JP5046511B2 - Hard tissue substitute carrier material - Google Patents

Hard tissue substitute carrier material Download PDF

Info

Publication number
JP5046511B2
JP5046511B2 JP2005336343A JP2005336343A JP5046511B2 JP 5046511 B2 JP5046511 B2 JP 5046511B2 JP 2005336343 A JP2005336343 A JP 2005336343A JP 2005336343 A JP2005336343 A JP 2005336343A JP 5046511 B2 JP5046511 B2 JP 5046511B2
Authority
JP
Japan
Prior art keywords
ocp
collagen
bone
carrier material
weeks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005336343A
Other languages
Japanese (ja)
Other versions
JP2006167445A (en
Inventor
慎治 鎌倉
治 鈴木
和夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Meat Packers Inc
Original Assignee
Tohoku University NUC
Nippon Meat Packers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Meat Packers Inc filed Critical Tohoku University NUC
Priority to JP2005336343A priority Critical patent/JP5046511B2/en
Publication of JP2006167445A publication Critical patent/JP2006167445A/en
Application granted granted Critical
Publication of JP5046511B2 publication Critical patent/JP5046511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は硬組織代替性担体材料(人工骨材)に関する。より詳細には、第8リン酸カルシウムとコラーゲンからなり、形状付与性に優れた硬組織代替性担体材料に関する。   The present invention relates to a hard tissue substitute carrier material (artificial bone material). More specifically, the present invention relates to a hard tissue substituting carrier material composed of eighth calcium phosphate and collagen and excellent in shape imparting property.

現在、機能障害を伴う骨欠損(骨悪性腫瘍の術後や唇顎口蓋裂、骨折等の外傷により生じる)を有する患者に対して、生活の質(QOL)の向上を目指して骨移植などの様々な手術療法が適用されている。骨移植には自家骨を使用するのが好ましいが、自家骨には量的な制限があり、また取り出した部位に残る障害の問題もあることから、自家骨移植に代わって量的制限のない人工骨材料の開発が期待されている。
係る人工骨材料としては、ヒドロキシアパタイト(以下、HAという)セラミックス、β-第3リン酸カルシウム(β-TCP)などが提案されている。
本発明者らは、マウス、ラットの研究により、合成第8リン酸カルシウム(Octacalcium
phosphate, Ca(PO・5HO、以下、OCPという)は、人工骨として従来より汎用されているバイオセラミックスであるHAセラミックスと比し、骨組織の形成量が多く、また、生体内吸収性として知られるバイオセラミックスである、β-第3リン酸カルシウム(β-TCP)よりも高い材料吸収性を示す材料であることを見出した(例えば、非特許文献1、特許文献1参照)。
J Biomed Mater Res 59: 29-34,2002 特許第3115642号公報
Currently, for patients with bone defects with functional impairment (after bone malignant tumor surgery, trauma such as cleft lip and palate, fractures, etc.) aiming at improving quality of life (QOL) Various surgical therapies have been applied. It is preferable to use autologous bone for bone grafting, but autologous bone has quantitative limitations, and there is a problem of remaining damage in the removed site, so there is no quantitative limitation instead of autologous bone transplantation. Development of artificial bone materials is expected.
As such artificial bone materials, hydroxyapatite (hereinafter referred to as HA) ceramics, β-tricalcium phosphate (β-TCP), and the like have been proposed.
The inventors of the present invention have studied synthetic octocalcium phosphate (Octacalcium
phosphate, Ca 8 H 2 (PO 4 ) 6 · 5H 2 O (hereinafter referred to as OCP) has a larger amount of bone tissue formation compared to HA ceramics, which are bioceramics conventionally used as artificial bones. Moreover, it discovered that it was a material which shows higher material absorbency than (beta) -tricalcium phosphate ((beta) -TCP) which is bioceramics known as in-vivo absorbability (for example, nonpatent literature 1, patent document 1). reference).
J Biomed Mater Res 59: 29-34,2002 Japanese Patent No. 3115642

より詳細には、本発明者らは人工合成した生物学的アパタイトの前駆物質であるOCPを実験的に生体内に埋入し以下のことを解明してきた。
(1)生体内に埋入されたOCPはHAに転換し(非特許文献2)、また良好な骨形成能を持つ(特許文献1)。
(2)OCPが骨芽細胞やその前駆細胞等に作用し(非特許文献3)、それ自身が骨形成の核となる(非特許文献4)ことで骨修復を促進する(非特許文献5)。
(3)OCPは生体内で破骨細胞類似の多核巨細胞によって吸収される(非特許文献6)とともに新生骨によって置換し、骨修復を促進し、HAやβ-第3リン酸カルシウム(β-TCP)等の既存のリン酸カルシウム系材料に比べてより新生骨に置換され易く吸収され易い(非特許文献1)。
(4)生体内に埋入されたOCPは生体内の糖タンパク質をその表面に特異的に吸着する(非特許文献7)ことが知られているが、一方、骨形成能を有するサイトカイン(bone morphogenetic protein-2, transforming growth factor β)とOCPを複合化させるとOCPがそれらサイトカインの担体となり生体内での骨再生が更に加速される (非特許文献8及び9)。
Tohoku J Exp Med 164: 37-50, 1991 AnatRec 256: 1-6, 1999 Oral Dis 7: 259-265, 2001 J Dent Res 78:1682-7, 1999 J Electron Microsc 46: 397-403,1997 Bone Miner 20: 151-166, 1993 J Biomed Mater Res 57: 175-182,2001 J Biomed Mater Res 71A: 299-307,2004
More specifically, the present inventors have experimentally embedded OCP, which is a precursor of artificially synthesized biological apatite, to elucidate the following.
(1) OCP implanted in the living body is converted into HA (Non-patent Document 2) and has a good bone forming ability (Patent Document 1).
(2) OCP acts on osteoblasts and their progenitor cells (Non-Patent Document 3) and promotes bone repair by becoming the nucleus of bone formation (Non-Patent Document 4) (Non-Patent Document 5) ).
(3) OCP is absorbed in vivo by osteoclast-like multinucleated giant cells (Non-patent Document 6) and is replaced by new bone to promote bone repair, and HA and β-tricalcium phosphate (β-TCP Compared with existing calcium phosphate materials such as), the bone is more easily replaced by new bone and easily absorbed (Non-patent Document 1).
(4) OCP implanted in the living body is known to specifically adsorb glycoprotein in the living body on its surface (Non-patent Document 7), but on the other hand, it has a bone-forming cytokine (bone) When morphogenetic protein-2, transforming growth factor β 1 ) and OCP are combined, OCP becomes a carrier of these cytokines, and bone regeneration in vivo is further accelerated (Non-patent Documents 8 and 9).
Tohoku J Exp Med 164: 37-50, 1991 AnatRec 256: 1-6, 1999 Oral Dis 7: 259-265, 2001 J Dent Res 78: 1682-7, 1999 J Electron Microsc 46: 397-403,1997 Bone Miner 20: 151-166, 1993 J Biomed Mater Res 57: 175-182,2001 J Biomed Mater Res 71A: 299-307,2004

このようにOCPは人工骨材料としては極めて優れた性状を有しており、周囲を骨組織で囲まれた骨欠損(例えば唇顎口蓋裂児の顎裂部、抜歯窩、開頭手術時に形成される骨欠損等)にはOCP単独での骨形成が期待できる。しかし、硬組織再生材料としてのOCPは無機物であるために形状付与性に乏しい。従って、広範囲骨欠損部や萎縮歯槽堤に対して骨量の増大を企図して行われる歯槽堤増大手術などへの適用には制限があるという問題がある(非特許文献10参照)。
Arch Oral Biol 41: 1029-1038,1996
In this way, OCP has extremely excellent properties as an artificial bone material, and it is formed during bone defects surrounded by bone tissue (for example, jaw cleft, extraction fossa, craniotomy of cleft lip and palate children). For example, bone formation with OCP alone can be expected. However, OCP as a hard tissue regenerative material is an inorganic substance and therefore has poor shape imparting properties. Therefore, there is a problem that there is a limit to application to an alveolar ridge augmentation operation which is intended to increase bone mass for a wide-range bone defect part or an atrophy alveolar ridge (see Non-Patent Document 10).
Arch Oral Biol 41: 1029-1038,1996

骨再生において細胞、成長因子および担体(人工材料)の三要素が重要な役割を演じ、それらの協調によって効率的に骨が修復されることが明らかとなってきている。従って、次世代の硬組織代替性担体材料として(1)骨欠損によって生じた空間を埋める;(2)生体親和性を有する;(3)骨形成性細胞の機能を賦活化する;(4)成長因子を効果的に保持・拡散し、それらの骨再生機能を十分に発揮させる;(5)移植された人工材料自身が最終的には吸収し新生骨によって置換する;といった要件を満たす生体置換型人工材料の開発が望まれる。
本発明者らは、係る特性を有する硬組織代替性担体材料(人工骨材)について種々検討したところ、人工骨材として優れた特性を有するOCPとコラーゲンを複合させると、形状付与性に優れるのみならず、操作性、安全性、生体親和性を兼ね備えた担体材料となり、所期の目的を達成し得る硬組織代替性担体材料となり得ることを見出して、本発明を完成した。
In bone regeneration, the three elements of cells, growth factors and carriers (artificial materials) play an important role, and it has become clear that their coordination effectively restores bone. Therefore, as a next generation hard tissue substitute carrier material (1) fill the space caused by bone defects; (2) have biocompatibility; (3) activate the function of osteogenic cells; (4) Bio-replacement that satisfies the requirements of effectively retaining and diffusing growth factors and fully exerting their bone regeneration function; (5) The transplanted artificial material itself is finally absorbed and replaced by new bone; Development of mold artificial materials is desired.
As a result of various studies on hard tissue substitute carrier materials (artificial aggregates) having such characteristics, the present inventors have only excellent shape imparting properties when OCP and collagen having excellent characteristics as artificial aggregates are combined. However, the present invention has been completed by finding that it can be a carrier material having operability, safety and biocompatibility, and can be a hard tissue substitute carrier material capable of achieving the intended purpose.

本発明の硬組織代替性担体材料は、OCPとコラーゲンとからなる硬組織代替性担体材料である。当該担体材料は、OCPとコラーゲンの組成がコラーゲン1に対してOCPが0.5〜35(重量比)であることが好ましく、更に熱処理がされていることがより好ましい。なお、当該担体材料は、骨形成能を有するサイトカイン(例えば、bone morphogenetic protein-2、transforming growth factor βなど)を含有していてもよい。 The hard tissue replaceable carrier material of the present invention is a hard tissue replaceable carrier material composed of OCP and collagen. The carrier material preferably has an OCP / collagen composition of 0.5 to 35 (weight ratio) with respect to collagen 1 and more preferably heat-treated. Note that the carrier material, cytokines with osteogenic potential (e.g., bone morphogenetic protein-2, such as transforming growth factor β 1) may contain.

本発明の硬組織代替性担体材料はOCPとコラーゲンとの複合体であり、OCPをコラーゲンとの複合体とすることにより、OCP単独では困難であった形状付与性が具備され、その結果、広範囲の骨欠損部や歯槽堤増大手術などにもOCPを利用することができるようになる。特に熱処理されたOCP−コラーゲン複合体は骨再生を著しく促進する。このように、OCP−コラーゲン複合体はOCPの優れた骨形成能を失うことなく、自家骨移植に代わる量的制限のない生体材料になり得る。
従って、OCP−コラーゲン複合体の臨床応用によって、機能障害を伴う骨欠損への適応のみならず、現時点では機能障害が顕在化せず看過されることが多かった手術に伴って形成される骨欠損の修復(脳外科、整形外科、歯科領域等)や骨吸収を伴う歯周病あるいは義歯の保持を不安定化させる顎堤の低下等の障害を克服し、患者のQOLの向上に寄与し得る。
The hard tissue substitute carrier material of the present invention is a composite of OCP and collagen. By making OCP into a composite with collagen, shape impartability that has been difficult with OCP alone is provided. OCP can be used for bone defect and alveolar ridge augmentation. In particular, the heat-treated OCP-collagen complex significantly promotes bone regeneration. As described above, the OCP-collagen complex can be a biomaterial without a quantitative limitation in place of autologous bone transplantation without losing the excellent bone forming ability of OCP.
Therefore, due to the clinical application of OCP-collagen complex, not only is it adapted to bone defects with dysfunction, but also bone defects formed with surgery that are often overlooked without dysfunction manifesting It can overcome obstacles such as restoration of brain (brain surgery, orthopedic surgery, dental field, etc.), periodontal disease with bone resorption, or lowering of the jaw ridge that destabilizes denture retention, and can contribute to improvement of the patient's QOL.

上述のように、本発明はOCP−コラーゲン複合体からなる硬組織代替性担体材料である。
本発明で使用されるOCPは既に公知の物質であり、例えば、LeGerosの滴下法(LeGeros RZ, Calcif Tissue Int 37:194-197, 1985)又は特許文献1に開示した合成装置(三流管)を使用した方法などで調製することができる。
As described above, the present invention is a hard tissue substitute carrier material comprising an OCP-collagen complex.
The OCP used in the present invention is a known substance. For example, the dropping method of LeGeros (LeGeros RZ, Calcif Tissue Int 37: 194-197, 1985) or the synthesizer disclosed in Patent Document 1 (three-stream tube) is used. It can be prepared by the method used.

また、コラーゲンとしては、その由来、性状などは特に限定されず、種々のコラーゲンを使用することができる。好ましくは、蛋白分解酵素(例えばペプシン、プロナーゼ等)で可溶化することにより得られ、テロペプチドが除去されている酵素可溶化コラーゲンが使用される。コラーゲンのタイプとしては、原料的な面から、豚、牛などの皮膚、骨、腱などに由来するタイプI(又はタイプI+タイプIII)コラーゲンが有利である。コラーゲンは生体由来成分であるので、安全性が高いという特長を有し、特に酵素可溶化コラーゲンはアレルゲン性も低く好ましい。
上記のコラーゲンとしては、市販の製品を使用してもよい。
Moreover, as collagen, the origin, property, etc. are not specifically limited, Various collagen can be used. Preferably, an enzyme-solubilized collagen obtained by solubilization with a proteolytic enzyme (for example, pepsin, pronase, etc.) from which telopeptide is removed is used. As the type of collagen, type I (or type I + type III) collagen derived from skins such as pigs and cows, bones and tendons is advantageous from the viewpoint of raw materials. Since collagen is a biological component, it has the feature of high safety. In particular, enzyme-solubilized collagen is preferable because it has low allergenicity.
A commercial product may be used as the collagen.

本発明の硬組織代替性担体材料の調製方法は特に限定されず、OCPとコラーゲンを含有する複合体の調製方法であれば種々の方法を用いることができるが、好ましい方法としては下記の調製方法が挙げられる。
a)OCPを混合して複合化する方法
適当な濃度のコラーゲン溶液のpHをゲル化し得る範囲に調整し、ここにOCPを添加し、十分に混練してOCPとコラーゲンの混合物を作製し、次いで凍結乾燥することにより複合体粉末を得る。当該複合体粉末を適当な型に加えて成型し、成型物を作製し、更に慣用の滅菌法(例えば、電子線照射、高圧蒸気滅菌等)により滅菌する。
The method for preparing the hard tissue substitute carrier material of the present invention is not particularly limited, and various methods can be used as long as they are a method for preparing a complex containing OCP and collagen. Is mentioned.
a) Method of mixing and complexing OCP Adjust the pH of a collagen solution with an appropriate concentration to a range that can be gelled, add OCP here, and knead well to make a mixture of OCP and collagen, The composite powder is obtained by lyophilization. The composite powder is added to an appropriate mold and molded to produce a molded product, and further sterilized by a conventional sterilization method (for example, electron beam irradiation, high-pressure steam sterilization, etc.).

b)OCP懸濁液を混合して複合化する方法
適当な濃度のコラーゲン酸性溶液を、適当な緩衝液(例えば、リン酸緩衝液、トリス緩衝液、酢酸ナトリウム緩衝液等)で無菌的にpHを5.5〜7.5に調整し、コラーゲンがゲル化する前にOCPを添加して、コラーゲンとOCPの懸濁液を調製する。その後、pHを中性から弱アルカリ性に保持したところで型に流し込んで、形状を付与した後、適当な温度(例えば37℃)でゲル化させ、水洗浄を繰り返して緩衝液の塩などを除去して複合担体とし、上記と同様に滅菌処理する。
また、成型せず、ゲル化・水洗浄したものをそのまま凍結乾燥して、上記と同様に滅菌処理し、無定形の充填材料として患部に適用する。
b) Method of mixing OCP suspension and complexing it Aseptic pH of an acidic collagen solution of appropriate concentration with an appropriate buffer (eg phosphate buffer, Tris buffer, sodium acetate buffer, etc.) Prepare a suspension of collagen and OCP by adjusting to 5.5-7.5 and adding OCP before the collagen gels. Then, after pouring into a mold where the pH is maintained from neutral to weakly alkaline, after giving the shape, it is gelled at an appropriate temperature (for example, 37 ° C.), and washing with water is repeated to remove salts of the buffer solution. And sterilize as above.
In addition, the gelled and water-washed material that has not been molded is lyophilized as it is, sterilized in the same manner as described above, and applied to the affected area as an amorphous filling material.

c)OCPをコラーゲンに析出させて複合化する方法
適当な濃度のコラーゲン酸性溶液を、適当な緩衝液(例えば、リン酸緩衝液、トリス緩衝液、酢酸ナトリウム緩衝液等)で無菌的にpHを5.5〜7.5に調整し、コラーゲンがゲル化する前に、カルシウム溶液及びリン酸溶液を添加してコラーゲン上にOCPを析出させる。その後、pHを中性から弱アルカリ性に保持したところで型に流し込んで、形状を付与した後、適当な温度(例えば37℃)でゲル化した後、水洗浄を繰り返して緩衝液などの塩を除去して複合担体とし、上記と同様に滅菌処理する。
又は、成型せず、ゲル化したものをそのまま凍結乾燥して、上記と同様に滅菌処理し、無定形の充填材料として患部に適用する。
c) Method of precipitating OCP on collagen and complexing it With an appropriate concentration of collagen acidic solution, aseptically adjusting the pH with an appropriate buffer (eg, phosphate buffer, Tris buffer, sodium acetate buffer, etc.) It adjusts to 5.5-7.5, and before collagen gelatinizes, a calcium solution and a phosphoric acid solution are added and OCP is precipitated on collagen. Then, after pouring into a mold while maintaining the pH from neutral to weakly alkaline, after giving the shape and gelling at an appropriate temperature (for example, 37 ° C), washing with water is repeated to remove salts such as buffer solutions. The composite carrier is then sterilized as described above.
Alternatively, the gelled material that has not been molded is lyophilized as it is, sterilized in the same manner as described above, and applied to the affected area as an amorphous filling material.

なお、OCPのコラーゲン上への析出を説明すると、OCPの析出は、Ca2+, PO4 3−, pHなどにより決まる過飽和度(イオン積/溶解度積)に基づく。そこで、OCPに関して過飽和となる条件でCa2+溶液及びPO4 3−溶液を、pHを調節したコラーゲン溶液に注加して析出させる。OCPはコラーゲン間隙に自発的に析出するか、又はコラーゲン線維の表面を核として析出するかのいずれかとなる。OCPは、第2リン酸カルシウム(DCPまたはその2水塩DCPD)又は非晶質リン酸カルシウム(ACP)を経由してOCPに転換し、最終的にはHAに成熟することが知られている(非特許文献2)。そこで、OCPの代わりに、リン酸カルシウム溶液の過飽和度を調節して、DCP, DCPD又はACPを析出させても良い。 The precipitation of OCP on collagen will be described. The OCP precipitation is based on the degree of supersaturation (ionic product / solubility product) determined by Ca 2+ , PO 4 3− , pH, and the like. Therefore, a Ca 2+ solution and a PO 4 3− solution are poured into a collagen solution adjusted in pH under the condition of supersaturation with respect to OCP, and precipitated. OCP either spontaneously deposits in the collagen gap or precipitates with the surface of the collagen fiber as the nucleus. It is known that OCP is converted to OCP via dicalcium phosphate (DCP or its dihydrate DCPD) or amorphous calcium phosphate (ACP), and finally matures into HA (Non-patent Document). 2). Therefore, instead of OCP, DCP, DCPD or ACP may be precipitated by adjusting the supersaturation degree of the calcium phosphate solution.

本発明の硬組織代替性担体材料であるOCP−コラーゲン複合体におけるOCPとコラーゲンの配合比は、所望する形状付与性、操作性、生体親和性などに応じて適宜調整することができるが、好ましい配合比としては、コラーゲン1に対して、OCPを0.5〜35(重量比、以下特に明示のない限り同様)、より好ましくは1〜20、更に好ましくは2〜10、最も好ましくは3〜5程度に調整される。コラーゲン1に対してOCPが0.5未満であると、得られた複合体の骨再生機能が劣るおそれがあり、また35を超えると形状付与性が低下するおそれがある。   The blending ratio of OCP and collagen in the OCP-collagen complex, which is the hard tissue substituting carrier material of the present invention, can be suitably adjusted according to the desired shape imparting property, operability, biocompatibility, etc., but is preferable. The blending ratio is 0.5 to 35 (weight ratio, the same unless otherwise specified), more preferably 1 to 20, more preferably 2 to 10, and most preferably 3 to 3 with respect to collagen 1. It is adjusted to about 5. If the OCP is less than 0.5 with respect to collagen 1, the bone regeneration function of the obtained composite may be inferior, and if it exceeds 35, the shape imparting property may be lowered.

上述のOCP−コラーゲン複合体は熱処理がされていることがより好ましい。熱処理により、OCP分子構造の一部が崩れて骨形成系細胞の侵入が起こり、骨再生が促進されると共にコラーゲンが架橋して形状保持力が向上する。係るOCP−コラーゲン複合体の熱処理は、減圧条件化に行うのがより好ましい。
上記熱処理の条件としては、温度が50〜200℃、好ましくは60〜180℃、より好ましくは95〜150℃、圧力が0〜3000Pa、好ましくは0〜300Paを例示でき、処理時間としては0.1〜10日程度、より好ましくは0.5〜5日程度で行われる。
It is more preferable that the above-mentioned OCP-collagen complex is heat-treated. By heat treatment, part of the OCP molecular structure is destroyed and invasion of bone-forming cells occurs, which promotes bone regeneration and crosslinks collagen to improve shape retention. The heat treatment of the OCP-collagen complex is more preferably performed under reduced pressure conditions.
Examples of the heat treatment conditions include a temperature of 50 to 200 ° C., preferably 60 to 180 ° C., more preferably 95 to 150 ° C., and a pressure of 0 to 3000 Pa, preferably 0 to 300 Pa. About 1 to 10 days, more preferably about 0.5 to 5 days.

本発明の硬組織代替性担体材料には、OCP及びコラーゲンの他に、骨形成能を有するサイトカイン(例えば、bone morphogenetic protein-2、transforming growth factor βなど)を含有していてもよく、係るサイトカインを含有させることにより、骨再生速度を速めることができる。当該サイトカインの含量は、所望する骨再生速度などにより適宜調整することができる。
更に、本発明の硬組織代替性担体材料には、この分野で慣用の成分を含ませることができる。係る成分としては、例えば、生体吸収性高分子(例えばポリ乳酸、ポリ乳酸−ポリエチレングリコール共重合体等)、生体吸収性リン酸カルシウム(例えばβ−TCP等)、生体非吸収性材料(例えばHA、セラミックス等)などを挙げることができる。
The hard tissue substitute carrier material of the present invention, in addition to the OCP and collagen, cytokines with osteogenic potential (e.g., bone morphogenetic protein-2, such as transforming growth factor β 1) may also contain, according By containing cytokines, the bone regeneration rate can be increased. The cytokine content can be appropriately adjusted depending on the desired bone regeneration rate and the like.
In addition, the hard tissue replacement carrier material of the present invention can include ingredients conventional in this field. Examples of such components include bioabsorbable polymers (eg, polylactic acid, polylactic acid-polyethylene glycol copolymer), bioabsorbable calcium phosphate (eg, β-TCP), and non-bioabsorbable materials (eg, HA, ceramics). Etc.).

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は係る例に限定されるものではない。
なお、使用したOCP及びコラーゲンは以下のとおりである。
(1)OCP
OCPは、特許文献1に開示した合成装置(三流管)に基づいて合成・乾燥凝固させ、破砕した後、300-500μmの範囲にふるいにて整粒して、120℃で2時間乾熱滅菌したものを使用した。詳細には、同文献を参照することができるが、簡単にその製法を述べる。
0.16モルの酢酸カルシウム(Ca(CH3COO)2・H2O)を全量1500mlとした水溶液、0.16モルのリン酸2水素ナトリウム2水塩を全量1500mlとした水溶液、純水1000mlの3液を、70℃に加温し、3本の供給口(三流管)を有する装置を使用して、三流管の各々の供給口から15分で導入した。得られた沈澱物は70℃、15分の熟成後、ろ過し、再び沈澱を純水中に分散し、ろ過した後、整粒し、乾燥させた。
(2)コラーゲン
ブタ皮膚由来ペプシン可溶化コラーゲン凍結乾燥粉末(タイプI+タイプIII、中性、架橋あり:NMPコラーゲンPS;日本ハム社製)を使用した。
コラーゲンタブレットは、同コラーゲンを溶解し、終濃度3%、pH7.4になるよう調整し、当該コラーゲン溶液を凍結乾燥し、次いで9mm径、1mm厚に成型し、電子線照射(5kGy)により滅菌した。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to the example which concerns.
The OCP and collagen used are as follows.
(1) OCP
OCP is synthesized, dried and solidified based on the synthesizer disclosed in Patent Literature 1, dried and solidified, crushed, sieved in the range of 300-500μm, and sterilized by dry heat at 120 ° C for 2 hours. We used what we did. For details, the same reference can be referred to, but its production method will be briefly described.
Three solutions of 0.16 mol calcium acetate (Ca (CH 3 COO) 2 .H 2 O) in a total volume of 1500 ml, 0.16 mol sodium dihydrogen phosphate dihydrate in a total volume of 1500 ml, and pure water 1000 ml Introduced in 15 minutes from each supply port of the three flow tubes, using a device heated to 70 ° C. and having three supply ports (three flow tubes). The resulting precipitate was aged at 70 ° C. for 15 minutes and then filtered. The precipitate was again dispersed in pure water, filtered, sized and dried.
(2) Collagen Pepsin-solubilized collagen freeze-dried powder derived from pig skin (type I + type III, neutral, with crosslinking: NMP collagen PS; manufactured by Nippon Ham) was used.
Collagen tablets dissolve the same collagen, adjust to a final concentration of 3%, pH 7.4, freeze-dry the collagen solution, then mold to 9mm diameter and 1mm thickness and sterilize by electron beam irradiation (5kGy) did.

実施例1
OCP−コラーゲン複合体の調製
上記コラーゲンを溶解し、終濃度3%、pH7.4になるよう調整し、係るコラーゲン溶液に対し10%(w/w)のOCP(300-500μm径)を添加し十分に混練した。混練したOCP−コラーゲン混合物を凍結乾燥し、9mm径、1mm厚に成型し、電子線照射(5kGy)により滅菌した(得られたOCP−コラーゲン複合体を、以下OCP/Colという)。なお、成型性は極めて良好であり、成型物を容易に調製することが可能であった。
また、当該複合体に含まれるOCPは約10.5mg、コラーゲンは約3.5mgであった。
Example 1
Preparation of OCP- collagen complex Dissolve the above collagen, adjust to a final concentration of 3% and pH 7.4, and add 10% (w / w) OCP (300-500μm diameter) to the collagen solution. Kneaded thoroughly. The kneaded OCP-collagen mixture was freeze-dried, molded into a 9 mm diameter and 1 mm thickness, and sterilized by electron beam irradiation (5 kGy) (the obtained OCP-collagen complex is hereinafter referred to as OCP / Col). In addition, the moldability was extremely good, and it was possible to easily prepare a molded product.
The OCP contained in the complex was about 10.5 mg, and the collagen was about 3.5 mg.

試験例1
本発明のOCP/Colを骨欠損部に埋入し、その機能を試験した。具体的方法、結果などは以下のとおりである。
(1)材料及び方法
(1)実験動物:
雄性Wistar系ラット(12週齢)を用いた。
(2)手術操作
ペントバルビタール(50mg/kg) を腹腔内に注射後、ラット頭蓋冠に自然治癒の望めない約9mm径の規格化した全層の骨欠損を作製し、OCP/Col(9mm径、1mm厚)埋入した。その際、一端剥離した骨膜は復位し縫合した。
なお比較対照として、(a)OCP群:OCP顆粒(300-500μm径:15mg)のみを埋入、(b)Col群:コラーゲンタブレット(9mm径、1mm厚:約3.5mg)のみを埋入したものを用いた。
(3)実験期間
試料の埋入期間は2及び4週間とし、実験動物は各群・各期間5匹を用いた。
(4)標本作製法
ペントバルビタール(50mg/kg) を腹腔内に注射後、0.1Mリン酸緩衝液(PBS)(pH7.4)にて左心室より前灌流の後、0.1Mリン酸緩衝4%パラホルムアルデヒド(pH7.4)にて灌流固定し、頭蓋冠および周囲組織を採取、同固定液に浸漬固定した。軟X線写真を撮影(20KV, 5mA,1min.)後、欠損内のX線不透過度(%opacity)を画像解析ソフト (NIH Image 1.63)を用いて計測した。その後、10% EDTAで脱灰し組織切片を作製しヘマトキシリン・エオジン染色で組織学的に検索した。
Test example 1
The OCP / Col of the present invention was embedded in a bone defect portion and its function was tested. Specific methods and results are as follows.
(1) Materials and methods
(1) Experimental animals:
Male Wistar rats (12 weeks old) were used.
(2) Surgical operation After injection of pentobarbital (50mg / kg) into the abdominal cavity, a standardized full-thickness bone defect of approximately 9mm diameter that cannot be spontaneously cured was created in the rat calvaria, and OCP / Col (9mm diameter) 1mm thick). At that time, the periosteum exfoliated at one end was restored and sutured.
For comparison, (a) OCP group: only OCP granules (300-500 μm diameter: 15 mg) were embedded, and (b) Col group: only collagen tablets (9 mm diameter, 1 mm thickness: about 3.5 mg) were embedded. A thing was used.
(3) Experimental period Samples were placed for 2 and 4 weeks, and 5 experimental animals were used for each group and each period.
(4) Specimen preparation method After pentobarbital (50 mg / kg) was injected intraperitoneally, 0.1 M phosphate buffer (PBS) (pH 7.4) was preperfused from the left ventricle and 0.1 M phosphate buffer 4 After perfusion fixation with% paraformaldehyde (pH 7.4), the calvaria and surrounding tissues were collected and fixed by immersion in the same fixative. After taking a soft X-ray photograph (20 KV, 5 mA, 1 min.), The X-ray opacity (% opacity) in the defect was measured using image analysis software (NIH Image 1.63). Thereafter, the tissue sections were prepared by decalcification with 10% EDTA, and histologically searched by staining with hematoxylin and eosin.

(2)結果
(1)軟X線所見
OCP/Col群:埋入2週後より欠損全域に綿花状および顆粒状の不透過像が観察され、埋入4週では不透過度は亢進した(図1a参照)。%opacityは4週で98.7±0.70%であった。不透過度の亢進は、骨形成及び石灰化の促進を意味する。
Col群:埋入2週後では欠損内に綿花状の不透過像がわずかに観察された。埋入4週では不透過度を増すとともに欠損内に広がっていった(図1b参照)。% opacityは4週で49.2±14.6%であった。
OCP群:埋入2及び4週後では欠損内に顆粒状で孤立性の不透過像が点在して観察された(図1c参照)。%opacityは4週で48.7±16.7%であった。
(2) Results
(1) Soft X-ray findings
OCP / Col group: Cotton-like and granular opacity images were observed throughout the defect from 2 weeks after implantation, and the opacity increased at 4 weeks after implantation (see FIG. 1a). % opacity was 98.7 ± 0.70% at 4 weeks. Increased opacity means accelerated bone formation and mineralization.
Col group: Slightly cotton-like impermeable images were observed within the defect 2 weeks after implantation. At 4 weeks of implantation, the opacity increased and spread within the defect (see FIG. 1b). % opacity was 49.2 ± 14.6% at 4 weeks.
OCP group: At 2 and 4 weeks after implantation, granular and solitary opaque images were observed in the defect (see FIG. 1c). % opacity was 48.7 ± 16.7% at 4 weeks.

(2)組織学的所見
OCP/Col群:埋入2週後において骨欠損辺縁、脳硬膜側よりの骨形成に加え、OCP/Colへ高密度に骨形成性細胞等が浸潤し、それらは深部に及んでいた。そして骨形成性細胞によるコラーゲンスポンジの網目構造を足場とした旺盛な骨形成が観察された。OCP周囲の多核巨細胞は目立たなかった。
埋入4週後では、骨形成は更に進み、欠損全域にわたって確認された。コラーゲンスポンジの網目構造を埋めるように新生骨が形成され(図1d参照)、血管の侵入も認められた。形成された骨の一部はリモデリングされ、コラーゲンが目立たなくなっていた。
Col群:埋入2週後では骨欠損辺縁よりの骨形成に加え、コラーゲンスポンジの網目構造内には細胞が侵入していたが、密度は低かった。また、脳硬膜側からの骨形成が認められたが、それらは小範囲に限局していた。炎症性細胞浸潤は目立たなかった。
埋入4週後では、骨芽細胞は目立たなくなっている。コラーゲンスポンジの網目構造内に細胞の侵入は認められるが、一部多核巨細胞によるコラーゲンの吸収が観察された(図1e参照)。炎症性細胞浸潤は目立たなかった。
OCP群:埋入2週では新生骨は欠損辺縁に沿って限局していた。炎症性細胞浸潤が認められ、OCPは多核細胞に囲まれていた。埋入4週では新生骨は欠損辺縁および埋入されたOCP周囲に限局していた(図1f参照)。炎症性細胞浸潤は減少した。一部のOCPは多核細胞に囲まれていた。
(2) Histological findings
OCP / Col group: 2 weeks after implantation, in addition to bone formation from the bone defect margin and cerebral dura mater, bone-forming cells infiltrated into OCP / Col at high density, and they were deep . Vigorous bone formation using a network structure of collagen sponge by osteogenic cells was observed. Multinucleated giant cells around OCP were not noticeable.
At 4 weeks after implantation, bone formation further progressed and was confirmed throughout the defect. New bone was formed so as to fill the network structure of the collagen sponge (see FIG. 1d), and invasion of blood vessels was also observed. Some of the bones that were formed were remodeled, making collagen less noticeable.
Col group: After 2 weeks of implantation, in addition to bone formation from the bone defect edge, cells invaded into the network structure of the collagen sponge, but the density was low. In addition, bone formation from the cerebral dura mater side was observed, but these were limited to a small area. Inflammatory cell infiltration was not noticeable.
At 4 weeks after implantation, osteoblasts are not noticeable. Although the invasion of cells was observed in the network structure of the collagen sponge, the absorption of collagen by some multinucleated giant cells was observed (see FIG. 1e). Inflammatory cell infiltration was not noticeable.
OCP group: At 2 weeks of implantation, new bone was localized along the margin of the defect. Inflammatory cell infiltration was observed and OCP was surrounded by multinucleated cells. At 4 weeks of implantation, new bone was localized around the defect margin and around the implanted OCP (see FIG. 1f). Inflammatory cell infiltration was reduced. Some OCPs were surrounded by multinucleated cells.

(3)評価
X線撮影および組織化学的に骨形成能を調べたところ、OCP/Col群では、従来の材料では発現し得なかった、
1)複合材料内部深層への細胞の生着、
2)複合材料上へ骨の無機成分であるリン酸カルシウムの沈着の促進(石灰化の促進)、
3)OCP単独よりも早い時期での骨形成、
が認められ、本発明のOCP−コラーゲン複合体は優れた硬組織代替性担体材料となり得ることが明らかとなった。
このように、OCPとコラーゲンを複合化させた本発明の硬組織代替性担体材料は硬組織の成長過程を模倣した材料であり、前述した生体置換型人工材料の要件を満たし、OCP又はコラーゲン単独ではなし得なかった広範囲の骨欠損部位の修復を可能にするので、優れた硬組織代替性担体材料である。
(3) Evaluation
When the bone forming ability was examined by X-ray photography and histochemistry, in the OCP / Col group, it could not be expressed with conventional materials.
1) Engraftment of cells in the deep layer inside the composite material,
2) Promotion of deposition of calcium phosphate, an inorganic component of bone, on the composite material (promotion of calcification),
3) Bone formation earlier than OCP alone,
It was found that the OCP-collagen complex of the present invention can be an excellent hard tissue substitute carrier material.
Thus, the hard tissue substitute carrier material of the present invention in which OCP and collagen are combined is a material that mimics the growth process of hard tissue, satisfies the requirements of the above-mentioned bio-replacement type artificial material, and OCP or collagen alone This makes it possible to repair a wide range of bone defect sites that could not be achieved, so it is an excellent hard tissue substitute carrier material.

試験例2
加熱処理されたOCP−コラーゲン複合体の試験を以下の方法で行った。
(1)材料及び方法
(1)試験試料
前記実施例1で成型・調製したOCP/Colを、真空乾燥機内で、150℃、24時間処理した後、電子線照射(5kGy)により滅菌したもの(以下、便宜上、架橋OCP/Colという)を使用した。なお、比較として、上記OCP/Colを熱処理することなく、同様に電子線滅菌したもの(便宜上、未架橋OCP/Colという)を使用した。
(2)実験動物、実験操作及び標本作製は、試験例1と同様である。実験期間に関し、試料の埋入期間は4及び12週間とし、実験動物は各群・各期間5匹を用いた。
Test example 2
The heat-treated OCP-collagen complex was tested by the following method.
(1) Materials and methods
(1) Test sample The OCP / Col molded and prepared in Example 1 was treated in a vacuum dryer at 150 ° C. for 24 hours and then sterilized by electron beam irradiation (5 kGy). / Col). For comparison, the same OCP / Col that had been sterilized by electron beam without heat treatment (referred to as uncrosslinked OCP / Col for convenience) was used.
(2) Experimental animals, experimental procedures and specimen preparation are the same as in Test Example 1. Regarding the experimental period, the sample embedding period was 4 and 12 weeks, and five experimental animals were used for each group and each period.

(2)結果
(1)軟X線所見
架橋OCP/Col群:埋入4週後より欠損全域に綿花状および顆粒状の不透過像が混在し(図2a)、埋入12週では欠損部の不透過度は更に亢進し、より密になっていった(図2b)。
未架橋OCP/Col群:埋入4週後では欠損内に顆粒状で孤立性の不透過像が点在し(図2c)、埋入12週では欠損部の不透過像は融合傾向を示すものの架橋OCP/Col群に比べて欠損内の不透過像は著しく少ない(図2d)。
(2) Results
(1) Soft X-ray findings Cross-linked OCP / Col group: Cotton and granular opacity images coexisted throughout the defect from 4 weeks after implantation (Fig. 2a), and opacity of the defect at 12 weeks after implantation. Increased further and became denser (FIG. 2b).
Uncrosslinked OCP / Col group: Granules and isolated opaque images are scattered within the defect 4 weeks after implantation (Fig. 2c), and the impermeable image of the defect shows a fusion tendency at 12 weeks after implantation. Compared to the cross-linked OCP / Col group, the impermeable image in the defect is significantly less (FIG. 2d).

(2)組織学的所見
架橋OCP/Col群:埋入4週では骨欠損辺縁よりの骨形成に加え、架橋OCP/Colを足場とし、それらの網目構造を埋めるように旺盛な骨形成が観察された(図2e)。OCP周囲の多核巨細胞は目立たなかった。埋入12週後では、骨形成は更に欠損全域に亢進し、血管の侵入や形成された骨のリモデリングも観察された(図2f)。また、埋入された架橋OCP/Colは吸収傾向にあり目立たなくなっていた。
未架橋OCP/Col群:埋入4週では新生骨は欠損辺縁および埋入されたOCP周囲に限局し(図2g)、一部のOCPは多核細胞に囲まれていた。架橋OCP/Col内のCollagenに相当する構造は不明確でそれらの吸収傾向が示唆された。埋入12週では骨形成は亢進したものの新生骨は欠損辺縁および埋入されたOCP周囲に限局し(図2h)、一部のOCPは多核細胞に囲まれていた。
(2) Histological findings Cross-linked OCP / Col group: In addition to bone formation from the bone defect margin at the 4th week of implantation, bridging OCP / Col is used as a scaffold, and vigorous bone formation is performed so as to fill the network structure. Observed (FIG. 2e). Multinucleated giant cells around OCP were not noticeable. At 12 weeks after implantation, bone formation was further enhanced throughout the defect, and vascular invasion and remodeling of the formed bone were also observed (Fig. 2f). Moreover, the embedded cross-linked OCP / Col was in an absorption tendency and was not noticeable.
Uncrosslinked OCP / Col group: At 4 weeks of implantation, new bone was confined to the defect margin and around the implanted OCP (FIG. 2g), and some OCP was surrounded by multinucleated cells. The structure corresponding to Collagen in the cross-linked OCP / Col was unclear, suggesting their absorption tendency. Although bone formation increased at 12 weeks after implantation, the new bone was confined to the defect margin and around the implanted OCP (FIG. 2h), and some OCP was surrounded by multinucleated cells.

(3)組織定量学的所見
両群間の欠損内における新生骨の割合(n-Bone%)を統計学的に検討した結果を図3に示す。埋入4週では架橋OCP/Col群 22.0±7.80%、未架橋OCP/Col群4.56±3.19%であり、両群間に有意な骨形成の差を認めた。また埋入12週では架橋OCP/Col群52.5±13.7%、未架橋OCP/Col群15.4±13.7%であり、これらも両群間には有意な骨形成の差を認めた。
(3) Histological Quantitative Findings FIG. 3 shows the results of a statistical examination of the proportion of new bone (n-Bone%) within the defect between both groups. At 4 weeks of implantation, the cross-linked OCP / Col group was 22.0 ± 7.80%, and the non-cross-linked OCP / Col group was 4.56 ± 3.19%. A significant difference in bone formation was observed between the two groups. At 12 weeks of implantation, the cross-linked OCP / Col group was 52.5 ± 13.7%, and the non-cross-linked OCP / Col group was 15.4 ± 13.7%. These also showed a significant difference in bone formation between the two groups.

架橋OCP/Colの性能
架橋OCP/Col群の作用を以下に纏める。
1)架橋OCP/Col群は、未架橋OCP/Col群よりも有意に骨再生を促進する。
2)架橋OCP/Col群は再生される骨と置換していく傾向がある。
3)架橋OCP/Col群による良好な骨再生は、OCPとcollagenの相乗効果によるものであると考えられる。
Performance of cross-linked OCP / Col The actions of the cross-linked OCP / Col group are summarized below.
1) The cross-linked OCP / Col group significantly promotes bone regeneration than the non-cross-linked OCP / Col group.
2) The cross-linked OCP / Col group tends to replace the regenerated bone.
3) The good bone regeneration by the cross-linked OCP / Col group is considered to be due to the synergistic effect of OCP and collagen.

4週におけるOCP/Col群(a, d)、Col群(b, e)、OCP群(c, f)の軟X線所見(a-c)及び組織学的所見(d-f)を示す図である。なお、図中、a−cのバーは4mm、d−fのバーは100μmを示す。It is a figure which shows the soft X-ray findings (a-c) and histological findings (d-f) of OCP / Col group (a, d), Col group (b, e), and OCP group (c, f) in 4 weeks. In the drawing, a-c bars indicate 4 mm, and df bars indicate 100 μm. 4週における架橋OCP/Col群(a, e)、12週における架橋OCP/Col群(b, f)、4週における未架橋OCP/Col群(c, g)、12週における未架橋OCP/Col群(d, h)の軟X線所見(a-d)および組織学的所見(e-h)を示す図である。なお、図中、a-dのバーは4mm、e-hのバーは200μmを示す。Crosslinked OCP / Col group at 4 weeks (a, e), Crosslinked OCP / Col group at 12 weeks (b, f), Uncrosslinked OCP / Col group at 4 weeks (c, g), Uncrosslinked OCP / at 12 weeks It is a figure which shows soft X-ray findings (ad) and histological findings (eh) of Col group (d, h). In the figure, the a-d bar represents 4 mm, and the e-h bar represents 200 μm. 組織定量学的評価による欠損内における新生骨の割合(n-Bone%)を示す図である。It is a figure which shows the ratio (n-Bone%) of the new bone in the defect | deletion by histological quantitative evaluation.

Claims (3)

第8リン酸カルシウムとコラーゲンとからなる複合体であり、当該複合体は温度が150℃、圧力が0〜3000Pa、処理時間が0.1〜10日の熱処理が行われていることを特徴とする硬組織代替性担体材料。
A complex composed of eighth calcium phosphate and collagen, wherein the complex is subjected to heat treatment at a temperature of 150 ° C., a pressure of 0 to 3000 Pa, and a treatment time of 0.1 to 10 days. Tissue replacement carrier material.
第8リン酸カルシウムとコラーゲンの配合比が、コラーゲン1に対して第8リン酸カルシウムが0.5〜35(重量比)である請求項1記載の硬組織代替性担体材料。   The hard tissue-replaceable carrier material according to claim 1, wherein the compounding ratio of the eighth calcium phosphate and collagen is 0.5 to 35 (weight ratio) of the eighth calcium phosphate with respect to collagen 1. 骨形成能を有するサイトカインを含有する請求項1又は2に記載の硬組織代替性担体材料。
The hard tissue-substituting carrier material according to claim 1 or 2, comprising a cytokine having bone forming ability .
JP2005336343A 2004-11-19 2005-11-21 Hard tissue substitute carrier material Active JP5046511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336343A JP5046511B2 (en) 2004-11-19 2005-11-21 Hard tissue substitute carrier material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004336501 2004-11-19
JP2004336501 2004-11-19
JP2005336343A JP5046511B2 (en) 2004-11-19 2005-11-21 Hard tissue substitute carrier material

Publications (2)

Publication Number Publication Date
JP2006167445A JP2006167445A (en) 2006-06-29
JP5046511B2 true JP5046511B2 (en) 2012-10-10

Family

ID=36668776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336343A Active JP5046511B2 (en) 2004-11-19 2005-11-21 Hard tissue substitute carrier material

Country Status (1)

Country Link
JP (1) JP5046511B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2113518A1 (en) 2007-02-22 2009-11-04 PG Research Co., Ltd. Bone/cartilage formation-stimulating agent
JP2010035834A (en) * 2008-08-06 2010-02-18 Tohoku Univ Bone forming kit and bone forming tool
JP2010273847A (en) * 2009-05-28 2010-12-09 Tokyo Institute Of Technology High-density porous composite
JP5647432B2 (en) * 2010-05-06 2014-12-24 ニプロ株式会社 Bone regeneration material
JP5881206B2 (en) * 2011-11-17 2016-03-09 ニプロ株式会社 Bone regeneration material
JP2014015415A (en) * 2012-07-09 2014-01-30 Nippon Meat Packers Inc Neurite elongation agent
JP6419720B2 (en) * 2013-12-02 2018-11-14 国立大学法人東北大学 Bone regeneration material
KR20190008432A (en) 2014-11-27 2019-01-23 도요보 가부시키가이샤 Porous composite body, bone regeneration material, and method for producing porous composite body
CN115887757A (en) * 2014-11-27 2023-04-04 东洋纺株式会社 Porous composite, bone regeneration material, and method for producing porous composite
TWI623329B (en) * 2015-04-08 2018-05-11 東洋紡股份有限公司 Method fortaking porous composite
JP5900691B1 (en) * 2015-09-08 2016-04-06 東洋紡株式会社 Porous composite and bone regeneration material
WO2017043498A1 (en) * 2015-09-08 2017-03-16 東洋紡株式会社 Porous complex and bone regeneration material
JP5900692B1 (en) * 2015-09-08 2016-04-06 東洋紡株式会社 Porous composite and bone regeneration material
US9968660B2 (en) 2016-04-08 2018-05-15 Toyobo Co., Ltd. Method of bone regeneration or bone augmentation
JP7412700B2 (en) 2020-01-23 2024-01-15 東洋紡株式会社 porous composite
JP2021129975A (en) * 2020-02-20 2021-09-09 国立大学法人東北大学 Bone regeneration material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048289B2 (en) * 1993-04-27 2000-06-05 新田ゼラチン株式会社 Collagen-calcium phosphate composite material and use thereof
US20030180263A1 (en) * 2002-02-21 2003-09-25 Peter Geistlich Resorbable extracellular matrix for reconstruction of bone

Also Published As

Publication number Publication date
JP2006167445A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP5046511B2 (en) Hard tissue substitute carrier material
Costantino et al. Hydroxyapatite cement: I. Basic chemistry and histologic properties
AU2011329054B2 (en) Bone void fillers
JP3916516B2 (en) Scaffolding material for hard tissue-soft tissue interface regeneration
Mahmoud et al. In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds
KR20080004486A (en) Biomaterial
JPH10513388A (en) Bone graft composition
Tanuma et al. Comparison of bone regeneration between octacalcium phosphate/collagen composite and β-tricalcium phosphate in canine calvarial defect
KR20150135260A (en) Solid substrates for promoting cell and tissue growth
JP2006346420A (en) Grafting material and bone improver
KR20170073673A (en) A biomaterial scaffold for regenerating the oral mucosa
JPH0571266B2 (en)
JP2011234799A (en) Bone regeneration material
Chen et al. Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite
Jeong et al. Acceleration of bone formation by octacalcium phosphate composite in a rat tibia critical-sized defect
Flifl et al. Biological impact of alloplastic bone graft vs bovine xenograft and allograft materials in bone healing: An experimental study
Miyata et al. An experimental study of bone grafting using rat milled tooth.
JPH10151188A (en) Implant for ossification
JP5881206B2 (en) Bone regeneration material
JPH08276003A (en) Head tissue restorative dental material and imbedded medical appliance
Bien et al. Bone regeneration by low-dose recombinant human bone morphogenetic protein-2 carried on octacalcium phosphate collagen composite
JP6094716B1 (en) Combination of calcium phosphate-containing porous composite and PTH
JPWO2005079728A1 (en) Dentin regeneration method
Higeuchi et al. Radiological and histochemical study of bone regeneration using the costal cartilage in rats
JP2021115165A (en) Porous complex

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250