JP5261447B2 - Infrared sensor - Google Patents
Infrared sensor Download PDFInfo
- Publication number
- JP5261447B2 JP5261447B2 JP2010178100A JP2010178100A JP5261447B2 JP 5261447 B2 JP5261447 B2 JP 5261447B2 JP 2010178100 A JP2010178100 A JP 2010178100A JP 2010178100 A JP2010178100 A JP 2010178100A JP 5261447 B2 JP5261447 B2 JP 5261447B2
- Authority
- JP
- Japan
- Prior art keywords
- polysilicon layer
- infrared
- type
- silicon substrate
- infrared sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 161
- 229920005591 polysilicon Polymers 0.000 claims abstract description 160
- 239000000758 substrate Substances 0.000 claims abstract description 95
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 54
- 239000010703 silicon Substances 0.000 claims abstract description 54
- 238000010521 absorption reaction Methods 0.000 claims abstract description 37
- 239000010409 thin film Substances 0.000 claims abstract description 29
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000005530 etching Methods 0.000 abstract description 22
- 238000001514 detection method Methods 0.000 abstract description 11
- 239000010410 layer Substances 0.000 description 168
- 239000010408 film Substances 0.000 description 117
- 238000000034 method Methods 0.000 description 26
- 239000011229 interlayer Substances 0.000 description 23
- 239000012535 impurity Substances 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 229910052814 silicon oxide Inorganic materials 0.000 description 19
- 238000000059 patterning Methods 0.000 description 15
- 229910052581 Si3N4 Inorganic materials 0.000 description 14
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 14
- 238000002161 passivation Methods 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 6
- 229910018125 Al-Si Inorganic materials 0.000 description 5
- 229910018520 Al—Si Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
本発明は、赤外線センサに関するものである。 The present invention relates to an infrared sensor.
従来から、例えば人体から放射される赤外線(波長が8〜12μm程度の赤外線)を検出可能な赤外線センサとして、マイクロマシニング技術などを利用して形成され、赤外線を吸収して熱に変換する赤外線吸収部と、赤外線吸収部の温度変化を検出する感温部とを備えた赤外線センサが提案されている(例えば、特許文献1,2参照)。
Conventionally, for example, as an infrared sensor capable of detecting infrared rays emitted from the human body (infrared rays having a wavelength of about 8 to 12 μm), infrared absorption that is formed using micromachining technology and absorbs infrared rays and converts them into heat. An infrared sensor including a temperature sensor and a temperature sensing unit that detects a temperature change of the infrared absorption unit has been proposed (see, for example,
ここにおいて、上記特許文献1に開示された赤外線センサは、図13に示すように、シリコン基板1a’と当該シリコン基板1a’の一表面上に形成されたシリコン窒化膜1b’とで構成されるベース基板1’と、ベース基板1’におけるシリコン基板1a’の上記一表面に空洞11’を設けることにより形成され上記シリコン窒化膜1b’の一部からなるダイヤフラム状の赤外線吸収部33’と、赤外線吸収部33’の温度変化を検出する熱電対型の感温部30’と、ベース基板1’の上記一表面側で感温部30’および赤外線吸収部33’の露出部位を覆うように形成されたシリコン窒化膜からなるパッシベーション膜(保護膜)60’とを備え、感温部30’が、ベース基板1’と赤外線吸収部33’とに跨って形成されたp形ポリシリコン層35およびn形ポリシリコン層34と、赤外線吸収部33’の赤外線入射面側(図13(b)における上面側)でp形ポリシリコン層35とn形ポリシリコン層34とを電気的に接合した接続部36とで構成される複数の熱電対が直列接続されたサーモパイルにより構成されている。ここで、感温部30’を構成するサーモパイルは、赤外線吸収部33’上に配置されたp形ポリシリコン層35の一端部およびn形ポリシリコン層34の一端部と、対をなすp形ポリシリコン層35とn形ポリシリコン層34との上記一端部同士を接合した接続部36とで温接点を構成し、ベース基板1’上に配置され互いに異なる熱電対のp形ポリシリコン層35の他端部およびn形ポリシリコン層34の他端部と、これら他端部同士を接合した接続部37とで冷接点を構成している。
Here, as shown in FIG. 13, the infrared sensor disclosed in
なお、上記特許文献1に開示された赤外線センサは、赤外線吸収部33’、感温部30’の一部、パッシベーション膜60’の積層構造を有する薄膜構造部と感温部30’の出力を読み出すためのMOSトランジスタとを有する画素が2次元アレイ状に配列されている。
Note that the infrared sensor disclosed in the above-mentioned
また、上記特許文献2に開示された赤外線センサは、図14に示すように、シリコン基板1a”と当該シリコン基板1a”の一表面上に形成された絶縁膜1b”とで構成されるベース基板1”と、ベース基板1”の上記一表面から離間して配置された感温部30”と、感温部30”とベース基板1”とを熱絶縁する断熱部90”とを備え、感温部30”が、不純物濃度が1017〜1018cm−3のポリシリコン層301と、当該ポリシリコン層301の厚み方向の両側に形成され不純物濃度が1018〜1020cm−3の高濃度ポリシリコン層302,303と、各高濃度ポリシリコン層302,303それぞれにおけるポリシリコン層301側とは反対側に形成された電極304,305とを有するボロメータ型の赤外線検出素子により構成されている。ここで、断熱部90”は、ベース基板1”の上記一表面から離間して配置されベース基板1”側とは反対側に感温部30”が積層される支持部90a”と、支持部90a”の側縁から延長された2つの脚部90b”,90b”とで構成されており、支持部90a”とベース基板1”の上記一表面との間に間隙100”が形成され、感温部30”の電極304,305に接続された金属配線314,315が各脚部90b”,90b”それぞれに沿って形成されている。
Further, as shown in FIG. 14, the infrared sensor disclosed in
図14に示した構成の赤外線センサでは、高濃度ポリシリコン層302,303の不純物濃度が1018〜1020cm−3の範囲で適宜設定されているので、検出対象の赤外線の吸収率を高くしつつ赤外線の反射を抑制することができる。
In the infrared sensor having the configuration shown in FIG. 14, since the impurity concentration of the high-
また、図14に示した構成の赤外線センサは、断熱部90”の支持部90a”が、赤外線の吸収率の高い絶縁材料により形成されており、赤外線を吸収する赤外線吸収部を兼ねているので、感度の向上を図れる。
