JP5043556B2 - Hydrogen gas sensor - Google Patents

Hydrogen gas sensor Download PDF

Info

Publication number
JP5043556B2
JP5043556B2 JP2007207871A JP2007207871A JP5043556B2 JP 5043556 B2 JP5043556 B2 JP 5043556B2 JP 2007207871 A JP2007207871 A JP 2007207871A JP 2007207871 A JP2007207871 A JP 2007207871A JP 5043556 B2 JP5043556 B2 JP 5043556B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
gas sensor
thermopile
catalyst layer
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007207871A
Other languages
Japanese (ja)
Other versions
JP2009042097A (en
Inventor
邦之 菱沼
宏之 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko NPC Corp
Original Assignee
Seiko NPC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko NPC Corp filed Critical Seiko NPC Corp
Priority to JP2007207871A priority Critical patent/JP5043556B2/en
Publication of JP2009042097A publication Critical patent/JP2009042097A/en
Application granted granted Critical
Publication of JP5043556B2 publication Critical patent/JP5043556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、水素ガスを検出する水素ガスセンサに関する。   The present invention relates to a hydrogen gas sensor that detects hydrogen gas.

従来の水素ガスセンサとしては、シリコン基板上に、熱電部材を設け、この熱電部材上に白金系の触媒材を設けた構成が知られている(特許文献1)。   As a conventional hydrogen gas sensor, a configuration in which a thermoelectric member is provided on a silicon substrate and a platinum-based catalyst material is provided on the thermoelectric member is known (Patent Document 1).

特開2004−163192号公報JP 2004-163192 A

ところが、上述の従来例では、熱容量が大きいため、検出すべき水素ガスの濃度が薄いと、熱電部材における発生温度差が少なく、出力電圧が小さくなってしまうという不都合がある。また、応答速度が数秒から数十秒と遅いため、危険防止用センサとしては十分に目的を達成できないという不都合がある。本発明は、このような不都合を解消した水素ガスセンサを提供することを目的とする。   However, in the above-described conventional example, since the heat capacity is large, if the concentration of hydrogen gas to be detected is low, there is a disadvantage that the generated temperature difference in the thermoelectric member is small and the output voltage becomes small. In addition, since the response speed is slow from several seconds to several tens of seconds, there is a disadvantage that the object cannot be sufficiently achieved as a danger prevention sensor. An object of this invention is to provide the hydrogen gas sensor which eliminated such an inconvenience.

本発明に係る水素ガスセンサは、シリコン基板表面のメンブレンに対応して前記シリコン基板にキャビティを形成し、前記メンブレン上にはサーモパイルを設け、前記サーモパイルは、その温接点部を前記キャビティの上方に対応位置するよう配置するとともに、その冷接点部を前記キャビティの外側に対応位置するよう配置し、前記温接点部を覆うように黒化させた白金による触媒層を形成したものである。   In the hydrogen gas sensor according to the present invention, a cavity is formed in the silicon substrate corresponding to the membrane on the surface of the silicon substrate, and a thermopile is provided on the membrane, and the thermopile has a hot junction corresponding to the upper side of the cavity. In addition to being arranged so as to be located, the cold junction part is arranged so as to correspond to the outside of the cavity, and a blackened catalyst layer made of platinum is formed so as to cover the warm junction part.

上述の黒化させた白金触媒層は蒸着により形成すると好適である。また、上述のキャビティはシリコン基板表面側から形成して、有底状にすると好適であり、この際、白金触媒層を黒化させた白金で形成するとより好適である。 The blackened platinum catalyst layer is preferably formed by vapor deposition. Further, the above-mentioned cavity is preferably formed from the silicon substrate surface side and has a bottomed shape, and at this time, it is more preferable to form the platinum catalyst layer from blackened platinum.

さらに、上述した各構成の水素ガスセンサを、サーモパイルの出力を増幅するアンプと同一の半導体チップ上に設けると好適である。   Furthermore, it is preferable that the hydrogen gas sensor having the above-described configuration is provided on the same semiconductor chip as the amplifier that amplifies the output of the thermopile.

白金触媒層を黒化させた白金で形成した構成においては、水素ガスセンサを周囲温度検出用の赤外線センサと同一の半導体チップ上や同一のケース内に設けると好適である。   In the configuration in which the platinum catalyst layer is made of blackened platinum, it is preferable that the hydrogen gas sensor is provided on the same semiconductor chip or in the same case as the infrared sensor for detecting the ambient temperature.

本発明に係る水素ガスセンサによれば、次のような各効果を奏する。第1に、サーモパイルの熱容量が小さくなり、熱電変換の反応が敏感となる。第2に、白金触媒層を黒化させた白金で形成しているので、触媒としての表面積が増え、熱電変換の反応がより敏感になって、希薄な水素ガスの検出が容易となる。第3に、キャビティをシリコン基板表面側から形成した場合は、メンブレンを薄くできるので、高速応答、高感度が可能となり小型化も可能となる。また、キャビティを有底状に形成した場合は、半導体チップ裏面への制約がないため、ダイボンド(チップ接着)はふつうの半導体チップと同じ扱いが可能となる。第4に、水素ガスセンサを、サーモパイルの出力を増幅するアンプと同一の半導体チップ上に設けた場合は、外的要因によるノイズの影響を最小限に抑えることができるので、誤作動が減るほか、微少出力の検出が可能になり、低濃度ガスであっても高速応答検知が可能となる。第5に、水素ガスセンサを、周囲温度検出用の赤外線センサと同一の半導体チップ上に設けた場合は、周囲温度が水素ガスセンサの出力に与える影響を補正することができる。第6に、水素ガスセンサを、周囲温度検出用の赤外線センサと同一ケース内に配置した場合にも、周囲温度が水素ガスセンサの出力に与える影響を補正することができる。   The hydrogen gas sensor according to the present invention has the following effects. First, the heat capacity of the thermopile is reduced and the thermoelectric conversion reaction becomes sensitive. Second, since the platinum catalyst layer is made of blackened platinum, the surface area as a catalyst increases, the reaction of thermoelectric conversion becomes more sensitive, and the detection of diluted hydrogen gas is facilitated. Third, when the cavity is formed from the surface side of the silicon substrate, the membrane can be thinned, so that high-speed response and high sensitivity are possible, and miniaturization is also possible. Further, when the cavity is formed in a bottomed shape, since there is no restriction on the back surface of the semiconductor chip, die bonding (chip bonding) can be handled in the same way as a normal semiconductor chip. Fourth, when the hydrogen gas sensor is installed on the same semiconductor chip as the amplifier that amplifies the thermopile output, the influence of noise due to external factors can be minimized, so malfunctions are reduced. A minute output can be detected, and a high-speed response can be detected even with a low concentration gas. Fifth, when the hydrogen gas sensor is provided on the same semiconductor chip as the infrared sensor for detecting the ambient temperature, the influence of the ambient temperature on the output of the hydrogen gas sensor can be corrected. Sixth, even when the hydrogen gas sensor is arranged in the same case as the infrared sensor for detecting the ambient temperature, the influence of the ambient temperature on the output of the hydrogen gas sensor can be corrected.

以下、本発明の好適な実施形態を図1〜図4に基づいて説明する。ここにおいて、図1は水素ガスセンサの基本構造を概略的に示す断面図、図2は熱電対の配置状態を示す平面図、図3は水素ガスセンサとアンプを同一ベース上に設けた実施形態を示す概略的な平面図、図4は水素ガスセンサと周囲温度検出用赤外線センサを同一ベース上に設けた実施形態を示す概略的な断面図である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to FIGS. Here, FIG. 1 is a sectional view schematically showing the basic structure of a hydrogen gas sensor, FIG. 2 is a plan view showing an arrangement state of thermocouples, and FIG. 3 shows an embodiment in which a hydrogen gas sensor and an amplifier are provided on the same base. FIG. 4 is a schematic plan view, and FIG. 4 is a schematic sectional view showing an embodiment in which a hydrogen gas sensor and an ambient temperature detecting infrared sensor are provided on the same base.

