JP5045902B2 - Scanning method and high magnetic field scanning probe microscope apparatus in scanning probe microscope - Google Patents

Scanning method and high magnetic field scanning probe microscope apparatus in scanning probe microscope Download PDF

Info

Publication number
JP5045902B2
JP5045902B2 JP2007139594A JP2007139594A JP5045902B2 JP 5045902 B2 JP5045902 B2 JP 5045902B2 JP 2007139594 A JP2007139594 A JP 2007139594A JP 2007139594 A JP2007139594 A JP 2007139594A JP 5045902 B2 JP5045902 B2 JP 5045902B2
Authority
JP
Japan
Prior art keywords
magnetic field
scanning
probe
sample
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007139594A
Other languages
Japanese (ja)
Other versions
JP2008292373A (en
Inventor
秀行 品川
正 高増
義勇 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007139594A priority Critical patent/JP5045902B2/en
Publication of JP2008292373A publication Critical patent/JP2008292373A/en
Application granted granted Critical
Publication of JP5045902B2 publication Critical patent/JP5045902B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

この出願の発明は、走査型プローブ顕微鏡を用いて強磁場下において正確な磁気的測定を行うためのプローブの走査方法及び強磁場走査プローブ顕微鏡装置に関するものである。また、この出願の発明は、磁気記録等に用いられる磁性材料の研究開発の分野において、測定の精度を向上させることにより、磁気記録のさらなる高密度化に向けての研究開発等に対して、基礎的な研究技術を提供するものである。   The invention of this application relates to a probe scanning method and a strong magnetic field scanning probe microscope apparatus for performing accurate magnetic measurement under a strong magnetic field using a scanning probe microscope. In addition, the invention of this application is in the field of research and development of magnetic materials used for magnetic recording and the like, by improving the accuracy of measurement, for research and development for further densification of magnetic recording, It provides basic research technology.

コンピュータに内蔵されるハードディスク装置等に代表される磁気記録装置の記録密度は、年々指数関数的に増大し続けてきている。それに対応して必然的に、記録磁化の磁区は小さくなり、熱や磁場等の外場の影響を受けやすくなるので、それらに対する安定性の評価が本質的に求められるようになってきた。   The recording density of a magnetic recording device represented by a hard disk device incorporated in a computer has been increasing exponentially year by year. Correspondingly, the magnetic domains of the recording magnetization are inevitably reduced and are easily affected by external fields such as heat and a magnetic field, so that evaluation of stability against them has been essentially required.

微細な磁区構造の観察には走査プローブ顕微鏡の一種である磁気力顕微鏡を用いることができる。この分野において、この出願の発明者らは、強磁場下で広範囲の温度で動作する磁気力顕微鏡を開発してきた(特許文献1)。   A magnetic force microscope, which is a kind of scanning probe microscope, can be used for observing a fine magnetic domain structure. In this field, the inventors of this application have developed a magnetic force microscope that operates in a wide range of temperatures under a strong magnetic field (Patent Document 1).

磁気力顕微鏡においては、試料表面の形状と磁気的な情報とを分離して測定する必要がある。このための手段として、強磁場下で、先ずプローブを試料表面に十分に接近させ原子間力顕微鏡としての測定を行って形状像を得、然る後にその形状像をもとにプローブを試料表面より一定の距離を保ちつつ走査するという、トレースモードあるいは2パス方式と称される走査方法が用いられてきた(非特許文献1)。これは、磁気力が原子間力に比べて長距離まで及ぶという性質を巧みに利用したものである。磁気力顕微鏡のプローブとしては、Si等で作られた原子間力顕微鏡用のプローブにCo等の強磁性材料を蒸着したものが用いられる。プローブは使用前に強磁場を印加することで着磁される。すなわち、磁気的測定はプローブの小さな残留磁化と試料との相互作用によって行われる。
特開2001−50885号公報 http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/spm/3_2_d1.htm
In the magnetic force microscope, it is necessary to measure the shape of the sample surface separately from the magnetic information. As a means for this, in a strong magnetic field, the probe is first brought close enough to the sample surface to perform measurement as an atomic force microscope to obtain a shape image, and then the probe is placed on the sample surface based on the shape image. A scanning method called a trace mode or a two-pass method in which scanning is performed while maintaining a certain distance has been used (Non-Patent Document 1). This is a clever use of the property that the magnetic force extends over a longer distance than the interatomic force. As a probe for a magnetic force microscope, an atomic force microscope probe made of Si or the like and a ferromagnetic material such as Co deposited thereon is used. The probe is magnetized by applying a strong magnetic field before use. That is, the magnetic measurement is performed by the interaction between the small residual magnetization of the probe and the sample.
JP 2001-50885 A http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/spm/3_2_d1.htm

ところが、強い外部磁場の下においては、強磁性材料を用いたプローブは強く磁化されるので、プローブの作る磁場の影響が無視できないことがわかってきた。すなわち試料表面には、外部から印加した一様な磁場とプローブによる磁場の和が印加されるのであるが、プローブによる磁場は大きな磁場勾配をもって局所的に作用するので、微細な磁気構造に対して大きな影響を及ぼす。   However, it has been found that the influence of the magnetic field produced by the probe cannot be ignored because the probe using a ferromagnetic material is strongly magnetized under a strong external magnetic field. In other words, the sum of the uniform magnetic field applied from the outside and the magnetic field generated by the probe is applied to the sample surface, but the magnetic field generated by the probe acts locally with a large magnetic field gradient. It has a big effect.

そのため、強磁性プローブを用いて、通常のトレースモードで走査を行うと、表面形状を測定する間にプローブが試料表面に接近して磁気構造を乱してしまうので、正確な磁気的測定ができなくなるという問題があった。   For this reason, when scanning in the normal trace mode using a ferromagnetic probe, the probe approaches the sample surface and disturbs the magnetic structure while measuring the surface shape, so accurate magnetic measurement is possible. There was a problem of disappearing.

磁気記録の記録密度は、当分の間は従来と同様な速度で向上し続けることが期待されている。そのための研究開発には微細な磁区構造の性質を正確に測定するという基礎的な計測技術が不可欠である。特に走査型プローブ顕微鏡の強磁場への応用は現在発展中の技術であり、製品レベルでの実用化が要望されている。   It is expected that the recording density of magnetic recording will continue to improve at the same speed as before for the time being. For this purpose, basic measurement techniques that accurately measure the properties of fine magnetic domain structures are indispensable. In particular, the application of scanning probe microscopes to strong magnetic fields is a technology that is currently being developed, and there is a demand for practical application at the product level.

この出願の発明は、以上のような従来技術の実情に鑑みてなされたもので、プローブが試料の磁気構造を乱すことなく、強磁場下における試料の磁気的測定をより正確に行うことができる走査型プローブ顕微鏡における走査方法及び強磁場走査型プローブ顕微鏡装置を提供することを課題とする。   The invention of this application has been made in view of the above-described prior art, and the magnetic measurement of the sample in a strong magnetic field can be performed more accurately without the probe disturbing the magnetic structure of the sample. It is an object of the present invention to provide a scanning method and a strong magnetic field scanning probe microscope apparatus in a scanning probe microscope.

この出願の発明は、上記課題を解決するものとして、第1には、走査型プローブ顕微鏡を用い、プローブを走査して強磁場下で試料の磁気的測定を行うためのプローブの走査方法であって、零磁場下で試料の形状像の測定を行い、試料の形状像のデータを記憶しておき、試料における磁気的測定の走査の範囲外に特定の領域を設定し、その領域に対してプローブを走査して強磁場下で形状像の測定を行い、強磁場下で得られた形状像と零磁場下で得た形状像とを比較し、その結果に基づいてプローブの位置の補正をしつつ、且つ、零磁場下での測定で得た形状像のデータをもとに、強磁場下でプローブを試料表面から一定の距離に保つように制御して走査することを特徴とする走査型プローブ顕微鏡における走査方法を提供する。 In order to solve the above-mentioned problems, the invention of this application is first a probe scanning method for scanning a probe and performing magnetic measurement of a sample in a strong magnetic field using a scanning probe microscope. Measuring the shape image of the sample under zero magnetic field, storing the data of the shape image of the sample, setting a specific area outside the scanning range of the magnetic measurement on the sample, Scan the probe to measure the shape image under a strong magnetic field, compare the shape image obtained under a strong magnetic field with the shape image obtained under a zero magnetic field, and correct the position of the probe based on the result. However, the scanning is characterized in that the scanning is controlled so as to keep the probe at a certain distance from the sample surface under a strong magnetic field based on the data of the shape image obtained by the measurement under the zero magnetic field. A scanning method in a scanning probe microscope is provided.

また、第2には、試料を3次元方向に移動させるための圧電素子、プローブを先端に有するカンチレバー、及びカンチレバーの変位を検出するための変位検出手段を含む走査型プローブ顕微鏡ユニットと、試料に強磁場を印加する超伝導磁石と、零磁場下で行った試料の形状像のデータを記憶する記憶手段を有し、試料における磁気的測定の走査の範囲外に特定の領域を設定し、その領域に対してプローブを走査して強磁場下で形状像の測定を行い、強磁場下で得られた形状像と零磁場下で得た形状像とを比較し、その結果に基づいてプローブの位置の補正を行い、且つ、零磁場下での測定で得た形状像のデータをもとに、強磁場下でプローブを試料表面から一定の距離に保つように、プローブの走査を制御する制御部を備えることを特徴とする強磁場走査型プローブ顕微鏡装置を提供する。
Second, a scanning probe microscope unit including a piezoelectric element for moving the sample in a three-dimensional direction, a cantilever having a probe at the tip, and a displacement detecting means for detecting displacement of the cantilever, It has a superconducting magnet that applies a strong magnetic field, and storage means that stores data of the shape image of the sample performed in a zero magnetic field, and sets a specific area outside the scanning range of the magnetic measurement on the sample. The probe is scanned over the area and the shape image is measured under a strong magnetic field . The shape image obtained under the strong magnetic field is compared with the shape image obtained under the zero magnetic field. Control that corrects the position and controls the scanning of the probe so that the probe is kept at a certain distance from the sample surface in the strong magnetic field based on the shape image data obtained by the measurement in the zero magnetic field. Characterized by comprising a part Providing a strong magnetic field scanning probe microscope apparatus that.

さらに、第3には、上記第2の発明において、さらに、試料を加熱する加熱手段と試料を冷却する冷却手段の少なくともいずれかを有する強磁場走査型プローブ顕微鏡装置を提供する。   Further, thirdly, in the second invention, there is further provided a strong magnetic field scanning probe microscope apparatus further comprising at least one of a heating unit for heating the sample and a cooling unit for cooling the sample.

この出願の発明によれば、プローブが試料の磁気構造を乱すことなく、強磁場下における試料の磁気的な性質をより正確に測定できるようになる。   According to the invention of this application, the magnetic property of the sample under a strong magnetic field can be measured more accurately without the probe disturbing the magnetic structure of the sample.

そして、この出願の発明は、ハードディスク装置に代表される磁気記録装置の更なる高密度化に向けて、基礎的な研究技術を提供し、これにより、高性能な磁気記録装置の開発が促進されることが期待される。   The invention of this application provides basic research technology for further increasing the density of a magnetic recording device represented by a hard disk device, thereby promoting the development of a high-performance magnetic recording device. It is expected that

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and an embodiment thereof will be described below.

以下では、実際に使用した装置に則って実施例を説明する。但し、この出願の発明は走査型プローブ顕微鏡を用いて強磁場下において磁気的測定をするときの走査方法及び強磁場走査プローブ顕微鏡装置に関するものであり、それ以外の部分、すなわち使用する装置や技術については、種々の走査型プローブ顕微鏡関連技術が使用できる。なお、この出願の明細書において「強磁場」とは、試料との関係で言うと、その保磁力に対して無視できないくらいの大きさの磁場を意味する。例えば、一般に知られている比較的に大きな保磁力を持つ硬磁性材料(hard magnetic material)については、その保磁力は1〜2T程度
であるので、概ねその1/10の0.1〜0.2T程度以上の磁場のことを強磁場と言う。
In the following, an embodiment will be described in accordance with an actually used apparatus. However, the invention of this application relates to a scanning method and a strong magnetic field scanning probe microscope apparatus when performing magnetic measurement under a strong magnetic field using a scanning probe microscope, and other parts, that is, devices and techniques to be used. Various techniques related to scanning probe microscopes can be used. In the specification of this application, “strong magnetic field” means a magnetic field with a magnitude that is not negligible with respect to its coercive force in relation to the sample. For example, a generally known hard magnetic material having a relatively large coercive force has a coercive force of about 1 to 2T, and is therefore about 1/10 of 0.1 to 0.3. A magnetic field of about 2T or more is called a strong magnetic field.

図1は実施例で用いた強磁場走査型プローブ顕微鏡装置の概要を模式的に表している。図1において、(1)は走査型プローブ顕微鏡(SPM)ユニット、(2)は超伝導磁石、(3)はコイル容器、(4)は容器、(5)、(6)はGM冷凍機、(7)は多層プレートである。   FIG. 1 schematically shows an outline of a strong magnetic field scanning probe microscope apparatus used in the examples. In FIG. 1, (1) is a scanning probe microscope (SPM) unit, (2) is a superconducting magnet, (3) is a coil container, (4) is a container, (5) and (6) are GM refrigerators, (7) is a multilayer plate.

走査型プローブ顕微鏡ユニット(1)は、大口径の室温空間をもつ超伝導磁石(2)の中心に置かれており、試料(図示せず)には7.5Tまでの外部一様磁場を印加することができるようになっている。試料は真空下又は目的に応じた適当な雰囲気下におかれ、試料の温度はヒーター(図示せず)による加熱と冷凍機(6)による冷却により調整され、4〜500Kの間で制御される。   The scanning probe microscope unit (1) is placed at the center of a superconducting magnet (2) having a large-diameter room temperature space, and an external uniform magnetic field of up to 7.5 T is applied to a sample (not shown). Can be done. The sample is placed in a vacuum or in an appropriate atmosphere depending on the purpose, and the temperature of the sample is adjusted by heating with a heater (not shown) and cooling with a refrigerator (6) and controlled between 4 and 500K. .

プローブとしては、Si製の原子間力顕微鏡用のプローブに強磁性体であるCo/Ptを蒸着したものを用いた。もちろん、使用できる強磁性体はこれに限定されない。   As the probe, a Si atomic force microscope probe deposited with Co / Pt as a ferromagnetic material was used. Of course, the ferromagnetic material which can be used is not limited to this.

この装置を用いて、20Gbit/inchの磁気記録媒体について、室温の大気中において、書き込まれた記録磁化が外部磁場の印加によって消失して行く過程を観測した。 Using this apparatus, the process of erasing the written recording magnetization by applying an external magnetic field in the atmosphere at room temperature was observed for a 20 Gbit / inch 2 magnetic recording medium.

走査型プローブ顕微鏡は強磁場下で磁気的測定を行う場合、磁気力顕微鏡としての役割を行う。ここで磁気力顕微鏡の測定原理について簡単に説明する。   The scanning probe microscope serves as a magnetic force microscope when performing magnetic measurement under a strong magnetic field. Here, the measurement principle of the magnetic force microscope will be briefly described.

磁気力顕微鏡は、カンチレバーにより支持されたプローブを有しており、カンチレバーは圧電素子によって外部から加振され、20〜300KHzの固有の共振周波数で振動している。カンチレバーの変位はカンチレバーの付根の部分に装着されたひずみゲージによって、電気抵抗の変化として観測される。プローブと試料との間に相互作用があると、振動の振幅や位相等に変化が生じる。プローブで試料表面を走査しながら、その変化を記録したり、またその変化を一定に保つように帰還をかけたりして、試料表面の形状や磁気的構造等の種々の情報を2次元の像として得ることができる。   The magnetic force microscope has a probe supported by a cantilever, and the cantilever is vibrated from the outside by a piezoelectric element and vibrates at a specific resonance frequency of 20 to 300 KHz. The displacement of the cantilever is observed as a change in electrical resistance by a strain gauge attached to the base of the cantilever. If there is an interaction between the probe and the sample, the amplitude and phase of vibration will change. While scanning the sample surface with a probe, the change is recorded, and feedback is applied to keep the change constant, and various information such as the shape and magnetic structure of the sample surface is displayed in a two-dimensional image. Can be obtained as

トレースモードによる測定では、先ず、図2(a)に示すようにプローブを試料に接近させ、タッピング(サイクリックコンタクト)モードにより制御しつつ横方向に走査し、1ライン分の試料の形状像を得る。次に、この形状像をもとにプローブを試料表面から高さhだけ離して(図2(c))、同じライン上を走査し、その間のカンチレバーの振動の位相を測定する。これが磁気像となる。以上の手順で形状像と磁気像とが1ライン分得られる。そして、プローブの位置を縦方向に移動し、この手順を繰り返すことにより、2次元の像として形状像(図2(b))と磁気像(図2(d))とを得ることができる。   In the measurement in the trace mode, first, as shown in FIG. 2A, the probe is brought close to the sample and scanned in the lateral direction while being controlled by the tapping (cyclic contact) mode, and a shape image of the sample for one line is obtained. obtain. Next, based on this shape image, the probe is separated from the sample surface by a height h (FIG. 2C), scanned on the same line, and the phase of the cantilever vibration in between is measured. This becomes a magnetic image. With the above procedure, one line of shape image and magnetic image is obtained. Then, by moving the position of the probe in the vertical direction and repeating this procedure, a shape image (FIG. 2B) and a magnetic image (FIG. 2D) can be obtained as a two-dimensional image.

図3に、強磁場下における磁気像を通常のトレースモードで測定した従来方法の結果を示す。このように強磁場の印加により記録磁化は消失するが、そのときの信号振幅の磁場依存性から記録磁化の保磁力を見積もることができる。但し、あとで述べるように、この測定においては、強磁場下ではプローブ自体の作る磁場によって試料の磁気構造が破壊されているので、結果の磁場依存性については正しい議論はできない。   FIG. 3 shows the result of a conventional method in which a magnetic image under a strong magnetic field was measured in a normal trace mode. As described above, the recording magnetization disappears by applying a strong magnetic field, but the coercivity of the recording magnetization can be estimated from the magnetic field dependence of the signal amplitude at that time. However, as will be described later, in this measurement, under the strong magnetic field, the magnetic structure of the sample is destroyed by the magnetic field created by the probe itself, so the correct magnetic field dependency cannot be discussed.

次に、この出願の発明による走査方法について説明する。   Next, a scanning method according to the invention of this application will be described.

この走査方法では、まず、走査型プローブ顕微鏡を用い、零磁場下で試料の形状像の測定を行い、試料の形状像のデータを記憶しておく。次に、その記憶した形状像のデータを
もとに、強磁場下でプローブを試料表面から一定の距離に保つように制御して走査を行い、磁気的測定を行う。
In this scanning method, first, a shape image of a sample is measured under a zero magnetic field using a scanning probe microscope, and data of the shape image of the sample is stored. Next, based on the stored shape image data, scanning is performed by controlling the probe to be kept at a certain distance from the sample surface under a strong magnetic field, and magnetic measurement is performed.

この場合、より精度の高い磁気的測定を行うためには、試料において磁気的測定の走査の範囲外に特定の領域を設定し、その領域に対して強磁場下で形状像の測定を行い、得られた形状像と零磁場下で得た形状像とを比較し、プローブの位置の校正を逐次行う。   In this case, in order to perform more accurate magnetic measurement, a specific region is set outside the scanning range of the magnetic measurement in the sample, and the shape image is measured in a strong magnetic field for the region. The obtained shape image is compared with the shape image obtained under zero magnetic field, and the position of the probe is calibrated sequentially.

このようにすると、予め定めた特定の領域以外では、強磁場下においてプローブが試料表面に接近することがないので、プローブによる試料の磁気構造の破壊は避けられる。   In this way, the probe does not approach the sample surface under a strong magnetic field except in a predetermined specific region, so that destruction of the magnetic structure of the sample by the probe can be avoided.

この出願の発明による走査方法の具体的な手順の例を以下に述べる。
(1)零磁場下においてタッピングモードによりプローブを横方向に走査し1ライン分の試料の形状像を得る。その形状像のデータは、たとえばパーソナルコンピュータ等の情報処理装置に内蔵あるいは外付けされた情報記憶手段に記憶する。そして、プローブの位置を縦方向に移動し、この手順を繰り返すことにより、2次元の像としての形状像が得られる(図4(a))。ここで、必要であれば通常のトレースモードにより試料の形状像と磁気像とを得るようにしてもよい。
(2)次に、外部磁場を目的の値になるまで掃引する。この間、プローブは試料表面から離れたところに保持し、試料の磁気構造に影響を与えないようにする。
(3)次に、試料において予め定めてあった特定の領域(磁気的測定の走査の範囲外の領域)に対して、強磁場下でプローブをタッピングモードで走査し、(1)と同様にして形状像を得る(図4(b))。
(4)(1)と(3)とで得られた形状像を比較することにより、プローブの位置を校正する。
(5)(1)で記憶させておいた形状像のデータに基づき、試料表面から所定の高さhにプローブを保持しつつ横方向に1ライン走査し、1ライン分の磁気像を得る。そして、プローブの位置を縦方向に移動し、この手順を繰り返すことにより、2次元の像としての磁気像が得られる(図4(d))。この間、適宜(3)〜(4)の手順を実行し、プローブの位置の校正を行う。上記hの値は試料の種類や測定量によっても異なるが、通常、10〜100nm程度である。上記hの値はプローブの構造や試料の磁気的構造の大きさに依存して最適な値は変化するので、予備的な実験により適切な値を決定することが望ましい。また、走査するラインの間隔の典型的な値は、たとえば、1μm×1μmの画像を得るときで1〜4nm、5μm×5μmの画像を得るときで5〜20nmである。
(6)必要に応じて(たとえば、複数の磁場の値に変えて測定を行いたい場合等には)(2)〜(5)の手順を繰り返す。
An example of a specific procedure of the scanning method according to the invention of this application will be described below.
(1) The probe is laterally scanned in a tapping mode under a zero magnetic field to obtain a sample shape image for one line. The shape image data is stored in an information storage means built in or externally attached to an information processing apparatus such as a personal computer. Then, by moving the position of the probe in the vertical direction and repeating this procedure, a shape image as a two-dimensional image is obtained (FIG. 4A). Here, if necessary, a shape image and a magnetic image of the sample may be obtained by a normal trace mode.
(2) Next, the external magnetic field is swept until it reaches a target value. During this time, the probe is held away from the sample surface so as not to affect the magnetic structure of the sample.
(3) Next, the probe is scanned in a tapping mode under a strong magnetic field with respect to a predetermined region (region outside the scanning range of magnetic measurement) in the sample, as in (1). To obtain a shape image (FIG. 4B).
(4) The probe position is calibrated by comparing the shape images obtained in (1) and (3).
(5) Based on the shape image data stored in (1), one line is scanned in the horizontal direction while holding the probe at a predetermined height h from the sample surface to obtain a magnetic image for one line. Then, by moving the position of the probe in the vertical direction and repeating this procedure, a magnetic image as a two-dimensional image is obtained (FIG. 4D). During this time, the procedures (3) to (4) are appropriately executed to calibrate the position of the probe. The value of h varies depending on the type of sample and the amount of measurement, but is usually about 10 to 100 nm. The optimum value of h varies depending on the structure of the probe and the size of the magnetic structure of the sample. Therefore, it is desirable to determine an appropriate value through preliminary experiments. A typical value of the interval between scanning lines is, for example, 1 to 4 nm when an image of 1 μm × 1 μm is obtained, and 5 to 20 nm when an image of 5 μm × 5 μm is obtained.
(6) The steps (2) to (5) are repeated as necessary (for example, when measurement is performed by changing to a plurality of magnetic field values).

図3に示したものと同様の実験をこの出願の発明による走査方法を用いて行い、両者を比較した。記録磁化に由来する信号の強度を磁場の関数として示したのが図5である。   An experiment similar to that shown in FIG. 3 was performed using the scanning method according to the invention of this application, and the two were compared. FIG. 5 shows the intensity of the signal derived from the recording magnetization as a function of the magnetic field.

従来の走査方法で行った実験では、記録磁化は0.6Tの磁場で急激に減少し、0.7Tの磁場ではほぼ完全に消失しているのに対し、この出願の発明による走査方法を用いて行った実験では、記録磁化は0.8Tの磁場でも消失していないことがわかる。この結果は、従来の走査方法ではプローブの磁化により試料の磁気構造が破壊されていることを示唆するものである。また、通常のトレースモードでは、強磁場下では正確な磁気的な測定は行えないことがわかると同時に、この出願の発明による走査方法の有効性が実証された。   In the experiment conducted with the conventional scanning method, the recording magnetization rapidly decreased with a magnetic field of 0.6 T and disappeared almost completely with a magnetic field of 0.7 T, whereas the scanning method according to the invention of this application was used. It can be seen that the recorded magnetization is not lost even in the magnetic field of 0.8 T. This result suggests that the magnetic structure of the sample is destroyed by the magnetization of the probe in the conventional scanning method. In addition, in the normal trace mode, it can be seen that accurate magnetic measurement cannot be performed under a strong magnetic field, and at the same time, the effectiveness of the scanning method according to the invention of this application has been demonstrated.

もちろん、この出願の発明は以上の実施形態ないし実施例に限定されるものではなく、細部については様々な態様が可能である。   Of course, the invention of this application is not limited to the above-described embodiments and examples, and various details are possible.

この出願の発明の実施例で用いた強磁場走査型プローブ顕微鏡装置の概要を模式的に示す図である。It is a figure which shows typically the outline | summary of the strong magnetic field scanning probe microscope apparatus used in the Example of invention of this application. 磁気力顕微鏡におけるトレースモードによる測定の説明図である。It is explanatory drawing of the measurement by the trace mode in a magnetic force microscope. 強磁場下における磁気像を通常のトレースモードで測定した従来方法の結果を示す図である。It is a figure which shows the result of the conventional method which measured the magnetic image in a strong magnetic field in normal trace mode. この出願の発明による走査方法の具体的な手順の例を示す図である。It is a figure which shows the example of the specific procedure of the scanning method by invention of this application. 図3に示したものと同様の実験をこの出願の発明による走査方法を用いて行って得られた、記録磁化に由来する信号の強度を磁場の関数として示した図である。It is the figure which showed the intensity | strength of the signal derived from recording magnetization obtained by performing the experiment similar to what was shown in FIG. 3 using the scanning method by this invention of this application as a function of a magnetic field.

符号の説明Explanation of symbols

1 走査型プローブ顕微鏡(SPM)ユニット
2 超伝導磁石
3 コイル容器
4 容器
5、6 GM冷凍機
7 多層プレート
DESCRIPTION OF SYMBOLS 1 Scanning probe microscope (SPM) unit 2 Superconducting magnet 3 Coil container 4 Container 5, 6 GM refrigerator 7 Multilayer plate

Claims (3)

走査型プローブ顕微鏡を用い、プローブを走査して強磁場下で試料の磁気的測定を行うためのプローブの走査方法であって、
零磁場下で前記試料の形状像の測定を行い、前記試料の形状像のデータを記憶しておき、
前記試料における磁気的測定の走査の範囲外に特定の領域を設定し、
その領域に対して前記プローブを走査して強磁場下で形状像の測定を行い、
前記強磁場下で得られた形状像と前記零磁場下で得た形状像とを比較し、
その結果に基づいて前記プローブの位置の補正をしつつ、且つ、
前記零磁場下での測定で得た形状像のデータをもとに、前記強磁場下で前記プローブを前記試料の表面から一定の距離に保つように制御して走査する
ことを特徴とする走査型プローブ顕微鏡における走査方法。
A probe scanning method for scanning a probe and performing magnetic measurement of a sample under a strong magnetic field using a scanning probe microscope,
Under zero magnetic field was measured shape image of the sample, stores the data of the topographic image of the sample,
Set the specific region outside the range of the scanning of magnetic measurements in the sample,
Perform measurement of the shape image in a strong magnetic field under by scanning the probe relative to the area,
Comparing the obtained shape image in the lower zero magnetic field and obtained shape image under the strong magnetic field,
While the correction of the position of the probe on the basis of the result, and,
Wherein based on the data of the resulting shape image measured under zero magnetic field, scanning, characterized in that control to be scanned to keep the probe under the strong magnetic field at a constant distance from the surface of the sample Scanning method in a scanning probe microscope.
試料を3次元方向に移動させるための圧電素子、プローブを先端に有するカンチレバー、及び前記カンチレバーの変位を検出するための変位検出手段を含む走査型プローブ顕微鏡ユニットと、
前記試料に強磁場を印加する超伝導磁石と、
零磁場下で行った前記試料の形状像のデータを記憶する記憶手段を有し、
前記試料における磁気的測定の走査の範囲外に特定の領域を設定し、その領域に対して前記プローブを走査して強磁場下で形状像の測定を行い、前記強磁場下で得られた形状像と前記零磁場下で得た形状像とを比較し、その結果に基づいて前記プローブの位置の補正を行い、且つ、前記零磁場下での測定で得た形状像のデータをもとに、前記強磁場下で前記プローブを前記試料表面から一定の距離に保つように、前記プローブの走査を制御する制御部
を備えることを特徴とする強磁場走査型プローブ顕微鏡装置。
A scanning probe microscope unit including a piezoelectric element for moving the sample in three-dimensional directions, the cantilever having a probe at the distal end, and a displacement detector for detecting displacement of the cantilever,
A superconducting magnet for applying a strong magnetic field to the sample,
A storage means for storing data of shapes image of said sample subjected under zero magnetic field,
Set the specific region outside the range of the scanning of magnetic measurements in the sample, was measured shape images in a strong magnetic field under by scanning the probe relative to the area, shape obtained under the strong magnetic field comparing the obtained shape image under an image with the zero magnetic field, so that corrects the position of the probe on the basis of, and, based on the data of the obtained shape image measured under the zero magnetic field , wherein the strong said probe so as to maintain a constant distance from the surface of the sample under a magnetic field, a strong magnetic field scanning probe microscope apparatus, characterized in that it comprises a control unit for controlling the scanning of said probe.
さらに、前記試料を加熱する加熱手段と前記試料を冷却する冷却手段の少なくともいずれかを有する請求項2記載の強磁場走査型プローブ顕微鏡装置。 Further, high magnetic field scanning probe microscope apparatus according to claim 2, further comprising at least one cooling means for cooling and heating means the sample for heating the sample.
JP2007139594A 2007-05-25 2007-05-25 Scanning method and high magnetic field scanning probe microscope apparatus in scanning probe microscope Expired - Fee Related JP5045902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139594A JP5045902B2 (en) 2007-05-25 2007-05-25 Scanning method and high magnetic field scanning probe microscope apparatus in scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139594A JP5045902B2 (en) 2007-05-25 2007-05-25 Scanning method and high magnetic field scanning probe microscope apparatus in scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2008292373A JP2008292373A (en) 2008-12-04
JP5045902B2 true JP5045902B2 (en) 2012-10-10

Family

ID=40167239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139594A Expired - Fee Related JP5045902B2 (en) 2007-05-25 2007-05-25 Scanning method and high magnetic field scanning probe microscope apparatus in scanning probe microscope

Country Status (1)

Country Link
JP (1) JP5045902B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063996A1 (en) 2007-11-15 2009-05-22 Seiko Epson Corporation Ink composition

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3070216B2 (en) * 1992-01-13 2000-07-31 株式会社日立製作所 Surface microscope and microscopic method
US5412980A (en) * 1992-08-07 1995-05-09 Digital Instruments, Inc. Tapping atomic force microscope
US5308974B1 (en) * 1992-11-30 1998-01-06 Digital Instr Inc Scanning probe microscope using stored data for vertical probe positioning
JP3398411B2 (en) * 1993-03-08 2003-04-21 セイコーインスツルメンツ株式会社 Magnetic force microscope
JPH09127222A (en) * 1995-10-31 1997-05-16 Sony Corp Measuring method for magnetization state
JPH1048302A (en) * 1996-07-31 1998-02-20 Fujitsu Ltd Magnetic-force microscope
US5918274A (en) * 1997-06-02 1999-06-29 International Business Machines Corporation Detecting fields with a single-pass, dual-amplitude-mode scanning force microscope
JP3799181B2 (en) * 1998-12-15 2006-07-19 日本電子株式会社 Scanning probe microscope
JP2001050885A (en) * 1999-08-10 2001-02-23 Natl Res Inst For Metals Scanning multi-probe microscope in magnetic field
JP2002107285A (en) * 2000-09-29 2002-04-10 Jeol Ltd Magnetic force microscope
JP3989704B2 (en) * 2001-10-03 2007-10-10 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope
JP2003344258A (en) * 2002-05-24 2003-12-03 Japan Science & Technology Corp Device for impressing vertical magnetic field for magnetic force microscope
JP4068495B2 (en) * 2003-04-08 2008-03-26 エスアイアイ・ナノテクノロジー株式会社 Scanning probe microscope
JP2006017557A (en) * 2004-06-30 2006-01-19 Japan Science & Technology Agency Method for analyzing coercive force distribution in vertical magnetic recording medium using magnetic force microscope and analyzer therefor

Also Published As

Publication number Publication date
JP2008292373A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
Moheimani Invited review article: Accurate and fast nanopositioning with piezoelectric tube scanners: Emerging trends and future challenges
Yamamoto et al. Scanning magnetoresistance microscopy
US7023204B2 (en) Magnetic imaging microscope test system and its application for characterization of read and write heads for magnetic recording
JP4769918B1 (en) Magnetic field observation apparatus and magnetic field observation method
US20100079908A1 (en) Determining A Magnetic Sample Characteristic Using A Magnetic Field From A Domain Wall
US5266897A (en) Magnetic field observation with tunneling microscopy
JP5592841B2 (en) Magnetic force microscope and magnetic field observation method using the same
Mitin et al. Scanning magnetoresistive microscopy: An advanced characterization tool for magnetic nanosystems
KR101346523B1 (en) Potential obtaining device, magnetic field microscope, inspection device and method of obtaining potential
US5375087A (en) Tunneling-stabilized magnetic reading and recording
JP3141555B2 (en) Scanning surface magnetic microscope
US6448766B1 (en) Method of imaging a magnetic field emanating from a surface using a conventional scanning force microscope
US8185968B2 (en) Magnetic head inspection method and magnetic head manufacturing method
JP5045902B2 (en) Scanning method and high magnetic field scanning probe microscope apparatus in scanning probe microscope
JP2007122823A (en) Measuring method of recorded magnetic field intensity distribution of magnetic head, its measuring device, and manufacturing method of magnetic head
JPH09218213A (en) Method and apparatus for observing considerably minute magnetic domain
JP3921414B2 (en) Magnetic body characteristic evaluation apparatus and characteristic evaluation method thereof
Krause et al. The influence of experimental parameters on contrast formation in magnetic force microscopy
Yaminsky et al. Magnetic force microscopy
JP4050194B2 (en) Magnetic field detection method, magnetic field detection device, and information storage
JPH10247118A (en) Microdamper and sensor, actuator and probe having the microdamper, and scanning probe microscope, machining device and information processor having the probe
JP2012053956A (en) Magnetic head element evaluation device and magnetic head element evaluation method
Cho Nanoscale ferroelectric information storage based on scanning nonlinear dielectric microscopy
JP4344812B2 (en) Scanning probe microscope and measurement method
JP2000020929A (en) Measuring device for magnetic head characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees