148A (en) Signal processing method, signal processor
JP6311230B2 (en) Target detection apparatus, target detection method, program, and recording medium
JP5515214B2 (en) Active sonar device and dereverberation method using active sonar device
JP2019055658A (en) Control system for underwater moving body
JP2019132800A (en) Ultrasonic sensor device and ultrasonic sensor program
JP5381771B2 (en) Position calibration method for underwater vehicle
JP2019090645A (en) Log speed estimation device, log speed display device, periodic current measuring device, automatic navigation device, and method for estimating log speed
CN116893278A (en) Ship speed measuring device and ship speed measuring method
JP6530945B2 (en) Underwater detection system
JPS62169069A (en) Sound source direction finder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5049726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150