JP5047366B2 - Carbon heating element and manufacturing method thereof - Google Patents

Carbon heating element and manufacturing method thereof Download PDF

Info

Publication number
JP5047366B2
JP5047366B2 JP2010539318A JP2010539318A JP5047366B2 JP 5047366 B2 JP5047366 B2 JP 5047366B2 JP 2010539318 A JP2010539318 A JP 2010539318A JP 2010539318 A JP2010539318 A JP 2010539318A JP 5047366 B2 JP5047366 B2 JP 5047366B2
Authority
JP
Japan
Prior art keywords
carbon
heating element
molded body
narrow
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010539318A
Other languages
Japanese (ja)
Other versions
JP2011507209A (en
Inventor
ホジェ リ
Original Assignee
ジェーシーーテック カンパニーリミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41338064&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5047366(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ジェーシーーテック カンパニーリミテッド filed Critical ジェーシーーテック カンパニーリミテッド
Publication of JP2011507209A publication Critical patent/JP2011507209A/en
Application granted granted Critical
Publication of JP5047366B2 publication Critical patent/JP5047366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite

Landscapes

  • Resistance Heating (AREA)

Description

本発明は、合成樹脂溶液を使用せずに複数の炭素繊維糸を物理的にブレーディングしてなる細幅織り炭素体から製造される炭素発熱体に係り、特に、細幅織り炭素体を別の加工無しで原形のまま熱処理するので、抵抗特性及び発熱分布が非常に均一であり、自体として不純物とされる合成樹脂溶液を細幅織り炭素体の形成に使用しないほか、残存不純物の除去のための高温の3次熱処理を施すことによって、不純物が殆ど発生しなく、寿命が大幅に延びる炭素発熱体及びその製造方法に関するものである。   The present invention relates to a carbon heating element manufactured from a narrow woven carbon body obtained by physically braiding a plurality of carbon fiber yarns without using a synthetic resin solution. Since the heat treatment is performed in its original form without processing, the resistance characteristics and heat generation distribution are very uniform, and the synthetic resin solution that is regarded as an impurity itself is not used for the formation of the narrow-width woven carbon body, and the remaining impurities are removed. The present invention relates to a carbon heating element and a method for manufacturing the same, in which almost no impurities are generated by performing a high-temperature tertiary heat treatment for the purpose, and the life is greatly extended.

炭素繊維を発熱体として製作されたカーボン糸(炭素繊維糸)ヒーターが、米国登録特許第6,464,918号、日本国特開2000−272913、ロシア登録特許第2,149,215号、日本国特開2000−123960、日本国特開2002−63870、米国登録特許第6,534,904号に開示されている。しかし、これらの従来特許は主に理論的な技術に関するもので、製品としてのカーボン糸ヒーターを製造する上で実用的な問題点があり、産業製品化のレベルには至っていない現状である。   A carbon yarn (carbon fiber yarn) heater manufactured using carbon fiber as a heating element is disclosed in US Patent No. 6,464,918, Japanese Patent Application Laid-Open No. 2000-272913, Russian Patent No. 2,149,215, Japan Japanese Patent Laid-Open No. 2000-123960, Japanese Patent Laid-Open No. 2002-63870, US Patent No. 6,534,904. However, these conventional patents mainly relate to theoretical techniques, have practical problems in producing a carbon yarn heater as a product, and have not yet reached the level of commercialization.

また、韓国登録特許公報第10−0793973号では、炭素繊維を、事前にフェノールホルムアルデヒド溶液などのような合成樹脂溶液で塗布し、熱処理してなることを特徴とする螺旋状の炭素繊維発熱体の製造方法が開示された。   In Korean Patent No. 10-0793973, a helical carbon fiber heating element is characterized in that carbon fiber is previously applied with a synthetic resin solution such as a phenol formaldehyde solution and heat treated. A manufacturing method has been disclosed.

この炭素繊維発熱体の製造方法を、図1を参照して詳細に説明すると、(a)数本の炭素繊維糸を一定幅で平行に配列し(a1)、主軸上に一定ピッチの螺旋状になるように巻いて螺旋状の炭素材とし(a2)、(b)この螺旋状の炭素材の両端部にそれぞれ通電用のクリップを取り付け、(c)該螺旋状の炭素材のカーボン糸表面をフェノールホルムアルデヒドなどの合成樹脂溶液で塗布し、(d)この螺旋状の炭素材の両接点に電流を印加し、合成樹脂溶液が揮発されうる温度及び圧力で炭素材を1次熱処理して螺旋状の形態物を形成し、(e)冷却後に主軸を除去して螺旋状の形態物を分離し、(f)気相炭化水素雰囲気下で螺旋状の形態物を2次熱処理することによって、赤外線発生器に装着されて発熱する螺旋状の炭素繊維発熱体を製造する。   The method for producing the carbon fiber heating element will be described in detail with reference to FIG. 1. (a) Several carbon fiber yarns are arranged in parallel with a constant width (a1), and a helical shape with a constant pitch on the main shaft. (A2), (b) a clip for energization is attached to both ends of the helical carbon material, and (c) the surface of the carbon yarn of the helical carbon material. Is applied with a synthetic resin solution such as phenol formaldehyde, and (d) a current is applied to both contacts of the helical carbon material, and the carbon material is subjected to a primary heat treatment at a temperature and pressure at which the synthetic resin solution can be volatilized. Forming a shaped form, (e) removing the main shaft after cooling to separate the helical form, and (f) subjecting the helical form to a secondary heat treatment under a gas phase hydrocarbon atmosphere, Spiral carbon fiber heating element that generates heat when mounted on an infrared generator Manufacturing.

しかし、上述した炭素繊維発熱体の製造方法は、平行に配列された数本(例えば、4本)のカーボン糸を一定の幅に終始維持させるために合成樹脂溶液を塗布する工程が必須である。この合成樹脂溶液の塗布工程は、工程(c)で行われ、塗布された合成樹脂溶液が後続の工程(d)、(e)を通じて炭素繊維糸を接着させて炭素繊維発熱体を形成すると同時に、余分の合成樹脂溶液が炭素カスの形態に変換して残留することになる。このように炭素繊維発熱体に炭素カスが残留する状態で、この炭素繊維発熱体を使ってカーボンヒーターや赤外線発生器を製造すると、図2に示すように、赤外線発生器の内部で炭素カスが流動し、結局として赤外線発生器の不良につながるという問題点がある。   However, in the above-described method for manufacturing a carbon fiber heating element, a step of applying a synthetic resin solution is indispensable in order to maintain several (for example, four) carbon yarns arranged in parallel at a constant width. . This synthetic resin solution application step is performed in step (c), and the applied synthetic resin solution forms a carbon fiber heating element by adhering carbon fiber yarns through subsequent steps (d) and (e). The excess synthetic resin solution remains in the form of carbon residue. When a carbon heater or an infrared generator is manufactured using the carbon fiber heating element in a state where carbon residue remains in the carbon fiber heating element, as shown in FIG. 2, the carbon residue is generated inside the infrared generator. There is a problem that it flows and eventually leads to a failure of the infrared generator.

しかも、数本のカーボン糸を合成樹脂溶液で塗布しても、それぞれのカーボン糸が平行に接触した状態で、塗布された合成樹脂のコーティング厚の不均一又は衝撃などによって各炭素繊維糸の間に図3に示すような隙間ができると、この隙間によって炭素繊維発熱体の抵抗特性が不均一になる。これにより、炭素繊維発熱体の部位別に電流が過多又は過小に流れるようになり、発熱分布のバラツキが発生し、その結果、炭素繊維発熱体の耐久性及び品質が低下する。   In addition, even if several carbon yarns are applied with a synthetic resin solution, the carbon fiber yarns are not evenly coated with each other due to uneven coating thickness or impact of the applied synthetic resin in a state where the carbon yarns are in parallel contact. If a gap as shown in FIG. 3 is formed, the resistance characteristics of the carbon fiber heating element become non-uniform due to the gap. As a result, the current flows excessively or too little for each part of the carbon fiber heating element, resulting in variations in the heat generation distribution, and as a result, the durability and quality of the carbon fiber heating element are lowered.

なお、このような各炭素繊維糸における隙間発生の要因を低減させるには、図2に示すように、螺旋状の炭素材の両端部のカーボン糸を撚ってツイストした状態で通電用クリップを取り付けて炭素繊維発熱体としなければならない。しかし、このような炭素繊維発熱体の両端部におけるカーボン糸のツイストにより、図4に示すように、カーボン糸のツイストされた部位T1では単位面積当たり発熱量が増加する一方で、カーボン糸のツイストされていない部位T2では相対的に単位面積当たり発熱量が減少し、この炭素繊維発熱体において発熱分布のバラツキが発生するが、このバラツキだけでも炭素繊維発熱体の耐久性及び品質が低下する。特に、カーボン糸のツイストされた部位T1で単位面積当たり発熱量が増加すると、通電用クリップの表面を保持するニッケル板が過熱されてニッケルが蒸発し、赤外線発生器の管体内部面にニッケルリングを形成するが、このようなニッケルリングの厚さが増加しながら管体にクラックができ、製品の外観性が低下し且つ寿命が短縮する。   In order to reduce the cause of the occurrence of such a gap in each carbon fiber yarn, as shown in FIG. 2, the energizing clip is twisted while twisting the carbon yarns at both ends of the spiral carbon material. It must be installed as a carbon fiber heating element. However, due to the twist of the carbon yarn at both ends of the carbon fiber heating element, as shown in FIG. 4, while the calorific value per unit area increases at the twisted portion T1 of the carbon yarn, the twist of the carbon yarn The heat generation amount per unit area is relatively reduced at the portion T2 where the heat generation is not performed, and variations in the heat generation distribution are generated in the carbon fiber heating element. However, the durability and quality of the carbon fiber heating element are lowered only by this variation. In particular, when the calorific value per unit area increases at the twisted portion T1 of the carbon yarn, the nickel plate holding the surface of the energizing clip is overheated and the nickel evaporates, and a nickel ring is formed on the inner surface of the infrared generator tube. However, as the thickness of such a nickel ring is increased, the pipe body is cracked, the appearance of the product is lowered, and the life is shortened.