Further, in the infrared sensor having the configuration shown in FIG. 14, the
なお、上記特許文献2に開示された赤外線センサは、感温部30”と断熱部90”と感温部30”の出力を読み出すためのMOSトランジスタとを有する画素が2次元アレイ状に配列されている。
Note that the infrared sensor disclosed in
ところで、図14に示した構成の赤外線センサでは、断熱部90”における各脚部90b”,90b”の全長を長くして各脚部90b”,90b”の熱コンダクタンスを小さくする(熱抵抗を大きくする)ために各脚部90b”,90b”の厚さ寸法を小さくすることが考えられ、応答速度の高速化を図るために支持部90a”の厚さ寸法を小さくすることが考えられるが、赤外線吸収部を兼ねている支持部90a”に反りが発生してしまい、構造安定性が低くなるとともに感度が低下してしまいう。
By the way, in the infrared sensor having the configuration shown in FIG. 14, the overall length of each
また、図14に示した構成の赤外線センサでは、感温部30”がボロメータ形の赤外線検出素子により構成されているので、抵抗値の変化を検出する時に電流を流す必要があり、消費電力が大きくなるとともに、自己発熱が発生し、熱応力に起因して断熱部90”に反りが発生してしまう懸念がある。また、自己発熱による温度変化や周囲温度変化により抵抗温度係数が変化してしまうので、温度補償手段を設けないと高精度化が難しく、温度補償手段を設けるとセンサ全体が大型化し、コストが高くなってしまう。
Further, in the infrared sensor having the configuration shown in FIG. 14, since the
これに対して、上述の図13に示した構成の赤外線センサでは、感温部30’がサーモパイルにより構成されており、感温部30’に電流を流す必要がなく、自己発熱が発生しないので、自己発熱に起因した反りが発生しないという利点や低消費電力化を図れるという利点や、温度によらず感度が一定であり高精度であるという利点がある。
On the other hand, in the infrared sensor having the configuration shown in FIG. 13 described above, the
しかしながら、図13に示した構成の赤外線センサでは、赤外線吸収部33’の厚さ寸法を大きくすると、赤外線吸収部33’の熱容量が大きくなって応答速度が低下してしまうので、赤外線吸収部33’の厚さ寸法を小さくすることが考えられるが、p形ポリシリコン層35およびn形ポリシリコン層34をパターニングするときに赤外線吸収部33’がエッチングされて赤外線吸収部33’、感温部30’の一部、パッシベーション膜60’の積層構造を有する薄膜構造部に反りが発生してしまい、構造安定性が低くなるとともに感度が低下してしまう。
However, in the infrared sensor having the configuration shown in FIG. 13, if the thickness dimension of the infrared absorbing
なお、図13に示した構成の赤外線センサの使用にあたっては、例えば、当該赤外線センサと、当該赤外線センサの出力信号を信号処理する信号処理ICチップと、赤外線センサおよび信号処理ICチップを実装したパッケージとを備えた赤外線センサモジュールを用いることが考えられる。 In using the infrared sensor having the configuration shown in FIG. 13, for example, the infrared sensor, a signal processing IC chip that performs signal processing on the output signal of the infrared sensor, and a package in which the infrared sensor and the signal processing IC chip are mounted. It is conceivable to use an infrared sensor module including
本発明は上記事由に鑑みて為されたものであり、その目的は、赤外線吸収部の薄膜化を図りながらも薄膜構造部の反りを防止することが可能な赤外線センサを提供することにある。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide an infrared sensor capable of preventing the thin film structure portion from warping while reducing the thickness of the infrared absorption portion.
本発明の赤外線センサは、シリコン基板と、熱電対型の感温部を具備し前記シリコン基板の一表面側に形成された熱型赤外線検出部とを備え、前記シリコン基板の前記一表面において前記熱型赤外線検出部の一部に対応する部位に空洞が形成され、前記熱型赤外線検出部に、厚み方向に貫通し前記空洞に連通した複数のスリットが形成されてなる赤外線センサであって、前記熱型赤外線検出部は、前記空洞により前記シリコン基板から空間的に分離された薄膜構造部を有し、前記薄膜構造部は、前記シリコン基板の前記一表面側に形成された赤外線吸収部における前記シリコン基板側とは反対の表面に前記感温部が形成されたものであり、前記赤外線吸収部の前記表面に前記赤外線吸収部の反りを抑制する補償ポリシリコン層が前記赤外線吸収部を面状に覆うように形成されてなることを特徴とする。 The infrared sensor according to the present invention includes a silicon substrate and a thermal infrared detector that includes a thermocouple-type temperature sensing portion and is formed on one surface side of the silicon substrate. A cavity is formed in a part corresponding to a part of the thermal infrared detector, and the thermal infrared detector is formed with a plurality of slits penetrating in the thickness direction and communicating with the cavity, The thermal infrared detection unit has a thin film structure part spatially separated from the silicon substrate by the cavity, and the thin film structure part is an infrared absorption part formed on the one surface side of the silicon substrate. the silicon substrate side are those the temperature sensing portion on the opposite surface is formed, prior Symbol the infrared inhibits complement the warp of absorbing portion amortization polysilicon layer the infrared absorption to the surface of the infrared absorption portion Parts and characterized by being made form so as to cover the surface.
この赤外線センサにおいて、前記感温部は、前記赤外線吸収部の前記表面上に形成されたp形ポリシリコン層およびn形ポリシリコン層を具備する少なくとも1つの熱電対を有するものであり、前記補償ポリシリコン層は、前記p形ポリシリコン層および前記n形ポリシリコン層と同一厚さで形成されてなることが好ましい。 In this infrared sensor, the temperature sensing part has at least one thermocouple including a p-type polysilicon layer and an n-type polysilicon layer formed on the surface of the infrared absorption part, and the compensation The polysilicon layer is preferably formed with the same thickness as the p-type polysilicon layer and the n-type polysilicon layer.
本発明の赤外線センサにおいては、赤外線吸収部の薄膜化を図りながらも薄膜構造部の反りを防止することが可能となる。 In the infrared sensor of the present invention, it is possible to prevent the thin film structure from warping while reducing the thickness of the infrared absorption part.
(実施形態1)
本実施形態の赤外線センサAは、赤外線イメージセンサであり、図1および図2に示すように熱型赤外線検出部3と画素選択用スイッチング素子であるMOSトランジスタ4とを有する画素2がベース基板1の一表面側においてアレイ状(ここでは、2次元アレイ状)に配列されている。ここで、ベース基板1は、シリコン基板1aを用いて形成されている。なお、本実施形態では、1つのベース基板1の上記一表面側にm×n個(図示例では、4×4個)の画素2が形成されているが、画素2の数や配列は特に限定するものではない。また、図2(b)では、熱型赤外線検出部3における熱電対型の感温部30の等価回路を、当該熱電対型の感温部30の熱起電力に対応する電圧源Vsで表してある。
(Embodiment 1)
The infrared sensor A of the present embodiment is an infrared image sensor. As shown in FIGS. 1 and 2, a
また、本実施形態の赤外線センサAは、各列の複数の熱型赤外線検出部3の感温部30の一端が上述のMOSトランジスタ4を介して各列ごとに共通接続された複数の垂直読み出し線7と、各行の熱型赤外線検出部3の感温部30に対応するMOSトランジスタ4のゲート電極46が各行ごとに共通接続された複数の水平信号線6と、各列のMOSトランジスタ4のp+形ウェル領域41が各列ごとに共通接続された複数のグラウンド線8と、各グラウンド線8が共通接続された共通グラウンド線9と、各列の複数個の熱型赤外線検出部3の感温部30の他端が各列ごとに共通接続された複数の基準バイアス線5とを備えており、全ての熱型赤外線検出部3の感温部30の出力を時系列的に読み出すことができるようになっている。要するに、本実施形態の赤外線センサAは、ベース基板1の上記一表面側に熱型赤外線検出部3と当該熱型赤外線検出部3に並設され当該熱型赤外線検出部3の出力を読み出すためのMOSトランジスタ4とを有する複数の画素2が形成されている。ここで、MOSトランジスタ4は、ゲート電極46が水平信号線6に接続され、ソース電極48が感温部30を介して基準バイアス線5に接続され、各基準バイアス線5が共通基準バイアス線5aに共通接続され、ドレイン電極47が垂直読み出し線7に接続されており、各水平信号線6それぞれが各別の画素選択用パッドVselに電気的に接続され、各垂直読み出し線7それぞれが各別の出力用パッドVoutに電気的に接続され、共通グラウンド線9がグラウンド用パッドGndに電気的に接続され、共通基準バイアス線5aが基準バイアス用パッドVrefと電気的に接続され、シリコン基板1aが基板用パッドVddに電気的に接続されている。
In addition, the infrared sensor A of the present embodiment has a plurality of vertical readouts in which one end of the
しかして、MOSトランジスタ4が順次オン状態になるように各画素選択用パッドVselの電位を制御することで各画素2の出力電圧を順次読み出すことができる。例えば、基準バイアス用パッドVrefの電位を1.65、グラウンド用パッドGndの電位を0V、基板用パッドVddの電位を5Vとしておき、画素選択用パッドVselの電位を5Vとすれば、MOSトランジスタ4がオンとなり、出力用パッドVoutから画素2の出力電圧(1.65V+感温部30の出力電圧)が読み出され、画素選択用パッドVselの電位を0Vとすれば、MOSトランジスタ4がオフとなり、出力用パッドVoutから画素2の出力電圧は読み出されない。したがって、図3に示すように、赤外線センサAと、当該赤外線センサAの出力信号である出力電圧を信号処理する信号処理ICチップBと、赤外線センサAおよび信号処理ICチップBが実装されたパッケージCとを備えた赤外線センサモジュールを構成する場合、信号処理ICチップBには、図4に示すように、赤外線センサAの複数(図示例では、4つ)の出力用パッドVoutそれぞれがボンディングワイヤからなる配線80を介して各別に電気的に接続される複数(図示例では、4つ)の入力用パッドVin、入力用パッドVinの出力電圧を増幅する増幅回路AMP、複数の入力用パッドVinの出力電圧を択一的に増幅回路AMPに入力するマルチプレクサMUXなどを設ければ、赤外線画像を得ることができる。なお、上述のパッケージCは、一面開口した矩形箱状に形成されており、内底面に赤外線センサAおよび信号処理ICチップBが搭載され、赤外線センサAにおける熱型赤外線検出部3の後述の赤外線吸収部33へ赤外線を収束するレンズを備えたパッケージ蓋(図示せず)が覆着されている。
Thus, the output voltage of each
ところで、上述の赤外線センサモジュールでは、赤外線センサAのベース基板1は、外周形状が矩形状であり、感温部30から出力される出力信号を取り出す全ての出力用パッドVoutがベース基板1の外周縁の一辺に沿って並設され、信号処理ICチップBは、外周形状が矩形状であり、赤外線センサAの出力用パッドVoutに電気的に接続される全ての入力用パッドVinが信号処理ICチップBの外周縁の一辺に沿って並設されており、ベース基板1と信号処理ICチップBとの上記一辺同士が他の辺同士に比べて近くなるように赤外線センサAおよび信号処理ICチップBが配置されているので、赤外線センサAの出力用パッドVoutと信号処理ICチップBの入力用パッドVinとを接続する配線80を短くでき、外来ノイズの影響を低減できるから、耐ノイズ性が向上する。
By the way, in the above-described infrared sensor module, the
以下、熱型赤外線検出部3およびMOSトランジスタ4それぞれの構造について説明する。なお、本実施形態では、上述のシリコン基板1aとして、導電形がn形で上記一表面が(100)面の単結晶シリコン基板を用いている。
Hereinafter, the structures of the thermal
熱型赤外線検出部3は、シリコン基板1aの上記一表面側の各画素2それぞれにおける熱型赤外線検出部3の形成用領域A1に形成されており、MOSトランジスタ4は、シリコン基板1aの上記一表面側の各画素2それぞれにおけるMOSトランジスタ4の形成用領域A2に形成されている。
The thermal
熱型赤外線検出部3は、シリコン基板1aを基礎とするベース基板1の上記一表面側においてベース基板1と空間的に分離して形成され赤外線を吸収する赤外線吸収部33を有する薄膜構造部3aと、赤外線吸収部33とベース基板1とに跨って形成されたp形ポリシリコン層35、n形ポリシリコン層34、および赤外線吸収部33の赤外線入射面側(図1(b)の上面側)でp形ポリシリコン層35とn形ポリシリコン層34とを電気的に接合した接続部36で構成される熱電対を有し赤外線吸収部33とベース基板1との温度差を検出する熱電対型の感温部30とを備え、赤外線吸収部33の赤外線入射面側に、p形ポリシリコン層35およびn形ポリシリコン層34の形成時に赤外線吸収部33を保護し赤外線吸収部33の反りを抑制する補償ポリシリコン層39a,39bが形成されている。
The thermal infrared detecting
ここで、図1(a)における右側の補償ポリシリコン層39aは、p形ポリシリコン層35と同じp形不純物(例えば、ボロンなど)を同じ濃度(例えば、1018〜1020cm−3)で含んでおり、p形ポリシリコン層35に連続一体に形成されている。また、図1(a)における左側の補償ポリシリコン層39bは、n形ポリシリコン層34と同じn形不純物(例えば、リンなど)を同じ濃度(例えば、1018〜1020cm−3)で含んでおり、n形ポリシリコン層34に連続一体に形成されている。以下では、導電形がp形の補償ポリシリコン層39aをp形補償ポリシリコン層と称し、導電形がn形の補償ポリシリコン層39bをn形補償ポリシリコン層と称することもある。本実施形態では、各補償ポリシリコン層39a,39bの不純物濃度が1018〜1020cm−3であり、p形ポリシリコン層35に連続一体に形成されたp形補償ポリシリコン層39aと、n形ポリシリコン層34に連続一体に形成されたn形補償ポリシリコン層39bとを有しているので、熱電対の抵抗値を低減でき、S/N比の向上を図れる。
Here, the
ところで、本実施形態では、p形ポリシリコン層35、n形ポリシリコン層34および各補償ポリシリコン層39a,39bの屈折率をn、これら各ポリシリコン層35,34,39a,39bの吸収対象(赤外線センサAの検出対象)の赤外線の中心波長をλとするとき、p形ポリシリコン層35、n形ポリシリコン層34および各補償ポリシリコン層39a,39bそれぞれの厚さt1をλ/4nに設定するようにしているので、検出対象の波長(例えば、8〜12μm)の赤外線の吸収効率を高めることができ、高感度化を図れる。例えば、n=3.6、λ=10μmの場合には、t1≒0.69μmとすればよい。
By the way, in this embodiment, the refractive index of the p-
また、本実施形態では、各補償ポリシリコン層39a,39bの不純物濃度が1018〜1020cm−3であり、p形ポリシリコン層35、n形ポリシリコン層34それぞれが、p形補償ポリシリコン層39a、n形補償ポリシリコン層39bそれぞれと同じ不純物を同じ濃度で含んでおり、p形ポリシリコン層35およびn形ポリシリコン層34それぞれの不純物濃度が1018〜1020cm−3であるので、上記特許文献2に記載されているように赤外線の吸収率を高くしつつ赤外線の反射を抑制することができて、感温部30の出力のS/N比を高めることができ、また、p形補償ポリシリコン層39aをp形ポリシリコン層35と同一工程で形成でき、n形補償ポリシリコン層39bをn形ポリシリコン層34と同一工程で形成できるから、低コスト化を図れる。なお、p形ポリシリコン層35とn形ポリシリコン層34との少なくとも一方の不純物濃度を1018〜1020cm−3とすれば、感温部30の出力のS/N比を高めることができ、両方の不純物濃度を1018〜1020cm−3とすれば、感温部30の出力のS/N比をより高めることができる。また、少なくとも、p形補償ポリシリコン層39aとp形ポリシリコン層35との不純物および不純物濃度を同じにするか、n形補償ポリシリコン層39bとn形ポリシリコン層34との不純物および不純物濃度を同じにすれば、低コスト化を図れる。
Further, in the present embodiment, the impurity concentration of each of the
上述の薄膜構造部3aは、ベース基板1と赤外線吸収部33とを連結するブリッジ部3bを有し、当該ブリッジ部3bは、赤外線吸収部33に対して2箇所で連結される一方で、ベース基板1に対して一箇所で連結されている。しかして、本実施形態では、ブリッジ部3bがベース基板1に対して一箇所で連結されていることにより、ベース基板1が外部からの応力や熱応力などで変形した場合であっても薄膜構造部3aが変形するのを抑制することができて感度の変化を抑制できるので、高精度化を図れる。ここで、ブリッジ部3bは、平面視コ字状であって両脚片の先端部が赤外線吸収部33に連結され赤外線吸収部33の外周縁に沿って配置された第1の連結片3b1と、当該第1の連結片3b1の中央片の中央部から赤外線吸収部33側とは反対側へ延長されベース基板1に連結された第2の連結片3b2とを有している。また、ベース基板1のうち平面視において薄膜構造部3aを囲む部位は矩形枠状の形状となっている。なお、ブリッジ部3bは、赤外線吸収部33およびベース基板1それぞれとの連結部位以外の部分が2つのスリット13により赤外線吸収部33およびベース基板1と空間的に分離されている。ここで、各スリット13の幅は、例えば、0.2μm〜5μm程度の範囲で適宜設定すればよい。また、本実施形態の赤外線センサAは、シリコン基板1aにおける各熱型赤外線検出部3それぞれに対応する部位ごとに熱絶縁用の空洞11が形成されている。
The thin
上述の薄膜構造部3aは、シリコン基板1aの上記一表面側に形成されたシリコン酸化膜1bと、当該シリコン酸化膜1b上に形成されたシリコン窒化膜32と、当該シリコン窒化膜32上に形成された熱電対型の感温部30と、シリコン窒化膜32の表面側で感温部30を覆うように形成されたBPSG膜からなる層間絶縁膜50と、層間絶縁膜50上に形成されたPSG膜と当該PSG膜上に形成されたNSG膜との積層膜からなるパッシベーション膜60との積層構造部をパターニングすることにより形成されている。なお、本実施形態では、シリコン窒化膜32のうち薄膜構造部3aのブリッジ部3b以外の部位が上述の赤外線吸収部33を構成し、シリコン基板1aとシリコン酸化膜1bとシリコン窒化膜32と層間絶縁膜50とパッシベーション膜60とでベース基板1を構成している。また、本実施形態では、層間絶縁膜50とパッシベーション膜60との積層膜が、熱型赤外線検出部3の形成用領域A1とMOSトランジスタ4の形成用領域A2とに跨って形成されているが、熱型赤外線検出部3の形成用領域A1に形成された部分が赤外線吸収膜70を兼ねている。ここで、赤外線吸収膜70の屈折率をn、赤外線吸収膜70の吸収対象(赤外線センサAの検出対象)の赤外線の中心波長をλとするとき、赤外線吸収膜70の厚さt2をλ/4nに設定するようにしているので、検出対象の波長(例えば、8〜12μm)の赤外線の吸収効率を高めることができ、高感度化を図れる。例えば、n=1.4、λ=10μmの場合には、t2≒1.8μmとすればよい。なお、本実施形態では、層間絶縁膜50の膜厚を0.8μm(8000Å)、パッシベーション膜60の膜厚を1μm(PSG膜の膜厚を5000Å、NSG膜の膜厚を5000Å)としてある。
The
熱電対型の感温部30は、上述のシリコン窒化膜32上に形成されたn形ポリシリコン層34とp形ポリシリコン層35とを有している。ここで、n形ポリシリコン層34およびp形ポリシリコン層35は、赤外線吸収部33とブリッジ部3bとベース基板1とに跨って形成されている。また、感温部30は、赤外線吸収部33の中央部の表面側でn形ポリシリコン層34の一端部とp形ポリシリコン層35の一端部とを電気的に接合した金属材料(例えば、Al−Siなど)からなる接続部36を備えており、n形ポリシリコン層34とp形ポリシリコン層35と接続部36とで熱電対を構成している。また、感温部30は、n形ポリシリコン層34、p形ポリシリコン層35それぞれの他端部上に電極38a,38bが形成されている。
The thermocouple-type
ここで、感温部30の接続部36と2つの電極38a,38bとは、ベース基板1の上記一表面側において上述の層間絶縁膜50により絶縁分離されている。すなわち、接続部36は、層間絶縁膜50に形成したコンタクトホール50a1,50a2を通して両ポリシリコン層34,35の上記各一端部と電気的に接続され、一方の電極38aは、層間絶縁膜50に形成されたコンタクトホール50bを通してn形ポリシリコン層34の上記他端部と電気的に接続され、他方の電極38bは、層間絶縁膜50に形成されたコンタクトホール50cを通してp形ポリシリコン層35の上記他端部と電気的に接続されている。
Here, the
また、MOSトランジスタ4は、上述のように、シリコン基板1aの上記一表面側における各画素2それぞれにおけるMOSトランジスタ4の形成用領域A2に形成されている。ここで、MOSトランジスタ4は、シリコン基板1aの上記一表面側にp+形ウェル領域41が形成され、p+形ウェル領域41内に、n+形ドレイン領域43とn+形ソース領域44とが離間して形成されている。また、p+形ウェル領域41内には、n+形ドレイン領域43とn+形ソース領域44とを囲むp++形チャネルストッパ領域42が形成されている。また、p+形ウェル領域41においてn+形ドレイン領域43とn+形ソース領域44との間に位置する部位の上には、シリコン酸化膜(熱酸化膜)からなるゲート絶縁膜45を介してn形ポリシリコン層からなるゲート電極46が形成されている。また、n+形ドレイン領域43上には金属材料(例えば、Al−Siなど)からなるドレイン電極47が形成され、n+形ソース領域44上には金属材料(例えば、Al−Siなど)からなるソース電極48が形成されている。ここで、ゲート電極46、ドレイン電極47およびソース電極48は、上述の層間絶縁膜50により絶縁分離されている。すなわち、ドレイン電極47は、層間絶縁膜50に形成したコンタクトホール50dを通してn+形ドレイン領域43と電気的に接続され、ソース電極48は、層間絶縁膜50に形成したコンタクトホール50eを通してn+形ソース領域44と電気的に接続されている。
Further, as described above, the
ところで、本実施形態の赤外線センサAの各画素2では、MOSトランジスタ4のソース電極48と感温部30の上記他方の電極38bとが電気的に接続され、感温部30の上記一方の電極38aが基準バイアス線5に連続一体に形成された金属配線(例えば、Al−Si配線)59を介して基準バイアス線5と電気的に接続されている。また、本実施形態の赤外線センサAの各画素2では、MOSトランジスタ4のドレイン電極47が垂直読み出し線7と電気的に接続され、ゲート電極46が当該ゲート電極46と連続一体に形成されたn形ポリシリコン配線からなる水平信号線6と電気的に接続されている。また、各画素2では、MOSトランジスタ4のp++形チャネルストッパ領域42上に金属材料(例えば、Al−Siなど)からなるグラウンド用電極49が形成されており、当該グラウンド用電極49が、当該p++形チャネルストッパ領域42をn+形ドレイン領域43およびn+形ソース領域44よりも低電位にバイアスして素子分離するための共通グラウンド線8と電気的に接続されている。なお、グラウンド用電極49は、層間絶縁膜50に形成したコンタクトホール50fを通してp++形チャネルストッパ領域42と電気的に接続されている。
By the way, in each
以下、本実施形態の赤外線センサAの製造方法について図5および図6を参照しながら簡説明する。 Hereinafter, the manufacturing method of the infrared sensor A of the present embodiment will be briefly described with reference to FIGS.
まず、シリコン基板1aの上記一表面側に第1の所定膜厚(例えば、3000Å)の第1のシリコン酸化膜31と第2の所定膜厚(例えば、900Å)のシリコン窒化膜32との積層膜からなる絶縁層を形成する絶縁層形成工程を行い、その後、フォトリソグラフィ技術およびエッチング技術を利用して当該絶縁層のうち熱型赤外線検出部3の形成用領域A1に対応する部分の一部を残してMOSトランジスタ4の形成用領域A2に対応する部分をエッチング除去する絶縁層パターニング工程を行うことによって、図5(a)に示す構造を得る。ここにおいて、シリコン酸化膜31は、シリコン基板1aを所定温度(例えば、1100℃)で熱酸化することにより形成し、シリコン窒化膜32は、LPCVD法により形成している。
First, a first
上述の絶縁層パターニング工程の後、シリコン基板1aの上記一表面側にp+形ウェル領域41を形成するウェル領域形成工程を行い、続いて、シリコン基板1の上記一表面側におけるp+形ウェル領域41内にp++形チャネルストッパ領域42を形成するチャネルストッパ領域形成工程を行い、その後、p+形ウェル領域41におけるn+形ドレイン領域43およびn+形ソース領域44それぞれの形成予定領域にn形不純物(例えば、リンなど)のイオン注入を行ってからドライブを行うことによりn+形ドレイン領域43およびn+形ソース領域44を形成するソース・ドレイン形成工程を行うことによって、図5(b)に示す構造を得る。ここで、ウェル領域形成工程では、シリコン基板1の上記一表面側の露出部位を所定温度で熱酸化することにより第2のシリコン酸化膜(熱酸化膜)51を選択的に形成し、その後、p+形ウェル領域41を形成するためのマスクを利用したフォトリソグラフィ技術およびエッチング技術を利用してシリコン酸化膜51をパターニングし、続いて、p形不純物(例えば、ボロンなど)のイオン注入を行ってから、ドライブインを行うことにより、p+形ウェル領域41を形成する。また、チャネルストッパ領域形成工程では、シリコン基板1aの上記一表面側を所定温度で熱酸化することにより第3のシリコン酸化膜(熱酸化膜)52を選択的に形成し、その後、p++形チャネルストッパ領域42を形成するためのマスクを利用したフォトリソグラフィ技術およびエッチング技術を利用してシリコン酸化膜52をパターニングし、続いて、p形不純物(例えば、ボロンなど)のイオン注入を行ってから、ドライブインを行うことにより、p++形チャネルストッパ領域42を形成する。なお、第1のシリコン酸化膜31と第2のシリコン酸化膜51と第3のシリコン酸化膜52とでシリコン基板1aの上記一表面側のシリコン酸化膜1bを構成している。
After the above-described insulating layer patterning step, a well region forming step for forming a p + -type well region 41 on the one surface side of the
上述のソース・ドレイン形成工程の後、シリコン基板1aの上記一表面側に熱酸化により所定膜厚(例えば、600Å)のシリコン酸化膜(熱酸化膜)からなるゲート絶縁膜45を形成するゲート絶縁膜形成工程を行い、続いて、シリコン基板1aの上記一表面側の全面にゲート電極46、水平信号線6(図1(a)参照)、n形ポリシリコン層34、p形ポリシリコン層35および補償ポリシリコン層39a,39bの基礎となる所定膜厚(例えば、0.69μm)のノンドープポリシリコン層をLPCVD法により形成するポリシリコン層形成工程を行い、その後、フォトリソグラフィ技術およびエッチング技術を利用して上記ノンドープポリシリコン層のうちゲート電極46、水平信号線6、n形ポリシリコン層34、p形ポリシリコン層35および各補償ポリシリコン層39a,39bそれぞれに対応する部分が残るようにパターニングするポリシリコン層パターニング工程を行い、続いて、上記ノンドープポリシリコン層のうちp形ポリシリコン層35およびp形補償ポリシリコン層39aに対応する部分にp形不純物(例えば、ボロンなど)のイオン注入を行ってからドライブを行うことによりp形ポリシリコン層35およびp形補償ポリシリコン層39aを形成するp形ポリシリコン層形成工程を行い、その後、上記ノンドープポリシリコン層のうちn形ポリシリコン層34、n形補償ポリシリコン層39b、ゲート電極46および水平信号線6に対応する部分にn形不純物(例えば、リンなど)のイオン注入を行ってからドライブを行うことによりn形ポリシリコン層34、n形補償ポリシリコン層39b、ゲート電極46および水平信号線6を形成するn形ポリシリコン層形成工程を行うことによって、図5(c)に示す構造を得る。なお、p形ポリシリコン層形成工程とn形ポリシリコン層形成工程との順序は逆でもよい。
After the above-described source / drain formation step, gate insulation for forming a
上述のp形ポリシリコン層形成工程およびn形ポリシリコン層形成工程が終了した後、シリコン基板1aの上記一表面側に層間絶縁膜50を形成する層間絶縁膜形成工程を行い、続いて、フォトリソグラフィ技術およびエッチング技術を利用して層間絶縁膜50に上記各コンタクトホール50a1,50a2,50b,50c,50d,50e,50f(図1(a)参照)を形成するコンタクトホール形成工程を行うことによって、図5(d)に示す構造を得る。ここで、層間絶縁膜形成工程では、シリコン基板1aの上記一表面側に所定膜厚(例えば、8000Å)のBPSG膜をCVD法により堆積させてから、所定温度(例えば、800℃)でリフローすることにより平坦化された層間絶縁膜50を形成する。
After the p-type polysilicon layer forming step and the n-type polysilicon layer forming step are completed, an interlayer insulating film forming step for forming an
上述のコンタクトホール形成工程の後、シリコン基板1aの上記一表面側の全面に接続部36、電極38a,38b、ドレイン電極47、ソース電極48、基準バイアス線5、金属配線59、垂直読み出し線7、グラウンド線8、共通グラウンド線9および各パッドVout,Vsel,Vref,Vdd,Gndの基礎となる所定膜厚(例えば、2μm)の金属膜(例えば、Al−Si膜)をスパッタ法などにより形成する金属膜形成工程を行い、続いて、フォトリソグラフィ技術およびエッチング技術を利用して金属膜をパターニングすることで接続部36、電極38a,38b、ドレイン電極47、ソース電極48、基準バイアス線5、垂直読み出し線7、グラウンド線8、共通グラウンド線9および各パッドVout,Vsel,Vref,Vdd,Gndを形成する金属膜パターニング工程を行うことによって、図6(a)に示す構造を得る。なお、金属膜パターニング工程におけるエッチングはRIEにより行っている。
After the contact hole forming step, the
上述の金属膜パターニング工程の後、シリコン基板1aの上記一表面側(つまり、層間絶縁膜50の表面側)に所定膜厚(例えば、5000Å)のPSG膜と所定膜厚(例えば、5000Å)のNSG膜との積層膜からなるパッシベーション膜60をCVD法により形成するパッシベーション膜形成工程を行うことによって、図6(b)に示す構造を得る。なお、パッシベーション膜60は、PSG膜とNSG膜との積層膜に限らず、例えば、シリコン窒化膜でもよい。
After the metal film patterning step, a PSG film having a predetermined thickness (for example, 5000 mm) and a predetermined film thickness (for example, 5000 mm) are formed on the one surface side of the
上述のパッシベーション膜形成工程の後、シリコン酸化膜31とシリコン窒化膜32との積層膜からなる熱絶縁層と、当該熱絶縁層上に形成された感温部30と、熱絶縁層の表面側で感温部30を覆うように形成された層間絶縁膜50と、層間絶縁膜50上に形成されたパッシベーション膜60との積層構造部をパターニングすることにより上述の薄膜構造部3aを形成する積層構造部パターニング工程を行うことによって、図6(c)に示す構造を得る。なお、積層構造部パターニング工程では、積層構造部の厚み方向に貫通し赤外線吸収部33とベース基板1とを離間させる複数(本実施形態では、2つ)のスリット13(図1(a)参照)を形成することで薄膜構造部3aを形成している。
After the above-described passivation film forming step, a thermal insulating layer composed of a laminated film of the
上述の積層構造部パターニング工程の後、フォトリソグラフィ技術およびエッチング技術を利用して各パッドVout,Vsel,Vref,Vdd,Gndを露出させる開口部(図示せず)を形成する開口部形成工程を行い、続いて、上述の各スリット13をエッチング液導入孔としてエッチング液を導入してシリコン基板1aを異方性エッチングすることによりシリコン基板1aに空洞11を形成する空洞形成工程を行うことによって、図6(d)に示す構造の画素2が2次元アレイ状に配列された赤外線センサを得る。ここで、開口部形成工程におけるエッチングはRIEにより行っている。また、空洞形成工程では、エッチング液として所定温度(例えば、85℃)に加熱したTMAH溶液を用いているが、エッチング液はTMAH溶液に限らず、他のアルカリ系溶液(例えば、KOH溶液など)を用いてもよい。なお、空洞形成工程が終了するまでの全工程はウェハレベルで行うので、空洞形成工程が終了した後、個々の赤外線センサに分離する分離工程を行えばよい。また、上述の説明から分かるように、MOSトランジスタ4の製造方法に関してみれば、周知の一般的なMOSトランジスタの製造方法を採用しており、熱酸化による熱酸化膜の形成、フォトリソグラフィ技術およびエッチング技術による熱酸化膜のパターニング、不純物のイオン注入、ドライブイン(不純物の拡散)の基本工程を繰り返すことにより、p+形ウェル領域41、p++形チャネルストッパ領域42、n+形ドレイン領域43とn+形ソース領域44を形成している。
After the above-described laminated structure patterning step, an opening forming step for forming openings (not shown) for exposing the pads Vout, Vsel, Vref, Vdd, and Gnd is performed using a photolithography technique and an etching technique. Subsequently, by performing the cavity forming step of forming the
以上説明した本実施形態の赤外線センサAによれば、感温部30が、赤外線吸収部33とベース基板1とに跨って形成されたp形ポリシリコン層35、n形ポリシリコン層34、および赤外線吸収部33の赤外線入射面側でp形ポリシリコン層35とn形ポリシリコン層34とを電気的に接合した接続部36で構成される熱電対を有し赤外線吸収部33とベース基板1との温度差を検出する熱電対型の感温部なので、自己発熱による薄膜構造部3aの反りが生じることがなく、また、赤外線吸収部33の赤外線入射面側に、p形ポリシリコン層35およびn形ポリシリコン層34の形成時に赤外線吸収部33を保護し赤外線吸収部33cの反りを抑制する補償ポリシリコン層39a,39bが形成されているので、p形ポリシリコン層35およびn形ポリシリコン層34の形成時に赤外線吸収部33がエッチングされて薄くなるのを抑制する(ここでは、上述のポリシリコン層パターニング工程でp形ポリシリコン層35およびn形ポリシリコン層34の基礎となるノンドープポリシリコン層をエッチングする際のオーバーエッチング時に赤外線吸収部33がエッチングされて薄くなるのを抑制する)ことができるとともに薄膜構造部3aの応力バランスの均一性を高めることができ、赤外線吸収部33の薄膜化を図りながらも薄膜構造部3aの反りを防止することが可能となり、感度の向上を図れる。ここで、補償ポリシリコン層39a,39bは、当該補償ポリシリコン層39a,39bと感温部30とで赤外線吸収部33の略全面を覆うように形成することが好ましい。ただし、p形補償ポリシリコン層39aとn形補償ポリシリコン層39bとは直接接しないように電気的に絶縁分離する必要があり、また、上述の空洞形成工程において用いるエッチング液(例えば、TMAH溶液など)によりエッチングされるのを防止するため、スリット13の内側面に露出しないように平面視形状を設計する必要がある(平面視において赤外線吸収部33の外周部を覆わないようにする必要がある)。
According to the infrared sensor A of the present embodiment described above, the
また、本実施形態の赤外線センサAでは、p形ポリシリコン層35とn形ポリシリコン層34と補償ポリシリコン層39a,39bとが同一の厚さに設定されているので、薄膜構造部3aの応力バランスの均一性が向上し、赤外線吸収部33の反りを抑制することができる。また、本実施形態の赤外線センサAでは、薄膜構造部3aにおいてp形ポリシリコン層35とn形ポリシリコン層34と補償ポリシリコン層39a,39bとが同一平面上に形成されているので、薄膜構造部3aの応力バランスの均一性が向上し、赤外線吸収部33の反りを抑制することができる。
In the infrared sensor A of the present embodiment, the p-
また、本実施形態の赤外線センサAは、各画素2ごとに感温部30の出力を読み出すためのMOSトランジスタ4を有しているので、出力用パッドVoutの数を少なくでき、小型化および低コスト化を図れる。また、本実施形態の赤外線センサAでは、MOSトランジスタ4のゲート電極36を構成するポリシリコン層であるn形ポリシリコン層の厚さがn形補償ポリシリコン層39bと同じ厚さに設定されているので、MOSトランジスタ4のゲート電極36とn形補償ポリシリコン層39bとを同時に形成することが可能となり、製造工程数の削減による低コスト化を図れる。
In addition, since the infrared sensor A of the present embodiment includes the
(実施形態2)
本実施形態の赤外線センサAの基本構成は実施形態1と略同じであって、図7に示すように、熱電対型の感温部30が、n形ポリシリコン層34とp形ポリシリコン層35と接続部36とで構成される4つの熱電対を直列接続したサーモパイルにより構成されている点、各画素2に、実施形態1にて説明したMOSトランジスタ4を設けていない点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the infrared sensor A of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 7, the thermocouple type
感温部30は、ベース基板1の上記一表面側で互いに隣り合う熱電対のp形ポリシリコン層34の他端部とn形ポリシリコン層35の他端部とが金属材料(例えば、Al−Siなど)からなる接続部37により接合され電気的に接続されている。
The
ここで、感温部30を構成するサーモパイルは、n形ポリシリコン層34の上記一端部とp形ポリシリコン層35の上記一端部と接続部36とで赤外線吸収部33側の温接点を構成し、p形ポリシリコン層34の上記他端部とn形ポリシリコン層35の上記他端部と接続部37とでベース基板1側の冷接点を構成している。
Here, the thermopile constituting the
また、本実施形態の赤外線センサの製造方法は実施形態1と略同じであり、シリコン酸化膜31とシリコン窒化膜32との積層膜からなる熱絶縁層と、当該熱絶縁層上に形成された感温部30と、熱絶縁層の表面側で感温部30を覆うように形成された層間絶縁膜50と、層間絶縁膜50上に形成されたパッシベーション膜60との積層構造部をパターニングすることにより上述の薄膜構造部3aを形成する積層構造部パターニング工程において、シリコン基板1aにおける空洞11の形成予定領域の投影領域の四隅に、積層構造部の厚み方向に貫通する4つの矩形状のスリット14を形成することで薄膜構造部3aを形成し、空洞形成工程において、4つのスリット14をエッチング液の導入孔として利用する。なお、本実施形態の赤外線センサAは、上述のようにMOSトランジスタ4を備えておらず、実施形態1にて説明した第1のシリコン酸化膜31のみでシリコン酸化膜1bが構成されている。
Further, the manufacturing method of the infrared sensor of the present embodiment is substantially the same as that of the first embodiment, and is formed on the thermal insulation layer composed of the laminated film of the
また、本実施形態の赤外線センサAは、図7および図8に示すように、各感温部30それぞれの一端が各別に接続された複数(図示例では、4つ)の出力用パッドVoutと、各列の複数(図示例では、2つ)の熱型赤外線検出部3の感温部30の他端が共通接続された1個の基準バイアス用パッドVrefとを備えており、全ての熱型赤外線検出部3の出力を時系列的に読み出すことができるようになっている。なお、サーモパイルからなる感温部30は、一端が垂直読み出し線7を介して出力用パッドVoutと電気的に接続され、他端が基準バイアス用パッドVrefに接続された共通基準バイアス線5aに基準バイアス線5を介して電気的と接続されている。
In addition, as shown in FIGS. 7 and 8, the infrared sensor A of the present embodiment includes a plurality (four in the illustrated example) of output pads Vout each having one end of each
ここで、例えば、基準バイアス用パッドVrefの電位を1.65Vとしておけば、出力用パッドVoutからは画素2の出力電圧(1.65V+感温部30の出力電圧)が読み出される。したがって、図9に示すように、赤外線センサAと、当該赤外線センサAの出力信号である出力電圧を信号処理する信号処理ICチップBと、赤外線センサAおよび信号処理ICチップBが実装されたパッケージCとを備えた赤外線センサモジュールを構成する場合、信号処理ICチップBには、図10に示すように、赤外線センサAの複数(図示例では、4つ)の出力用パッドVoutそれぞれがボンディングワイヤからなる配線80を介して各別に電気的に接続される複数(図示例では、4つ)の入力用パッドVin、赤外線センサAの基準バイアス用パッドVrefへ基準電圧を与えるためのパッドVref’、入力用パッドVinの出力電圧を増幅する増幅回路AMP、複数の入力用パッドVinの出力電圧を択一的に増幅回路AMPに入力するマルチプレクサMUXなどを設ければ、赤外線画像を得ることができる。
For example, if the potential of the reference bias pad Vref is set to 1.65 V, the output voltage of the pixel 2 (1.65 V + the output voltage of the temperature sensing unit 30) is read from the output pad Vout. Therefore, as shown in FIG. 9, an infrared sensor A, a signal processing IC chip B that performs signal processing on an output voltage that is an output signal of the infrared sensor A, and a package in which the infrared sensor A and the signal processing IC chip B are mounted. 10, the signal processing IC chip B includes a plurality of (four in the illustrated example) output pads Vout of the infrared sensor A, as shown in FIG. A plurality of (four in the illustrated example) input pads Vin that are electrically connected to each other via a
(実施形態3)
本実施形態の赤外線センサの基本構成は実施形態2と略同じであって、図11に示すように、熱電対型の感温部30が、n形ポリシリコン層34とp形ポリシリコン層35と接続部36とで構成される2つの熱電対を直列接続したサーモパイルにより構成されている点、薄膜構造部3aが2つのブリッジ部3bによりベース基板1と連結されている点が相違する。他の構成は実施形態2と同様なので説明を省略する。
(Embodiment 3)
The basic configuration of the infrared sensor of the present embodiment is substantially the same as that of the second embodiment. As shown in FIG. 11, the thermocouple type
(実施形態4)
本実施形態の赤外線センサの基本構成は実施形態2と略同じであって、図12に示すように、空洞11をシリコン基板1aの厚み方向に貫通するように形成することで薄膜構造部3aがダイヤフラム状に形成されている点が相違する。他の構成は実施形態2と同様なので説明を省略する。
(Embodiment 4)
The basic configuration of the infrared sensor of the present embodiment is substantially the same as that of the second embodiment. As shown in FIG. 12, the
ところで、上記各実施形態1〜4では赤外線センサAとして、画素2が2次元アレイ状に配列されている赤外線イメージセンサを例示したが、赤外線センサAは熱型赤外線検出部3を1つだけ備えたものでもよい。
In each of the first to fourth embodiments, an infrared image sensor in which the
A 赤外線センサ
B 信号処理ICチップ
C パッケージ
Vout 出力用パッド
Vin 入力用パッド
1 ベース基板
2 画素
3a 薄膜構造部
3b ブリッジ部
4 MOSトランジスタ
30 感温部
33 赤外線吸収部
34 n形ポリシリコン層
35 p形ポリシリコン層
39a 補償ポリシリコン層(p形補償ポリシリコン層)
39b 補償ポリシリコン層(n形補償ポリシリコン層)
46 ゲート電極
70 赤外線吸収膜
A Infrared sensor B Signal processing IC chip C Package Vout Output pad
39b Compensation polysilicon layer (n-type compensation polysilicon layer)
46
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010178100A JP5261447B2 (en) | 2010-08-06 | 2010-08-06 | Infrared sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010178100A JP5261447B2 (en) | 2010-08-06 | 2010-08-06 | Infrared sensor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008246926A Division JP5261102B2 (en) | 2008-09-25 | 2008-09-25 | Infrared sensor and infrared sensor module |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010256370A JP2010256370A (en) | 2010-11-11 |
JP5261447B2 true JP5261447B2 (en) | 2013-08-14 |
Family
ID=43317404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010178100A Active JP5261447B2 (en) | 2010-08-06 | 2010-08-06 | Infrared sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5261447B2 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02205729A (en) * | 1989-02-03 | 1990-08-15 | Nec Corp | Infrared-ray sensor |
JPH0799346A (en) * | 1993-09-28 | 1995-04-11 | Nissan Motor Co Ltd | Semiconductor infrared beam sensor and manufacture thereof |
JP2776740B2 (en) * | 1994-03-30 | 1998-07-16 | 日本電気航空宇宙システム株式会社 | Thermal infrared solid-state imaging device |
JP3385762B2 (en) * | 1994-12-12 | 2003-03-10 | 日産自動車株式会社 | Infrared detector |
JP3585337B2 (en) * | 1997-02-28 | 2004-11-04 | 株式会社フジクラ | Micro device having hollow beam and method of manufacturing the same |
JP4511676B2 (en) * | 1999-03-24 | 2010-07-28 | 石塚電子株式会社 | Thermopile type infrared sensor and manufacturing method thereof |
JP2002340668A (en) * | 2001-05-18 | 2002-11-27 | Denso Corp | Thermopile infrared sensor, and inspection method therefor |
JP2006300623A (en) * | 2005-04-19 | 2006-11-02 | Matsushita Electric Works Ltd | Infrared sensor |
JP2006317232A (en) * | 2005-05-11 | 2006-11-24 | Matsushita Electric Works Ltd | Infrared sensor |
JP2007132865A (en) * | 2005-11-11 | 2007-05-31 | Matsushita Electric Works Ltd | Thermopile and infrared sensor using it |
JP4742826B2 (en) * | 2005-11-15 | 2011-08-10 | 日産自動車株式会社 | Infrared detector manufacturing method |
-
2010
- 2010-08-06 JP JP2010178100A patent/JP5261447B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010256370A (en) | 2010-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5645240B2 (en) | Infrared array sensor | |
JP5842118B2 (en) | Infrared sensor | |
WO2010035738A1 (en) | Infrared sensor | |
JP4975669B2 (en) | Infrared detector and solid-state imaging device equipped with the infrared detector | |
US8426864B2 (en) | Infrared sensor | |
JP5261102B2 (en) | Infrared sensor and infrared sensor module | |
WO2010114001A1 (en) | Infrared array sensor | |
JP2010048803A (en) | Manufacturing method of infrared sensor, and infrared sensor | |
JP5081116B2 (en) | Infrared sensor and infrared sensor module | |
JP2011027652A (en) | Infrared sensor | |
JP5261447B2 (en) | Infrared sensor | |
JP2012230010A (en) | Infrared sensor | |
JP2011027650A (en) | Infrared sensor | |
JP2010249779A (en) | Infrared sensor | |
JP5624347B2 (en) | Infrared sensor and manufacturing method thereof | |
JP4622511B2 (en) | Infrared sensor | |
JP2011203221A (en) | Infrared sensor module | |
JP5629146B2 (en) | Temperature sensor | |
JP2011149824A (en) | Method of manufacturing infrared sensor | |
JP2011149823A (en) | Method of manufacturing infrared sensor | |
JP2012112666A (en) | Method for manufacturing infrared sensor | |
JP2011013038A (en) | Method of producing infrared sensor | |
JP2012037395A (en) | Infrared sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100820 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20120113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120717 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130426 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160502 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5261447 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |