JP5042006B2 - Diamond field effect transistor - Google Patents

Diamond field effect transistor Download PDF

Info

Publication number
JP5042006B2
JP5042006B2 JP2007333174A JP2007333174A JP5042006B2 JP 5042006 B2 JP5042006 B2 JP 5042006B2 JP 2007333174 A JP2007333174 A JP 2007333174A JP 2007333174 A JP2007333174 A JP 2007333174A JP 5042006 B2 JP5042006 B2 JP 5042006B2
Authority
JP
Japan
Prior art keywords
insulating layer
diamond
field effect
effect transistor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007333174A
Other languages
Japanese (ja)
Other versions
JP2009158612A (en
Inventor
誠 嘉数
研二 植田
博之 影島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007333174A priority Critical patent/JP5042006B2/en
Publication of JP2009158612A publication Critical patent/JP2009158612A/en
Application granted granted Critical
Publication of JP5042006B2 publication Critical patent/JP5042006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ダイヤモンド電界効果トランジスタに関し、より詳細には、絶縁層にAl1-x-yxy化合物を用いたダイヤモンド電界効果トランジスタに関する。 The present invention relates to a diamond field effect transistor, and more particularly to a diamond field effect transistor using an Al 1-xy O x H y compound for an insulating layer.

ダイヤモンドは、ケイ素(Si)に比べ、半導体としての物理特性において優れていることが知られている。ダイヤモンド素子は、Si素子の高温動作で5倍、高電圧性能で30倍、高速化では3倍の特性を有することが理論上確認されている。そのため、ダイヤモンドは、高い熱伝導率、絶縁破壊電界強度を有する高出力デバイスや、高いキャリアの移動度、飽和ドリフト速度を有する高周波デバイス等を実現するものとして期待されている。つまり、ダイヤモンド半導体を用いた電界効果トランジスタ(FET),バイポーラートランジスターにより、従来の半導体を遥かに越えた、高周波で駆動し、大電力動作可能な電子素子になる。   Diamond is known to be superior in physical properties as a semiconductor compared to silicon (Si). It has been theoretically confirmed that the diamond element has a characteristic that is five times as high as the Si element at high temperature, 30 times as high voltage performance, and three times as high speed. Therefore, diamond is expected to realize a high-power device having high thermal conductivity and dielectric breakdown electric field strength, a high-frequency device having high carrier mobility and saturation drift velocity, and the like. In other words, field effect transistors (FETs) and bipolar transistors using diamond semiconductors are electronic devices that can be driven at a high frequency and operate at high power, far exceeding conventional semiconductors.

従来のダイヤモンド電界効果トランジスタの作製方法について説明する。CVD法などで成長したp型伝導性を示すダイヤモンド結晶層1を用意する(図3(a))。次に、ダイヤモンド結晶層1上に、ソース電極2、ドレイン電極3として金を蒸着させる(図3(b))。次に、ダイヤモンド結晶層1上の、ソース電極2とドレイン電極3との間のゲート部に、1nmの厚さのAl金属膜5を蒸着させる(図3(c))。最後に、試料を大気中に放置し、Al金属膜5を大気中の酸素と反応させ、Al23絶縁膜5にする。最後に、Al23絶縁膜5上にAl金属膜6を蒸着させてゲート部を形成することにより、ダイヤモンド電界効果トランジスタが完成する(図3(d))。 A method for manufacturing a conventional diamond field effect transistor will be described. A diamond crystal layer 1 having p-type conductivity grown by a CVD method or the like is prepared (FIG. 3A). Next, gold is deposited as a source electrode 2 and a drain electrode 3 on the diamond crystal layer 1 (FIG. 3B). Next, an Al metal film 5 having a thickness of 1 nm is deposited on the gate portion between the source electrode 2 and the drain electrode 3 on the diamond crystal layer 1 (FIG. 3C). Finally, the sample is left in the atmosphere, and the Al metal film 5 is reacted with oxygen in the atmosphere to form the Al 2 O 3 insulating film 5. Finally, an Al metal film 6 is deposited on the Al 2 O 3 insulating film 5 to form a gate portion, thereby completing a diamond field effect transistor (FIG. 3D).

このように、従来の技術によって作製した電界効果トランジスタのドレイン電流電圧特性を図4(a)に示す。従来のダイヤモンド電界効果トランジスタの特性は、ゲート電圧−3Vにおける最大ドレイン電流密度は0.45A/mmであった。   FIG. 4A shows the drain current-voltage characteristics of the field effect transistor manufactured by the conventional technique as described above. As a characteristic of the conventional diamond field effect transistor, the maximum drain current density at a gate voltage of −3 V was 0.45 A / mm.

以下の記述において最大ドレイン電流密度と記す場合は、ゲート電圧−3Vにおける電流密度とする。また、ゲート長は1μm、ゲート幅は100μmの素子構造の場合に統一する。   In the following description, the maximum drain current density is the current density at the gate voltage of −3V. Further, it is unified in the case of an element structure having a gate length of 1 μm and a gate width of 100 μm.

しかしながら、図3のダイヤモンド結晶層1と絶縁膜5との界面、あるいは絶縁膜5中には多数の表面準位が存在し、バンドのピン止めを起こすため、ゲート電極から印加するゲート電圧を変化させても、ダイヤモンド結晶層1内の伝導度を効率よく変化させることができず、最大ドレイン電流密度は低く、実用にならないという課題があった。また、表面準位によるヒステリシスが見られることから、信頼性もないため実用にならないという課題もあった。ここでヒステリシスとは、図4(a)のように、実際のドレイン電流電圧特性測定で、ドレイン電圧を増加させるか、減少させるか、スキャンの方向(図中の矢印方向)によって測定されるドレイン電流値が異なる現象を言う。   However, since there are a number of surface states in the interface between the diamond crystal layer 1 and the insulating film 5 in FIG. 3 or in the insulating film 5, band pinning occurs, so that the gate voltage applied from the gate electrode changes. However, there is a problem that the conductivity in the diamond crystal layer 1 cannot be changed efficiently, the maximum drain current density is low, and it is not practical. In addition, since hysteresis due to surface states is observed, there is also a problem that it is not practical because it is not reliable. Here, as shown in FIG. 4A, the hysteresis is a drain measured by an actual drain current-voltage characteristic measurement by increasing or decreasing the drain voltage or by a scanning direction (arrow direction in the figure). A phenomenon in which the current value is different.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、最大ドレイン電流密度が高く、長時間の電力動作にも耐える信頼性の高い、実用的なダイヤモンド電界効果トランジスタを提供することにある。   The present invention has been made in view of such problems, and its object is to provide a practical diamond field effect transistor with a high maximum drain current density and high reliability that can withstand long-time power operation. Is to provide.

このような目的を達成するために、請求項1に記載の発明は、ダイヤモンド電界効果トランジスタであって、p型又はn型を示すダイヤモンド結晶のダイヤモンド結晶層と、前記ダイヤモンド結晶層上に形成された、アルミニウム(Al)、酸素(O)、水素(H)からなるAl1−x−y化合物の第1の絶縁層と、前記第1の絶縁層上に形成された金属層と、から構成されるゲート部を備え、前記第1の絶縁層の酸素モル比xと水素モル比yの関係が、(3.25/7)<x+y<(6.8/7)、(0.5/7)<x<(4.5/7)、(0.75/7)<y<(4.7/7)の全てを同時に満たすことを特徴とする。
In order to achieve such an object, the invention described in claim 1 is a diamond field effect transistor, which is formed on a diamond crystal layer of a diamond crystal of p-type or n-type and on the diamond crystal layer. A first insulating layer of an Al 1-xy O x H y compound made of aluminum (Al), oxygen (O), and hydrogen (H), and a metal layer formed on the first insulating layer The relationship between the oxygen molar ratio x and the hydrogen molar ratio y of the first insulating layer is (3.25 / 7) <x + y <(6.8 / 7), ( 0.5 / 7) <x <(4.5 / 7) and (0.75 / 7) <y <(4.7 / 7) are all satisfied simultaneously .

請求項2に記載の発明は、ダイヤモンド電界効果トランジスタであって、p型又はn型を示すダイヤモンド結晶のダイヤモンド結晶層と、前記ダイヤモンド結晶層上に形成された、アルミニウム(Al)、酸素(O)、水素(H)からなるAl1−x−y化合物の第1の絶縁層と、 前記第1の絶縁層上に形成された第2の絶縁層と、前記第2の絶縁層上に形成された金属層と、から構成されるゲート部を備え、前記第1の絶縁層の酸素モル比xと水素モル比yの関係が、(3.25/7)<x+y<(6.8/7)、(0.5/7)<x<(4.5/7)、(0.75/7)<y<(4.7/7)の全てを同時に満たすことを特徴とする。
The invention according to claim 2 is a diamond field effect transistor, which is a diamond crystal layer of p-type or n-type diamond crystal, and aluminum (Al), oxygen (O) formed on the diamond crystal layer. ), a first insulation layer of Al 1-x-y O x H y compounds consisting of hydrogen (H), a second insulating layer formed on the first insulating layer, the second A metal layer formed on the insulating layer, and the relationship between the oxygen molar ratio x and the hydrogen molar ratio y of the first insulating layer is (3.25 / 7) <x + y < (6.8 / 7), (0.5 / 7) <x <(4.5 / 7), (0.75 / 7) <y <(4.7 / 7) must be satisfied simultaneously. Features.

請求項3に記載の発明は、請求項2に記載のダイヤモンド電界効果トランジスタにおいて、前記第2の絶縁層が、酸化アルミニウム(Al23)又はニ酸化ケイ素(SiO2)からなることを特徴とする。 According to a third aspect of the present invention, in the diamond field effect transistor according to the second aspect, the second insulating layer is made of aluminum oxide (Al 2 O 3 ) or silicon dioxide (SiO 2 ). And

請求項に記載の発明は、請求項1乃至のいずれかに記載のダイヤモンド電界効果トランジスタにおいて、前記第1の絶縁層の厚さが1nmから60nmの範囲にあることを特徴とする。 According to a fourth aspect of the present invention, in the diamond field effect transistor according to any one of the first to third aspects, the thickness of the first insulating layer is in the range of 1 nm to 60 nm.

このように本発明は、ダイヤモンド電界効果トランジスタの絶縁層に、Al(OH)3、あるいは、アルミニウム、酸素、水素で構成されたAl1-x-yxy化合物を用いることに特徴を持つ。 As described above, the present invention is characterized in that Al (OH) 3 or an Al 1-xy O x Hy compound composed of aluminum, oxygen, and hydrogen is used for the insulating layer of the diamond field effect transistor.

本発明によれば、最大ドレイン電流密度が高く、長時間の電力動作にも耐える信頼性の高いダイヤモンド電界効果トランジスタが可能になる。   According to the present invention, a highly reliable diamond field effect transistor having a high maximum drain current density and capable of withstanding long-time power operation becomes possible.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。
(実施形態1)
図1に、本発明の一実施形態に係るダイヤモンド電界効果トランジスタの作製工程を示す。p型またはn型の伝導性を有するダイヤモンド結晶層1をCVD装置などで成長させる。このダイヤモンド結晶層1は単結晶の方が望ましいが多結晶でもよい(図1(a))。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 shows a manufacturing process of a diamond field effect transistor according to an embodiment of the present invention. A diamond crystal layer 1 having p-type or n-type conductivity is grown by a CVD apparatus or the like. The diamond crystal layer 1 is preferably a single crystal but may be polycrystalline (FIG. 1 (a)).

次に、ダイヤモンド結晶層1上のゲート電極を設ける領域にレジストを塗布し、その上から試料の表面全面に金を蒸着させる。レジストをリフトオフし、レジストとその上に蒸着されている金の一部を除去して開口部を形成し、ソース電極2、ドレイン電極3を形成する(図1(b))。   Next, a resist is applied to the region on the diamond crystal layer 1 where the gate electrode is to be provided, and gold is deposited on the entire surface of the sample. The resist is lifted off, and the resist and a part of gold deposited thereon are removed to form an opening, and the source electrode 2 and the drain electrode 3 are formed (FIG. 1B).

次に、レジストを試料全面に塗布し、ゲート電極を形成する領域に露光および現像を行ってレジストの一部を除去し、開口部を形成する。76Torrに減圧したCVDチャンバ内で、上記ダイヤモンド結晶層1に、酸素ガス、水素ガス、トリメチルアルミニウムを供給し、ソース電極2とドレイン電極3との間のゲート部に厚さ8nmのAl(OH)3またはAl1-x-yxy化合物からなる絶縁層4を形成する(図1(c))。 Next, a resist is applied to the entire surface of the sample, and exposure and development are performed on a region where a gate electrode is to be formed to remove a part of the resist, thereby forming an opening. In a CVD chamber decompressed to 76 Torr, oxygen gas, hydrogen gas, and trimethylaluminum are supplied to the diamond crystal layer 1, and Al (OH) having a thickness of 8 nm is supplied to the gate portion between the source electrode 2 and the drain electrode 3. An insulating layer 4 made of 3 or an Al 1-xy O x H y compound is formed (FIG. 1C).

最後に、絶縁層4上にAl金属膜6を蒸着させてゲート部を形成し、レジストを除去する。(図1(d))。   Finally, an Al metal film 6 is deposited on the insulating layer 4 to form a gate portion, and the resist is removed. (FIG. 1 (d)).

このようにして作製された本発明の電界効果トランジスタのドレイン電流電圧特性を図1(e)のように測定した。その結果を図4(b)に示す。本発明の一実施形態に係るダイヤモンド電界効果トランジスタでは、ゲート電圧−3Vにおける最大ドレイン電流密度は1A/mmであった。これは従来技術による場合の2倍に相当する。また、従来の技術のような表面準位がダイヤモンド結晶膜と絶縁層との界面、および絶縁膜中に存在しないため、ドレイン電流電圧特性において、ヒステリシス現象は消失し、信頼性は著しく向上した。   The drain current-voltage characteristics of the field effect transistor of the present invention produced as described above were measured as shown in FIG. The result is shown in FIG. In the diamond field effect transistor according to one embodiment of the present invention, the maximum drain current density at a gate voltage of −3 V was 1 A / mm. This corresponds to twice as much as in the prior art. Further, since the surface level as in the prior art does not exist in the interface between the diamond crystal film and the insulating layer and in the insulating film, the hysteresis phenomenon disappears in the drain current-voltage characteristics, and the reliability is remarkably improved.

図5に、絶縁層4にAl1-x-yxy化合物を用いた場合の、酸素モル比xと水素モル比yに対する最大ドレイン電流値の変化を示す。黒丸は、実際に測定した酸素モル比xと水素モル比yの値を示すものであり、括弧内の数字は実際に得られた最大ドレイン電流値(A/mm)である。また、それら実測値に基づき、最大ドレイン電流値の分布を等高線で示した。x=3/5、y=0の場合、すなわち、従来技術のAl23の場合、最大ドレイン電流値は0.5A/mmであったが、x=y=3/7の場合、すなわち、Al1-x-yxy化合物がAl(OH)3の場合、最大ドレイン電流値は極大値1A/mmを示した。 FIG. 5 shows changes in the maximum drain current value with respect to the oxygen molar ratio x and the hydrogen molar ratio y when an Al 1-xy O x H y compound is used for the insulating layer 4. The black circles indicate the values of the actually measured oxygen molar ratio x and hydrogen molar ratio y, and the numbers in parentheses are the maximum drain current values (A / mm) actually obtained. In addition, based on these actually measured values, the distribution of the maximum drain current value is shown by contour lines. In the case of x = 3/5, y = 0, that is, in the case of prior art Al 2 O 3 , the maximum drain current value was 0.5 A / mm, but in the case of x = y = 3/7, that is, When the Al 1-xy O x H y compound was Al (OH) 3 , the maximum drain current value showed a maximum value of 1 A / mm.

また、(3.25/7)<x+y<(6.8/7)、(0.5/7)<x<(4.5/7)、(0.75/7)<y<(4.7/7)の全てを同時に満たす範囲では、0.7A/mm以上の高い値を取る。   Also, (3.25 / 7) <x + y <(6.8 / 7), (0.5 / 7) <x <(4.5 / 7), (0.75 / 7) <y <(4 In the range where all of .7 / 7) are simultaneously satisfied, a high value of 0.7 A / mm or more is taken.

尚、個体差等を考慮すると、(4/7)<x+y<(6.7/7)、(0.9/7)<x<(4.3/7)、(1.5/7)<y<(4.5/7)の全てを同時に満たす範囲では、より高い精度で0.8A/mm以上の高い値を取る。   In consideration of individual differences, (4/7) <x + y <(6.7 / 7), (0.9 / 7) <x <(4.3 / 7), (1.5 / 7) In a range where all of <y <(4.5 / 7) are simultaneously satisfied, a high value of 0.8 A / mm or more is taken with higher accuracy.

同様に、(5/7)<x+y<(6.5/7)、(1.9/7)<x<(3.8/7)、(2.25/7)<y<(4/7)の全てを同時に満たす範囲では、より高い確度で0.9A/mm以上の高い値を取る。   Similarly, (5/7) <x + y <(6.5 / 7), (1.9 / 7) <x <(3.8 / 7), (2.25 / 7) <y <(4 / In a range where all of 7) are satisfied at the same time, a high value of 0.9 A / mm or more is taken with higher accuracy.

次に、図6に、Al(OH)3絶縁層4の厚さと、作製した本発明のダイヤモンド電界効果トランジスタのゲート電圧−3Vにおける最大ドレイン電流密度との関係を示す。白丸の傍の数字は絶縁膜の厚さ(nm)を示している。厚さ8nmで極大値1A/mmを取るが、厚さが1nmから60nmの範囲で最大ドレイン電流密度は0.8A/mm以上の高い値を取る。 Next, FIG. 6 shows the relationship between the thickness of the Al (OH) 3 insulating layer 4 and the maximum drain current density at a gate voltage of −3 V of the fabricated diamond field effect transistor of the present invention. The number next to the white circle indicates the thickness (nm) of the insulating film. Although the maximum value is 1 A / mm at a thickness of 8 nm, the maximum drain current density is a high value of 0.8 A / mm or more when the thickness ranges from 1 nm to 60 nm.

尚、個体差等を考慮すると、厚さが2nmから40nmの範囲では、より高い精度で最大ドレイン電流密度は0.9A/mm以上の高い値を取る。   In consideration of individual differences and the like, the maximum drain current density takes a high value of 0.9 A / mm or more with higher accuracy in the thickness range of 2 nm to 40 nm.

同様に、厚さが5nmから20nmの範囲では、より高い精度で最大ドレイン電流密度は1A/mm程度の高い値を取る。   Similarly, in the thickness range of 5 nm to 20 nm, the maximum drain current density takes a high value of about 1 A / mm with higher accuracy.

(実施形態2)
図2に、本発明の別の実施形態として、Al(OH)3またはAl1-x-yxy絶縁層4とゲート金属6の間にAl23またはSiO2絶縁膜5を挿入したダイヤモンド電界効果トランジスタの構造を示す。Al(OH)3またはAl1-x-yxy絶縁層4はゲート金属6に対する付着力が強くないため、Al23またはSiO2絶縁膜5を介すことによってゲート金属6の付着力を高めることができる。本実施形態に係る電界効果トランジスタは、絶縁層4を形成するところまでは実施形態1と同じ方法で作製し、絶縁層4上にAl23またはSiO2絶縁膜5、Al金属膜6を順に蒸着させてゲート部を形成し、レジストを除去することによって作製される。
(Embodiment 2)
In FIG. 2, as another embodiment of the present invention, an Al 2 O 3 or SiO 2 insulating film 5 is inserted between an Al (OH) 3 or Al 1-xy O x H y insulating layer 4 and a gate metal 6. The structure of a diamond field effect transistor is shown. Since the Al (OH) 3 or Al 1-xy O x H y insulating layer 4 does not have a strong adhesion to the gate metal 6, the adhesion of the gate metal 6 through the Al 2 O 3 or SiO 2 insulating film 5. Can be increased. The field effect transistor according to the present embodiment is manufactured by the same method as in the first embodiment until the insulating layer 4 is formed, and the Al 2 O 3 or SiO 2 insulating film 5 and the Al metal film 6 are formed on the insulating layer 4. It is produced by sequentially depositing the gate portion to remove the resist.

本実施形態に係るダイヤモンド電界効果トランジスタは、実施形態1の特性、すなわち、図4(b)、図5、図6と同様の特性を有しており、最大ドレイン電流密度が高く、信頼性の高い電界効果トランジスタである。   The diamond field effect transistor according to the present embodiment has the characteristics of the first embodiment, that is, the same characteristics as those of FIGS. 4B, 5 and 6, and has a high maximum drain current density and high reliability. It is a high field effect transistor.

(a)〜(d)は、本発明の実施形態1に係るダイヤモンド電界効果トランジスタの作製工程を示す図であり、(e)は、ダイヤモンド電界効果トランジスタのドレイン電流電圧特性の測定方法を示す図である。(A)-(d) is a figure which shows the preparation process of the diamond field effect transistor which concerns on Embodiment 1 of this invention, (e) is a figure which shows the measuring method of the drain current voltage characteristic of a diamond field effect transistor. It is. 本発明の実施形態2に係るダイヤモンド電界効果トランジスタの構想を示す図である。It is a figure which shows the concept of the diamond field effect transistor which concerns on Embodiment 2 of this invention. 従来のダイヤモンド電界効果トランジスタの作製工程を示す図である。It is a figure which shows the preparation process of the conventional diamond field effect transistor. (a)は、従来のダイヤモンド電界効果トランジスタのドレイン電流電圧特性を示す図であり、(b)は、本発明の電界効果トランジスタのドレイン電流電圧特性を示す図である。(A) is a figure which shows the drain current voltage characteristic of the conventional diamond field effect transistor, (b) is a figure which shows the drain current voltage characteristic of the field effect transistor of this invention. Al1-x-yxy化合物を用いた絶縁層の酸素モル比xと水素モル比yに対する最大ドレイン電流値の変化を示す図である。Is a graph showing changes in the maximum drain current with respect to Al 1-xy O x H y compound oxygen molar ratio x of hydrogen molar ratio y of the insulating layer using. Al(OH)3絶縁層の厚さと、本発明のダイヤモンド電界効果トランジスタのゲート電圧−3Vにおける最大ドレイン電流密度との関係を示す図である。It is a figure which shows the relationship between the thickness of an Al (OH) 3 insulating layer, and the maximum drain current density in the gate voltage -3V of the diamond field effect transistor of this invention.

符号の説明Explanation of symbols

1 ダイヤモンド結晶層
2 ソース電極
3 ドレイン電極
4、5 絶縁層
6 金属膜
DESCRIPTION OF SYMBOLS 1 Diamond crystal layer 2 Source electrode 3 Drain electrode 4, 5 Insulating layer 6 Metal film

Claims (4)

p型又はn型を示すダイヤモンド結晶のダイヤモンド結晶層と、
前記ダイヤモンド結晶層上に形成された、アルミニウム(Al)、酸素(O)、水素(H)からなるAl1−x−y化合物の第1の絶縁層と、
前記第1の絶縁層上に形成された金属層と、
から構成されるゲート部を備え
前記第1の絶縁層の酸素モル比xと水素モル比yの関係が、(3.25/7)<x+y<(6.8/7)、(0.5/7)<x<(4.5/7)、(0.75/7)<y<(4.7/7)の全てを同時に満たすことを特徴とするダイヤモンド電界効果トランジスタ。
a diamond crystal layer of diamond crystal exhibiting p-type or n-type;
A first insulating layer of an Al 1-xy O x H y compound made of aluminum (Al), oxygen (O), and hydrogen (H) formed on the diamond crystal layer;
A metal layer formed on the first insulating layer;
Comprising a composed gate portion from
The relationship between the oxygen molar ratio x and the hydrogen molar ratio y of the first insulating layer is (3.25 / 7) <x + y <(6.8 / 7), (0.5 / 7) <x <(4 .5 / 7) and (0.75 / 7) <y <(4.7 / 7), all of which are satisfied at the same time .
p型又はn型を示すダイヤモンド結晶のダイヤモンド結晶層と、
前記ダイヤモンド結晶層上に形成された、アルミニウム(Al)、酸素(O)、水素(H)からなるAl1−x−y化合物の第1の絶縁層と、
前記第1の絶縁層上に形成された第2の絶縁層と、
前記第2の絶縁層上に形成された金属層と、
から構成されるゲート部を備え
前記第1の絶縁層の酸素モル比xと水素モル比yの関係が、(3.25/7)<x+y<(6.8/7)、(0.5/7)<x<(4.5/7)、(0.75/7)<y<(4.7/7)の全てを同時に満たすことを特徴とするダイヤモンド電界効果トランジスタ。
a diamond crystal layer of diamond crystal exhibiting p-type or n-type;
Wherein formed on the diamond crystal layer, and an aluminum (Al), oxygen (O), in the first insulation layer of Al 1-x-y O x H y compounds consisting of hydrogen (H),
A second insulating layer formed on the first insulating layer;
A metal layer formed on the second insulating layer;
Comprising a composed gate portion from
The relationship between the oxygen molar ratio x and the hydrogen molar ratio y of the first insulating layer is (3.25 / 7) <x + y <(6.8 / 7), (0.5 / 7) <x <(4 .5 / 7) and (0.75 / 7) <y <(4.7 / 7), all of which are satisfied at the same time .
前記第2の絶縁層が、酸化アルミニウム(Al)又は二酸化ケイ素(SiO)からなることを特徴とする請求項2に記載のダイヤモンド電界効果トランジスタ。 The diamond field effect transistor according to claim 2, wherein the second insulating layer is made of aluminum oxide (Al 2 O 3 ) or silicon dioxide (SiO 2 ). 前記第1の絶縁層の厚さが1nmから60nmの範囲にあることを特徴とする請求項1乃至のいずれかに記載のダイヤモンド電界効果トランジスタ。
Diamond field effect transistor according to any one of claims 1 to 3 the thickness of the first insulating layer is characterized in that in the range of 1nm to 60 nm.
JP2007333174A 2007-12-25 2007-12-25 Diamond field effect transistor Active JP5042006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007333174A JP5042006B2 (en) 2007-12-25 2007-12-25 Diamond field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007333174A JP5042006B2 (en) 2007-12-25 2007-12-25 Diamond field effect transistor

Publications (2)

Publication Number Publication Date
JP2009158612A JP2009158612A (en) 2009-07-16
JP5042006B2 true JP5042006B2 (en) 2012-10-03

Family

ID=40962334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333174A Active JP5042006B2 (en) 2007-12-25 2007-12-25 Diamond field effect transistor

Country Status (1)

Country Link
JP (1) JP5042006B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519792B2 (en) * 2015-09-04 2019-05-29 国立研究開発法人物質・材料研究機構 Method of manufacturing hydrogenated diamond MISFET having normally-off characteristics
JP6783463B2 (en) * 2016-11-11 2020-11-11 国立研究開発法人物質・材料研究機構 Diamond semiconductor device, logic device using it, and manufacturing method of diamond semiconductor device
CN110416290B (en) * 2019-07-30 2022-11-15 中国电子科技集团公司第十三研究所 Diamond transistor preparation method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3941099B2 (en) * 2001-12-19 2007-07-04 ソニー株式会社 Thin film formation method
JP2003209110A (en) * 2002-01-17 2003-07-25 Sony Corp Method of manufacturing metal oxide nitride film, and insulated gate fet and method of manufacturing the same
JP2005032908A (en) * 2003-07-10 2005-02-03 Semiconductor Leading Edge Technologies Inc Method for forming thin film
JP3987046B2 (en) * 2004-02-24 2007-10-03 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP4582542B2 (en) * 2005-02-02 2010-11-17 株式会社神戸製鋼所 Diamond field effect transistor and manufacturing method thereof
JP4425194B2 (en) * 2005-08-18 2010-03-03 株式会社神戸製鋼所 Deposition method
JP4817813B2 (en) * 2005-11-15 2011-11-16 株式会社神戸製鋼所 Diamond semiconductor device and manufacturing method thereof
JP4979245B2 (en) * 2006-03-01 2012-07-18 株式会社神戸製鋼所 Thermometer and amplifier using diamond transistor device operating at high temperature
JP4735601B2 (en) * 2007-05-14 2011-07-27 ソニー株式会社 Thin film formation method using atomic layer deposition

Also Published As

Publication number Publication date
JP2009158612A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
TWI311814B (en) Silicon carbide semiconductor device and method for producing the same
JP6170893B2 (en) Method for producing epitaxial substrate for semiconductor device
KR100614822B1 (en) Semiconductor device fabricated on surface of silicon having ?110? direction of crystal plane and its production method
US8853019B1 (en) Methods of forming a semiconductor device with a nanowire channel structure by performing an anneal process
US9691817B2 (en) Magnetic tunnel junctions and methods of forming magnetic tunnel junctions
JP2009004787A (en) Zinc oxide-based thin film transistor, method of fabricating the same, zinc oxide etchant, and method of forming the same
CN102484069A (en) Semiconductor device and process for production thereof
CN103633115B (en) Apparatus and method for multiple gate transistors
JP2006216918A (en) Manufacturing method of semiconductor device
CN108198855A (en) Semiconductor element, semiconductor substrate and forming method thereof
TWI591728B (en) Semiconductor structure and method for forming the same
CN106340456A (en) Semiconductor device and manufacturing method thereof
JP2007207935A (en) Process for fabricating silicon carbide semiconductor element
JP2009212366A (en) Method of manufacturing semiconductor device
JP5042006B2 (en) Diamond field effect transistor
KR101772487B1 (en) Transistor and electronic device based on black phosphorus, method of manufacturing the transistor
JP2005183597A (en) Nitride semiconductor misfet
CN110291645A (en) Method and system for vertical-type power device
US20160093494A1 (en) Manufacturing method of silicon carbide semiconductor device
JP5072482B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH11233760A (en) Laminated structure member composed of metal, oxide film and silicon carbide semiconductor
KR100966007B1 (en) Room Temperature operating Single Electron Device using Carbon Nano Tube and Fabrication Method thereof
JP2005116896A (en) Semiconductor device and its manufacturing method
KR101659815B1 (en) Carbon nanotube transistor array and Manufacturing Method of Carbon nanotube transistor
US8362530B2 (en) Semiconductor device including MISFET and its manufacture method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5042006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350