また、螺旋状の炭素材に塗布される合成樹脂溶液を構成するフェノールホルムアルデヒドが熱分解して大気汚染物質を放出する。特に、合成樹脂溶液は、気相炭化水素雰囲気では900℃以下でも気化しうる非晶質炭素物質(Amorphous Carbon)を多量含有するので、合成樹脂溶液を使って製造した炭素繊維発熱体から非晶質炭素物質、及びニッケルを主成分とする金属成分が気化し、赤外線発生器の内部面で炭化現象、及び黒化現象(ニッケル蒸発リング)が生じることがあり、これは炭素繊維発熱体の寿命に致命的な影響を及ぼすという問題点がある。   In addition, the phenol formaldehyde constituting the synthetic resin solution applied to the spiral carbon material is thermally decomposed to release air pollutants. In particular, since the synthetic resin solution contains a large amount of amorphous carbon that can be vaporized at 900 ° C. or lower in a gas phase hydrocarbon atmosphere, the synthetic resin solution is amorphous from the carbon fiber heating element produced using the synthetic resin solution. Carbonaceous materials and nickel-based metal components are vaporized, which may cause carbonization and blackening (nickel evaporation ring) on the inner surface of the infrared generator. This is the life of the carbon fiber heating element. Has the problem of having a fatal effect on

特に、韓国登録特許公報第10−0793973号は、単位炭素繊維糸を隣接配列し、互いに接着するように合成樹脂溶液で必須的に塗布して、螺旋状の形態物を形成した後に、該螺旋状形態物に1次及び2次熱処理を実施し、表面に不純物が残存する炭素繊維発熱体を製造する。したがって、炭素繊維発熱体の表面に残存する不純物を除去するために追加的に高温の熱処理を実施すると、炭素繊維発熱体において合成樹脂で覆われて保持される炭素繊維糸が割れるか、さらには切れる現象が発生するので、高温の熱処理による不純物除去作業は全くできないという根本的な欠陥を抱えている。   Particularly, Korean Registered Patent Publication No. 10-0793973 discloses that the unit carbon fiber yarns are adjacently arranged and applied with a synthetic resin solution so as to adhere to each other to form a spiral form, The shaped product is subjected to primary and secondary heat treatments to produce a carbon fiber heating element in which impurities remain on the surface. Accordingly, when additional high-temperature heat treatment is performed to remove impurities remaining on the surface of the carbon fiber heating element, the carbon fiber yarn covered with the synthetic resin in the carbon fiber heating element may be broken, or even Since the phenomenon of cutting occurs, there is a fundamental defect that impurities cannot be removed by high-temperature heat treatment.

したがって、本発明の目的は、合成樹脂溶液を使用せずに、複数の炭素繊維糸を物理的にブレーディングした細幅織り炭素体を、別の加工無しで原形のまま熱処理することによって抵抗特性及び発熱分布を非常に均一にさせることができ、かつ、細幅織り炭素体の製造に合成樹脂溶液を使用しないだけでなく高温の3次熱処理を実施することによって、不純物が殆ど生じないとともに寿命が大幅に延びる炭素発熱体及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a resistance characteristic by heat-treating a narrow woven carbon body obtained by physically braiding a plurality of carbon fiber yarns without using a synthetic resin solution, without any other processing. In addition, the heat distribution can be made very uniform, and not only the synthetic resin solution is not used for the production of the narrow-width woven carbon body, but also the high temperature tertiary heat treatment is performed, so that almost no impurities are generated and the lifetime is increased. Is to provide a carbon heating element and a manufacturing method thereof.

上記の課題を達成するために、本発明は、炭素繊維糸を水、界面活性剤及びシリコン乳剤からなる群より選ばれる少なくとも一つの潤滑剤に浸漬して潤滑剤含浸炭素繊維糸とする段階と、前記潤滑剤含浸炭素繊維糸3〜24本を一方向に配列しブレーディング(Braiding)して細幅織り炭素体とする段階と、前記細幅織り炭素体を耐熱主軸の表面に巻いて炭素成形体とする段階と、前記炭素成形体の両端部にそれぞれ通電用クリップを取り付ける段階と、前記通電用クリップに電流を印加し、前記炭素成形体を気相炭化水素雰囲気下で1次熱処理して熱処理炭素成形体とする段階と、前記熱処理炭素成形体を耐熱主軸から分離する段階と、前記分離された熱処理炭素成形体の通電用クリップに電流を印加し、気相炭化水素雰囲気の下に1300〜2500℃で2次熱処理して、表面にナノ結晶構造の炭素層被膜が蒸着された炭素被膜発熱体とする段階と、前記炭素被膜発熱体を不活性ガス又は減圧雰囲気の下に2500〜3500℃で3次熱処理して、不純物を蒸発させ且つ残留する非晶質炭素をグラファイト化する段階と、を含む炭素発熱体の製造方法を提供する。   To achieve the above object, the present invention comprises a step of immersing a carbon fiber yarn in at least one lubricant selected from the group consisting of water, a surfactant and a silicon emulsion to form a lubricant-impregnated carbon fiber yarn. , A step of arranging 3 to 24 of the lubricant-impregnated carbon fiber yarns in one direction and braiding to form a narrow woven carbon body, and winding the narrow woven carbon body around the surface of the heat-resistant main shaft to form carbon. A step of forming a molded body, a step of attaching current-carrying clips to both ends of the carbon molded body, a current being applied to the current-carrying clips, and a primary heat treatment of the carbon molded body in a gas-phase hydrocarbon atmosphere. And a step of separating the heat-treated carbon molded body from the heat-resistant main shaft, applying a current to the current-carrying clip of the separated heat-treated carbon molded body, and under a gas phase hydrocarbon atmosphere. 1300 A secondary heat treatment is performed at 2500 ° C. to form a carbon film heating element having a carbon layer coating having a nanocrystalline structure deposited on the surface, and the carbon coating heating element is set to 2500 to 3500 ° C. in an inert gas or reduced-pressure atmosphere. And a third heat treatment to evaporate impurities and graphitize the remaining amorphous carbon.

また、本発明は、3〜24本のポリアクリロニトリル原糸又はビスコース原糸を一方向に配列しブレーディングしてウェブ状の細幅織物とする段階と、前記細幅織物を不活性ガス雰囲気で長さ方向に延伸しながら1,500〜2,500℃で炭化処理して細幅織り炭素体とする段階と、前記細幅織り炭素体を耐熱主軸の表面に巻いて炭素成形体とする段階と、前記炭素成形体の両端部にそれぞれ通電用クリップを取り付ける段階と、前記通電用クリップに電流を印加し、前記炭素成形体を気相炭化水素雰囲気下で1次熱処理して、熱処理炭素成形体とする段階と、前記熱処理炭素成形体を耐熱主軸から分離する段階と、前記分離された熱処理炭素成形体の通電用クリップに電流を印加し、気相炭化水素雰囲気の下に1300〜2500℃で2次熱処理して、表面にナノ結晶構造の炭素層被膜が蒸着された炭素被膜発熱体とする段階と、前記炭素被膜発熱体を不活性ガス又は減圧雰囲気の下に2500〜3500℃で3次熱処理して、不純物を蒸発させ且つ残留する非晶質炭素をグラファイト化する段階と、を含む炭素発熱体の製造方法を提供する。   The present invention also includes a step of arranging 3 to 24 polyacrylonitrile yarns or viscose yarns in one direction and braiding them into a web-like narrow woven fabric, and the narrow woven fabric in an inert gas atmosphere. And carbonizing at 1,500 to 2,500 ° C. while stretching in the longitudinal direction to form a narrow woven carbon body, and winding the narrow woven carbon body around the surface of the heat-resistant main shaft to obtain a carbon molded body A step of attaching current-carrying clips to both ends of the carbon molded body, applying a current to the current-carrying clips, and subjecting the carbon molded body to a primary heat treatment in a gas-phase hydrocarbon atmosphere, and heat-treated carbon Forming a molded body; separating the heat-treated carbon molded body from the heat-resistant main spindle; and applying a current to the current-carrying clip of the separated heat-treated carbon molded body to generate 1300-2500 under a gas phase hydrocarbon atmosphere. 2 at ℃ A step of heat-treating a carbon film heating element having a carbon layer film having a nanocrystalline structure deposited on the surface, and a third heat treatment of the carbon film heating element at 2500 to 3500 ° C. in an inert gas or reduced-pressure atmosphere And a step of evaporating the impurities and graphitizing the remaining amorphous carbon.

本発明によって製造される炭素発熱体は、合成樹脂溶液を使用せずに、複数の炭素繊維糸を物理的にブレーディングしてなる細幅織り炭素体に、別の加工なしで原形のまま通電用クリップを取り付け、1次、2次及び3次熱処理を実施するので、抵抗特性及び発熱分布が非常に均一になり、耐久性及び品質を大幅に向上させることができる。   The carbon heating element produced according to the present invention is not energized in a thin woven carbon body that is obtained by physically braiding a plurality of carbon fiber yarns without using a synthetic resin solution. Since the primary clip, the secondary, and the tertiary heat treatment are performed, the resistance characteristics and the heat generation distribution become very uniform, and the durability and quality can be greatly improved.

また、本発明の炭素発熱体は、自体として不純物とされる合成樹脂溶液を細幅織り炭素体の製造に使用しないだけでなく、この合成樹脂溶液の未使用によって、不純物除去のための高温の3次熱処理が実施可能になるため、不純物含量が極めて低減し、かつ、寿命を大幅に延ばすことができる。   In addition, the carbon heating element of the present invention does not use the synthetic resin solution, which is regarded as an impurity itself, for the production of the narrow-width woven carbon body. Since the tertiary heat treatment can be performed, the impurity content can be extremely reduced and the life can be greatly extended.

また、本発明の炭素発熱体は、炭素繊維糸の接着のための合成樹脂溶液の塗布及び乾燥時間が省かれるので、生産性が大幅に向上し、合成樹脂溶液の不均一な塗布に起因する発熱分布のばらつきを防止することができる。   In addition, the carbon heating element of the present invention saves time for applying and drying the synthetic resin solution for bonding the carbon fiber yarn, so that the productivity is significantly improved and the synthetic resin solution is unevenly applied. Variation in the heat generation distribution can be prevented.

従来の炭素発熱体の製造工程図である。It is a manufacturing process figure of the conventional carbon heating element. 従来の炭素発熱体を使用したカーボンヒーターの一実施例を示す写真である。It is a photograph which shows one Example of the carbon heater using the conventional carbon heating element. 従来の炭素発熱体の製造に使用される炭素繊維糸の不良状態を示す図である。It is a figure which shows the defect state of the carbon fiber yarn used for manufacture of the conventional carbon heating element. 従来の炭素発熱体を使用したカーボンヒーターの電流印加状態を示す写真である。It is a photograph which shows the electric current application state of the carbon heater using the conventional carbon heating element. 本発明の一実施例による細幅織り炭素体の織造及び細幅織物の織造に使用される細幅織機の例示図である。FIG. 2 is an exemplary view of a narrow loom used for weaving a narrow woven carbon body and a narrow woven fabric according to an embodiment of the present invention. 本発明の一実施例による細幅織り炭素体の例示図である。It is an illustration figure of the narrow woven carbon body by one Example of this invention. 本発明の一実施例による炭素発熱体の製造工程図である。It is a manufacturing-process figure of the carbon heating element by one Example of this invention. 本発明の一実施例による炭素成形体の詳細断面図である。It is a detailed sectional view of a carbon forming object by one example of the present invention. 本発明の他の実施例による炭素成形体の詳細断面図である。It is detail sectional drawing of the carbon molded object by the other Example of this invention. 本発明の炭素発熱体を使用したカーボンヒーターの電流印加状態を示す写真である。It is a photograph which shows the electric current application state of the carbon heater using the carbon heating element of this invention. 従来のカーボンヒーターと本発明によるカーボンヒーターとの比較写真である。It is a comparative photograph of a conventional carbon heater and a carbon heater according to the present invention.

本発明は、合成樹脂溶液を使用せずに、複数の炭素繊維糸を物理的にブレーディングした細幅織り炭素体に別の加工を実施せずに原形のままで通電用クリップを装着した後に、1次、2次熱処理を実施し、これとは別に残存不純物の除去のための高温の3次熱処理を実施することを技術思想としている。   The present invention is a method of attaching a current-carrying clip to a narrow woven carbon body obtained by physically braiding a plurality of carbon fiber yarns without using a synthetic resin solution without performing another processing. The technical idea is to perform primary and secondary heat treatments, and to perform high temperature tertiary heat treatment for removing residual impurities.

このために、本発明では、複数の炭素繊維糸を一方向に配列しブレーディングして細幅織り炭素体とする、又は、原糸を一方向に配列しブレーディングしてなる細幅織物を炭化処理して細幅織り炭素体とした後、この細幅織り炭素体を使って炭素発熱体を製造する。   For this reason, in the present invention, a narrow woven fabric obtained by arranging and braiding a plurality of carbon fiber yarns in one direction to form a narrow-width woven carbon body, or by arranging and braiding raw yarns in one direction. After carbonizing to form a narrow woven carbon body, a carbon heating element is manufactured using the narrow woven carbon body.

添付の図面及び実施例に挙げて本発明の炭素発熱体の製造方法について詳細に説明する。   The method for producing a carbon heating element of the present invention will be described in detail with reference to the accompanying drawings and examples.

図5は、本発明の一実施例による細幅織り炭素体の織造及び細幅織物の織造に使用される細幅織機を概略的に示す図であり、図6は、本発明の一実施例による細幅織り炭素体を概略的に示す図であり、図7は、本発明の一実施例による炭素発熱体の製造工程を概略的に示す図であり、図8は、本発明の一実施例による炭素成形体の断面を詳細に示す図であり、図9は、本発明の他の実施例による炭素成形体の断面を詳細に示す図であり、図10は、本発明の炭素発熱体を使用したカーボンヒーターに電流を印加した状態の写真であり、図11は、従来のカーボンヒーターと本発明によるカーボンヒーターとを比較した写真である。   FIG. 5 is a view schematically showing a narrow loom used for weaving a narrow woven carbon body and a narrow woven fabric according to an embodiment of the present invention, and FIG. 6 is an embodiment of the present invention. FIG. 7 schematically shows a manufacturing process of a carbon heating element according to an embodiment of the present invention, and FIG. 8 shows an embodiment of the present invention. FIG. 9 is a diagram illustrating in detail a cross section of a carbon molded body according to an example, FIG. 9 is a diagram illustrating in detail a cross section of a carbon molded body according to another embodiment of the present invention, and FIG. 10 is a carbon heating element according to the present invention. FIG. 11 is a photograph comparing a conventional carbon heater with a carbon heater according to the present invention.

図5〜図11を参照すると、まず、本発明の炭素発熱体に使われる細幅織り炭素体は、炭素繊維糸を、水、界面活性剤及びシリコン乳剤からなる群より選ばれる少なくとも一つの潤滑剤に浸漬して潤滑剤含浸炭素繊維糸とする段階、この潤滑剤含浸炭素繊維糸3〜24本を一方向に配列しブレーディングして細幅織り炭素体とする段階によって製造される。   Referring to FIGS. 5 to 11, first, in the narrow woven carbon body used in the carbon heating element of the present invention, the carbon fiber yarn is at least one lubrication selected from the group consisting of water, a surfactant and a silicon emulsion. It is produced by a step of dipping in an agent to form a lubricant-impregnated carbon fiber yarn, and a step of arranging 3 to 24 of this lubricant-impregnated carbon fiber yarn in one direction and braiding to form a narrow-width woven carbon body.

炭素繊維糸を一般の織機で経糸と緯糸として配列し織造して広幅の炭素繊維を作り、この炭素繊維をスリッティングして細幅織り炭素体とすることができるが、緯糸の炭素繊維が120°以上の角度でブレーディングされるときには屈折する現象が発生するから技術的に極めて困難であり、その分、実用性に欠けている。しかも、スリッティング過程で炭素繊維のスリッティング面に毛羽などの歪みが生じ、この歪み部位において抵抗特性及び発熱分布のバラツキが深刻になるため、上記した一般の方法で織造及びスリッティングされた細幅織り炭素体を炭素発熱体の製造に使用することができない。したがって、比較的少数(例えば、4本)の炭素繊維糸を細幅織機で経糸として配列し交織して細幅に形成される細幅織り炭素体を原形のまま使用して炭素発熱体を製造しなければならない。   Carbon fiber yarns can be arranged and woven as warps and wefts with a general loom to make wide carbon fibers, and these carbon fibers can be slit to form narrow-width woven carbon bodies. When blading at an angle of more than 0 °, a phenomenon of refraction occurs, which is technically extremely difficult, and accordingly, it is not practical. In addition, fluffing and other distortions occur in the slitting surface of the carbon fiber during the slitting process, and the variation in resistance characteristics and heat generation distribution becomes serious at these strained parts. Therefore, the fine woven and slitted by the general method described above. Width-woven carbon bodies cannot be used for the production of carbon heating elements. Therefore, a carbon heating element is manufactured by using a relatively small number (for example, four) of carbon fiber yarns as warp yarns with a narrow loom and interweaving them to form a narrow width woven carbon body as it is. Must.

本発明の炭素発熱体は、炭素繊維糸を物理的に細幅織造してなる細幅織り炭素体で製造される。細幅織り炭素体の製造に使われる炭素繊維糸は、原料によって、PAN系炭素繊維糸、ピッチ系炭素繊維糸及びビスコース系炭素繊維糸に分類され、炭素発熱体の材料である細幅織り炭素体は、PAN系炭素繊維糸、ピッチ系炭素繊維糸及びビスコース系炭素繊維糸のいずれを使用してもよいが、PAN系炭素繊維糸、ピッチ系炭素繊維糸は矩形の断面を有するので、複数のPAN系炭素繊維糸又はピッチ系炭素繊維糸を一方向に配列しブレーディングして細幅織り炭素体とする工程が事実上困難である。したがって、本発明では、細幅織造が容易な断面円形を有するビスコース系炭素繊維糸を使用して細幅織り炭素体を製造することが好ましい。   The carbon heating element of the present invention is manufactured from a narrow woven carbon body obtained by physically woven carbon fiber yarns. The carbon fiber yarns used in the production of narrow-width woven carbon bodies are classified into PAN-based carbon fiber yarns, pitch-based carbon fiber yarns, and viscose-based carbon fiber yarns depending on the raw material, and the narrow-width weaves that are materials for carbon heating elements As the carbon body, any of a PAN-based carbon fiber yarn, a pitch-based carbon fiber yarn, and a viscose-based carbon fiber yarn may be used, but the PAN-based carbon fiber yarn and the pitch-based carbon fiber yarn have a rectangular cross section. A process of arranging a plurality of PAN-based carbon fiber yarns or pitch-based carbon fiber yarns in one direction and braiding them into a narrow woven carbon body is practically difficult. Therefore, in the present invention, it is preferable to produce a narrow-width woven carbon body using a viscose-based carbon fiber yarn having a circular cross section that is easy to narrow-width weave.

ところが、屈曲強度の小さい炭素繊維糸をそのまま一方向に配列しブレーディングすると、炭素繊維糸が一定の角度で容易にブレーディングされず、屈折する現象が起こるだけでなく、ブレーディング中の炭素繊維糸で毛羽が発生する可能性もある。   However, when carbon fiber yarns with low bending strength are arranged in one direction as they are and braiding, the carbon fiber yarns are not easily braided at a certain angle, causing not only a phenomenon of refraction, but also the carbon fibers being braided. There is also the possibility of fluffing with the yarn.

したがって、本発明では、炭素繊維糸が一定の角度で容易にブレーディングされるように、ボビンに巻かれた状態の炭素繊維糸を、水、界面活性剤及びシリコン乳剤からなる群より選ばれる少なくとも一つの潤滑剤に20〜60分間浸漬し、屈曲強度の増加した潤滑剤含浸炭素繊維糸とする。炭素繊維糸の屈曲強度を増加させる潤滑剤は、水、界面活性剤及びシリコン乳剤を単独使用しても良く、2種以上を混合して使用してもよい。   Therefore, in the present invention, the carbon fiber yarn wound around the bobbin is at least selected from the group consisting of water, a surfactant and a silicon emulsion so that the carbon fiber yarn is easily braided at a certain angle. Immerse in one lubricant for 20 to 60 minutes to obtain a lubricant-impregnated carbon fiber yarn with increased flexural strength. As the lubricant for increasing the flexural strength of the carbon fiber yarn, water, a surfactant and a silicon emulsion may be used alone, or two or more kinds may be mixed and used.

このような潤滑剤に浸漬された潤滑剤含浸炭素繊維糸は、屈曲強度が増加して容易にブレーディングされ、毛羽の発生も抑えられる。屈曲強度の増加した潤滑剤含浸炭素繊維糸の製造において、炭素繊維糸を潤滑剤に浸漬する時間が20分未満であれば、炭素繊維糸が容易にブレーディングされるような屈曲強度にならず、炭素繊維糸を潤滑剤に浸漬する時間が60分を超過すると、炭素繊維糸の屈曲強度はそれ以上増加しない。   The lubricant-impregnated carbon fiber yarn soaked in such a lubricant has an increased bending strength and is easily bladed, and the occurrence of fluff is also suppressed. In the production of a lubricant-impregnated carbon fiber yarn having increased flexural strength, if the time for dipping the carbon fiber yarn in the lubricant is less than 20 minutes, the flex strength is not such that the carbon fiber yarn is easily braided. When the time for immersing the carbon fiber yarn in the lubricant exceeds 60 minutes, the bending strength of the carbon fiber yarn does not increase any more.

上記のように潤滑剤に浸漬されて屈曲強度の増加した潤滑剤含浸炭素繊維糸を一方向に配列しブレーディングして細幅織り炭素体とする。   As described above, the lubricant-impregnated carbon fiber yarns that have been immersed in the lubricant and increased in flexural strength are arranged in one direction and braided to obtain a narrow-width woven carbon body.

本発明では、細幅織機で炭素繊維糸を経・緯糸として共に配列せずに、細幅織機で炭素繊維糸3〜24本を全て経糸として配列し、これらの経糸が相互ジグザグに交差するようにブレーディングすることによって、図6に示すように、3〜24本の炭素繊維糸が一方向に配列されるウェブ状の細幅織り炭素体とする。ウェブ状の細幅織り炭素体の製造において、経糸として配列される炭素繊維糸が3本未満であれば、これら炭素繊維糸が相互交織してウェブ状の細幅織物となるのではなく、炭素繊維糸が撚られて仮燃糸となる。一方、経糸として配列される炭素繊維糸が24本を超過すると、炭素繊維糸が過度な角度でブレーディングされ、炭素繊維糸の加工性が低下するだけでなく、細幅織り炭素体の幅が過大になるため電気的な抵抗値が過度に低下する。   In the present invention, the carbon fiber yarns are not arranged as warps and wefts in the narrow loom, but all 3 to 24 carbon fiber yarns are arranged as warps in the narrow loom so that these warp yarns cross each other in a zigzag manner. As shown in FIG. 6, it is made into a web-like narrow-width woven carbon body in which 3 to 24 carbon fiber yarns are arranged in one direction. In the production of a web-like narrow woven carbon body, if the number of carbon fiber yarns arranged as warps is less than 3, these carbon fiber yarns are interwoven to form a web-like narrow woven fabric. The fiber yarn is twisted to form a temporary combustion yarn. On the other hand, when the number of carbon fiber yarns arranged as warps exceeds 24, the carbon fiber yarns are braided at an excessive angle, not only the workability of the carbon fiber yarns is lowered, but also the width of the narrow woven carbon body is reduced. Since it becomes excessive, the electrical resistance value decreases excessively.

具体的に、図5に示すように、3〜24本の炭素繊維糸240a,240bを経糸として配列しブレーディングして炭素繊維細幅織物を製造する細幅織機200は、テーブル210、テーブル210上において回転しつつ移動する複数個のキャリア230a,230b、キャリア230a,230bから交織された炭素繊維細幅織物100が巻き取られる巻取りローラ260,270を備える。   Specifically, as shown in FIG. 5, a narrow loom 200 that manufactures a carbon fiber narrow fabric by arranging and braiding 3 to 24 carbon fiber yarns 240 a and 240 b as warp yarns includes a table 210 and a table 210. A plurality of carriers 230a and 230b that rotate while rotating, and winding rollers 260 and 270 on which the carbon fiber narrow fabric 100 woven from the carriers 230a and 230b is wound are provided.

ここで、複数のキャリア230a,230bは、テーブル210上に形成された"∞"状の移動経路に沿って回転する。キャリア230a,230bが回転する時、キャリア230a,230bに巻き取られたそれぞれの炭素繊維糸240a,240bは、キャリア230a,230bの経路に沿ってヤーンガイド(図示せず)で相互ブレーディングされて炭素繊維細幅織物100となり、この炭素繊維細幅織物100は巻取りローラ260上に巻き取られる。ここで、キャリア230a,230bが移動経路に沿って移動する時、ブレーディングのためにヤーンガイドに移動するそれぞれの炭素繊維糸240a,240bのブレーディング角度は60°を越えないように調整される。炭素繊維糸240a,240bのヤーンガイドにおけるブレーディング角度が60°を超過すると、炭素繊維糸240a,240bが切断される可能性がある。   Here, the plurality of carriers 230 a and 230 b rotate along the “∞” -shaped movement path formed on the table 210. When the carriers 230a and 230b rotate, the carbon fiber yarns 240a and 240b wound around the carriers 230a and 230b are mutually braided by a yarn guide (not shown) along the path of the carriers 230a and 230b. A carbon fiber narrow fabric 100 is formed, and the carbon fiber narrow fabric 100 is wound on a winding roller 260. Here, when the carriers 230a and 230b move along the movement path, the braiding angles of the respective carbon fiber yarns 240a and 240b moving to the yarn guide for braiding are adjusted so as not to exceed 60 °. . When the braiding angle in the yarn guide of the carbon fiber yarns 240a and 240b exceeds 60 °, the carbon fiber yarns 240a and 240b may be cut.

すなわち、複数の炭素繊維糸、好ましくは、円形の断面を有するビスコース系炭素繊維糸を細幅織機にセッティングして経糸として配列し、これらの経糸として配列された炭素繊維糸を相互ジグザグに交差してブレーディングすることによって細幅織り炭素体を得る。そして、同一の直径を有する複数の炭素繊維糸を経糸として配列し交織して細幅織り炭素体とすることもでき、異なる直径を有する炭素繊維糸を経糸として配列し交織して細幅織り炭素体とすることもできる。   That is, a plurality of carbon fiber yarns, preferably a viscose carbon fiber yarn having a circular cross section, is set in a narrow loom and arranged as warp yarns, and the carbon fiber yarns arranged as these warp yarns cross each other in a zigzag manner. Then, a narrow woven carbon body is obtained by braiding. A plurality of carbon fiber yarns having the same diameter can be arranged as warp yarns and interwoven to obtain a narrow width woven carbon body. Carbon fiber yarns having different diameters can be arranged as warp yarns and interwoven to obtain a narrow width woven carbon material. It can also be a body.

このような細幅織り炭素体は、複数の炭素繊維糸を一方向に配列しブレーディングして細幅織造したものであるから、細幅織造された細幅織り炭素体の両辺及び両端部に毛羽などのような歪みが全く生じなく、外形がすっきりしており、織造形態が確実に維持されるという特性を有する。したがって、複数の炭素繊維糸をブレーディングせずに一定幅で平行に配列した後、自体として不純物とされる合成樹脂溶液を塗布して複数の炭素繊維糸を結合させなければならない従来の炭素繊維材とは違い、複数の炭素繊維糸を一方向に配列しブレーディングして堅固に製造した本発明の細幅織り炭素体は、合成樹脂溶液が塗布されないことはもとより、細幅織り炭素体の織造形態を維持するためのいかなる手段も使用せずに、細幅織造された細幅織り炭素体をそのまま炭素発熱体の製造に使用する。   Since such a narrow-width woven carbon body is obtained by arranging a plurality of carbon fiber yarns in one direction and braiding them into a narrow-width woven structure, the narrow-width woven carbon body is formed on both sides and both ends of the narrow-width woven carbon body. No distortion such as fuzz occurs at all, the outer shape is clean, and the woven form is reliably maintained. Therefore, a conventional carbon fiber in which a plurality of carbon fiber yarns must be bonded in parallel by applying a synthetic resin solution that is regarded as an impurity after arranging a plurality of carbon fiber yarns in parallel with a constant width without braiding. Unlike the material, the narrow woven carbon body of the present invention, which is solidly produced by arranging and braiding a plurality of carbon fiber yarns in one direction, is not coated with a synthetic resin solution, but also is a narrow woven carbon body. Without using any means for maintaining the woven form, the narrow woven carbon body is used as it is for the production of a carbon heating element.

また、上記のように複数の炭素繊維糸を一方向に配列しブレーディングして細幅織り炭素体を形成する方法とは別に、本発明の炭素発熱体の製造方法は、3〜24本のポリアクリロニトリル原糸又はビスコース原糸を一方向に配列しブレーディングすることでウェブ状の細幅織物とする段階、及びこの細幅織物を不活性ガス雰囲気で長さ方向に延伸しながら1,500〜2,500℃で炭化処理することで細幅織り炭素体とする段階によって細幅織り炭素体を得る。   Further, apart from the method of forming a narrow woven carbon body by arranging and braiding a plurality of carbon fiber yarns in one direction as described above, the method for producing a carbon heating element of the present invention comprises 3 to 24 A stage in which a polyacrylonitrile raw yarn or a viscose raw yarn is arranged in one direction and braided to form a web-like narrow woven fabric, and while the thin woven fabric is stretched in the length direction in an inert gas atmosphere, 1, A narrow woven carbon body is obtained by carbonizing at 500 to 2,500 ° C. to obtain a narrow woven carbon body.

炭素繊維に比べて加工性に格段に優れた原糸を使って細幅織物を織造し、連続して細幅織物を耐炎化及び炭化処理する工程により細幅織り炭素体を得、炭素発熱体の製造に使用することができる。   Weaving a narrow woven fabric using raw yarns with excellent processability compared to carbon fiber, and then obtaining a narrow woven carbon body through a process of flameproofing and carbonizing the narrow woven fabric to obtain a carbon heating element. Can be used in the manufacture of

しかし、ポリアクリロニトリル原糸又はビスコース原糸を経・緯糸として2軸性織物を織造し、この2軸性織物を経糸方向と緯糸方向の両方向に同時に延伸しながら炭化処理することは技術的に極めて困難であり、実用性に欠けている。   However, it is technically possible to weave a biaxial woven fabric using warp and weft polyacrylonitrile yarn or viscose yarn, and carbonize the biaxial fabric while simultaneously stretching in both the warp and weft directions. It is extremely difficult and lacks practicality.

そこで、本発明では、PAN系炭素繊維の原材料であるポリアクリロニトリル原糸又はビスコース系炭素繊維の原材料であるビスコース原糸を経・緯糸として共に配列する代わりに、細幅織機でポリアクリロニトリル原糸又はビスコース原糸3〜24本を全て経糸として配列し、これら経糸を相互ジグザグに交差するようにブレーディングすることで、図6に示すように、3〜24本の原糸が一方向に配列されるウェブ状の細幅織物とする。   Therefore, in the present invention, instead of arranging the polyacrylonitrile raw yarn, which is a raw material of PAN-based carbon fiber, or the viscose raw yarn, which is a raw material of viscose-based carbon fiber, as warp and weft yarns, a polyacrylonitrile raw material is used with a narrow loom. By arranging 3 to 24 yarns or viscose raw yarns as warp yarns, and braiding these warp yarns so as to cross each other in a zigzag manner, 3 to 24 raw yarns are unidirectional as shown in FIG. A web-like narrow woven fabric arranged in the above.

このように、ポリアクリロニトリル原糸又はビスコース原糸が相互ジグザグに交差して一定の角度でブレーディングされ、一方向にのみ進行することで1軸性のウェブ状の細幅織物が得られる。この細幅織物の製造において、一方向に配列される原糸が3本未満であれば、原糸が相互ブレーディングされてウェブ状の細幅織物となるのではなく、原糸が撚られて仮燃糸となる。一方、一方向に配列される原糸が24本を超過すると、原糸が過度な角度でブレーディングされるので、原糸を長さ方向に正確に延伸し難くなる他、細幅織物から製造される細幅織り炭素体の幅が過大になり、電気的な抵抗値が過度に低下する。   In this way, the polyacrylonitrile raw yarn or the viscose raw yarn crosses each other in a zigzag manner and is braided at a constant angle, and proceeds only in one direction to obtain a uniaxial web-like narrow woven fabric. In the production of this narrow fabric, if there are less than three yarns arranged in one direction, the yarns are not braided into a web-like narrow fabric, but the yarns are twisted. It becomes temporary burnt yarn. On the other hand, if the number of yarns arranged in one direction exceeds 24, the yarns are braided at an excessive angle, making it difficult to accurately draw the yarns in the length direction. The width of the narrow woven carbon body is excessively increased, and the electrical resistance value is excessively decreased.

具体的に、図5に示すように、3〜24本の原糸240a,240bを経糸として配列しブレーディングして細幅織物を形成する細幅織機200は、テーブル210、テーブル210上において回転しつつ移動する複数個のキャリア230a,230b、キャリア230a,230bから交織された細幅織物100が巻き取られる巻取りローラ260,270を備える。   Specifically, as shown in FIG. 5, a narrow loom 200 that arranges 3 to 24 raw yarns 240 a and 240 b as warp yarns and forms a narrow fabric by braiding is rotated on a table 210 and a table 210. A plurality of carriers 230a and 230b that move while being wound, and winding rollers 260 and 270 around which the narrow fabric 100 woven from the carriers 230a and 230b is wound are provided.

ここで、複数のキャリア230a,230bは、テーブル210上に形成された"∞"状の移動経路に沿って回転する。キャリア230a,230bが回転する時、キャリア230a,230bに巻き取られたそれぞれの原糸240a,240bは、キャリア230a,230bの経路に沿ってヤーンガイド(図示せず)で相互ブレーディングされて細幅織物100となり、この細幅織物100は巻取りローラ260上に巻き取られる。ここで、キャリア230a,230bが移動経路に沿って移動する時、ブレーディングのために移動する原糸240a,240bのヤーンガイドにおけるブレーディング角度は、垂直線を基準に60°を越えないように調整される。原糸240a,240bのヤーンガイドにおけるブレーディング角度が60°を超過すると、原糸240a,240bが切断される可能性がある。   Here, the plurality of carriers 230 a and 230 b rotate along the “∞” -shaped movement path formed on the table 210. When the carriers 230a and 230b rotate, the respective raw yarns 240a and 240b wound around the carriers 230a and 230b are finely braided with a yarn guide (not shown) along the path of the carriers 230a and 230b. A narrow woven fabric 100 is formed, and the narrow woven fabric 100 is wound on a winding roller 260. Here, when the carriers 230a and 230b move along the movement path, the braiding angle in the yarn guide of the raw yarns 240a and 240b moving for braiding should not exceed 60 ° with respect to the vertical line. Adjusted. When the braiding angle of the yarns 240a and 240b in the yarn guide exceeds 60 °, the yarns 240a and 240b may be cut.

すなわち、3〜24本の原糸を細幅織機にセッティングして経糸として配列し、これら経糸として配列された原糸を相互ジグザグに交差してブレーディングすることによって細幅織物を得る。   That is, 3-24 yarns are set on a narrow loom and arranged as warps, and the yarns arranged as warps are brazed so as to cross each other in a zigzag manner to obtain a narrow fabric.

このようにして得られた細幅織物を連続的に炭化処理用トンネル連続炉に移送し、この炭化処理用トンネル連続炉でアルゴンなどのような不活性気体雰囲気で細幅織物を長さ方向に延伸しながら高温で炭化処理することで細幅織り炭素体を製造する。   The narrow fabric thus obtained is continuously transferred to a continuous carbonization furnace for carbonization treatment, and the continuous fabric for carbonization treatment is subjected to the longitudinal treatment in the longitudinal direction in an inert gas atmosphere such as argon. A narrow-width woven carbon body is produced by carbonizing at a high temperature while stretching.

一般には、ポリアクリロニトリル原糸、ビスコース原糸、及びピッチ系原糸を個別として長さ方向に延伸しながら不活性気体雰囲気で1,000℃前半の温度帯、すなわち1,000〜1,500℃の温度で炭化処理して炭素繊維を構成することができるが、原糸単独ではなく3〜24本の原糸を一方向に配列しブレーディングすることによってなる細幅織物は、1,000℃前半の温度帯では確実に炭化処理されない。   In general, a polyacrylonitrile yarn, a viscose yarn and a pitch yarn are individually stretched in the length direction while being individually stretched in the inert gas atmosphere at a temperature range of the first half of 1,000 ° C., ie, 1,000 to 1,500. Carbon fiber can be constituted by carbonization treatment at a temperature of 0 ° C., but a narrow woven fabric obtained by arranging and braiding 3 to 24 yarns in one direction instead of the yarn alone is 1,000. Carbonization is not reliably performed in the first half of the temperature range.

そこで、本発明では、細幅織物を長さ方向に延伸しながら1,500℃以上の温度、好ましくは、1,500〜2,500℃の温度で炭化処理を実施して細幅織り炭素体を製造する。細幅織り炭素体の製造において、炭化処理用トンネル連続炉中の不活性ガス雰囲気で長さ方向に延伸する細幅織物を炭化処理する温度が1,500℃未満であれば、この細幅織物は十分に炭化処理されない。一方、長さ方向に延伸する細幅織物を炭化処理する温度が2,500℃を超過すると、耐炎化細幅織物が炭化処理されずにそのまま燃焼することがある。   Therefore, in the present invention, the narrow woven carbon body is subjected to carbonization treatment at a temperature of 1,500 ° C. or higher, preferably 1,500 to 2,500 ° C. while stretching the narrow woven fabric in the length direction. Manufacturing. In the production of a narrow woven carbon body, if the temperature for carbonizing a narrow woven fabric stretched in the length direction in an inert gas atmosphere in a carbonized tunnel continuous furnace is less than 1,500 ° C., the narrow woven fabric Is not fully carbonized. On the other hand, if the temperature for carbonizing the narrow fabric stretched in the length direction exceeds 2,500 ° C., the flame-resistant narrow fabric may burn as it is without being carbonized.

このような細幅織り炭素体も同様、両辺及び両端部に毛羽などのような歪みが全く発生せず、外形がすっきりしており、織造形態が堅固に維持されるという特性を有する。したがって、複数の炭素繊維糸をブレーディングせずに一定幅で平行に配列した後、自体として不純物とされる合成樹脂溶液を塗布して複数の炭素繊維糸を結合させなければならない従来の炭素繊維材とは違い、複数の炭素繊維糸を一方向に配列しブレーディングして堅固に製造した本発明の細幅織り炭素体は、合成樹脂溶液が塗布されないことはもとより、細幅織り炭素体の織造形態を維持するためのいかなる手段も使用せずに、細幅織造された細幅織り炭素体をそのまま炭素発熱体の製造に使用する。   Similarly, such a narrow woven carbon body has characteristics that no distortion such as fluff is generated at both sides and both ends, the outer shape is clean, and the woven form is firmly maintained. Therefore, a conventional carbon fiber in which a plurality of carbon fiber yarns must be bonded in parallel by applying a synthetic resin solution that is regarded as an impurity after arranging a plurality of carbon fiber yarns in parallel with a constant width without braiding. Unlike the material, the narrow woven carbon body of the present invention, which is solidly produced by arranging and braiding a plurality of carbon fiber yarns in one direction, is not coated with a synthetic resin solution, but also is a narrow woven carbon body. Without using any means for maintaining the woven form, the narrow woven carbon body is used as it is for the production of a carbon heating element.

また、本発明の炭素発熱体の製造方法は、細幅織り炭素体を耐熱主軸の表面に巻回して炭素成形体を形成する段階を含む。   The method for producing a carbon heating element of the present invention includes a step of winding a narrow woven carbon body around the surface of the heat-resistant main shaft to form a carbon molded body.

複数の炭素繊維糸を一方向に配列しブレーディングしてなる細幅織り炭素体、又は、原糸を一方向に配列しブレーディングした細幅織物を炭化処理してなる細幅織り炭素体を、融点1300℃のシリカ棒などのような耐熱主軸の表面に螺旋状に巻いて、螺旋状の炭素成形体とする。   A narrow woven carbon body obtained by arranging and braiding a plurality of carbon fiber yarns in one direction, or a narrow woven carbon body obtained by carbonizing a narrow woven fabric obtained by arranging and braiding raw yarns in one direction. A helical carbon molded body is formed by spirally winding the surface of a heat-resistant main shaft such as a silica rod having a melting point of 1300 ° C.

このように耐熱主軸の表面に螺旋状に巻いて成形された炭素成形体は、細幅織り炭素体として両辺及び両端部に毛羽などのような歪みが全く発生せず、炭素成形体の外形がきれいに維持される特性を有する。したがって、螺旋状の炭素成形体の外形を維持するように合成樹脂溶液を塗布する必要がない他、炭素成形体の両端部のカーボン糸を撚ってツイストしない状態のまま通電用クリップを取り付けることができる。   In this way, the carbon molded body formed by spirally winding the surface of the heat-resistant main shaft does not cause any distortion such as fluff at both sides and both ends as a narrow-width woven carbon body, and the carbon molded body has an outer shape. Has the property of being kept clean. Therefore, it is not necessary to apply a synthetic resin solution so as to maintain the outer shape of the helical carbon molded body, and the current-carrying clips are attached while twisting the carbon yarns at both ends of the carbon molded body without twisting. Can do.

また、本発明の炭素発熱体の製造方法は、炭素成形体の両端部にそれぞれ通電用クリップを取り付ける段階を含む。   Moreover, the manufacturing method of the carbon heat generating body of this invention includes the step which attaches the clip for electricity supply to the both ends of a carbon molded object, respectively.

細幅織り炭素体が螺旋状に成形された炭素成形体に電流を印加して1次熱処理するように、この炭素成形体の両端部にそれぞれ通電用クリップを取り付ける。炭素成形体の両端部にそれぞれ取り付けられる通電用クリップは、優れた電気伝導性を有し、炭素成形体にくっつく程度の表面特性を有するアルミニウムホイール又は銅ホイールのような材質とする。   Electric current clips are attached to both ends of the carbon molded body so that a primary heat treatment is performed by applying an electric current to the carbon molded body in which the narrow-width woven carbon body is spirally formed. The current-carrying clips attached to both ends of the carbon molded body are made of a material such as an aluminum wheel or a copper wheel that has excellent electrical conductivity and has surface characteristics that stick to the carbon molded body.

上記のように炭素成形体の両端部にそれぞれ取り付けられた通電用クリップに電流を印加して通電させると、炭素成形体は一定の温度で熱処理されて熱処理炭素成形体に変形される。   When a current is applied to the energizing clips attached to both ends of the carbon molded body as described above to energize the carbon molded body, the carbon molded body is heat-treated at a constant temperature and deformed into a heat-treated carbon molded body.

また、本発明の炭素発熱体の製造方法は、気相炭化水素雰囲気の下で通電用クリップに電流を印加し炭素成形体を1次熱処理して熱処理炭素成形体とする段階、及びこの熱処理炭素成形体を耐熱主軸から分離する段階を含む。   The method for producing a carbon heating element of the present invention includes a step of applying a current to a current-carrying clip under a gas phase hydrocarbon atmosphere to subject the carbon molded body to a primary heat treatment to obtain a heat treated carbon molded body, and the heat treated carbon. Separating the molded body from the heat resistant spindle.

気相炭化水素雰囲気の下で炭素成形体の両端部の通電用クリップに電流を印加して900〜1200℃で1次熱処理することによって、表面に一定厚の炭素層被膜が気相蒸着された熱処理炭素成形体が得られる。   A constant thickness carbon layer coating was vapor-deposited on the surface by applying a current to the current-carrying clips at both ends of the carbon molded body under a gas-phase hydrocarbon atmosphere and performing a primary heat treatment at 900 to 1200 ° C. A heat-treated carbon molded body is obtained.

具体的に、耐熱主軸の表面に螺旋状に巻かれた炭素成形体の両端部の通電用クリップに電源を連結し、気相炭化水素雰囲気下の反応炉に収納する。電源から通電用クリップを通じて炭素成形体に電流を印加し、炭素成形体の温度を900〜1200℃に上昇させると、反応炉中の気相炭化水素が熱分解しつつ発生する炭素が炭素成形体の表面に気相蒸着されて炭素層被膜を形成する。炭素成形体の表面に炭素層被膜を気相蒸着するために炭素成形体を1次熱処理する温度が900℃未満であれば、気相炭化水素が熱分解されず、炭素は炭素成形体の表面に気相蒸着されない。一方、この炭素成形体を1次熱処理する温度が1200℃を超過すると、炭素成形体を支持する耐熱主軸が高熱によって溶けてしまう。   Specifically, a power source is connected to current-carrying clips at both ends of a carbon molded body spirally wound on the surface of the heat-resistant main shaft, and is stored in a reactor in a gas phase hydrocarbon atmosphere. When a current is applied to the carbon molded body from the power source through the energizing clip and the temperature of the carbon molded body is raised to 900 to 1200 ° C., carbon generated from the vapor phase hydrocarbons in the reactor is thermally decomposed. Is vapor-deposited on the surface of the substrate to form a carbon layer coating. If the temperature at which the carbon molded body is subjected to primary heat treatment to vapor-deposit a carbon layer coating on the surface of the carbon molded body is less than 900 ° C., the vapor phase hydrocarbon is not thermally decomposed, and the carbon is the surface of the carbon molded body. Is not vapor deposited. On the other hand, when the temperature at which the carbon molded body is subjected to the primary heat treatment exceeds 1200 ° C., the heat-resistant main shaft supporting the carbon molded body is melted by high heat.

このような炭素成形体の1次熱処理によって炭素層被膜が気相蒸着された熱処理炭素成形体を耐熱主軸から分離し、この分離された熱処理炭素成形体に2次熱処理を実施する。   The heat-treated carbon molded body on which the carbon layer coating is vapor-deposited by the primary heat treatment of such a carbon molded body is separated from the heat-resistant main axis, and the separated heat-treated carbon molded body is subjected to secondary heat treatment.

また、本発明の炭素発熱体の製造方法は、気相炭化水素雰囲気の下で、分離された熱処理炭素成形体の通電用クリップに電流を印加して1300〜2500℃で2次熱処理し、表面にナノ結晶構造の炭素層が蒸着された炭素被膜発熱体を得る段階を含む。   In addition, the method for producing a carbon heating element according to the present invention includes applying a current to the current-carrying clip of the separated heat-treated carbon molded body under a gas phase hydrocarbon atmosphere to perform a secondary heat treatment at 1300 to 2500 ° C. And obtaining a carbon film heating element on which a carbon layer having a nanocrystalline structure is deposited.

具体的に、1次熱処理されて耐熱主軸から分離された熱処理炭素成形体を、再び気相炭化水素雰囲気下の反応炉に受納する。電源から通電用クリップを通じて熱処理炭素成形体に電流を印加し、この熱処理炭素成形体の温度を1300〜2500℃に上昇させると、反応炉中の気相炭化水素が熱分解しつつ発生する炭素が、熱処理炭素成形体の表面に気相蒸着されて一定厚のナノ結晶構造の炭素層被膜を形成する。   Specifically, the heat-treated carbon molded body that has been subjected to the primary heat treatment and separated from the heat-resistant main shaft is received again in a reaction furnace under a gas-phase hydrocarbon atmosphere. When a current is applied from the power source to the heat treated carbon molded body through the energizing clip and the temperature of the heat treated carbon molded body is raised to 1300 to 2500 ° C., carbon generated in the reaction furnace while pyrolyzing the gas phase hydrocarbons is generated. Then, vapor deposition is performed on the surface of the heat-treated carbon molded body to form a carbon layer film having a nanocrystal structure with a certain thickness.

熱処理炭素成形体の2次熱処理温度を1300〜2500℃の範囲内で一定の温度に維持することで熱処理炭素成形体の抵抗値を所望のレベルに減少させ、これにより、熱処理炭素成形体からなる炭素被膜発熱体の抵抗値を任意調節することが可能になる。熱処理炭素成形体の表面にナノ結晶構造の炭素層被膜を気相蒸着するために熱処理炭素成形体を2次熱処理する温度が1300℃未満であれば、この炭素被膜発熱体の表面に気相蒸着されるナノ結晶構造の炭素層被膜に気化可能な非晶質炭素物質が多量含有されるだけでなく、炭素被膜発熱体の抵抗値を任意調節することができない。一方、熱処理炭素成形体を2次熱処理する温度が2500℃を超過すると、炭素被膜発熱体が高温によって劣化又は燃焼することがある。   By maintaining the secondary heat treatment temperature of the heat-treated carbon molded body at a constant temperature within the range of 1300 to 2500 ° C., the resistance value of the heat-treated carbon molded body is reduced to a desired level, thereby comprising the heat-treated carbon molded body. The resistance value of the carbon film heating element can be arbitrarily adjusted. If the temperature at which the heat-treated carbon molded body is subjected to secondary heat treatment to vapor-deposit a carbon layer coating having a nanocrystalline structure on the surface of the heat-treated carbon molded body is less than 1300 ° C., vapor-phase deposition is performed on the surface of the carbon-coated heating element. Not only does the carbon layer coating having a nanocrystalline structure contain a large amount of vaporizable amorphous carbon material, but the resistance value of the carbon coating heating element cannot be arbitrarily adjusted. On the other hand, when the temperature at which the heat-treated carbon molded body is subjected to the secondary heat treatment exceeds 2500 ° C., the carbon film heating element may be deteriorated or burned at a high temperature.

上記のようにして得られた炭素被膜発熱体には、微量の不純物と非晶質炭素物質が含まれており、この不純物及び非晶質炭素物質の除去のために高温の3次熱処理を実施する。   The carbon film heating element obtained as described above contains a small amount of impurities and an amorphous carbon material, and high temperature tertiary heat treatment is performed to remove the impurities and the amorphous carbon material. To do.

また、本発明の炭素発熱体の製造方法は、炭素被膜発熱体を不活性ガス又は減圧雰囲気の下に2500〜3500℃で3次熱処理して、不純物を蒸発させ且つ残留する非晶質炭素をグラファイト化する段階を含む。   In the method for producing a carbon heating element of the present invention, the carbon film heating element is subjected to a third heat treatment at 2500 to 3500 ° C. in an inert gas or a reduced-pressure atmosphere to evaporate impurities and leave remaining amorphous carbon. Including the step of graphitization.

2次熱処理された炭素被膜発熱体を、気相炭化水素ではなく不活性ガス又は減圧雰囲気の下に2500〜3500℃の高温で3次熱処理して、不純物を蒸発させ、且つ残留する非晶質炭素物質をグラファイト化することによって、不純物が事実上残留しない炭素発熱体が得られる。この場合、炭素被膜発熱体への3次熱処理は、炭素被膜発熱体の高熱による劣化又は燃焼を防止するために、気相炭化水素ではなく必ず不活性ガス又は減圧雰囲気の下で実施しなければならない。   The carbon film heating element subjected to the secondary heat treatment is subjected to a tertiary heat treatment at a high temperature of 2500 to 3500 ° C. under an inert gas or a reduced pressure atmosphere instead of a gas phase hydrocarbon to evaporate impurities, and to remain amorphous By graphitizing the carbon material, a carbon heating element with virtually no impurities remaining can be obtained. In this case, the third heat treatment for the carbon film heating element must be carried out under an inert gas or a reduced-pressure atmosphere instead of gas phase hydrocarbons in order to prevent deterioration or combustion of the carbon film heating element due to high heat. Don't be.

炭素被膜発熱体を3次熱処理する温度が2500℃未満であれば、炭素被膜発熱体から不純物が十分に蒸発しない他、非晶質炭素物質も十分にグラファイト化されない。一方、炭素被膜発熱体を3次熱処理する温度が3500℃を超過すると、3次熱処理にかかる費用が大幅に増加し、炭素発熱体の製造原価の上昇につながる。   If the temperature at which the carbon film heating element is subjected to the third heat treatment is less than 2500 ° C., impurities are not sufficiently evaporated from the carbon film heating element, and the amorphous carbon material is not sufficiently graphitized. On the other hand, if the temperature at which the carbon film heating element is subjected to the third heat treatment exceeds 3500 ° C., the cost for the third heat treatment increases significantly, leading to an increase in the manufacturing cost of the carbon heating element.

上記のような炭素被膜発熱体の3次熱処理により、事実上不純物の含まれていない炭素発熱体が得られる。   By the third heat treatment of the carbon film heating element as described above, a carbon heating element substantially free of impurities is obtained.

このような炭素発熱体を管体内部に装入し、この装入された炭素発熱体を電線と連結した後に、管体を真空処理してシールすることでカーボンヒーターを製造する。   A carbon heater is manufactured by inserting such a carbon heating element into the inside of the tube, connecting the inserted carbon heating element to an electric wire, and then vacuum-sealing the tube to seal it.

以下、本発明の炭素発熱体の製造方法について具体的な実施例に挙げて詳細に説明する。ただし、下記の実施例は、本発明を具体的に例示するためのもので、本発明を制限するためのものではない。   Hereinafter, the manufacturing method of the carbon heating element of the present invention will be described in detail with reference to specific examples. However, the following examples are for specifically illustrating the present invention and are not intended to limit the present invention.

<実施例>
1.70texの線密度を有するビスコース系炭素繊維糸8本を細幅織機にセッティングして経糸として配列し、これら経糸を相互ジグザグに交差して織造することによって細幅織り炭素体とした。
<Example>
Eight viscose carbon fiber yarns having a linear density of 1.70 tex were set on a narrow loom and arranged as warp yarns, and these warp yarns were woven so as to cross each other in a zigzag manner to obtain a narrow weave carbon body.

2.この細幅織り炭素体を、長さ45cm、直径4mmのシリカ棒に螺旋状に巻いて炭素成形体を形成した。   2. The narrow woven carbon body was spirally wound around a silica rod having a length of 45 cm and a diameter of 4 mm to form a carbon molded body.

3.この炭素成形体の両端部にそれぞれアルミニウムホイール材質の通電用クリップを取り付けた。   3. A current-carrying clip made of aluminum wheel material was attached to both ends of the carbon molded body.

4.耐熱主軸の表面における炭素成形体の通電用クリップを電源と連結し、気相炭化水素雰囲気下の反応炉に受納した。   4). The current-carrying clip of the carbon compact on the surface of the heat-resistant main shaft was connected to a power source and received in a reactor in a gas-phase hydrocarbon atmosphere.

5.通電用クリップに電流を印加し、炭素成形体を初期抵抗43Ωから抵抗33Ωに変換されるまで、気相炭化水素雰囲気下で、1100℃で1次熱処理し、表面に0.1nmの炭素層被膜が気相蒸着された熱処理炭素成形体とした。   5). A current is applied to the energizing clip, and the carbon molded body is subjected to a primary heat treatment at 1100 ° C. in a gas phase hydrocarbon atmosphere until the initial resistance of 43Ω is converted to a resistance of 33Ω. Was a heat treated carbon molded body vapor-deposited.

6.熱処理炭素成形体を耐熱主軸から分離し、分離された熱処理炭素成形体を再び気相炭化水素雰囲気下の反応炉に受納した。   6). The heat-treated carbon molded body was separated from the heat-resistant main shaft, and the separated heat-treated carbon molded body was received again in a reaction furnace under a gas phase hydrocarbon atmosphere.

7.この熱処理炭素成形体の通電用クリップに電流を印加し、熱処理炭素成形体を、初期抵抗33Ωから抵抗13Ωに変換されるまで、気相炭化水素雰囲気下で、2000℃で2次熱処理し、表面に0.3nmのナノ結晶構造の炭素層被膜が気相蒸着された炭素被膜発熱体とした。   7). A current was applied to the energizing clip of the heat treated carbon molded body, and the heat treated carbon molded body was subjected to secondary heat treatment at 2000 ° C. in a gas phase hydrocarbon atmosphere until the initial resistance was changed from 33Ω to 13Ω, The carbon film heating element was formed by vapor-depositing a carbon layer film having a nanocrystal structure of 0.3 nm on the surface.

8.この炭素被膜発熱体を不活性ガス雰囲気下の反応炉に受納し、通電用クリップに電流を印加し、この炭素被膜発熱体を不活性ガス雰囲気の下に2600℃で30秒間3次熱処理することによって、螺旋状の100V/800Wの炭素発熱体を製造した。   8). The carbon film heating element is received in a reaction furnace under an inert gas atmosphere, an electric current is applied to the energizing clip, and the carbon film heating element is subjected to a tertiary heat treatment at 2600 ° C. for 30 seconds in an inert gas atmosphere. Thus, a spiral carbon heating element of 100V / 800W was manufactured.

<実験例>
上記実施例によって得られた炭素発熱体を管体内部に装入し、この装入された炭素発熱体を電線と連結した後に、管体を真空処理しシールすることでカーボンヒーターを製造した。
<Experimental example>
The carbon heating element obtained by the above example was inserted into the inside of the tube, and after the inserted carbon heating element was connected to the electric wire, the tube was vacuum treated and sealed to produce a carbon heater.

このカーボンヒーター100個と従来の韓国登録特許公報第10−0793973号に基づくカーボンヒーター100個を用意し、2000時間連続して電流を供給して加熱した結果、図9に示すように、本発明のカーボンヒーターでは、内部不純物による炭化現象、及び黒化現象(ニッケル蒸発リング)が全く発生しなかったが、従来のカーボンヒーターでは、30個において内部不純物による炭化現象及び黒化現象が発生した。   As a result of preparing 100 carbon heaters and 100 carbon heaters based on the conventional Korean Registered Patent Publication No. 10-0793973 and supplying the current continuously for 2000 hours, as shown in FIG. No carbonization phenomenon or blackening phenomenon (nickel evaporating ring) due to internal impurities occurred in the carbon heater of No. 1. However, in the conventional carbon heater, carbonization phenomenon and blackening phenomenon due to internal impurities occurred in 30 pieces.

その結果から、本発明の炭素発熱体を使って製造したカーボンヒーターは、信頼性が顕著に向上したことがわかる。

From the result, it can be seen that the reliability of the carbon heater manufactured using the carbon heating element of the present invention is remarkably improved.

Claims (8)

炭素繊維糸を水、界面活性剤及びシリコン乳剤からなる群より選ばれる少なくとも一つの潤滑剤に浸漬して潤滑剤含浸炭素繊維糸とする段階と、
前記潤滑剤含浸炭素繊維糸3〜24本を一方向に配列しブレーディング(Braiding)して細幅織り炭素体とする段階と、
前記細幅織り炭素体を耐熱主軸の表面に巻いて炭素成形体とする段階と、
前記炭素成形体の両端部にそれぞれ通電用クリップを取り付ける段階と、
前記通電用クリップに電流を印加し、前記炭素成形体を気相炭化水素雰囲気下で1次熱処理して、熱処理炭素成形体とする段階と、
前記熱処理炭素成形体を耐熱主軸から分離する段階と、
前記分離された熱処理炭素成形体の通電用クリップに電流を印加し、気相炭化水素雰囲気の下に1300〜2500℃で2次熱処理して、表面にナノ結晶構造の炭素層被膜が蒸着された炭素被膜発熱体とする段階と、
前記炭素被膜発熱体を不活性ガス又は減圧雰囲気の下に2500〜3500℃で3次熱処理して、不純物を蒸発させ且つ残留する非晶質炭素をグラファイト化する段階と、
を含む、炭素発熱体の製造方法。
Immersing the carbon fiber yarn in at least one lubricant selected from the group consisting of water, a surfactant and a silicon emulsion to form a lubricant-impregnated carbon fiber yarn;
Arranging 3 to 24 of the lubricant-impregnated carbon fiber yarns in one direction and braiding to form a narrow woven carbon body;
Winding the narrow-width woven carbon body around the surface of the heat-resistant main shaft to form a carbon molded body;
Attaching current-carrying clips to both ends of the carbon molded body,
Applying a current to the energizing clip and subjecting the carbon molded body to a primary heat treatment in a gas phase hydrocarbon atmosphere to form a heat treated carbon molded body;
Separating the heat treated carbon molded body from the heat resistant spindle;
A current was applied to the current-carrying clip of the separated heat-treated carbon molded body, followed by a secondary heat treatment at 1300 to 2500 ° C. under a gas phase hydrocarbon atmosphere, and a carbon layer coating having a nanocrystalline structure was deposited on the surface. A carbon coating heating element;
Performing a third heat treatment of the carbon film heating element at 2500 to 3500 ° C. in an inert gas or a reduced pressure atmosphere to evaporate impurities and graphitize the remaining amorphous carbon;
A method for producing a carbon heating element, comprising:
前記潤滑剤含浸炭素繊維糸とする段階で使われる炭素繊維糸は、ビスコース系炭素繊維糸であることを特徴とする、請求項1に記載の炭素発熱体の製造方法。  The method for producing a carbon heating element according to claim 1, wherein the carbon fiber yarn used in the step of forming the lubricant-impregnated carbon fiber yarn is a viscose-based carbon fiber yarn. 前記潤滑剤含浸炭素繊維糸とする段階で炭素繊維糸を潤滑剤に20〜60分間浸漬することを特徴とする、請求項1に記載の炭素発熱体の製造方法。  2. The method for producing a carbon heating element according to claim 1, wherein the carbon fiber yarn is immersed in a lubricant for 20 to 60 minutes in the step of forming the lubricant-impregnated carbon fiber yarn. 前記細幅織り炭素体とする段階で、異なる直径の炭素繊維糸を一方向に配列しブレーディングすることを特徴とする、請求項1に記載の炭素発熱体の製造方法。  The method for producing a carbon heating element according to claim 1, wherein in the step of forming the narrow-width woven carbon body, carbon fiber yarns having different diameters are arranged in one direction and braided. 3〜24本のポリアクリロニトリル原糸又はビスコース原糸を一方向に配列しブレーディングしてなるウェブ状の細幅織物を不活性ガス雰囲気で長さ方向に延伸しながら炭化処理して細幅織り炭素体とする段階と、
前記細幅織り炭素体を耐熱主軸の表面に巻いて炭素成形体とする段階と、
前記炭素成形体の両端部にそれぞれ通電用クリップを取り付ける段階と、
前記通電用クリップに電流を印加し、前記炭素成形体を気相炭化水素雰囲気下で1次熱処理して、熱処理炭素成形体とする段階と、
前記熱処理炭素成形体を耐熱主軸から分離する段階と、
前記分離された熱処理炭素成形体の通電用クリップに電流を印加し、気相炭化水素雰囲気の下に1300〜2500℃で2次熱処理して、表面にナノ結晶構造の炭素層被膜が蒸着された炭素被膜発熱体とする段階と、
前記炭素被膜発熱体を不活性ガス又は減圧雰囲気の下に2500〜3500℃で3次熱処理して、不純物を蒸発させ且つ残留する非晶質炭素をグラファイト化する段階と、
を含む、炭素発熱体の製造方法。
A web-like narrow woven fabric obtained by arranging and braiding 3 to 24 polyacrylonitrile yarns or viscose yarns in one direction and carbonizing while stretching in the length direction in an inert gas atmosphere. A woven carbon body,
Winding the narrow-width woven carbon body around the surface of the heat-resistant main shaft to form a carbon molded body;
Attaching current-carrying clips to both ends of the carbon molded body,
Applying a current to the energizing clip and subjecting the carbon molded body to a primary heat treatment in a gas phase hydrocarbon atmosphere to form a heat treated carbon molded body;
Separating the heat treated carbon molded body from the heat resistant spindle;
A current was applied to the current-carrying clip of the separated heat-treated carbon molded body, followed by a secondary heat treatment at 1300 to 2500 ° C. under a gas phase hydrocarbon atmosphere, and a carbon layer coating having a nanocrystalline structure was deposited on the surface. A carbon coating heating element;
Performing a third heat treatment of the carbon film heating element at 2500 to 3500 ° C. in an inert gas or a reduced pressure atmosphere to evaporate impurities and graphitize the remaining amorphous carbon;
A method for producing a carbon heating element, comprising:
前記細幅織り炭素体とする段階は、
3〜24本のポリアクリロニトリル原糸又はビスコース原糸を一方向に配列しブレーディングしてウェブ状の細幅織物とする過程と、
前記細幅織物を不活性ガス雰囲気で長さ方向に延伸しながら1,500〜2,500℃で炭化処理して細幅織り炭素体を形成する過程と、
を含むことを特徴とする、請求項5に記載の炭素発熱体の製造方法。
The step of forming the narrow woven carbon body includes:
A process in which 3 to 24 polyacrylonitrile yarns or viscose yarns are arranged in one direction and braided to form a web-like narrow woven fabric;
A process of carbonizing at 1,500 to 2,500 ° C. to form a narrow woven carbon body while stretching the narrow woven fabric in the length direction in an inert gas atmosphere;
The method for producing a carbon heating element according to claim 5, comprising:
前記熱処理炭素成形体とする段階で、1次熱処理温度は900〜1200℃であることを特徴とする、請求項1〜5のいずれか1項に記載の炭素発熱体の製造方法。  The method for producing a carbon heating element according to any one of claims 1 to 5, wherein a primary heat treatment temperature is 900 to 1200 ° C in the stage of forming the heat treated carbon molded body. 請求項1又は5に記載の炭素発熱体の製造方法に基づいて製造される炭素発熱体。  The carbon heating element manufactured based on the manufacturing method of the carbon heating element of Claim 1 or 5.
JP2010539318A 2008-07-17 2009-07-16 Carbon heating element and manufacturing method thereof Active JP5047366B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2008-0069632 2008-07-17
KR20080069632 2008-07-17
KR10-2009-0023318 2009-03-19
KR1020090023318A KR100909881B1 (en) 2008-07-17 2009-03-19 Carbon heating element and method of preparing the same
PCT/KR2009/003918 WO2010008216A2 (en) 2008-07-17 2009-07-16 Carbon heating element and production method thereof

Publications (2)

Publication Number Publication Date
JP2011507209A JP2011507209A (en) 2011-03-03
JP5047366B2 true JP5047366B2 (en) 2012-10-10

Family

ID=41338064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010539318A Active JP5047366B2 (en) 2008-07-17 2009-07-16 Carbon heating element and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5047366B2 (en)
KR (1) KR100909881B1 (en)
CN (1) CN101911827B (en)
WO (1) WO2010008216A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942501B1 (en) 2009-09-01 2010-02-12 윤정수 Method of manufacture for core with positive temperature controll
KR101056044B1 (en) * 2011-03-29 2011-08-10 정광석 Method for manufacturing carbon fiber heater
KR101125480B1 (en) * 2011-11-03 2012-03-20 제이씨텍(주) Carbon heating element and manufacturing method of the same
KR101479645B1 (en) * 2012-04-27 2015-01-07 주식회사 모닝아트 A Carbon Heater and Method of Manufacturing for the Same
CN102965768B (en) * 2012-11-28 2014-10-08 上海易是好电器有限公司 Method for preparing carbon-carbon composition heating wire by taking carbon fiber yarn as base, and related carbon-carbon composition heating wires
DE102012025299A1 (en) * 2012-12-28 2014-07-03 Helmut Haimerl Radiant heater with heating tube element
CN105686677B (en) * 2014-11-25 2020-09-22 佛山市顺德区美的电热电器制造有限公司 Inner pot for cooking utensil
KR101856341B1 (en) 2016-07-26 2018-05-09 현대자동차주식회사 Graphatie structure and manufacturing method thereof
KR20190033228A (en) 2017-09-21 2019-03-29 주식회사 이노핫 Carbon heater improved connecting part
CN110128160B (en) * 2019-04-22 2021-05-11 湖南东映碳材料科技有限公司 Method for preparing high-thermal-conductivity carbon-carbon composite material from two-dimensional network of pitch fiber precursors
KR102485264B1 (en) 2022-04-06 2023-01-06 현대자동차주식회사 Heating wire and manufacturing method for heating wire

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095567A (en) 1998-06-04 2000-04-04 Toyo Tanso Kk Carbon fiber reinforced carbon composite material and member for single crystal pulling up device
DE19839457A1 (en) 1998-08-29 2000-03-09 Heraeus Noblelight Gmbh Spiral heating element, method and device for producing the same and infrared radiator produced using a spiral heating element
JP2000272913A (en) * 1999-03-25 2000-10-03 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for producing carbonaceous material
KR100490955B1 (en) * 2002-11-11 2005-05-24 하대봉 Face heating element intercepting electronic wave
KR100547189B1 (en) * 2003-04-23 2006-01-31 스타전자(주) Manufacturing method of carbon heating device using graphite felt
KR100533533B1 (en) * 2004-02-05 2005-12-05 주식회사 태평양의료기 manufacturing method of cloth type heating element for loess cloth
JP2006188805A (en) 2004-12-10 2006-07-20 Toray Ind Inc Braided product for heating element
CN1778490A (en) * 2005-10-13 2006-05-31 福州大学 Bed die of large thermal-pressure mould and its production thereof
KR100793973B1 (en) * 2006-06-08 2008-01-16 쵸이 알렉산드르 Method for production of spiral-shaped carbon coated with nano-crystalline structred carbon layer and infrared emitter comprising spiral-shaped carbon
CN101102625B (en) * 2006-07-07 2010-04-21 李波 Production method of carbon fiber heating body for infrared heating tube
CN201063880Y (en) * 2007-07-23 2008-05-21 吴勤丰 Novel carbon product electrothermal pipe heater

Also Published As

Publication number Publication date
WO2010008216A3 (en) 2010-04-22
JP2011507209A (en) 2011-03-03
CN101911827B (en) 2013-09-11
CN101911827A (en) 2010-12-08
WO2010008216A2 (en) 2010-01-21
KR100909881B1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP5047366B2 (en) Carbon heating element and manufacturing method thereof
KR101585352B1 (en) Electrically conductive material and radiator comprising electrically conductive material and also process for the production thereof
US8357325B2 (en) Moulds with integrated heating and methods of making the same
EP1692332A1 (en) Abrasion-resistant sleeve for electrical wires, cables or tubes
JP4697909B2 (en) Carbon wire heating element encapsulated heater
JP2009221623A (en) Fiber aggregate and fabricating method of the same
KR101065185B1 (en) Cylindrical Carbon Heating Element
JP4392433B2 (en) Method for producing carbonized fabric
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP6570649B2 (en) Strip-shaped carbon heating filament and method for producing the same
KR101125480B1 (en) Carbon heating element and manufacturing method of the same
JP4392434B2 (en) Method for producing carbonized fabric
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
JPH01211887A (en) Plane heater made of carbon fiber/carbon composite
JP2628879B2 (en) Surface heating element made of carbon fiber / carbon composite
JP4282964B2 (en) Carbon fiber woven fabric
KR100923417B1 (en) Method of preparing carbon narrow fabric
KR100983972B1 (en) Carbon heating element and the manufacturing method thereof
JP4392435B2 (en) Method for producing carbonized fabric
CN115677371B (en) Carbon-carbon muffle and manufacturing method thereof
CN115247301B (en) Textile thread made of carbon nanotubes and method for producing same
KR102558864B1 (en) High strength filament based on carbon nanofiber and method for preparing thereof
JP4333106B2 (en) Method for producing carbon fiber woven fabric
US331663A (en) Edwaed p
JP2004156194A (en) Method for producing carbon nano-fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250