JP5041674B2 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP5041674B2
JP5041674B2 JP2005144038A JP2005144038A JP5041674B2 JP 5041674 B2 JP5041674 B2 JP 5041674B2 JP 2005144038 A JP2005144038 A JP 2005144038A JP 2005144038 A JP2005144038 A JP 2005144038A JP 5041674 B2 JP5041674 B2 JP 5041674B2
Authority
JP
Japan
Prior art keywords
voltage
light
electrode
transistor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005144038A
Other languages
English (en)
Other versions
JP2006011396A5 (ja
JP2006011396A (ja
Inventor
友幸 岩淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2005144038A priority Critical patent/JP5041674B2/ja
Publication of JP2006011396A publication Critical patent/JP2006011396A/ja
Publication of JP2006011396A5 publication Critical patent/JP2006011396A5/ja
Application granted granted Critical
Publication of JP5041674B2 publication Critical patent/JP5041674B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Description

本発明は、時間階調法で階調を表示することができる、発光装置及びその駆動方法に関する。
発光装置には、アナログのビデオ信号を用いた駆動方法と、デジタルのビデオ信号を用いた駆動方法とがある。アナログのビデオ信号を用いる場合、発光素子の輝度をアナログのビデオ信号で制御することで、階調を表現することができる。具体的には、発光素子と直列に接続されたTFTのゲートとソース間の電圧Vgs(ゲート電圧)を、アナログのビデオ信号で制御することで、発光素子に供給されるTFTのドレイン電流の値、延いては発光素子の輝度を制御している。
しかしアナログのビデオ信号を用いた駆動方法の場合、表示する階調が低ければ低いほど、ゲート電圧Vgsと閾値電圧Vthの差を縮める必要が生じる。そして、飽和領域で動作するTFTのドレイン電流は、ゲート電圧Vgsと閾値電圧Vthの差の二乗に比例する。したがって、アナログのビデオ信号を用いた駆動方法では、閾値電圧Vthのばらつきがドレイン電流に反映されやすいという問題があった。
一方、デジタルのビデオ信号を用いた駆動方法の場合、ゲート電圧Vgsを一定にしておくことができるので、ゲート電圧Vgsと閾値電圧Vthの差を大きく設定することが可能である。よってアナログの場合ほど、低階調を表示する際に、ドレイン電流が閾値電圧Vthのばらつきの影響を受けにくい。
ところで、デジタルのビデオ信号を用いた駆動方法の一つに、1フレーム期間中において画素が発光する長さを制御し、階調を表示する時間階調法がある。具体的に時間階調法で表示を行なう場合、1フレーム期間を複数のサブフレーム期間に分割する。そしてビデオ信号に従い、各サブフレーム期間において画素の発光素子を発光または非発光の状態にする。上記構成により、1フレーム期間中に画素の発光素子が実際に発光する期間のトータルの長さを、ビデオ信号により制御することができ、階調を表示することができる。
しかし時間階調法で表示を行なう場合、フレーム周波数によっては画素部に擬似輪郭が表示されてしまうという問題があった。擬似輪郭とは、時間階調法で中間階調を表示したときに度々視認される不自然な輪郭線であって、人間の視覚の特性によって生じる知覚輝度の変動が主な原因とされている。
擬似輪郭には、動画を表示する際に生じる動画擬似輪郭と、静止画を表示する際に生じる静止画擬似輪郭とがある。動画擬似輪郭は、連続して出現するフレーム期間において、先のフレーム期間に含まれるサブフレーム期間と後のフレーム期間に含まれるサブフレーム期間とが、連続した一つのフレーム期間として人間の目に視認されてしまうことで発生する。つまり動画擬似輪郭とは、本来のフレーム期間で表示されるべき階調数とは異なる階調数が人間の目に認識されてしまうことで画素部に表示される、不自然な明るい線や暗い線に相当する。静止画擬似輪郭の発生のメカニズムも、動画擬似輪郭の場合と同様である。静止画擬似輪郭は、静止画を表示する場合に、階調数が互いに異なる領域の境界において人間の視点が左右上下に微妙に動いてしまうために、境界付近の画素にあたかも動画が表示されているように見えることで発生する。つまり静止画擬似輪郭とは、階調数が互いに異なる領域の境界付近の画素において動画擬似輪郭が発生することで、境界付近に揺れ動くように発生する、不自然な明るい線や暗い線に相当する。
上述した擬似輪郭を防止するには、フレーム周波数を高めることが有効である。しかしフレーム周波数が高くなりすぎると、各サブフレーム期間の長さが短くなる。従って、最も短いサブフレーム期間の長さに合わせて、駆動回路の駆動周波数を高める必要が生じるため、駆動回路の信頼性を考慮すると、むやみにフレーム周波数を高めるのは好ましくない。
本発明は上述した問題に鑑み、駆動回路の駆動周波数を抑えつつ、フレーム周波数を高め、擬似輪郭の発生を抑えることができる発光装置の提案を課題とする。また本発明は、駆動回路の駆動周波数を抑えつつ、フレーム周波数を高め、擬似輪郭の発生を抑えることができる発光装置の駆動方法の提案を課題とする。
本発明では、発光素子が発光する期間を制御するだけで階調を表現するのではなく、発光する期間と、発光素子の輝度の高低とを共に制御することで、階調を表現する。具体的には、1フレーム期間を複数の均等なサブフレーム期間に分割し、各サブフレーム期間における発光素子の輝度に高低差を設ける。そして、ビデオ信号により選択されたサブフレーム期間の輝度の総和を制御することで、所望の階調を表現することができる。
また発光素子の輝度は、発光素子への電流の供給を制御するトランジスタ(駆動用トランジスタ)を飽和領域で動作させ、なおかつ該トランジスタのゲート電圧Vgsの値を切り替えることで制御できる。よって本発明の発光装置は、画素を有する画素部と、第1のビデオ信号の各ビットが有する情報に従い、前記各ビットに対応するサブフレーム期間に同期して値が切り替えられる第1の電源電圧と、一定の値を有する第2の電源電圧とのいずれかを選択することで第2のビデオ信号を生成し、該第2のビデオ信号を前記画素に入力する選択回路とを有する。さらに、画素を選択する走査線駆動回路と、第1のビデオ信号をパラレル/シリアル変換する信号線駆動回路とを有していても良い。
各サブフレーム期間における発光素子の輝度について、最も輝度の低いサブフレーム期間以外の他のサブフレーム期間の輝度は、該最も輝度の低いサブフレーム期間の輝度の2(n−1)倍となる(なお、ここではnは1以上の正の整数である)。つまり、(n+1)ビットに対応するサブフレーム期間の輝度は、nビットに対応するサブフレーム期間の輝度に対して2倍となる。本発明はこれに限定されず、各ビットに対応するサブフレーム期間の輝度が少なくとも一部互いに異なればよい。よって、各サブフレーム期間において上述した輝度が得られるように、駆動用トランジスタのゲート電圧Vgsの値も制御する。
なお本明細書において発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的にはOLED(Organic Light Emitting Diode)や、FED(Field Emission Display)に用いられているMIM型の電子源素子(電子放出素子)等が含まれる。
発光素子の一つであるOLED(Organic Light Emitting Diode)は、電場を加えることで発生するルミネッセンス(Electroluminescence)が得られる電界発光材料を含む層(以下、電界発光層と記す)と、陽極と、陰極とを有している。電界発光層は陽極と陰極の間に設けられており、単層または複数の層で構成されている。これらの層の中に無機化合物を含んでいる場合もある。電界発光層におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)とが含まれる。
本明細書では、陽極と陰極の2つの電極のうち、駆動用トランジスタによって電位を制御することができる一方の電極を第1の電極、他方の電極を第2の電極とする。
また発光装置は、発光素子が封止された状態にあるパネルと、該パネルにコントローラを含むIC等を実装した状態にあるモジュールとを含む。さらに本発明は、該発光装置を作製する過程における、発光素子が完成する前の一形態に相当する素子基板に関し、該素子基板は、電流を発光素子に供給するための手段を複数の各画素に備える。
なお素子基板は、本発明の発光装置を作製する過程における、発光素子が完成する前の一形態に相当する。具体的には、発光素子の第1の電極のみが形成された状態であっても良いし、第1の電極となる導電膜を成膜した後であって、パターニングして第1の電極を形成する前の状態であっても良いし、あらゆる形態があてはまる。
なお本発明の発光装置において用いられるトランジスタとして、多結晶半導体、微結晶半導体(セミアモルファス半導体を含む)、アモルファス半導体を用いた薄膜トランジスタを用いることができるが、本発明の発光装置に用いられるトランジスタは薄膜トランジスタに限定されない。単結晶シリコンを用いて形成されたトランジスタであっても良いし、SOIを用いたトランジスタであっても良い。また、有機半導体を用いたトランジスタであっても良いし、カーボンナノチューブを用いたトランジスタであってもよい。また本発明の発光装置の画素に設けられたトランジスタは、シングルゲート構造を有していても良いし、ダブルゲート構造やそれ以上のゲート電極を有するマルチゲート構造であっても良い。
セミアモルファス半導体とは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造の半導体を含む膜である。このセミアモルファス半導体は、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質なものであり、その粒径を0.5〜20nmとして非単結晶半導体中に分散させて存在せしめることが可能である。セミアモルファス半導体は、そのラマンスペクトルが520cm-1よりも低波数側にシフトしており、またX線回折ではSi結晶格子に由来するとされる(111)、(220)の回折ピークが観測される。また、未結合手(ダングリングボンド)を終端させるために水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。ここでは便宜上、このような半導体をセミアモルファス半導体(SAS)と呼ぶ。さらに、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ませて格子歪みをさらに助長させることで安定性が増し良好なセミアモルファス半導体が得られる。
従来の場合では、発光素子が発光する期間を制御することで階調を表示するので、n個のサブフレーム期間のうち最も短いサブフレーム期間の長さが、最も長いサブフレーム期間の長さの1/2n-1倍であった。しかし本発明は上記構成により、サブフレーム期間の長さを均等にすることができる。よってフレーム周波数を高めても、従来と異なり、各サブフレーム期間が短くなるのを抑えることができる。よって従来の場合よりも、駆動回路の駆動周波数を抑えつつ、フレーム周波数を高め、擬似輪郭の発生を抑えることができる。
以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。
図1に、本発明の発光装置の構成を示す。図1に示す本発明の発光装置は、画素101が複数設けられた画素部102と、信号線駆動回路103と、走査線駆動回路104と、選択回路群105と、電圧設定回路106とを有している。選択回路群105は、複数の選択回路107で構成されている。また各画素101には、信号線S1〜Sx、走査線G1〜Gy、電源線V1〜Vxにより、各種信号の電圧または電源電圧が供給されている(なお、ここではx及びyは2以上の正の整数である)。
なお図1では、信号線S1〜Sx、走査線G1〜Gy、電源線V1〜Vxを用いている発光装置の構成を示しているが、本発明はこの構成に限定されない。各画素101に各種信号の電圧または電源電圧を供給するための配線の種類及び数は、図1に示した構成に限定されず、画素101の構成に合わせて適宜変更することが可能である。
図2(A)に、図1に示す発光装置が有する、電圧設定回路106、選択回路107、画素101の具体的な構成を例示する。ただし図2(A)では、画素部102が有する画素101の一つと、該画素101に対応する一つの選択回路107のみを代表的に示している。
信号線駆動回路103では、入力された第1のビデオ信号をパラレル/シリアル変換し、後段の選択回路群105が有する複数の各選択回路107に入力する。電圧設定回路106は、切り替え信号に同期して、各サブフレーム期間に対応する電圧を選択し、後段の選択回路群105が有する複数の各選択回路107に供給する。すなわち、切り替え信号は、各サブフレーム期間に同期した信号であると言える。
なお図1、図2(A)では、6個のサブフレーム期間を用いて階調を表示する場合を例示している。よって図1、図2(A)では、電圧設定回路106により、電圧Vss1〜電圧Vss6のいずれか一つが選択され、複数の各選択回路107に供給されている。
また各選択回路107には、電圧設定回路106から供給される電圧Vss1〜電圧Vss6よりも高い、電圧Vddが供給されている。なお図1では、画素101が有する発光素子108への電流の供給を制御する駆動用トランジスタ109が、p型の場合について説明している。駆動用トランジスタ109がn型の場合は、電圧設定回路106に選択された電圧Vss1〜電圧Vss6の代わりにVdd1〜Vdd6のいずれか一つと、電圧Vdd1〜電圧Vdd6よりも低い電圧Vssとを、複数の各選択回路107に供給する。
選択回路107では、信号線駆動回路103から入力された第1のビデオ信号に従って、電圧Vss1〜電圧Vss6の一つと、電圧Vddとのいずれか一方を、第2のビデオ信号の電圧として、対応する画素101に接続された信号線Si(1≦i≦x)に供給する。
なお選択回路107は、信号線駆動回路103から入力された第1のビデオ信号に従って、電圧Vss1〜電圧Vss6の一つと、電圧Vddを選択することができる回路であれば良い。図2(B)に、選択回路107としてインバータを用いている例を示す。
具体的に、図2(B)に示す選択回路107では、p型のトランジスタ112とn型のトランジスタ113とを有している。そして、p型のトランジスタ112とn型のトランジスタ113は、ゲートが互いに接続されており、またドレインも互いに接続されている。そしてp型のトランジスタ112のソースには、電圧Vddが供給されており、n型のトランジスタ113のソースには、電圧Vss1〜電圧Vss6の一つが供給されている。
第1のビデオ信号の電圧は、p型のトランジスタ112のゲート及びn型のトランジスタ113のゲートに供給されている。またp型のトランジスタ112のドレイン及びn型のトランジスタ113のドレインの電圧が、第2のビデオ信号の電圧として、信号線Siに供給されている。
なお選択回路107は、図2(B)に示した構成に限定されない。図2(C)に、選択回路107にトランスミッションゲートを用いる例を示す。
図2(C)に示す選択回路107は、トランスミッションゲート120、インバータ121、トランジスタ122とを有している。トランスミッションゲート120の第2の制御端子及びインバータ121の入力端子には、第1のビデオ信号が入力されている。また、インバータ121の出力端子は、トランスミッションゲート120の第1の制御端子及びトランジスタ122のゲートに接続されている。トランスミッションゲート120の入力端子には、電圧Vddが供給されている。またトランジスタ122のソースまたはドレインは、一方に電圧Vss1〜電圧Vss6の一つが供給されており、他方はトランスミッションゲート120の出力端子に接続されている。トランスミッションゲート120の出力端子の電圧が、第2のビデオ信号として信号線Siに供給されている。
なおトランスミッションゲート120は、第1の制御端子と第2の制御端子に入力される信号の電圧に従って、そのスイッチングが制御されている。具体的には、第1の制御端子に低電圧、第2の制御端子に高電圧が供給された時にのみ、入力端子の電圧を出力端子に供給することができる。
本発明で用いられる選択回路107は、第1のビデオ信号に従って、2つの電圧のいずれか一方を選択し、出力することができる回路であれば良い。
また、本発明で用いられてる電圧設定回路は、切り替え信号に従ってVss1〜Vss6のいずれかを選択し、出力することができる回路であればよい。例えば、D/A変換回路、電源、抵抗、アナログスイッチ、アナログバッファを含む回路、あるいはTFTで構成される回路であってもよい。
図2(A)に示す画素101は、画素101への第2のビデオ信号の入力を制御するトランジスタ(スイッチング用トランジスタ)110と、駆動用トランジスタ109と、発光素子108と、駆動用トランジスタ109のゲート電圧を保持するための容量素子111とを有している。なお容量素子111は、必ずしも設けなくとも良い。
具体的にスイッチング用トランジスタ110は、ゲートが走査線Gj(1≦j≦y)に接続されている。またスイッチング用トランジスタ110のソースとドレインは、いずれか一方が信号線Siに、他方が駆動用トランジスタ109のゲートに接続されている。発光素子108は、第1の電極と、第2の電極と、第1の電極と第2の電極の間に挟まれた電界発光層とを有している。駆動用トランジスタ109のソースとドレインは、一方が電源線Vi(1≦i≦x)に、他方が発光素子108の第1の電極に接続されている。
なお、発光素子108が有する第1の電極と第2の電極は、陽極でも陰極でもどちらでも良い。ただし、駆動用トランジスタ109がp型である場合、第1の電極が陽極、第2の電極が陰極である方が、駆動用トランジスタ109のゲート電圧を安定させることができるので望ましい。逆に、駆動用トランジスタ109がn型である場合、第1の電極が陰極、第2の電極が陽極である方が、駆動用トランジスタ109のゲート電圧を安定させることができるので望ましい。
また容量素子111が有する2つの電極は、一方が駆動用トランジスタ109のゲートに、他方が電源線Viに接続されている。
なお本発明の発光装置は、図2(A)に示す画素101の構成に限定されない。本発明の発光装置が有する画素101は、発光素子108に供給される電流が、駆動用トランジスタ109のゲート電圧により制御され、なおかつ駆動用トランジスタのゲート電圧が第2のビデオ信号の電圧により制御されていれば良い。
なお図2(A)に示す画素101では駆動用トランジスタがp型であり、この場合、電源線Viには、電圧Vdd以下でなおかつ電圧Vss1〜Vss6より高い電圧Veが与えられている。逆に駆動用トランジスタがn型である場合は、電源線Viには、電圧Vss以上でなおかつ電圧Vdd1〜Vdd6より低い電圧Veが与えられている。
そして走査線Gjの電圧を制御することでスイッチング用トランジスタ110がオンになると、信号線Siの電圧が駆動用トランジスタ109のゲートに与えられる。よって、選択回路107により電圧Vss1〜Vss6の一つが信号線Siに供給されている場合、駆動用トランジスタ109のゲート電圧Vgsは、Vss1〜Vss6から電源線Viの電圧Veを差し引いた値となる。そして、駆動用トランジスタ109には該ゲート電圧Vgsに見合った値のドレイン電流が流れ、該ドレイン電流が発光素子108に供給される。したがって、Vss1〜Vss6のいずれを選択するかによって、ドレイン電流の値、延いては該ドレイン電流が供給されている発光素子108の輝度の高さをも、制御することができる。
また、選択回路107により電圧Vddが信号線Siに供給されている場合、駆動用トランジスタ109のゲート電圧Vgsは、Vddから電源線Viの電圧Veを差し引いた値となる。よって、駆動用トランジスタ109はオフとなり、発光素子108は非発光の状態となる。
各サブフレーム期間における発光素子の輝度について、最も輝度の低いサブフレーム期間以外の他のサブフレーム期間の輝度は、該最も輝度の低いサブフレーム期間の輝度の2(n-1)倍となる。よって各サブフレーム期間において上述した輝度が得られるように、駆動用トランジスタ109のゲート電圧Vgsの値も制御する必要がある。飽和領域で動作するトランジスタのドレイン電流Iは、以下の式1に従う。なお式1において、β=μC0W/Lであり、μは移動度、C0は単位面積あたりのゲート容量、W/Lはチャネル形成領域のチャネル幅Wとチャネル長Lの比、Vthは閾値電圧とする。
Figure 0005041674
式1から、閾値電圧Vthが0であると仮定すると、ドレイン電流Iが、ほぼゲート電圧Vgsの2乗に比例することが分かる。発光素子の輝度はドレイン電流Iに比例するので、発光素子の輝度を2n-1倍にするためには、駆動用トランジスタのゲート電圧Vgsを2n-1の平方根倍にすれば良い。
図3に、6個のサブフレーム期間を用いて階調数64を表示する際の、各サブフレーム期間の発光素子108の輝度と、駆動用トランジスタ109のゲート電圧Vgsの関係を示す。なお図3では、閾値電圧Vthが0であると仮定した場合を示している。図3に示すように、各サブフレーム期間における発光素子108の輝度の比を、SF1:SF2:SF3:SF4:SF5:SF6=1:2:4:8:16:32とするならば、各サブフレーム期間における駆動用トランジスタ109のゲート電圧Vgsの絶対値の比が、以下の式2を満たすようにする。
Figure 0005041674
上記構成により、1フレーム期間で総階調数64の表示を行なうことができる。なお上記式2は、閾値電圧Vthが0であると仮定した場合におけるゲート電圧Vgsの比を示しているが、実際には閾値電圧Vthを考慮に入れて、駆動用トランジスタ109のゲート電圧Vgsの比を定める必要がある。即ち、|Vgs−Vth|が、上記式2を満たすことが必要である。また全てのサブフレーム期間において、|Vgs−Vth|が、ドレインとソース間の電圧Vdsよりも小さくなるように設定する。
表1に、4個のサブフレーム期間で総階調数16の表示を行なう場合を例に挙げ、各サブフレーム期間における発光の有無と、階調数との関係を示す。なお表1では、発光の状態にある場合を○で、非発光の状態にある場合を×で示す。また各フレーム期間の輝度の比は、SF1:SF2:SF3:SF4=1:2:4:8とする。
Figure 0005041674
また、表2に5個のサブフレーム期間で総階調数16の表示を行なう場合を例に挙げ、各サブフレーム期間における発光の有無と、階調数との関係を示す。なお表2では、発光の状態にある場合を○で、非発光の状態にある場合を×で示す。また各フレーム期間の輝度の比は、SF1:SF2:SF3:SF4:SF5=1:2:3:5:7とする。
Figure 0005041674
ただし、本発明は例に示したような総階調数16、総階調数64だけに限定されるものではなく、他の総階調数の表示にも適用することが可能である。
次に、図1、図2(A)に示した発光装置において、サブフレーム期間ごとの画素部102の動作について説明する。図4に、図1、図2(A)に示した発光装置における、画素部102のタイミングチャートを示す。なお図4では、6個のサブフレーム期間SF1〜SF6を用いて、総階調数64の表示を行なう場合を例に挙げて説明する。
図4に示すように、複数のフレーム期間F1、F2、F3、...は、それぞれ6個のサブフレーム期間SF1〜SF6を有している。なお総階調数2nの表示を行なう場合、各フレーム期間はn個のサブフレーム期間を有するようにする。
電圧設定回路106によって選択される電圧は、切り替え信号に従い、各サブフレーム期間に同期して切り替わる。よってサブフレーム期間が6個の場合、電圧設定回路106の出力側におけるPoint Bの電圧は、図4に示すように、各サブフレーム期間に同期してVss1〜Vss6のいずれかに切り替わる。
また各サブフレーム期間では、走査線G1〜Gyが順に選択される。言い換えると、スイッチング用トランジスタ110がオンになるように、走査線G1〜Gyの電圧が順に制御される。そして各走査線G1〜Gyが選択されている期間において、信号線S1〜Sxに、並行してまたは順に、対応する第2のビデオ信号の電圧が供給される。なお図4では、全部の画素において階調数64を表示するときに、信号線S1〜Sxに並行して第2のビデオ信号が入力されている場合の、タイミングチャートを示している。具体的に図4では、信号線Siの入力側におけるPoint Aの電圧を示している。
上記構成により、画素部の全ての各画素において、所望の階調を表示することができる。
なお図1、図2(A)では、電圧設定回路106において複数の電圧のいずれか1つを選択し、該選択した電圧を後段の選択回路107に供給している例を示しているが、本発明はこの構成に限定されない。例えば、デジタルの信号(電圧制御信号)をアナログに変換し、該アナログの信号の電圧を選択回路107に供給するようにしても良い。
図5に、デジタルの電圧制御信号を用いて、選択回路107に供給する電圧を選択する場合の、発光装置の構成を示す。なお図5では、図2(A)と同じ構成を有するものに関しては、同じ符号を付している。図5に示す発光装置は、電圧設定回路114の構成が、図2(A)に示す発光装置と異なっている。電圧設定回路114には、2つの電圧Vss1、Vss6が供給されている。また電圧制御信号は、サブフレーム期間に同期している。そして電圧設定回路114はD/A変換回路を用いることができる。上記構成により、入力されたデジタルの電圧制御信号が有する情報に従い、Vss1〜Vss6のうちいずれか一つの電圧をサブフレーム期間に同期して選択し、後段の選択回路107に供給することができる。ただし、Vss1<Vss2<Vss3<Vss4<Vss5<Vss6であるものとする。
また本発明の発光装置では、赤(R)、緑(G)、青(B)の輝度のバランスを取るために、各色に対応する画素ごとに、電圧設定回路から選択回路に供給される電圧の高さを変えるようにしても良い。この場合、色ごとに電圧設定回路を設けることで、各色に対応する画素の輝度を調整することができる。
また本発明の発光装置では、信号線駆動回路、走査線駆動回路などの画素部の動作を制御する各種駆動回路を、画素部と同じ基板上に形成しても良いし、異なる基板上に形成しても良い。また選択回路群と電圧設定回路も同様に、画素部と同じ基板上に形成しても良いし、異なる基板上に形成しても良い。
図6に、本発明の発光装置が有する信号線駆動回路と、走査線駆動回路の、具体的な構成の一例について説明する。
図6に、本実施例の発光装置が有する信号線駆動回路601と、走査線駆動回路602の構成を、ブロック図で示す。図6において、信号線駆動回路601は、シフトレジスタ604、ラッチA605、ラッチB606を有している。シフトレジスタ604には、クロック信号(CLK)、スタートパルス信号(SP)などの各種制御信号が入力されている。クロック信号(CLK)とスタートパルス信号(SP)が入力されると、シフトレジスタ604においてタイミング信号が生成される。生成したタイミング信号は、一段目のラッチA605に順に入力される。ラッチA605にタイミング信号が入力されると、該タイミング信号のパルスに同期して、第1のビデオ信号が順にラッチA605に書き込まれ、保持される。なお、本実施例ではラッチA605に順に第1のビデオ信号を書き込んでいるが、本発明はこの構成に限定されない。複数のステージのラッチA605をいくつかのグループに分け、グループごとに並行して第1のビデオ信号を入力する、いわゆる分割駆動を行っても良い。なおこのときのグループの数を分割数と呼ぶ。例えば4つのステージごとにラッチをグループに分けた場合、4分割で分割駆動すると言える。
ラッチA605の全ステージのラッチへの、第1のビデオ信号の書き込みが一通り終了するまでの期間を、行選択期間と呼ぶ。実際には、上記行選択期間に水平帰線期間が加えられた期間を行選択期間に含むことがある。
1行選択期間が終了すると、2段目のラッチB606に、制御信号の一つに相当するラッチ信号(Latch Signal)が供給され、該ラッチ信号に同期してラッチA605に保持されている第1のビデオ信号が、ラッチB606に一斉に書き込まれる。第1のビデオ信号をラッチB606に送出し終えたラッチA605には、再びシフトレジスタ604からのタイミング信号に同期して、次のビットの第1のビデオ信号の書き込みが順次行われる。この2順目の1行選択期間中には、ラッチB606に書き込まれ、保持されている第1のビデオ信号が、選択回路群603入力される。そして第1のビデオ信号の入力により選択回路群603において生成された第2のビデオ信号が、画素部600に入力される。
なお、シフトレジスタ604の代わりに、例えばデコーダのような信号線の選択ができる別の回路を用いても良い。
次に、走査線駆動回路602の構成について説明する。走査線駆動回路602は、シフトレジスタ607、バッファ608を有している。また場合によってはレベルシフタを有していても良い。走査線駆動回路602において、シフトレジスタ607にクロックCLK及びスタートパルス信号SPが入力されることによって、選択信号が生成される。生成された選択信号はバッファ608において緩衝増幅され、対応する走査線に供給される。走査線に供給される選択信号によって、1行分の画素に含まれているトランジスタの動作が制御されるので、バッファ608には、比較的大きな電流を走査線に供給できるものを用いることが望ましい。
なお、シフトレジスタ607の代わりに、例えばデコーダのような信号線の選択ができる別の回路を用いても良い。
本発明の発光装置が有するパネルは、図6に示す構成に限定されない。パネルは、第1のビデオ信号に従って画素の階調を制御できるような構成を有していれば良い。
本実施例は、上記の実施の形態と自由に組み合わせることができる。
次に、本発明の発光装置が有する画素の回路図について、図7を用いて説明する。
図7は、画素の等価回路図の一例を示したものであり、信号線6114、電源線6115、走査線6116、6119、発光素子6113、TFT6110、6111、6118、容量素子6112を有する。
信号線6114には信号線駆動回路によって第2のビデオ信号が入力される。TFT6110は、走査線6116に入力される選択信号に従って、TFT6111のゲートへの、該ビデオ信号の電位の供給を制御することができる。TFT6111は、該ビデオ信号の電位に従って、発光素子6113への電流の供給を制御することができる。TFT6118のスイッチングは、走査線6119に入力される選択信号により、制御することができる。TFT6118により、強制的に発光素子6113に電流が流れない状態を作ることができるため、全ての画素に第2のビデオ信号が入力される期間よりも、サブフレーム期間の長さを短くすることができる。従って、駆動周波数を抑えつつ、高い総階調数の表示を行なうことができる。
また容量素子6112により、TFT6111のゲート電圧を保持することができる。なお、図7では、容量素子6112を図示したが、TFT6111のゲート容量や他の寄生容量で賄うことが可能な場合には、設けなくてもよい。
なお、本発明の発光装置が有する画素は、本実施例で示した構成に限定されない。本実施例は、上記の実施の形態、実施例1と自由に組み合わせることができる。
本実施例では、発光素子への電流の供給を制御するトランジスタがp型の場合における、画素の断面構造について、図8を用いて説明する。なお本明細書では、発光素子が有する陽極と陰極の2つの電極のうち、トランジスタによって電位を制御することができる一方の電極を第1の電極、他方の電極を第2の電極とする。そして図8では、第1の電極が陽極、第2の電極が陰極の場合について説明するが、第1の電極が陰極、第2の電極が陽極であっても良い。
図8(A)に、トランジスタ6001がp型で、発光素子6003から発せられる光を第1の電極6004側から取り出す場合の、画素の断面図を示す。図8(A)では、発光素子6003の第1の電極6004と、トランジスタ6001が電気的に接続されている。
トランジスタ6001は層間絶縁膜6007で覆われており、層間絶縁膜6007上には開口部を有する隔壁6008が形成されている。隔壁6008の開口部において第1の電極6004が一部露出しており、該開口部において第1の電極6004、電界発光層6005、第2の電極6006が順に積層されている。
層間絶縁膜6007は、有機樹脂膜、無機絶縁膜またはシロキサン系材料を出発材料として形成されたSi−O−Si結合を含む絶縁膜(以下、シロキサン系絶縁膜と呼ぶ)を用いて形成することができる。シロキサン系絶縁膜は、置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。層間絶縁膜6007に、低誘電率材料(low−k材料)と呼ばれる材料を用いていても良い。
隔壁6008は、有機樹脂膜、無機絶縁膜またはシロキサン系絶縁膜を用いて形成することができる。有機樹脂膜ならば、例えばアクリル、ポリイミド、ポリアミドなど、無機絶縁膜ならば酸化珪素、窒化酸化珪素などを用いることができる。特に感光性の有機樹脂膜を隔壁6008に用い、第1の電極6004上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面となるように形成することで、第1の電極6004と第2の電極6006とが接続してしまうのを防ぐことができる。
第1の電極6004は、光を透過する材料または膜厚で形成し、なおかつ陽極として用いるのに適する材料で形成する。例えば、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化インジウム亜鉛(IZO)、ガリウムを添加した酸化亜鉛(GZO)などその他の透光性酸化物導電材料を第1の電極6004に用いることが可能である。またITO及び酸化珪素を含む酸化インジウムスズ(以下、ITSOとする)や、酸化珪素を含んだ酸化インジウムにさらに2〜20wt%の酸化亜鉛(ZnO)を混合したものを第1の電極6004に用いても良い。また上記透光性酸化物導電材料の他に、例えばTiN、ZrN、Ti、W、Ni、Pt、Cr、Ag、Al等の1つまたは複数からなる単層膜の他、窒化チタンとアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との三層構造等を第1の電極6004に用いることもできる。ただし透光性酸化物導電材料以外の材料を用いる場合、光が透過する程度の膜厚(好ましくは、5nm〜30nm程度)で第1の電極6004を形成する。
また第2の電極6006は、光を反射もしくは遮蔽する材料及び膜厚で形成し、なおかつ仕事関数の小さい金属、合金、電気伝導性化合物、およびこれらの混合物などで形成することができる。具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、これらを含む合金(Mg:Ag、Al:Li、Mg:Inなど)、およびこれらの化合物(CaF2、CaN)の他、YbやEr等の希土類金属を用いることができる。また電子注入層を設ける場合、Alなどの他の導電層を用いることも可能である。
電界発光層6005は、単数または複数の層で構成されている。複数の層で構成されている場合、これらの層は、キャリア輸送特性の観点から正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などに分類することができる。電界発光層6005が発光層の他に、正孔注入層、正孔輸送層、電子輸送層、電子注入層のいずれかを有している場合、第1の電極6004から正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の順に積層する。なお各層の境目は必ずしも明確である必要はなく、互いの層を構成している材料が一部混合し、界面が不明瞭になっている場合もある。各層には、有機系の材料、無機系の材料を用いることが可能である。有機系の材料として、高分子系、中分子系、低分子系のいずれの材料も用いることが可能である。なお中分子系の材料とは、構造単位の繰返しの数(重合度)が2から20程度の低重合体に相当する。正孔注入層と正孔輸送層との区別は必ずしも厳密なものではなく、これらは正孔輸送性(正孔移動度)が特に重要な特性である意味において同じである。便宜上正孔注入層は陽極に接する側の層であり、正孔注入層に接する層を正孔輸送層と呼んで区別する。電子輸送層、電子注入層についても同様であり、陰極に接する層を電子注入層と呼び、電子注入層に接する層を電子輸送層と呼んでいる。発光層は電子輸送層を兼ねる場合もあり、発光性電子輸送層とも呼ばれる。
図8(A)に示した画素の場合、発光素子6003から発せられる光を、白抜きの矢印で示すように第1の電極6004側から取り出すことができる。
次に図8(B)に、トランジスタ6011がp型で、発光素子6013から発せられる光を第2の電極6016側から取り出す場合の、画素の断面図を示す。図8(B)では、発光素子6013の第1の電極6014と、トランジスタ6011が電気的に接続されている。また第1の電極6014上に電界発光層6015、第2の電極6016が順に積層されている。
第1の電極6014は、光を反射もしくは遮蔽する材料及び膜厚で形成し、なおかつ陽極として用いるのに適する材料で形成する。例えば、TiN、ZrN、Ti、W、Ni、Pt、Cr、Ag、Al等の1つまたは複数からなる単層膜の他、窒化チタンとアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との三層構造等を第1の電極6014に用いることができる。
また第2の電極6016は、光を透過する材料または膜厚で形成し、なおかつ仕事関数の小さい金属、合金、電気伝導性化合物、およびこれらの混合物などで形成することができる。具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、これらを含む合金(Mg:Ag、Al:Li、Mg:Inなど)、およびこれらの化合物(CaF2、CaN)の他、YbやEr等の希土類金属を用いることができる。また電子注入層を設ける場合、Alなどの他の導電層を用いることも可能である。そして第2の電極6016を、光が透過する程度の膜厚(好ましくは、5nm〜30nm程度)で形成する。なお、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化インジウム亜鉛(IZO)、ガリウムを添加した酸化亜鉛(GZO)などその他の透光性酸化物導電材料を用いることも可能である。またITO及びITSOや、酸化珪素を含んだ酸化インジウムにさらに2〜20wt%の酸化亜鉛(ZnO)を混合したものを用いても良い。透光性酸化物導電材料を用いる場合、電界発光層6015に電子注入層を設けるのが望ましい。
電界発光層6015は、図8(A)の電界発光層6005と同様に形成することができる。
図8(B)に示した画素の場合、発光素子6013から発せられる光を、白抜きの矢印で示すように第2の電極6016側から取り出すことができる。
次に図8(C)に、トランジスタ6021がp型で、発光素子6023から発せられる光を第1の電極6024側及び第2の電極6026側から取り出す場合の、画素の断面図を示す。図8(C)では、発光素子6023の第1の電極6024と、トランジスタ6021が電気的に接続されている。また第1の電極6024上に電界発光層6025、第2の電極6026が順に積層されている。
第1の電極6024は、図8(A)の第1の電極6004と同様に形成することができる。また第2の電極6026は、図8(B)の第2の電極6016と同様に形成することができる。電界発光層6025は、図8(A)の電界発光層6005と同様に形成することができる。
図8(C)に示した画素の場合、発光素子6023から発せられる光を、白抜きの矢印で示すように第1の電極6024側及び第2の電極6026側から取り出すことができる。
本実施例は、上記の実施の形態、実施例1、2と自由に組み合わせることができる。
本実施例では、トランジスタがn型の場合における、画素の断面構造について、図9を用いて説明する。なお図9では、第1の電極が陰極、第2の電極が陽極の場合について説明するが、第1の電極が陽極、第2の電極が陰極であっても良い。
図9(A)に、トランジスタ6031がn型で、発光素子6033から発せられる光を第1の電極6034側から取り出す場合の、画素の断面図を示す。図9(A)では、発光素子6033の第1の電極6034と、トランジスタ6031が電気的に接続されている。また第1の電極6034上に電界発光層6035、第2の電極6036が順に積層されている。
第1の電極6034は、光を透過する材料または膜厚で形成し、なおかつ仕事関数の小さい金属、合金、電気伝導性化合物、およびこれらの混合物などで形成することができる。具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、これらを含む合金(Mg:Ag、Al:Li、Mg:Inなど)、およびこれらの化合物(CaF2、CaN)の他、YbやEr等の希土類金属を用いることができる。また電子注入層を設ける場合、Alなどの他の導電層を用いることも可能である。そして第1の電極6034を、光が透過する程度の膜厚(好ましくは、5nm〜30nm程度)で形成する。さらに、光が透過する程度の膜厚を有する上記導電層の上または下に接するように、透光性酸化物導電材料を用いて透光性を有する導電層を形成し、第1の電極6034のシート抵抗を抑えるようにしても良い。なお、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化インジウム亜鉛(IZO)、ガリウムを添加した酸化亜鉛(GZO)などその他の透光性酸化物導電材料を用いた導電層だけを用いることも可能である。またITO及びITSOや、酸化珪素を含んだ酸化インジウムにさらに2〜20wt%の酸化亜鉛(ZnO)を混合したものを用いても良い。透光性酸化物導電材料を用いる場合、電界発光層6035に電子注入層を設けるのが望ましい。
また第2の電極6036は、光を反射もしくは遮蔽する材料及び膜厚で形成し、なおかつ陽極として用いるのに適する材料で形成する。例えば、TiN、ZrN、Ti、W、Ni、Pt、Cr、Ag、Al等の1つまたは複数からなる単層膜の他、窒化チタンとアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との三層構造等を第2の電極6036に用いることができる。
電界発光層6035は、図8(A)の電界発光層6005と同様に形成することができる。ただし、電界発光層6035が発光層の他に、正孔注入層、正孔輸送層、電子輸送層、電子注入層のいずれかを有している場合、第1の電極6034から、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層の順に積層する。
図9(A)に示した画素の場合、発光素子6033から発せられる光を、白抜きの矢印で示すように第1の電極6034側から取り出すことができる。
次に図9(B)に、トランジスタ6041がn型で、発光素子6043から発せられる光を第2の電極6046側から取り出す場合の、画素の断面図を示す。図9(B)では、発光素子6043の第1の電極6044と、トランジスタ6041が電気的に接続されている。また第1の電極6044上に電界発光層6045、第2の電極6046が順に積層されている。
第1の電極6044は、光を反射もしくは遮蔽する材料及び膜厚で形成し、なおかつ仕事関数の小さい金属、合金、電気伝導性化合物、およびこれらの混合物などで形成することができる。具体的には、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、これらを含む合金(Mg:Ag、Al:Li、Mg:Inなど)、およびこれらの化合物(CaF2、CaN)の他、YbやEr等の希土類金属を用いることができる。また電子注入層を設ける場合、Alなどの他の導電層を用いることも可能である。
また第2の電極6046は、光を透過する材料または膜厚で形成し、なおかつ陽極として用いるのに適する材料で形成する。例えば、酸化インジウムスズ(ITO)、酸化亜鉛(ZnO)、酸化インジウム亜鉛(IZO)、ガリウムを添加した酸化亜鉛(GZO)などその他の透光性酸化物導電材料を第2の電極6046に用いることが可能である。またITO及びITSOや、酸化珪素を含んだ酸化インジウムにさらに2〜20wt%の酸化亜鉛(ZnO)を混合したものを第2の電極6046に用いても良い。また上記透光性酸化物導電材料の他に、例えばTiN、ZrN、Ti、W、Ni、Pt、Cr、Ag、Al等の1つまたは複数からなる単層膜の他、窒化チタンとアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との三層構造等を第2の電極6046に用いることもできる。ただし透光性酸化物導電材料以外の材料を用いる場合、光が透過する程度の膜厚(好ましくは、5nm〜30nm程度)で第2の電極6046を形成する。
電界発光層6045は、図9(A)の電界発光層6035と同様に形成することができる。
図9(B)に示した画素の場合、発光素子6043から発せられる光を、白抜きの矢印で示すように第2の電極6046側から取り出すことができる。
次に図9(C)に、トランジスタ6051がn型で、発光素子6053から発せられる光を第1の電極6054側及び第2の電極6056側から取り出す場合の、画素の断面図を示す。図9(C)では、発光素子6053の第1の電極6054と、トランジスタ6051が電気的に接続されている。また第1の電極6054上に電界発光層6055、第2の電極6056が順に積層されている。
第1の電極6054は、図9(A)の第1の電極6034と同様に形成することができる。また第2の電極6056は、図9(B)の第2の電極6046と同様に形成することができる。電界発光層6055は、図9(A)の電界発光層6035と同様に形成することができる。
図9(C)に示した画素の場合、発光素子6053から発せられる光を、白抜きの矢印で示すように第1の電極6054側及び第2の電極6056側から取り出すことができる。
本実施例は、上記の実施の形態、実施例1乃至3と自由に組み合わせることができる。
本発明の発光装置に含まれる電界発光層は、スクリーン印刷法、オフセット印刷法に代表される印刷法、または液滴吐出法を用いて形成できる。なお液滴吐出法とは、所定の組成物を含む液滴を細孔から吐出して所定のパターンを形成する方法を意味し、インクジェット法などがその範疇に含まれる。上記印刷法、液滴吐出法を用いることで、露光用のマスクを用いずとも、信号線、走査線、選択線に代表される各種配線、TFTのゲート、発光素子の電極などを形成することが可能になる。ただし、パターンを形成する全ての工程に、印刷法または液滴吐出法を用いる必要はない。よって、例えば配線及びゲートの形成には印刷法または液滴吐出法を用い、半導体膜のパターニングにはリソグラフィ法を用いる、というように、少なくとも一部の工程において印刷法または液滴吐出法を用いていれば良く、リソグラフィ法も併用していても良い。またパターニングの際に用いるマスクは、印刷法または液滴吐出法で形成しても良い。
図10に、液滴吐出法を用いて形成された、本発明の発光装置の断面図を、一例として示す。図10において、1301、1302はトランジスタ、1304は発光素子に相当する。トランジスタ1302は、発光素子1304の第1の電極1350と電気的に接続されている。トランジスタ1302はn型であることが望ましく、この場合、第1の電極1350は陰極を用い、第2の電極1331は陽極を用いるのが望ましい。
スイッチング素子として機能するトランジスタ1301は、ゲート1310と、チャネル形成領域を含む第1の半導体膜1311と、ゲート1310と第1の半導体膜1311の間に形成されたゲート絶縁膜1317と、ソースまたはドレインとして機能する第2の半導体膜1312、1313と、第2の半導体膜1312に接続された配線1314と、第2の半導体膜1313に接続された配線1315とを有している。
トランジスタ1302は、ゲート1320と、チャネル形成領域を含む第1の半導体膜1321と、ゲート1320と第1の半導体膜1321に形成されたゲート絶縁膜1317と、ソースまたはドレインとして機能する第2の半導体膜1322、1323と、第2の半導体膜1322に接続された配線1324と、第2の半導体膜1323に接続された配線1325とを有している。
配線1314は信号線に相当し、配線1315はトランジスタ1302のゲート1320に電気的に接続されている。また配線1325は電源線に相当する。
液滴吐出法、印刷法を用いてパターンを形成することで、リソグラフィ法で行なわれるフォトレジストの成膜、露光、現像、エッチング、剥離などの一連の工程を簡略化することができる。また、液滴吐出法、印刷法だと、リソグラフィ法と異なり、エッチングにより除去されてしまうような材料の無駄がない。また高価な露光用のマスクを用いなくとも良いので、発光装置の作製に費やされるコストを抑えることができる。
さらに、リソグラフィ法とは異なり、配線を形成するためにエッチングを行なう必要がない。よって、配線を形成する工程に費やされる時間をリソグラフィ法の場合に比べて著しく短くすることが可能である。特に配線の厚さを0.5μm以上、より望ましくは2μm以上で形成する場合、配線抵抗を抑えることができるので、配線の作製工程に費やされる時間を抑えつつ、発光装置の大型化に伴う配線抵抗の上昇を抑えることができる。
なお第1の半導体膜1311、1321は非晶質半導体であっても、セミアモルファス半導体(SAS)であってもどちらでも良い。
非晶質半導体は、珪化物気体をグロー放電分解することにより得ることができる。代表的な珪化物気体としては、SiH4、Si26が挙げられる。この珪化物気体を、水素、水素とヘリウムで希釈して用いても良い。
またSASも珪化物気体をグロー放電分解することにより得ることができる。代表的な珪化物気体としては、SiH4であり、その他にもSi26、SiH2Cl2、SiHCl3、SiCl4、SiF4などを用いることができる。また水素や、水素にヘリウム、アルゴン、クリプトン、ネオンから選ばれた一種または複数種の希ガス元素を加えたガスで、この珪化物気体を希釈して用いることで、SASの形成を容易なものとすることができる。希釈率は2倍〜1000倍の範囲で珪化物気体を希釈することが好ましい。またさらに、珪化物気体中に、CH4、C26などの炭化物気体、GeH4、GeF4などのゲルマニウム化気体、F2などを混入させて、エネルギーバンド幅を1.5〜2.4eV、若しくは0.9〜1.1eVに調節しても良い。SASを第1の半導体膜として用いたTFTは、1〜10cm2/Vsecや、それ以上の移動度を得ることができる。
また第1の半導体膜1311、1321は、非晶質半導体またはセミアモルファス半導体(SAS)をレーザ結晶化した半導体を用いていても良い。
本実施例は、上記の実施の形態、実施例1乃至4と自由に組み合わせることができる。
本実施例では、本発明の発光装置の一形態に相当するパネルの外観について、図11を用いて説明する。図11は、第1の基板上に形成されたトランジスタ及び発光素子を、第2の基板との間にシール材によって封止したパネルの上面図であり、図11(B)は、図11(A)のA−A’における断面図に相当する。
第1の基板4001上に設けられた画素部4002と、信号線駆動回路4003と、走査線駆動回路4004と、切り替え回路群4020と、電圧設定回路4021とを囲むようにして、シール材4005が設けられている。また画素部4002と、信号線駆動回路4003と、走査線駆動回路4004と、切り替え回路群4020と、電圧設定回路4021の上に、第2の基板4006が設けられている。よって画素部4002と、信号線駆動回路4003と、走査線駆動回路4004と、切り替え回路群4020と、電圧設定回路4021とは、第1の基板4001とシール材4005と第2の基板4006とによって、充填材4007と共に密封されている。
また第1の基板4001上に設けられた画素部4002と、信号線駆動回路4003と、走査線駆動回路4004と、切り替え回路群4020と、電圧設定回路4021とは、トランジスタを複数有しており、図11(B)では、信号線駆動回路4003に含まれるトランジスタ4008と、画素部4002に含まれるトランジスタ4009と、切り替え回路群4020に含まれるトランジスタ4010とを例示している。
また4011は発光素子に相当し、トランジスタ4009のドレインと接続されている配線4017の一部が、発光素子4011の第1の電極として機能する。また透明導電膜4012が、発光素子4011の第2の電極として機能する。なお発光素子4011の構成は、本実施例に示した構成に限定されない。発光素子4011から取り出す光の方向や、トランジスタ4009の極性などに合わせて、発光素子4011の構成は適宜変えることができる。
また信号線駆動回路4003、走査線駆動回路4004、画素部4002、切り替え回路群4020または電圧設定回路4021とに与えられる各種信号及び電圧は、図11(B)に示す断面図では図示されていないが、引き回し配線4014及び4015を介して、接続端子4016から供給されている。
本実施例では、接続端子4016が、発光素子4011が有する第1の電極と同じ導電膜から形成されている。また、引き回し配線4014は、配線4017と同じ導電膜から形成されている。また引き回し配線4015は、トランジスタ4009、トランジスタ4008がそれぞれ有するゲートと、同じ導電膜から形成されている。
接続端子4016は、FPC4018が有する端子と、異方性導電膜4019を介して電気的に接続されている。
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはステンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては、FRP(Fiberglass−Reinforced Plastics)板、PVF(ポリビニルフルオライド)フィルム、マイラーフィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやマイラーフィルムで挟んだ構造のシートを用いることもできる。
但し、発光素子4011からの光の取り出し方向に位置する基板には、第2の基板4006は透光性を有していなければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリルフィルムのような透光性を有する材料を用いる。
また、充填材4007としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、ポリイミド、エポキシ樹脂、シリコン樹脂、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることができる。本実施例では充填材として窒素を用いた。
本実施例は、上記の実施の形態、実施例1乃至5と自由に組み合わせることができる。
本発明の発光装置は、擬似輪郭を防止することができるので、表示装置、ゴーグル型ディスプレイなどの映像を観賞するための表示部を有する電子機器に最適である。
その他、本発明の発光装置を用いることができる電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、ノート型パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話機、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(代表的にはDVD:Digital Versatile Disc等の記録媒体を再生し、その画像を表示しうるディスプレイを有する装置)などが挙げられる。これら電子機器の具体例を図12に示す。
図12(A)はノート型パーソナルコンピュータであり、本体2101、表示部2102、操作キー2103、スピーカー部2104等を含む。本発明の発光装置は、表示部2102に用いることができる。
図12(B)はゴーグル型表示装置であり、本体2201、表示部2202、イヤホン2203、支持部2204とを有している。本発明の発光装置は、表示部2202に用いることができる。支持部2204は、ゴーグル型表示装置を頭部自体に固定するタイプであっても良いし、使用者の身体のうち、頭部以外の部分に固定するタイプであっても良い。
図12(C)は表示装置であり、筐体2401、表示部2402、スピーカー部2403等を含む。本発明の発光装置は、表示部2402に用いることができる。発光装置は自発光型であるためバックライトが必要なく、液晶ディスプレイよりも薄い表示部とすることができる。なお、表示装置には、パソコン用、TV放送受信用、広告表示用などの全ての情報表示用表示装置が含まれる。なお表示装置に発光装置を用いる場合、発光素子が有する第1の電極または第2の電極において外光が反射することで、鏡面のように像を写してしまうのを防ぐために、偏光板を設けておいても良い。
以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器に用いることが可能である。また本実施例は、上記の実施の形態、実施例1乃至6と自由に組み合わせることができる。
本発明の発光装置の構成を示す図。 図1に示す発光装置の、より詳しい構成を示す図。 本発明における、各サブフレーム期間の発光素子の輝度と、駆動用トランジスタのゲート電圧Vgsの関係を示す図。 本発明の発光装置が有する画素部のタイミングチャート。 デジタルの電圧制御信号を用いて、選択回路に供給する電圧を選択する場合の、本発明の発光装置の構成を示す図。 本発明の発光装置が有する信号線駆動回路と、走査線駆動回路の、具体的な構成の一例を示す図。 本発明の発光装置が有する画素の回路図の一例を示す図。 本発明の発光装置が有する画素の断面構造を示す図。 本発明の発光装置が有する画素の断面構造を示す図。 本発明の発光装置が有する画素の断面構造を示す図。 本発明の発光装置の上面図及び断面図。 本発明の発光装置を用いた電子機器の図。
符号の説明
101 画素
102 画素部
103 信号線駆動回路
104 走査線駆動回路
105 選択回路群
106 電圧設定回路
107 選択回路
108 発光素子
109 駆動用トランジスタ
110 スイッチング用トランジスタ
111 容量素子
112 トランジスタ
113 トランジスタ
114 電圧設定回路
120 トランスミッションゲート
121 インバータ
122 トランジスタ
600 画素部
601 信号線駆動回路
602 走査線駆動回路
603 選択回路群
604 シフトレジスタ
605 ラッチA
606 ラッチB
607 シフトレジスタ
608 バッファ
1301 トランジスタ
1302 トランジスタ
1304 発光素子
1310 ゲート
1311 半導体膜
1312 半導体膜
1313 半導体膜
1314 配線
1315 配線
1317 ゲート絶縁膜
1320 ゲート
1321 半導体膜
1322 半導体膜
1323 半導体膜
1324 配線
1325 配線
1331 電極
1350 電極
2101 本体
2102 表示部
2103 操作キー
2104 スピーカー部
2201 本体
2202 表示部
2203 イヤホン
2204 支持部
2401 筐体
2402 表示部
2403 スピーカー部
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4007 充填材
4008 トランジスタ
4009 トランジスタ
4010 トランジスタ
4011 発光素子
4012 透明導電膜
4014 配線
4015 配線
4016 接続端子
4017 配線
4018 FPC
4019 異方性導電膜
4020 回路群
4021 電圧設定回路
6001 トランジスタ
6003 発光素子
6004 電極
6005 電界発光層
6006 電極
6007 層間絶縁膜
6008 隔壁
6011 トランジスタ
6013 発光素子
6014 電極
6015 電界発光層
6016 電極
6021 トランジスタ
6023 発光素子
6024 電極
6025 電界発光層
6026 電極
6031 トランジスタ
6033 発光素子
6034 電極
6035 電界発光層
6036 電極
6041 トランジスタ
6043 発光素子
6044 電極
6045 電界発光層
6046 電極
6051 トランジスタ
6053 発光素子
6054 電極
6055 電界発光層
6056 電極
6110 TFT
6111 TFT
6112 容量素子
6113 発光素子
6114 信号線
6115 電源線
6116 走査線
6118 TFT
6119 走査線



Claims (2)

  1. 信号線駆動回路と、電圧Vddを供給する機能を有する電源線と、p型トランジスタとn型トランジスタとが設けられた選択回路と、第1のスイッチ乃至第nのスイッチが設けられた電圧設定回路と、画素部と、を有する発光装置において、
    前記信号駆動回路は、前記p型トランジスタのゲート及び前記n型トランジスタのゲートと電気的に接続され、
    前記p型トランジスタのソースまたはドレインの一方は、前記電源線と電気的に接続され、
    前記p型トランジスタのソースまたはドレインの他方は、前記画素部及び前記n型トランジスタのソースまたはドレインの一方と電気的に接続され、
    前記n型トランジスタのソースまたはドレインの他方は、前記第1のスイッチ乃至第nのスイッチの一端のそれぞれと電気的に接続され、
    前記第1のスイッチ乃至第nのスイッチの他端は、それぞれ異なる電圧である第1の電圧Vss1乃至第nの電圧Vssnが供給される機能を有する配線のそれぞれと電気的に接続されており、
    前記信号線駆動回路は、第1のビデオ信号を前記選択回路に入力し、
    前記選択回路は、前記第1のビデオ信号により、前記電圧Vddと第mの電圧Vssm(1≦m≦n)のいずれか一方を選択し、
    前記電源設定回路は、切り替え信号により、前記第1の電圧乃至第nの電圧のうちのいずれか一つの電圧である前記第mの電圧Vssmを選択することにより、各サブフレーム期間に対応する電圧を、前記選択回路を介して、前記画素部に供給することを特徴とする発光装置。
  2. 信号線駆動回路と、電圧Vddを供給する機能を有する電源線と、インバーターとトランスミッションゲートとトランジスタとが設けられた選択回路と、第1のスイッチ乃至第nのスイッチが設けられた電圧設定回路と、画素部と、を有する発光装置において、
    前記信号駆動回路は、前記インバーターの入力端子と前記トランスミッションゲートの第2の制御端子と電気的に接続され、
    前記インバーターの出力端子は、前記トランスミッションゲートの第1の制御端子と前記トランジスタのゲートと電気的に接続され、
    前記トランスミッションゲートの入力端子は、前記電源線と電気的に接続され、
    前記トランスミッションゲートの出力端子は、前記画素部と前記トランジスタのソースまたはドレインの一方と電気的に接続され、
    前記トランジスタのソースまたはドレインの他方は、前記第1のスイッチ乃至第nのスイッチの一端にそれぞれ電気的に接続され、
    前記第1のスイッチ乃至第nのスイッチの他端は、それぞれ異なる電圧である第1の電圧Vss1乃至第nの電圧Vssnが供給される機能を有する配線のそれぞれと電気的に接続されており、
    前記信号線駆動回路は、第1のビデオ信号を前記選択回路に入力し、
    前記選択回路は、前記第1のビデオ信号により、前記電圧Vddと第mの電圧Vssm(1≦m≦n)のいずれか一方を選択し、前記画素へ出力し、
    前記電源設定回路は、切り替え信号により、前記第1の電圧乃至第nの電圧のうちのいずれか一つの電圧である前記第mの電圧Vssmを選択することにより、各サブフレーム期間に対応する電圧を、前記選択回路を介して、前記画素部に供給することを特徴とする発光装置。
JP2005144038A 2004-05-21 2005-05-17 発光装置 Expired - Fee Related JP5041674B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005144038A JP5041674B2 (ja) 2004-05-21 2005-05-17 発光装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004151134 2004-05-21
JP2004151134 2004-05-21
JP2005144038A JP5041674B2 (ja) 2004-05-21 2005-05-17 発光装置

Publications (3)

Publication Number Publication Date
JP2006011396A JP2006011396A (ja) 2006-01-12
JP2006011396A5 JP2006011396A5 (ja) 2008-05-29
JP5041674B2 true JP5041674B2 (ja) 2012-10-03

Family

ID=35778683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144038A Expired - Fee Related JP5041674B2 (ja) 2004-05-21 2005-05-17 発光装置

Country Status (1)

Country Link
JP (1) JP5041674B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631837B2 (ja) * 2006-09-29 2011-02-16 セイコーエプソン株式会社 アクティブマトリクス型発光装置およびアクティブマトリクス型発光装置における画素電源切換え方法、並びに電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10232649A (ja) * 1997-02-21 1998-09-02 Casio Comput Co Ltd 電界発光表示装置およびその駆動方法
JP2003323157A (ja) * 2002-02-28 2003-11-14 Semiconductor Energy Lab Co Ltd 発光装置の駆動方法及び電子機器

Also Published As

Publication number Publication date
JP2006011396A (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
US7928937B2 (en) Light emitting device
US7528811B2 (en) Semiconductor display device and electronic appliance
US7466325B2 (en) Semiconductor display device and driving method
US6989805B2 (en) Light emitting device
US7990348B2 (en) Display device
TWI539423B (zh) 顯示裝置、顯示裝置的驅動方法、以及電子設備
US9165505B2 (en) Display device and electoric device having the same
US8194009B2 (en) Light emitting device and driving method thereof
KR101293508B1 (ko) 표시 장치의 구동 방법
JP2012230402A (ja) 表示装置
JP5046657B2 (ja) 表示装置
JP5089026B2 (ja) 発光装置及び電子機器
JP2003029707A (ja) 発光装置
JP5041674B2 (ja) 発光装置
JP5392965B2 (ja) 表示装置
JP2006039510A (ja) 半導体表示装置及び駆動方法
JP4731846B2 (ja) 表示装置
JP2006072331A (ja) 表示装置の駆動方法
JP4932209B2 (ja) 発光装置及び電子機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5041674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees