JP5047060B2 - Synthetic floor slab and its reinforcement method - Google Patents

Synthetic floor slab and its reinforcement method Download PDF

Info

Publication number
JP5047060B2
JP5047060B2 JP2008138889A JP2008138889A JP5047060B2 JP 5047060 B2 JP5047060 B2 JP 5047060B2 JP 2008138889 A JP2008138889 A JP 2008138889A JP 2008138889 A JP2008138889 A JP 2008138889A JP 5047060 B2 JP5047060 B2 JP 5047060B2
Authority
JP
Japan
Prior art keywords
steel plate
floor slab
reinforcing
concrete
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008138889A
Other languages
Japanese (ja)
Other versions
JP2009287226A (en
Inventor
善彦 中村
雅史 徳重
章太 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Infrastructure Systems Co Ltd
Original Assignee
IHI Infrastructure Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Infrastructure Systems Co Ltd filed Critical IHI Infrastructure Systems Co Ltd
Priority to JP2008138889A priority Critical patent/JP5047060B2/en
Publication of JP2009287226A publication Critical patent/JP2009287226A/en
Application granted granted Critical
Publication of JP5047060B2 publication Critical patent/JP5047060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、冷間曲げ加工材を用いた合成床版とその補強方法に関する。   The present invention relates to a composite floor slab using a cold-bending material and a reinforcing method thereof.

鋼橋の床版は、鉄筋コンクリート床版(RC床版)、プレストレストコンクリート床版(PC床版)、および合成床版に大別できる。このうち、合成床版とは、鋼とコンクリートで構成され、鋼板パネルを鋼桁上に敷設した後、コンクリートを打ち込み、鋼板パネルとコンクリートとを合成し、一体化を図った床版である。
かかる合成床版は、従来の鉄筋コンクリート床版に比較して、耐荷力が高いため、長い床版支間を薄い床版厚で構成でき、型枠・支保工が省略でき、底鋼板があるためコンクリート片の落下の危険性がないという特徴がある。
Steel slab slabs can be broadly classified into reinforced concrete slabs (RC slabs), prestressed concrete slabs (PC slabs), and synthetic slabs. Among these, the synthetic floor slab is a floor slab made of steel and concrete, in which a steel plate panel is laid on a steel girder, and then concrete is driven in to synthesize the steel plate panel and the concrete so as to be integrated.
Such composite floor slabs have higher load resistance than conventional reinforced concrete slabs, so long floor slab spans can be constructed with thin floor slab thickness, formwork and support can be omitted, and there is a bottom steel plate to provide concrete. There is a feature that there is no danger of falling of a piece.

図7は、合成床版の模式的断面図である。この図に示すように、合成床版51は、底鋼板52とこれに取り付けた補強材53とからなる鋼板パネル54の上部に主鉄筋55を配し、さらにコンクリート56を打ち込んで一体化したものである。
合成床版51の厚さ、すなわち底鋼板52の下面からコンクリート56の上面までの高さを「床版厚」と呼ぶ。
FIG. 7 is a schematic cross-sectional view of a synthetic floor slab. As shown in this figure, a composite floor slab 51 is obtained by arranging a main reinforcing bar 55 on an upper part of a steel plate panel 54 composed of a bottom steel plate 52 and a reinforcing material 53 attached thereto, and further driving a concrete 56 into an integrated unit. It is.
The thickness of the composite floor slab 51, that is, the height from the lower surface of the bottom steel plate 52 to the upper surface of the concrete 56 is referred to as “floor slab thickness”.

上述した合成床版として、従来から種々の構造のものが提案されている(例えば、特許文献1、2)。   As the above-mentioned synthetic floor slab, those having various structures have been conventionally proposed (for example, Patent Documents 1 and 2).

特許文献1の「鋼底型枠及び床版」は、耐久性を向上させ且つ施工費用を低廉化し、施工期間を短縮できると共に、接合部の強度および耐久性を確保しつつ、さらに施工を容易にすることを目的とする。
そのため、この合成床版60は、図8に示すように、鋼底型枠61と、このリブ上に配筋されたループ鉄筋65と、鋼底型枠61上に打設されたコンクリートCとを備えている。また鋼底型枠61は、底鋼板62と、この底鋼板62に概ね逆U字状を呈するように固定されたU型リブ63とを有している。
The “steel bottom formwork and floor slab” of Patent Document 1 improves durability, lowers construction costs, shortens the construction period, and further facilitates construction while ensuring the strength and durability of the joints. The purpose is to.
Therefore, as shown in FIG. 8, the composite floor slab 60 includes a steel bottom mold 61, a loop reinforcing bar 65 arranged on the rib, and a concrete C placed on the steel bottom mold 61. It has. Further, the steel bottom mold 61 includes a bottom steel plate 62 and a U-shaped rib 63 fixed to the bottom steel plate 62 so as to have a substantially inverted U shape.

特許文献2の「鋼コンクリート合成床版の鋼骨格構造」は、コンクリート打設時にも桁組上に変形することなく自立し得、施工作業性の良い構造を目的とする。
そのため、図9に示すように、コンクリート層と一体化して強度合成された床版70を形成する鋼骨格71は、下面を形成する底鋼板72の上面に結合補強ビーム73が固定されると共に、底鋼板72のハンチ部74の上面と結合補強ビーム73とが支持板75によって結合され、ハンチ部74で全体重量を支持し得るように構成されている。
The “steel skeleton structure of a steel-concrete composite floor slab” in Patent Document 2 aims at a structure that can stand on its own without being deformed on a girder even when casting concrete and has good workability.
Therefore, as shown in FIG. 9, the steel skeleton 71 forming the floor slab 70 integrated with the concrete layer and strength-synthesized has a joint reinforcing beam 73 fixed to the upper surface of the bottom steel plate 72 forming the lower surface, The upper surface of the haunch portion 74 of the bottom steel plate 72 and the coupling reinforcing beam 73 are coupled by a support plate 75 so that the entire weight can be supported by the haunch portion 74.

特開平11−192613号明細書、「鋼底型枠及び床版」JP-A-11-192613, “Steel bottom formwork and floor slab” 特開2004−19386号明細書、「鋼コンクリート合成床版の鋼骨格構造」Japanese Patent Application Laid-Open No. 2004-19386, “Steel framework structure of steel concrete composite slab”

上述した鋼板パネルは、コンクリートを打設する際には、その重量を支持する必要があり、合成床版として完成後には、上部を通過する車両等を支持する必要がある。そのため、合成床版および鋼板パネルは、所定の床版厚で十分高い曲げ剛性(「剛度」とも呼ぶ)を有する必要がある。   The steel plate panel described above needs to support its weight when placing concrete, and after completion as a composite floor slab, it is necessary to support a vehicle or the like passing through the upper part. Therefore, the composite floor slab and the steel plate panel need to have a sufficiently high bending rigidity (also referred to as “rigidity”) at a predetermined floor slab thickness.

上述した主鉄筋(「トラス鉄筋」とも呼ぶ)は、コンクリートに作用する引張力を受ける目的で主に用いられる。   The above-described main reinforcing bars (also referred to as “truss reinforcing bars”) are mainly used for the purpose of receiving a tensile force acting on concrete.

また鋼板パネルの曲げ剛性を高めるために、上述した補強材(「リブ材」とも呼ぶ)が底鋼板の上面に互いに間隔を隔てて溶接等により固定される。さらに、補強材を溶接した鋼板パネル全体は、合成床版の剛性も高める。   In addition, in order to increase the bending rigidity of the steel plate panel, the above-described reinforcing material (also referred to as “rib material”) is fixed to the upper surface of the bottom steel plate by welding or the like at intervals. Furthermore, the entire steel plate panel welded with the reinforcing material also increases the rigidity of the composite slab.

従来、底鋼板の補強材として、特許文献1のU型リブや、特許文献2の補強ビームが用いられている。U型リブは逆U字状の鋼板であり、補強ビームはチャンネル材又はその他の型鋼である。   Conventionally, U-shaped ribs of Patent Document 1 and reinforcing beams of Patent Document 2 have been used as reinforcing materials for bottom steel plates. The U-shaped rib is an inverted U-shaped steel plate, and the reinforcing beam is a channel material or other type steel.

しかし、従来の合成床版には、以下の問題点があった。
(1) 底鋼板、主鉄筋は断面係数が小さいため、合成床版の曲げ剛性にあまり寄与しない。そのため、補強材の曲げ剛性が低い場合、多数の補強材が必要となり、コストアップとなる。
(2) 形鋼(例えばチャンネル材)は断面係数は大きいが、切断や穴開けなどの加工コストが高い。
(3) 形鋼は規定サイズが決まっているため、設計上最適な寸法が選定できない場合がある。例えば、わずかに強度が不足する場合、1サイズ上げる必要があり、経済的に不利になる場合がある。
(4) 軽量形鋼の場合、フランジ部が直角に曲げられており、コンクリート打設後、フランジ部の下面に空隙ができるおそれがある。
(5) 加工後に防錆のために行う工程である塗装工程が加工工程と別工程になるため、塗装コストが高くなる。
However, the conventional synthetic floor slab has the following problems.
(1) Since the bottom steel plate and main reinforcing bars have a small section modulus, they do not contribute much to the bending rigidity of the composite slab. Therefore, when the bending rigidity of the reinforcing material is low, a large number of reinforcing materials are required, resulting in an increase in cost.
(2) Shape steel (for example, channel material) has a large section modulus, but has high processing costs such as cutting and drilling.
(3) Since the specified size of the shape steel is fixed, it may not be possible to select the optimal dimensions in terms of design. For example, when the strength is slightly insufficient, it is necessary to increase the size by one, which may be disadvantageous economically.
(4) In the case of lightweight steel, the flange portion is bent at a right angle, and there is a possibility that a void may be formed on the lower surface of the flange portion after placing concrete.
(5) Since the coating process, which is a process performed for rust prevention after processing, is a separate process from the processing process, the coating cost increases.

本発明は上述した従来の問題点を解決するために創案されたものである。すなわち、本発明の目的は、所定の厚さ(高さ)で所望の曲げ剛性を少ない補強材で得ることができ、設計上最適な寸法が容易に設定でき、フランジ部の下面にコンクリートの空隙ができにくく、切断、穴開け、塗装の加工コストを下げることができる合成床版とその補強方法を提供することにある。   The present invention has been developed to solve the above-described conventional problems. In other words, an object of the present invention is to obtain a desired bending rigidity with a predetermined thickness (height) with a small amount of reinforcing material, and to easily set an optimum dimension in design. It is an object of the present invention to provide a synthetic floor slab and a method for reinforcing the same, which are difficult to form and can reduce the processing cost of cutting, drilling and painting.

本発明によれば、水平に延びる平板状の底鋼板と、
該底鋼板の上面に互いに平行に間隔を隔てて溶接された複数の補強材とを有する合成床版であって、
前記補強材は、長さ方向に沿って折り曲げられた矩形鋼板からなり、かつ底鋼板に溶接される脚部から底鋼板に対して垂直に延びるウエブと、ウエブの上端から水平に対し所定の上向き角度で一方に折り曲げられ幅方向の長さが前記脚部の幅方向の長さより長い傾斜フランジとを有する、ことを特徴とする合成床版が提供される。
According to the present invention, a flat bottom steel plate extending horizontally;
A composite floor slab having a plurality of reinforcing materials welded to the upper surface of the bottom steel plate in parallel with each other at intervals,
The reinforcing member is a rectangular steel plate bent along the length direction, and a web extending perpendicularly to the bottom steel plate from a leg welded to the bottom steel plate, and a predetermined upward direction with respect to the horizontal from the upper end of the web. the length of the bent one width direction to have a a long inclined flange than the length in the width direction of the legs at an angle, synthetic floor plate is provided, characterized in that.

本発明の好ましい実施形態によれば、補強材の前記脚部は、ウエブの下端面、又はウエブの下端で傾斜フランジ側に水平に折り曲げられた水平部である。   According to a preferred embodiment of the present invention, the leg portion of the reinforcing member is a horizontal portion bent horizontally toward the inclined flange side at the lower end surface of the web or the lower end of the web.

また、前記傾斜フランジは、所定の曲げ剛性を得るように幅が設定された、1枚又は折り重ねた2枚の鋼板からなる。   The inclined flange is made of one or two folded steel plates whose width is set to obtain a predetermined bending rigidity.

また本発明によれば、長さ方向に沿って折り曲げられた矩形鋼板からなり、かつ底鋼板に溶接される脚部から底鋼板に対して垂直に延びるウエブと、ウエブの上端から水平に対し所定の上向き角度で一方に折り曲げられ幅方向の長さが前記脚部の幅方向の長さより長い傾斜フランジとを有する複数の補強材を、水平に延びる平板状の底鋼板の上面に、互いに平行に間隔を隔てて溶接する、ことを特徴とする合成床版の補強方法が提供される。 Further, according to the present invention, a web made of a rectangular steel plate bent along the length direction and extending perpendicularly to the bottom steel plate from a leg welded to the bottom steel plate, and a predetermined horizontal position from the upper end of the web. A plurality of reinforcing members each having an inclined flange that is bent to one side at an upward angle and whose length in the width direction is longer than the length in the width direction of the leg portion are parallel to each other on the upper surface of a horizontally extending plate-shaped bottom steel plate There is provided a method for reinforcing a composite slab characterized by welding at intervals.

本発明の好ましい実施形態によれば、前記ウエブには、生コンクリートが通過可能なコンクリート孔が折り曲げ前に設けられ、前記傾斜フランジには、生コンクリート内の空気が通過可能な空気孔が折り曲げ前に設けられる。
前記コンクリート孔は、円形孔、楕円孔又は、端部で折り曲げられた突出部を有する矩形孔である、ことが好ましい。
According to a preferred embodiment of the present invention, the web is provided with a concrete hole through which fresh concrete can be passed before bending, and the inclined flange has an air hole through which fresh air can pass through before being bent. Is provided.
The concrete hole is preferably a circular hole, an elliptical hole, or a rectangular hole having a protrusion bent at an end.

上記本発明の構成によれば、補強材が、長さ方向に沿って折り曲げられた矩形鋼板からなるので、所定の床版厚に合わせて、補強材の高さ、傾斜フランジの幅、およびその傾斜角度を自由に設定できるので、所定の厚さ(高さ)で所望の曲げ剛性を少ない補強材で得ることができ、設計上最適な寸法が容易に設定できる。   According to the configuration of the present invention, since the reinforcing material is made of a rectangular steel plate bent along the length direction, the height of the reinforcing material, the width of the inclined flange, and its Since the inclination angle can be set freely, it is possible to obtain a desired bending rigidity with a predetermined thickness (height) and a small amount of reinforcing material, and it is possible to easily set an optimum dimension in design.

また、傾斜フランジがウエブの上端で水平に対し所定の上向き角度で折り曲げられられているので、フランジ部の下面にコンクリートの空隙ができにくい。   Further, since the inclined flange is bent at a predetermined upward angle with respect to the horizontal at the upper end of the web, it is difficult to form a concrete gap on the lower surface of the flange portion.

さらに、コンクリート孔と空気孔が、加工工程の折り曲げ前に加工されているので、材料(矩形鋼板)の切断、曲げ、孔明けを同一工程で行えるため加工コストを下げることができる。   Furthermore, since the concrete hole and the air hole are processed before the bending in the processing step, the material (rectangular steel plate) can be cut, bent, and drilled in the same step, so that the processing cost can be reduced.

また、プレスを用いた折り曲げ加工では長手方向に連続した加工が可能であり、塗装工程(ブラスト、塗装)が長手方向に連続して行うことができ、機械による自動化が可能であり、更にコストを下げることができる。   In addition, bending using a press allows continuous processing in the longitudinal direction, and the painting process (blasting, painting) can be performed continuously in the longitudinal direction, which can be automated by a machine, further reducing costs. Can be lowered.

以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明による合成床版の第1実施形態図である。この図において、(A)は曲げを受ける横断面図、(B)はB−B線における矢視図である。
この図において、本発明の合成床版10は、水平に延びる平板状の底鋼板12と複数(この図で3本)の補強材20とを有する。複数の補強材20は、底鋼板12の上面に互いに平行に間隔を隔てて溶接され、全体として一体の鋼板パネル14を構成している。
FIG. 1 is a diagram showing a first embodiment of a synthetic floor slab according to the present invention. In this figure, (A) is a cross-sectional view subjected to bending, and (B) is an arrow view taken along the line BB.
In this figure, the composite floor slab 10 of the present invention has a flat bottom steel plate 12 extending horizontally and a plurality (three in this figure) of reinforcing members 20. The plurality of reinforcing members 20 are welded to the upper surface of the bottom steel plate 12 at intervals in parallel to each other, and constitute an integrated steel plate panel 14 as a whole.

本発明の合成床版10は、さらに鋼板パネル14の上部にほぼ水平に位置する主鉄筋16と、鋼板パネル14と主鉄筋16を埋設して打設されたコンクリート18を有する。   The composite floor slab 10 of the present invention further includes a main rebar 16 positioned substantially horizontally above the steel plate panel 14 and a concrete 18 embedded with the steel plate panel 14 and the main rebar 16 embedded therein.

図2は、図1の鋼板パネル14の詳細図である。この図において、(A)は図1(A)のA部拡大図、(B)は鋼板パネル14の斜視図である。
この図において、補強材20は、長さ方向(図2Aで紙面に直交する方向)に沿って折り曲げられた矩形鋼板からなる。
FIG. 2 is a detailed view of the steel plate panel 14 of FIG. In this figure, (A) is an enlarged view of part A of FIG. 1 (A), and (B) is a perspective view of a steel plate panel 14.
In this figure, the reinforcing member 20 is made of a rectangular steel plate bent along the length direction (direction orthogonal to the paper surface in FIG. 2A).

また、補強材20は、底鋼板12に溶接される脚部21aから底鋼板12に対して垂直に延びるウエブ22と、ウエブ22の上端から水平に対し所定の上向き角度θで折り曲げられた傾斜フランジ24とを有する。上向き角度θは、この例では5度であるが、コンクリート打設後、フランジ部の下面に空隙ができない限りで、水平に近く、例えば2度〜10度の範囲であるのがよい。   The reinforcing member 20 includes a web 22 extending perpendicularly to the bottom steel plate 12 from the leg 21a welded to the bottom steel plate 12, and an inclined flange bent from the upper end of the web 22 at a predetermined upward angle θ with respect to the horizontal. 24. Although the upward angle θ is 5 degrees in this example, it is preferably close to the horizontal, for example, in the range of 2 degrees to 10 degrees, as long as there is no gap on the lower surface of the flange portion after placing the concrete.

この例において、補強材20の脚部21aは、ウエブ22の下端で傾斜フランジ側に水平に折り曲げられた水平部25である。補強材20は、この水平部25の両側で底鋼板12に隅肉溶接され、一体の鋼板パネル14を構成している。
この構成により、水平部25の下面が底鋼板12の上面に密着するので、補強材20の位置決めが容易となる。また、水平部25の両側の溶接部が水平部25の長さ(幅)だけ離れるので、溶接による影響(例えば熱歪み)を小さくできる。
In this example, the leg portion 21 a of the reinforcing member 20 is a horizontal portion 25 that is bent horizontally toward the inclined flange side at the lower end of the web 22. The reinforcing member 20 is fillet welded to the bottom steel plate 12 on both sides of the horizontal portion 25 to constitute an integrated steel plate panel 14.
With this configuration, since the lower surface of the horizontal portion 25 is in close contact with the upper surface of the bottom steel plate 12, the reinforcing member 20 can be easily positioned. Further, since the welded portions on both sides of the horizontal portion 25 are separated by the length (width) of the horizontal portion 25, the influence (for example, thermal strain) due to welding can be reduced.

傾斜フランジ24は、この例では所定の曲げ剛性を得るように幅が設定された1枚の鋼板からなる。   In this example, the inclined flange 24 is made of a single steel plate whose width is set so as to obtain a predetermined bending rigidity.

上述した構成の鋼板パネル14は、底鋼板12の一定幅が一体となり、各補強材20がある断面2次モーメントIと断面係数Zを有する。図2(A)において、水平線zを断面の中立軸、e1,e2を中立軸から最も周辺までの距離とすると、断面係数Zは、I/e1又はI/e2で表される。また、横断面の中立軸に関する断面2次モーメントIは、∫ydAで表される。
従って、鋼板パネル14の断面2次モーメントIと断面係数Zは、同一面積であっても中立軸zから遠い位置の断面積が大きいほど、大きくなることがわかる。
In the steel plate panel 14 having the above-described configuration, the fixed width of the bottom steel plate 12 is integrated, and each reinforcing member 20 has a secondary moment I and a section modulus Z. In FIG. 2A, when the horizontal line z is the neutral axis of the cross section and e1 and e2 are the distance from the neutral axis to the most peripheral, the cross section coefficient Z is expressed by I / e1 or I / e2. Further, the cross-sectional secondary moment I with respect to the neutral axis of the cross-section is represented by ∫y 2 dA.
Therefore, it can be seen that the cross-sectional secondary moment I and the section modulus Z of the steel plate panel 14 increase as the cross-sectional area at a position far from the neutral axis z increases even if the area is the same.

図2において、ウエブ22には、長さ方向に一定のピッチ(例えば300mm)で生コンクリートが通過可能なコンクリート孔22aが設けられている。このコンクリート孔22aは折り曲げ前に加工されている。
また、傾斜フランジ24には、生コンクリート内の空気が通過可能な空気孔24aが長さ方向に一定のピッチ(例えば300mm)で設けられている。この空気孔24aも折り曲げ前に加工されている。
In FIG. 2, the web 22 is provided with concrete holes 22a through which ready-mixed concrete can pass at a constant pitch (for example, 300 mm) in the length direction. This concrete hole 22a is processed before bending.
The inclined flange 24 is provided with air holes 24a through which air in the ready-mixed concrete can pass at a constant pitch (for example, 300 mm) in the length direction. This air hole 24a is also processed before bending.

コンクリート孔22aと空気孔24aは、長さ方向に位置をずらして設けるのがよい。また、この例で、コンクリート孔22aは円形孔(例えば直径60mm)、空気孔24aも円形孔(例えば直径10mm)であるが、他の形状、例えば楕円形であってもよい。   The concrete hole 22a and the air hole 24a are preferably provided with their positions shifted in the length direction. In this example, the concrete hole 22a is a circular hole (for example, a diameter of 60 mm) and the air hole 24a is also a circular hole (for example, a diameter of 10 mm), but may be another shape, for example, an ellipse.

上述した本発明の構成によれば、補強材20が、長さ方向に沿って折り曲げられた矩形鋼板からなるので、所定の床版厚に合わせて、補強材20の高さ、傾斜フランジ24の幅、およびその傾斜角度θを自由に設定できる。これにより、所定の厚さ(高さ)で所望の曲げ剛性を少ない補強材で得ることができ、設計上最適な寸法が容易に設定できる。   According to the configuration of the present invention described above, the reinforcing member 20 is made of a rectangular steel plate bent along the length direction, so that the height of the reinforcing member 20 and the inclined flange 24 are adjusted according to a predetermined floor slab thickness. The width and the inclination angle θ can be freely set. Thereby, a desired bending rigidity can be obtained with a predetermined thickness (height) with a small amount of a reinforcing material, and an optimum dimension in design can be easily set.

また、傾斜フランジ24がウエブ22の上端で水平に対し所定の上向き角度θで折り曲げられられているので、フランジ部の下面にコンクリートの空隙ができにくい。   Further, since the inclined flange 24 is bent at the upper end of the web 22 at a predetermined upward angle θ with respect to the horizontal, it is difficult to form a concrete gap on the lower surface of the flange portion.

さらに、コンクリート孔22aと空気孔24aが、加工工程の折り曲げ前に加工されているので、材料(矩形鋼板)の切断、曲げ、孔明けを同一工程で行えるため加工コストを下げることができる。   Furthermore, since the concrete hole 22a and the air hole 24a are processed before the bending in the processing step, the material (rectangular steel plate) can be cut, bent, and drilled in the same step, so that the processing cost can be reduced.

また、プレスを用いた折り曲げ加工では材料を動かして、機械を移動させずに加工が可能であり、塗装工程(ブラスト、塗装)が長手方向に連続して行うことができ、省スペース、連続作業が可能であり、更にコストを下げることができる。   Also, the bending process using a press can be performed without moving the machine and moving the machine, and the painting process (blasting, painting) can be performed continuously in the longitudinal direction, saving space and continuous work. Is possible, and the cost can be further reduced.

図3は、図1の補強材20の連結構造図である。
合成床版10の全長は例えば10m以上あり、合成床版を分割する必要があり、現地でそれらを連結する必要が生じることがある。本発明の補強材20は、ウエブ22と傾斜フランジ24の両端部に複数のボルト用の貫通孔(図示せず)を設け、隣接する補強材20の端部同士を連結金具30とボルト32で連結できるようになっている。
なお、ボルトを用いず、連結金具30の周辺を補強材20の端部に直接溶接してもよい。
この構成により、合成床版を分割するため補強材を分割し連結する場合でも、補強材20の連結部の曲げ剛性(断面2次モーメントIと断面係数Z)を連結部以外の部分と同等以上に高めることができ、合成床版10より短い補強材20の使用を可能にすることができる。
FIG. 3 is a connection structure diagram of the reinforcing member 20 of FIG.
The total length of the composite floor slab 10 is, for example, 10 m or more, and it is necessary to divide the composite floor slab and to connect them on site. The reinforcing member 20 of the present invention is provided with a plurality of bolt through holes (not shown) at both ends of the web 22 and the inclined flange 24, and the ends of the adjacent reinforcing members 20 are connected to each other by the connecting metal 30 and the bolt 32. It can be connected.
In addition, you may weld the periphery of the connection metal fitting 30 directly to the edge part of the reinforcing material 20, without using a volt | bolt.
With this configuration, even when the reinforcing material is divided and connected to divide the composite floor slab, the bending rigidity (secondary moment I and sectional modulus Z) of the connecting portion of the reinforcing material 20 is equal to or greater than that of the portion other than the connecting portion. And the use of the reinforcing member 20 shorter than the synthetic floor slab 10 can be made possible.

図4は、本発明による合成床版の第2実施形態図である。この例において、補強材20の脚部21aは、ウエブ22の下端面であり、折り曲げられた矩形鋼板の一端(図で下端)の両側で底鋼板12に隅肉溶接され、一体の鋼板パネル14を構成している。
この構成では、第1実施形態の水平部25がなく、ウエブ22の下端面が底鋼板12の上面に密着する。第1実施形態の水平部25は、底鋼板12に密着するので、曲げ剛性の増加に対し、あまり寄与しない。従って、この構成により、第1実施形態よりも少ない断面積で、同等の曲げ剛性を得ることができ、設計上最適な寸法が容易に設定できる。
なお、その他の構成と効果は、第1実施形態と同様である。
FIG. 4 is a diagram showing a second embodiment of the composite floor slab according to the present invention. In this example, the leg portion 21a of the reinforcing member 20 is the lower end surface of the web 22 and is fillet welded to the bottom steel plate 12 on both sides of one end (the lower end in the figure) of the folded rectangular steel plate, and the integrated steel plate panel 14 Is configured.
In this configuration, the horizontal portion 25 of the first embodiment is not provided, and the lower end surface of the web 22 is in close contact with the upper surface of the bottom steel plate 12. Since the horizontal part 25 of 1st Embodiment adheres to the bottom steel plate 12, it does not contribute so much with respect to the increase in bending rigidity. Therefore, with this configuration, it is possible to obtain the same bending rigidity with a smaller cross-sectional area than in the first embodiment, and it is possible to easily set the optimum dimensions in terms of design.
Other configurations and effects are the same as those in the first embodiment.

図5は、本発明による合成床版の第3実施形態図である。この例において、補強材20の傾斜フランジ24は、所定の曲げ剛性を得るように幅が設定され、かつ折り重ねた2枚の鋼板からなる。
補強材20の脚部21aは、この図では第1実施形態と同一であるが、第2実施形態のように水平部25を省略してもよい。
この構成により、中立軸zから遠い位置にある傾斜フランジ24全体の断面積を第1実施形態のほぼ2倍に設定できるので、第1実施形態よりも少ない断面積で、同等の曲げ剛性を得ることができ、設計上最適な寸法が容易に設定できる。
なお、その他の構成と効果は、第1実施形態と同様である。
FIG. 5 is a diagram showing a third embodiment of the composite floor slab according to the present invention. In this example, the inclined flange 24 of the reinforcing member 20 is made of two steel plates that are folded and folded so as to obtain a predetermined bending rigidity.
The leg portion 21a of the reinforcing member 20 is the same as that of the first embodiment in this figure, but the horizontal portion 25 may be omitted as in the second embodiment.
With this configuration, the entire cross-sectional area of the inclined flange 24 located far from the neutral axis z can be set almost twice that of the first embodiment, so that equivalent bending rigidity can be obtained with a smaller cross-sectional area than the first embodiment. Therefore, the optimal dimensions can be set easily.
Other configurations and effects are the same as those in the first embodiment.

図6は、本発明による合成床版の第4実施形態図である。この図において、補強材20のコンクリート孔22aは、端部で折り曲げられた突出部22bを有する矩形孔である。
このコンクリート孔22aと突出部22bも折り曲げ前に加工するのがよい。コンクリート孔22aを矩形孔とすることにより、曲げ剛性を下げることなく、開口長さを大きく設定でき、生コンクリートの通過をより容易にできる。
また、突出部22bを設けることにより、硬化後のコンクリートとの結合をより強固にできる。
FIG. 6 is a diagram showing a fourth embodiment of the composite floor slab according to the present invention. In this figure, the concrete hole 22a of the reinforcing member 20 is a rectangular hole having a protruding portion 22b bent at an end portion.
The concrete holes 22a and the protrusions 22b are also preferably processed before bending. By making the concrete hole 22a a rectangular hole, the opening length can be set large without lowering the bending rigidity, and the passage of ready-mixed concrete can be facilitated.
Moreover, by providing the protrusion 22b, the bond with the concrete after hardening can be further strengthened.

なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

本発明による合成床版の第1実施形態図である。It is a 1st embodiment figure of a synthetic floor slab by the present invention. 図1の鋼板パネルの詳細図である。It is detail drawing of the steel plate panel of FIG. 図1の補強材の連結構造図である。It is a connection structure figure of the reinforcing material of FIG. 本発明による合成床版の第2実施形態図である。It is 2nd Embodiment figure of the synthetic floor slab by this invention. 本発明による合成床版の第3実施形態図である。It is 3rd Embodiment figure of the synthetic floor slab by this invention. 本発明による合成床版の第4実施形態図である。It is 4th Embodiment figure of the synthetic floor slab by this invention. 合成床版の模式的断面図である。It is a typical sectional view of a synthetic floor slab. 特許文献1の「鋼底型枠及び床版」の構成図である。1 is a configuration diagram of “steel bottom formwork and floor slab” of Patent Document 1. FIG. 特許文献2の「鋼コンクリート合成床版の鋼骨格構造」の構成図である。1 is a configuration diagram of “steel skeleton structure of a steel-concrete composite floor slab” in Patent Document 2.

符号の説明Explanation of symbols

10 合成床版、12 底鋼板、14 鋼板パネル、
16 主鉄筋、18 コンクリート、
20 補強材、20a 脚部、22 ウエブ、
22a コンクリート孔、22b 突出部、
24 傾斜フランジ、24a 空気孔、
25 水平部、30 連結金具、32 ボルト
10 composite floor slab, 12 bottom steel plate, 14 steel plate panel,
16 main reinforcement, 18 concrete,
20 reinforcements, 20a legs, 22 webs,
22a concrete hole, 22b protrusion,
24 inclined flange, 24a air hole,
25 horizontal parts, 30 connecting brackets, 32 bolts

Claims (6)

水平に延びる平板状の底鋼板と、
該底鋼板の上面に互いに平行に間隔を隔てて溶接された複数の補強材とを有する合成床版であって、
前記補強材は、長さ方向に沿って折り曲げられた矩形鋼板からなり、かつ底鋼板に溶接される脚部から底鋼板に対して垂直に延びるウエブと、ウエブの上端から水平に対し所定の上向き角度で一方に折り曲げられ幅方向の長さが前記脚部の幅方向の長さより長い傾斜フランジとを有する、ことを特徴とする合成床版。
A flat bottom steel plate extending horizontally;
A composite floor slab having a plurality of reinforcing materials welded to the upper surface of the bottom steel plate in parallel with each other at intervals,
The reinforcing member is a rectangular steel plate bent along the length direction, and a web extending perpendicularly to the bottom steel plate from a leg welded to the bottom steel plate, and a predetermined upward direction with respect to the horizontal from the upper end of the web. angle the length of the bent one width direction to have a a long inclined flange than the length in the width direction of said legs, synthetic slab, characterized in that.
補強材の前記脚部は、ウエブの下端面、又はウエブの下端で傾斜フランジ側に水平に折り曲げられた水平部である、ことを特徴とする請求項1に記載の合成床版。   The composite floor slab according to claim 1, wherein the leg portion of the reinforcing material is a lower end surface of the web or a horizontal portion bent horizontally toward the inclined flange side at the lower end of the web. 前記傾斜フランジは、所定の曲げ剛性を得るように幅が設定された、1枚又は折り重ねた2枚の鋼板からなる、ことを特徴とする請求項1に記載の合成床版。   2. The composite floor slab according to claim 1, wherein the inclined flange is made of one or two folded steel plates having a width set so as to obtain a predetermined bending rigidity. 長さ方向に沿って折り曲げられた矩形鋼板からなり、かつ底鋼板に溶接される脚部から底鋼板に対して垂直に延びるウエブと、ウエブの上端から水平に対し所定の上向き角度で一方に折り曲げられ幅方向の長さが前記脚部の幅方向の長さより長い傾斜フランジとを有する複数の補強材を、水平に延びる平板状の底鋼板の上面に、互いに平行に間隔を隔てて溶接する、ことを特徴とする合成床版の補強方法。 It consists of a rectangular steel plate bent along the length direction and extends perpendicularly to the bottom steel plate from the legs welded to the bottom steel plate, and is bent in one at a predetermined upward angle with respect to the horizontal from the upper end of the web. A plurality of reinforcing members each having an inclined flange whose length in the width direction is longer than the length in the width direction of the leg portion is welded to the upper surface of a horizontally extending flat plate-like bottom steel plate at intervals in parallel to each other; A method for reinforcing a composite floor slab characterized by the above. 前記ウエブには、生コンクリートが通過可能なコンクリート孔が折り曲げ前に設けられ、前記傾斜フランジには、生コンクリート内の空気が通過可能な空気孔が折り曲げ前に設けられる、ことを特徴とする請求項4に記載の合成床版の補強方法。   A concrete hole through which fresh concrete can pass is provided in the web before bending, and an air hole through which air in the ready concrete can pass is provided in the inclined flange before bending. Item 5. The method for reinforcing a composite slab according to Item 4. 前記コンクリート孔は、円形孔、楕円孔又は、端部で折り曲げられた突出部を有する矩形孔である、ことを特徴とする請求項5に記載の合成床版の補強方法。   The method for reinforcing a composite floor slab according to claim 5, wherein the concrete hole is a circular hole, an elliptical hole, or a rectangular hole having a protruding portion bent at an end.
JP2008138889A 2008-05-28 2008-05-28 Synthetic floor slab and its reinforcement method Active JP5047060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008138889A JP5047060B2 (en) 2008-05-28 2008-05-28 Synthetic floor slab and its reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138889A JP5047060B2 (en) 2008-05-28 2008-05-28 Synthetic floor slab and its reinforcement method

Publications (2)

Publication Number Publication Date
JP2009287226A JP2009287226A (en) 2009-12-10
JP5047060B2 true JP5047060B2 (en) 2012-10-10

Family

ID=41456710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138889A Active JP5047060B2 (en) 2008-05-28 2008-05-28 Synthetic floor slab and its reinforcement method

Country Status (1)

Country Link
JP (1) JP5047060B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970883B2 (en) * 2017-08-31 2021-11-24 株式会社Ihi Steel-concrete synthetic structural material
JP7307596B2 (en) * 2019-06-03 2023-07-12 株式会社竹中工務店 Construction method of steel plate slab structure
KR102208693B1 (en) * 2020-05-22 2021-01-28 지산투수개발(주) Prefabricated aluminum deck and, construction method of this aluminum deck

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134647B2 (en) * 1972-03-14 1976-09-28
JP3865915B2 (en) * 1997-12-29 2007-01-10 Jfeエンジニアリング株式会社 Steel bottom formwork and floor slab
JP4039138B2 (en) * 2002-06-20 2008-01-30 株式会社Ihi Joint structure of steel concrete composite slab and its unit steel frame
JP2007138555A (en) * 2005-11-18 2007-06-07 Kawasaki Heavy Ind Ltd Composite floor slab for elevated road

Also Published As

Publication number Publication date
JP2009287226A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
KR100555244B1 (en) The bridge construction method of having used i beam for structure reinforcement and this to which rigidity increased
KR101168763B1 (en) Composite bridge construction method
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
US5586418A (en) Composite construction of reinforced concrete
JP4897643B2 (en) Reinforced concrete composite steel slab girder bridge
CN111794424A (en) Integral laminated slab honeycomb combination beam and manufacturing method thereof
JP5047060B2 (en) Synthetic floor slab and its reinforcement method
KR100819837B1 (en) Structure which combined corrugated steel plate web and concrete with stud
EP2076637B1 (en) Building floor structure comprising framed floor slab
CN112482200A (en) Connecting structure of hogging moment area of steel-concrete combined continuous beam and construction method thereof
KR20110054497A (en) Manufacturing method of beam having large opening in the web
JP4101397B2 (en) Method of joining concrete slab and corrugated steel in corrugated steel web bridge
JP2008088634A (en) Composite steel-concrete floor slab
CN215252249U (en) Connecting structure of hogging moment area of steel-concrete combined continuous beam
KR101407816B1 (en) structure system using bar truss integrated asymmetry H-beam
JP6066981B2 (en) Connection structure in bridges using reinforced concrete slabs and connection method in existing bridges using reinforced concrete slabs
JP4293696B2 (en) Construction method of composite floor slab bridge
JP5729566B2 (en) Method for forming shear reinforcement of concrete slab, road slab and flat slab
JP3950747B2 (en) Bridge girder
KR101912376B1 (en) Plate truss girder and composite girder bridge using the same
AU2009200214A1 (en) Composite Beam
KR20080004752U (en) Composite bridge
JP5943135B1 (en) Steel panel for synthetic floor slab and synthetic floor slab
CN218881308U (en) Self-bearing prestressed net rib plate
JP3950748B2 (en) Bridge girder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5047060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250