図1及び図2に示すように、水素ガスセンサ1のシリコン基板2には、表面に、例えば、シリコン窒化膜をCVD法により形成してなるメンブレン3を設け、このメンブレン3に対応して、メンブレン3に設けたエッチング孔(図示せず)からエッチング加工してなる有底状のキャビティ4を設けている。メンブレン3の上には、異種の導電材料からなる熱電対5を複数個直列に接続した構造のサーモパイル6を設けている。   As shown in FIGS. 1 and 2, the silicon substrate 2 of the hydrogen gas sensor 1 is provided with a membrane 3 formed on the surface by, for example, a silicon nitride film by a CVD method. A bottomed cavity 4 formed by etching from an etching hole (not shown) provided in 3 is provided. A thermopile 6 having a structure in which a plurality of thermocouples 5 made of different kinds of conductive materials are connected in series is provided on the membrane 3.

サーモパイル6の温接点部7は、シリコン基板2の中心部近傍に配置し、サーモパイル6の冷接点部8は、シリコン基板2の周辺部に配置する。すなわち、前記温接点部7はキャビティ4及びメンブレン3の上方に対応位置し、前記冷接点部8はキャビティ4及びメンブレン3の外側に対応位置している。サーモパイル6は、例えば、SOG(Spin On Glass)などの平坦化絶縁膜9で覆われ、この平坦化絶縁膜9の上には、サーモパイル6の温接点部7には対応するが、冷接点部8には対応しないようにして、白金を黒化し、真空蒸着してなる白金触媒層10を、下層膜11を介して設けている。そして、この白金触媒層10となる白金黒はメッキにより形成することも可能である。   The hot contact portion 7 of the thermopile 6 is disposed in the vicinity of the center portion of the silicon substrate 2, and the cold contact portion 8 of the thermopile 6 is disposed in the peripheral portion of the silicon substrate 2. That is, the hot contact portion 7 is located above the cavity 4 and the membrane 3, and the cold contact portion 8 is located outside the cavity 4 and the membrane 3. The thermopile 6 is covered with a flattening insulating film 9 such as SOG (Spin On Glass), for example, and on the flattening insulating film 9, it corresponds to the hot junction part 7 of the thermopile 6, but the cold junction part 8, a platinum catalyst layer 10 formed by blackening platinum and vacuum-depositing it is provided via a lower layer film 11 so as not to correspond to FIG. And the platinum black used as this platinum catalyst layer 10 can also be formed by plating.

また、図1に示すように、メンブレン3上にパターニングされたポリシリコン膜12を形成し、このポリシリコン膜12を、例えば、BPSG(Boron-doped Phospho-Silicate Glass)膜などの絶縁膜13で被覆し、絶縁膜13の表面は平坦化される。そして、平坦化された絶縁膜13上にアルミニウム膜14を形成し、このアルミニウム膜14と前記ポリシリコン膜12とを接合して複数の熱電対5の直列接続によるサーモパイル6を構成する。さらに、アルミニウム膜14は上述の平坦化絶縁膜9により被覆される。上述ではアルミニウム膜とポリシリコン膜とを接合してサーモパイルを形成したが、これに限らず、n型ポリシリコンとp型ポリシリコンとの接合によりサーモパイルを形成することもできる。   Further, as shown in FIG. 1, a patterned polysilicon film 12 is formed on the membrane 3, and this polysilicon film 12 is formed of an insulating film 13 such as a BPSG (Boron-doped Phospho-Silicate Glass) film, for example. The surface of the insulating film 13 is flattened. Then, an aluminum film 14 is formed on the planarized insulating film 13, and the aluminum film 14 and the polysilicon film 12 are joined to form a thermopile 6 by connecting a plurality of thermocouples 5 in series. Further, the aluminum film 14 is covered with the planarization insulating film 9 described above. In the above description, the thermopile is formed by bonding the aluminum film and the polysilicon film. However, the present invention is not limited to this, and the thermopile can be formed by bonding n-type polysilicon and p-type polysilicon.

図2に示すように、冷接点部8は、ヒートシンクの作用をするシリコン基板2上に配置されており、白金触媒層10に覆われていないので、白金触媒層10が水素ガスに接触しても温度は変化しにくいが、温接点部7は、シリコン基板2から浮いたキャビティ4及びメンブレン3上に形成されているので、熱容量が小さく、白金触媒層10に覆われているので、白金触媒層10が水素ガスに接触すると、敏感に温度が上昇する。   As shown in FIG. 2, the cold junction 8 is disposed on the silicon substrate 2 that acts as a heat sink and is not covered with the platinum catalyst layer 10, so that the platinum catalyst layer 10 comes into contact with hydrogen gas. Although the temperature hardly changes, the hot contact portion 7 is formed on the cavity 4 and the membrane 3 floating from the silicon substrate 2, and therefore has a small heat capacity and is covered with the platinum catalyst layer 10. When layer 10 comes into contact with hydrogen gas, the temperature rises sensitively.

白金触媒層10が水素ガスに接触すると、熱電対5の温接点部7の温度が上昇し、冷接点部8との間に温度差を生じることによって、各熱電対5に熱起電力が生じる。これら熱電対5の熱起電力が足し合わされ、サーモパイル引き出し電極15から出力を取り出すことができる。そして、この出力を検出することで、水素ガスの発生を検知することができる。   When the platinum catalyst layer 10 comes into contact with hydrogen gas, the temperature of the hot junction portion 7 of the thermocouple 5 rises, and a temperature difference is generated between the thermocouple 5 and the cold junction portion 8, thereby generating a thermoelectromotive force in each thermocouple 5. . The thermoelectromotive forces of these thermocouples 5 are added, and the output can be taken out from the thermopile extraction electrode 15. By detecting this output, the generation of hydrogen gas can be detected.

図3は本発明の別の実施形態を示すもので、上述した水素ガスセンサ1とアンプ22を同一のベース21上に配置し、このアンプ22の入力端に、水素ガスセンサのサーモパイル引き出し電極15を接続したものである。この構成によると、サーモパイル引き出し電極15からの出力をアンプ22で増幅して取り出すことができるので、水素ガスが低濃度で、サーモパイル5の出力が微少の場合でも、高速応答検知が可能となる。また、同一のベース21上に水素ガスセンサ1とアンプ22を設けたので、外的要因によるノイズの影響を抑えることができ、ノイズによる誤動作も減少する。なお、前記水素ガスセンサ1と前記アンプ22を同一の半導体チップ上に設けると、外的要因によるノイズの影響の抑制効果、及びノイズによる誤動作の減少効果を、さらに向上させることができる。   FIG. 3 shows another embodiment of the present invention. The hydrogen gas sensor 1 and the amplifier 22 described above are arranged on the same base 21, and the thermopile lead electrode 15 of the hydrogen gas sensor is connected to the input end of the amplifier 22. It is a thing. According to this configuration, since the output from the thermopile extraction electrode 15 can be amplified and extracted by the amplifier 22, high-speed response detection can be performed even when the hydrogen gas has a low concentration and the output of the thermopile 5 is very small. In addition, since the hydrogen gas sensor 1 and the amplifier 22 are provided on the same base 21, the influence of noise due to external factors can be suppressed, and malfunction due to noise is reduced. If the hydrogen gas sensor 1 and the amplifier 22 are provided on the same semiconductor chip, the effect of suppressing the influence of noise due to external factors and the effect of reducing malfunction caused by noise can be further improved.

図4は本発明のさらに別の実施形態を示すもので、上述した水素ガスセンサ1と周囲温度検出用の金黒膜赤外線センサ32を同一のベース31上に配置し、同一のケース34内に設けたものである。前記金黒膜赤外線センサ32の構成は、触媒層が黒化した金を真空蒸着してなる金触媒層33である点を除き、水素ガスセンサ1と同一構成であるので、その詳細な説明は省略する。   FIG. 4 shows still another embodiment of the present invention, in which the hydrogen gas sensor 1 and the gold-black film infrared sensor 32 for detecting ambient temperature are arranged on the same base 31 and provided in the same case 34. It is a thing. The configuration of the gold black film infrared sensor 32 is the same as that of the hydrogen gas sensor 1 except that the catalyst layer is a gold catalyst layer 33 formed by vacuum vapor deposition of blackened gold. To do.

ケース34には、水素ガスを導入するための通気口35を設ける一方、その内部には、白金触媒層10及び金触媒層33に赤外線などが直接照射しないように、遮光板36を設け、この遮光板36にも通気口37を設けている。なお、図4中、38はモールド部材、39,40はそれぞれ各センサ1,32の出力端子である。   The case 34 is provided with a vent 35 for introducing hydrogen gas, and a light shielding plate 36 is provided in the case 34 so that infrared rays or the like are not directly irradiated onto the platinum catalyst layer 10 and the gold catalyst layer 33. The light shielding plate 36 is also provided with a vent 37. In FIG. 4, 38 is a mold member, and 39 and 40 are output terminals of the sensors 1 and 32, respectively.

水素ガスセンサ1は、白金触媒層10が周囲温度による赤外線に対しても敏感になり、水素ガスセンサ1の出力が、赤外線の影響を受けて、水素ガスの検出出力分のみによるものではなくなるが、本実施形態においては、周囲温度を金黒膜赤外線センサ32で検出することにより、水素ガスセンサ1の赤外線による検出出力分をキャンセルして、水素ガスセンサ1の出力を補正し、赤外線による影響を排除することができる。   In the hydrogen gas sensor 1, the platinum catalyst layer 10 becomes sensitive to infrared rays due to the ambient temperature, and the output of the hydrogen gas sensor 1 is influenced by the infrared rays and is not only due to the detected output of the hydrogen gas. In the embodiment, by detecting the ambient temperature with the gold black film infrared sensor 32, the detection output by the infrared of the hydrogen gas sensor 1 is canceled, the output of the hydrogen gas sensor 1 is corrected, and the influence of the infrared is eliminated. Can do.

また、この水素ガスセンサ1と金黒膜赤外線センサ32とは、小型化という点では、同一シリコン基板2上に設けるのがより好ましいが、上述のように、これら二つのセンサ1,32を別々の半導体チップに形成し、それらを同一ベース31上で同一ケース34内に配置しても所定の効果を得ることができる。   The hydrogen gas sensor 1 and the gold black film infrared sensor 32 are more preferably provided on the same silicon substrate 2 in terms of miniaturization. However, as described above, the two sensors 1 and 32 are separately provided. Even if they are formed on a semiconductor chip and placed in the same case 34 on the same base 31, a predetermined effect can be obtained.

また、周囲温度検出用のセンサは、ケース自体の温度変化を精度良く検出することが目的であるため、金黒膜を用いた金黒膜赤外線センサに限らず他の赤外線センサを用いることもできる。すなわち、本発明の水素ガスセンサは黒化した白金触媒層を用いているため、水素ガスだけでなく熱の変化(例えば、ケース自体の温度変化)へも敏感に反応するので、その熱による出力変化を補正することが周囲温度検出用センサを設ける目的であり、それが達成できるセンサであればよい。そして、周囲温度検出用センサとして、本願発明の水素ガスセンサと同じ構成のものを用いることも可能であるが、その場合、周囲温度検出用センサの方には水素が侵入しないように密封するなどケースの構造等を変更すればよい。   Further, since the sensor for detecting the ambient temperature is intended to accurately detect the temperature change of the case itself, other infrared sensors can be used in addition to the gold black film infrared sensor using the gold black film. . That is, since the hydrogen gas sensor of the present invention uses a blackened platinum catalyst layer, it reacts sensitively not only to hydrogen gas but also to heat changes (for example, the temperature change of the case itself), so the output change due to that heat. Is the purpose of providing a sensor for detecting the ambient temperature, and any sensor that can achieve this is sufficient. And it is possible to use the same configuration as the hydrogen gas sensor of the present invention as the ambient temperature detection sensor. In that case, the ambient temperature detection sensor is sealed to prevent hydrogen from entering. What is necessary is just to change the structure.

本発明に係る水素ガスセンサの基本構造を概略的に示す断面図。1 is a cross-sectional view schematically showing a basic structure of a hydrogen gas sensor according to the present invention. 同じく熱電対の配置状態を示す平面図。The top view which similarly shows the arrangement | positioning state of a thermocouple. 水素ガスセンサとアンプを同一ベース上に設けた実施形態を示す概略的な平面図。1 is a schematic plan view showing an embodiment in which a hydrogen gas sensor and an amplifier are provided on the same base. 水素ガスセンサと周囲温度検出用赤外線センサを同一ベース上に設けた実施形態を示す概略的な断面図。1 is a schematic cross-sectional view showing an embodiment in which a hydrogen gas sensor and an ambient temperature detection infrared sensor are provided on the same base.

符号の説明Explanation of symbols

1 水素ガスセンサ
2 シリコン基板
3 メンブレン
4 キャビティ
5 熱電対
6 サーモパイル
7 温接点部
8 冷接点部
9 平坦化絶縁層
10 白金触媒層
11 下層膜
12 ポリシリコン膜
13 絶縁膜
14 アルミニウム膜
15 サーモパイル引き出し電極
21,31 ベース
22 アンプ
34 ケース
35,37 通気口
36 遮光板
DESCRIPTION OF SYMBOLS 1 Hydrogen gas sensor 2 Silicon substrate 3 Membrane 4 Cavity 5 Thermocouple 6 Thermopile 7 Hot contact part 8 Cold contact part 9 Planarization insulating layer 10 Platinum catalyst layer 11 Lower layer film 12 Polysilicon film 13 Insulating film 14 Aluminum film 15 Thermopile extraction electrode 21 , 31 Base 22 Amplifier 34 Case 35, 37 Vent 36 Light-shielding plate

Claims (5)

シリコン基板上に形成したメンブレンと、
このメンブレンに設けたエッチング孔から前記シリコン基板をエッチング加工して形成された有底状のキャビティと、
温接点部前記キャビティの上方に対応位置し、冷接点部前記キャビティの外側に対応位置して、前記メンブレン上に形成されたサーモパイルと、
このサーモパイル上に形成された絶縁膜と、
この絶縁膜の上に前記サーモパイルの温接点部には対応する一方、冷接点部には対応しないように下層膜を介して設けられた黒化させた白金による触媒層を、
有することを特徴とする水素ガスセンサ。
And a membrane formed on a silicon substrate,
A bottomed cavity formed by etching the silicon substrate from an etching hole provided in the membrane ;
The hot junction portion is located above the cavity , the cold junction portion is located outside the cavity, and a thermopile formed on the membrane;
An insulating film formed on the thermopile;
On this insulating film, a catalyst layer made of blackened platinum provided via a lower layer so as not to correspond to the cold junction part while corresponding to the hot junction part of the thermopile ,
A hydrogen gas sensor comprising:
前記黒化させた白金触媒層は蒸着により形成したことを特徴とする請求項1記載の水素ガスセンサ。 The hydrogen gas sensor according to claim 1, wherein the blackened platinum catalyst layer is formed by vapor deposition. 請求項1または2に記載の水素ガスセンサをサーモパイルの出力を増幅するアンプと同一の半導体チップ上に設けたことを特徴とする水素ガスセンサ。 3. A hydrogen gas sensor according to claim 1, wherein the hydrogen gas sensor according to claim 1 is provided on the same semiconductor chip as an amplifier that amplifies the output of the thermopile . 請求項1記載の水素ガスセンサを周囲温度検出用の赤外線センサと同一の半導体チップ上に設けたことを特徴とする水素ガスセンサ。 Hydrogen gas sensor, characterized in that the hydrogen gas sensor of claim 1 Symbol placement provided on the same semiconductor chip and the infrared sensor for the ambient temperature detected. 請求項1記載の水素ガスセンサを周囲温度検出用の赤外線センサと同一のケース内に設けたことを特徴とする水素ガスセンサ。 A hydrogen gas sensor according to claim 1, wherein the hydrogen gas sensor is provided in the same case as the infrared sensor for detecting ambient temperature.
JP2007207871A 2007-08-09 2007-08-09 Hydrogen gas sensor Active JP5043556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007207871A JP5043556B2 (en) 2007-08-09 2007-08-09 Hydrogen gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007207871A JP5043556B2 (en) 2007-08-09 2007-08-09 Hydrogen gas sensor

Publications (2)

Publication Number Publication Date
JP2009042097A JP2009042097A (en) 2009-02-26
JP5043556B2 true JP5043556B2 (en) 2012-10-10

Family

ID=40442980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007207871A Active JP5043556B2 (en) 2007-08-09 2007-08-09 Hydrogen gas sensor

Country Status (1)

Country Link
JP (1) JP5043556B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173007A (en) * 2011-02-17 2012-09-10 Metawater Co Ltd Thermocouple, thermocouple equipped member and ozone concentration meter using the same
US10690606B2 (en) 2015-09-16 2020-06-23 Koa Corporation Hydrogen sensor
WO2017171214A1 (en) * 2016-03-31 2017-10-05 한양대학교 에리카산학협력단 Thermochemical gas sensor using thermoelectric thin film and method for manufacturing same
EP4191232A1 (en) * 2019-08-22 2023-06-07 Infineon Technologies AG Detector cell for a photoacoustic gas sensor and photoacoustic gas sensor
CN115876835B (en) * 2022-12-08 2023-09-08 中国科学院上海微系统与信息技术研究所 Differential calorimetric MEMS gas sensor and gas detection method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212750A (en) * 1985-03-18 1986-09-20 Seiko Instr & Electronics Ltd Biothermo-chip sensor
JPH04184247A (en) * 1990-11-19 1992-07-01 Mazda Motor Corp Apparatus for detecting dewing
US5265417A (en) * 1993-01-07 1993-11-30 Ford Motor Company Method and apparatus for determining the hydrocarbon conversion efficiency of a catalytic converter
JP3078485B2 (en) * 1995-10-12 2000-08-21 リンナイ株式会社 Contact combustion type gas sensor
JP3765951B2 (en) * 1999-09-29 2006-04-12 矢崎総業株式会社 Contact combustion type gas sensor, gas detection method and apparatus
JP4908778B2 (en) * 2004-06-30 2012-04-04 キヤノン株式会社 Method for producing catalyst layer of polymer electrolyte fuel cell and method for producing polymer electrolyte fuel cell
JP4896515B2 (en) * 2005-11-28 2012-03-14 セイコーNpc株式会社 Infrared detector

Also Published As

Publication number Publication date
JP2009042097A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5842118B2 (en) Infrared sensor
US10551246B2 (en) IR detector array device
JP5043556B2 (en) Hydrogen gas sensor
US8802476B2 (en) Semiconductor thermocouple and sensor
JP2010237118A (en) Infrared array sensor
JP7394060B2 (en) infrared device
JP5261102B2 (en) Infrared sensor and infrared sensor module
JP2006300623A (en) Infrared sensor
JP2007132865A (en) Thermopile and infrared sensor using it
JP4581215B2 (en) Manufacturing method of semiconductor device having thin film sensing section
JP5564681B2 (en) Infrared sensor
JP2011203226A (en) Infrared sensor module
JP4508495B2 (en) Infrared detector
JP5428535B2 (en) Infrared imaging device and manufacturing method thereof
US10529876B2 (en) Infrared sensor and manufacturing method thereof
KR20150108058A (en) The MEMS thermopile sensor and Method of fabricating the same
JP2012230010A (en) Infrared sensor
JP2012173156A (en) Infrared sensor module
JP5081116B2 (en) Infrared sensor and infrared sensor module
JPH046424A (en) Infrared sensor
JP2003254824A (en) Infrared sensor device, non-contacting temperature measuring instrument, and non-contacting clinical thermometer
JP2011203221A (en) Infrared sensor module
JP3733838B2 (en) Infrared detector and thermometer
JP5261447B2 (en) Infrared sensor
JP2006292382A (en) Infrared sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5043556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250