JP5040324B2 - Method for cooling and cleaning copper smelting exhaust gas - Google Patents

Method for cooling and cleaning copper smelting exhaust gas Download PDF

Info

Publication number
JP5040324B2
JP5040324B2 JP2007007560A JP2007007560A JP5040324B2 JP 5040324 B2 JP5040324 B2 JP 5040324B2 JP 2007007560 A JP2007007560 A JP 2007007560A JP 2007007560 A JP2007007560 A JP 2007007560A JP 5040324 B2 JP5040324 B2 JP 5040324B2
Authority
JP
Japan
Prior art keywords
cooling
smoke ash
white smoke
exhaust gas
copper smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007007560A
Other languages
Japanese (ja)
Other versions
JP2008173542A (en
Inventor
浩 佐藤
靖志 一色
英和 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007007560A priority Critical patent/JP5040324B2/en
Publication of JP2008173542A publication Critical patent/JP2008173542A/en
Application granted granted Critical
Publication of JP5040324B2 publication Critical patent/JP5040324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銅製錬工場から排出される製錬排ガスをガス精製工程において冷却洗浄する方法、特に、冷却洗浄液中に取り込まれる水銀を除去する方法に関するものである。   The present invention relates to a method of cooling and cleaning smelting exhaust gas discharged from a copper smelting factory in a gas purification step, and more particularly to a method of removing mercury taken into a cooling cleaning liquid.

従来から、銅製錬工場において発生する製錬排ガスは、硫酸工場に原料として送られ、ガス精製工程、乾燥工程、転化工程、吸収工程を経ることにより硫酸が製造されている。上記銅製錬排ガスの主成分はSOであるが、不純物としてSOと重金属や金属のヒュームを含有し、硫酸工場の最初の工程であるガス精製工程において冷却洗浄液により冷却洗浄される。 Conventionally, smelting exhaust gas generated in a copper smelting factory is sent to a sulfuric acid factory as a raw material, and sulfuric acid is produced through a gas purification process, a drying process, a conversion process, and an absorption process. The main component of the copper smelting exhaust gas is SO 2 , but it contains SO 3 and heavy metal or metal fumes as impurities, and is cooled and washed with a cooling washing liquid in a gas purification process which is the first process in a sulfuric acid factory.

例えば、硫酸工場の最初の工程であるガス精製工程において、銅製錬排ガスは増湿塔に導かれ、冷却洗浄液のシャワーを通過する間に冷却洗浄される。この冷却洗浄により、銅製錬排ガス中に含まれるSO及び重金属や金属のヒュームなどは冷却洗浄液中に取り込まれるため、銅製錬排ガスは不純物をほとんど含まないSOとなって次の乾燥工程に送られる。 For example, in a gas purification process, which is the first process in a sulfuric acid factory, the copper smelting exhaust gas is guided to a humidification tower and cooled and washed while passing through a shower of cooling cleaning liquid. By this cooling cleaning, SO 3 and heavy metals and metal fumes contained in the copper smelting exhaust gas are taken into the cooling cleaning liquid, so the copper smelting exhaust gas becomes SO 2 containing almost no impurities and sent to the next drying step. It is done.

一方、増湿塔内部にシャワー状に放出された冷却洗浄液は、増湿塔カローコンに導かれ、オーバーフロー樋を経て増湿塔ポンプタンクに取り出された後、ポンプで再度増湿塔に循環させる方式により繰り返し使用される。繰り返し使用された冷却洗浄液にはSOが取り込まれて硫酸が生成するが、同時に重金属ヒュームや金属ヒュームなど不純物も取り込まれるため、水銀(Hg)などの不純物が多く含まれていて製品硫酸とはならない。 On the other hand, the cooling cleaning liquid released into the humidification tower in the form of a shower is guided to the humidification tower caloron, taken out to the humidification tower pump tank via the overflow tank, and then circulated to the humidification tower again by the pump Is used repeatedly. Repeatedly used cooling cleaning liquid takes SO 3 and produces sulfuric acid. At the same time, impurities such as heavy metal fume and metal fume are also taken in, so it contains a lot of impurities such as mercury (Hg). Don't be.

上記ガス精製工程で水銀(Hg)などの重金属が取り込まれた冷却洗浄液は、所定使用期間の後に抜き出されるが、製品硫酸とはならず、廃酸と呼ばれて廃酸石膏の原料なる。廃酸から製造された廃酸石膏は、粒子内に重金属を含むか又は表面に重金属が付着した状態である。この重金属の中でも、特にHgが所定濃度より高濃度に混入した廃酸石膏は不良品となる。   The cooling cleaning liquid in which heavy metals such as mercury (Hg) are taken in the gas purification step is extracted after a predetermined period of use, but it is not product sulfuric acid but is called waste acid and becomes a raw material for waste acid gypsum. Waste acid gypsum produced from waste acid contains heavy metals in the particles or has heavy metals attached to the surface. Among these heavy metals, waste acid gypsum in which Hg is mixed at a concentration higher than a predetermined concentration is a defective product.

Hg濃度が高いため不良品となった廃酸石膏は、廃酸石膏中のHgを分離することが困難なため、Hg濃度の十分に低い廃酸石膏が製造された際に、廃酸石膏製造用の反応槽に再溶解させて、全体のHg濃度を所定濃度以下に低下させる必要であることから、再処理コストが発生して経済的に不利である。そのため、ガス精製工程終了後に、得られた廃酸中のHgを除去する方法が検討されているが、ガス精製工程中に冷却洗浄液中からHgを除去する方法は知られていない。   Since waste acid gypsum that has become defective due to high Hg concentration is difficult to separate Hg in waste acid gypsum, when waste acid gypsum with sufficiently low Hg concentration is produced, waste acid gypsum production Therefore, it is necessary to re-dissolve in the reaction tank for use to lower the entire Hg concentration to a predetermined concentration or lower, which is disadvantageous economically due to reprocessing costs. For this reason, a method for removing Hg in the obtained waste acid after completion of the gas purification step has been studied, but a method for removing Hg from the cooling washing liquid during the gas purification step is not known.

例えば、特開2005−154196号公報(特許文献1)には、ガス精製工程から抜き出された廃酸中から重金属を硫化物として除去する方法が記載されている。しかし、この方法は、ガス精製工程から抜き出された廃酸を水で希釈した後、水硫化ソーダを添加して重金属類を硫化物とするため、作業工程の増加や薬品の使用により新たなコストが発生するなどの問題があった。
特開2005−154196号公報
For example, Japanese Patent Laying-Open No. 2005-154196 (Patent Document 1) describes a method of removing heavy metals as sulfides from waste acid extracted from a gas purification step. However, this method dilutes the waste acid extracted from the gas purification process with water, and then adds sodium hydrosulfide to turn heavy metals into sulfides. There were problems such as costs.
JP 2005-154196 A

本発明は、このような従来の状況に鑑み、銅製錬排ガスを冷却洗浄するガス精製工程において、冷却洗浄液中に取り込まれる水銀を除去することが可能な銅製錬排ガスの冷却洗浄方法を提供することを目的とする。   In view of such a conventional situation, the present invention provides a method for cooling and cleaning a copper smelting exhaust gas capable of removing mercury incorporated in the cooling cleaning liquid in a gas purification process for cooling and cleaning the copper smelting exhaust gas. With the goal.

上記目的を達成するため、発明者らは、ガス精製工程で冷却洗浄液中に取り込まれる水銀の除去について鋭意研究を行った結果、転炉煙灰の集塵機から回収した白煙灰をスラリー状にしてガス精製工程中の冷却洗浄液に添加することによって、低コストで簡単に水銀を除去することが可能であることを見出した。   In order to achieve the above object, the inventors conducted extensive research on the removal of mercury incorporated in the cooling cleaning liquid in the gas purification process. As a result, the white smoke ash collected from the dust collector of the converter smoke ash was made into a slurry and gas purified. It has been found that mercury can be easily removed at low cost by adding to the cooling washing liquid in the process.

即ち、本発明が提供する銅製錬排ガスの冷却洗浄方法は、銅製錬工程から排出されたSOを主成分とする製錬排ガスのガス精製工程において、該製錬排ガスを冷却洗浄する冷却洗浄液中に、上記銅製錬工程における転炉煙灰の集塵機から回収した白煙灰を0.05〜0.3g/l添加することを特徴とする。 That is, the method for cooling and cleaning copper smelting exhaust gas provided by the present invention includes a cooling cleaning liquid for cooling and cleaning the smelting exhaust gas in a gas purification process of smelting exhaust gas mainly containing SO 2 discharged from the copper smelting process. Further, 0.05 to 0.3 g / l of white smoke ash collected from the dust collector of the converter smoke ash in the copper smelting process is added.

本発明によれば、銅製錬排ガスを冷却洗浄するガス精製工程内において、冷却洗浄液中に取り込まれる水銀を簡単に除去することができる。従って、ガス精製工程後の冷却洗浄液(廃酸)を、そのまま廃酸石膏の製造工程に供給して、水銀濃度の低い良品の廃酸石膏を安定して製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the mercury taken in in a cooling washing | cleaning liquid can be easily removed in the gas purification process which carries out cooling washing of copper smelting waste gas. Therefore, the cooling cleaning liquid (waste acid) after the gas purification step can be supplied as it is to the waste acid gypsum manufacturing step, and a good waste acid gypsum with a low mercury concentration can be stably manufactured.

本発明においては、銅製錬排ガスを冷却洗浄するガス精製工程において、同じ銅製錬工程における転炉煙灰の集塵機から回収した白煙灰を0.05〜0.3g/l添加した冷却洗浄液を使用する。この白煙灰を0.05〜0.3g/l添加した冷却洗浄液を使用することにより、冷却洗浄液中に取り込まれる水銀(Hg)を、ガス精製工程内において除去することが初めて可能となった。   In the present invention, in the gas refining process for cooling and washing the copper smelting exhaust gas, a cooling washing liquid in which 0.05 to 0.3 g / l of white smoke ash collected from the dust collector of the converter smoke ash in the same copper smelting process is used. By using a cooling washing liquid in which 0.05 to 0.3 g / l of this white smoke ash was used, it became possible for the first time to remove mercury (Hg) taken into the cooling washing liquid in the gas purification step.

具体的には、上記白煙灰を冷却洗浄液(一般に工業用水)と撹拌して100g/l程度のスラリー状とし、冷却洗浄液に白煙灰濃度が0.05〜0.3g/lとなるように添加する。冷却洗浄液中の白煙灰濃度が0.05g/l未満の場合又は0.3g/lを超える場合には、いずれも十分なHgの除去効果が得られなくなるため好ましくない。冷却洗浄液中の更に好ましい白煙灰濃度は、0.1〜0.2g/lの範囲である。   Specifically, the white smoke ash is stirred with a cooling washing liquid (generally industrial water) to form a slurry of about 100 g / l and added to the cooling washing liquid so that the concentration of white smoke ash is 0.05 to 0.3 g / l. To do. When the white smoke ash concentration in the cooling washing liquid is less than 0.05 g / l or more than 0.3 g / l, it is not preferable because a sufficient Hg removal effect cannot be obtained. A more preferable white smoke ash concentration in the cooling washing liquid is in the range of 0.1 to 0.2 g / l.

尚、白煙灰の主な成分は、XRD定性分析によれば、Pb(SO)、PbO、PbBi、Zn(AsO)(OH)、Zn(OH)、CuOである。白煙灰の添加が冷却洗浄液からのHg除去に有効な理由は明らかではないが、白煙灰成分のイオン化によって、冷却洗浄液中に取り込まれたHgイオンが金属Hgとして析出する反応が促進され、その結果Hgが除去されるものと推定される。 The main components of white smoke ash are Pb (SO 4 ), PbO, Pb 3 Bi 4 O 9 , Zn 2 (AsO 4 ) (OH), Zn (OH) 2 , CuO according to XRD qualitative analysis. is there. The reason why the addition of white smoke ash is effective for removing Hg from the cooling washing liquid is not clear, but the ionization of the white smoke ash component promotes the reaction in which Hg ions taken into the cooling washing liquid precipitate as metal Hg. It is estimated that Hg is removed.

次に、本発明方法について、図面を参照して詳しく説明する。白煙灰はスラリーとして冷却洗浄液に添加することが望ましい。例えば、図1に示すように、混合槽1に白煙灰と冷却洗浄液(一般に工業用水)を供給し、撹拌機2及びエア吹き込み等により撹拌して、濃度100g/l程度の白煙灰スラリー3を調整する。尚、途中で濃度調整する場合には、必要に応じて、白煙灰と冷却洗浄液の両方又はいずれか片方を必要量添加すればよい。   Next, the method of the present invention will be described in detail with reference to the drawings. It is desirable to add the white smoke ash as a slurry to the cooling cleaning liquid. For example, as shown in FIG. 1, white smoke ash and a cooling cleaning liquid (generally industrial water) are supplied to the mixing tank 1 and stirred by a stirrer 2 and air blowing, etc. adjust. In addition, when adjusting a density | concentration in the middle, what is necessary is just to add a required quantity of both or either one of white smoke ash and a cooling washing | cleaning liquid as needed.

白煙灰スラリー3は、循環ポンプによって循環配管4を循環しながら、銅製錬排ガスを冷却洗浄する増湿塔(図2参照)に供給される。また、循環配管4から分岐した増湿塔への供給口の近傍には、白煙灰スラリー3の流量を測定するための流量測定器5を設け、増湿塔内の冷却洗浄液中の白煙灰濃度が所定範囲内となるように、白煙灰スラリー3の流量をコントロールする。   The white smoke ash slurry 3 is supplied to a humidification tower (see FIG. 2) that cools and cleans the copper smelting exhaust gas while circulating through the circulation pipe 4 by a circulation pump. Further, a flow rate measuring device 5 for measuring the flow rate of the white smoke ash slurry 3 is provided in the vicinity of the supply port to the humidification tower branched from the circulation pipe 4, and the white smoke ash concentration in the cooling cleaning liquid in the humidification tower is provided. The flow rate of the white smoke ash slurry 3 is controlled so that is within a predetermined range.

銅製錬排ガスのガス精製工程では、図2に示すように、増湿塔6の内部に導入された銅製錬排ガスが、白煙灰を含む冷却洗浄液7のシャワーを通過する間に冷却洗浄され、不純物をほとんど含まないSOとなり、冷却洗浄済みの銅製錬排ガスとして次の乾燥工程に送られる。冷却洗浄液7は、増湿塔6の内部でシャワー状に放出され滞留した後、増湿塔カローコン8に導かれ、オーバーフロー樋9を経て増湿塔ポンプタンク10に取り出され、循環配管11を通って再び増湿塔6の内部に循環させる方式で繰り返し使用される。 In the gas refining process of the copper smelting exhaust gas, as shown in FIG. 2, the copper smelting exhaust gas introduced into the humidifying tower 6 is cooled and washed while passing through the shower of the cooling cleaning liquid 7 containing white smoke ash. It becomes SO 2 containing almost no slag, and is sent to the next drying step as a copper smelting exhaust gas after cooling and washing. The cooling washing liquid 7 is discharged and stays in the inside of the humidification tower 6 in the form of a shower, and is then led to the humidification tower calocon 8, taken out to the humidification tower pump tank 10 through the overflow tank 9, and passes through the circulation pipe 11. Then, it is repeatedly used in such a manner that it is circulated inside the humidification tower 6 again.

上記冷却洗浄液7には、図1の循環配管4から白煙灰スラリー3が供給添加されることによって、常に所定濃度の白煙灰が含まれている。例えば図2に示す増湿塔6では、増湿塔カローコン8のオーバーフロー樋9に白煙灰スラリー3が供給され、常に冷却洗浄液7中の白煙灰濃度が0.05〜0.3g/lとなるようにコントロールされる。   The cooling cleaning liquid 7 always contains white smoke ash having a predetermined concentration by supplying and adding the white smoke ash slurry 3 from the circulation pipe 4 of FIG. For example, in the humidifying tower 6 shown in FIG. 2, the white smoke ash slurry 3 is supplied to the overflow tank 9 of the humidifying tower calocon 8, and the concentration of white smoke ash in the cooling cleaning liquid 7 is always 0.05 to 0.3 g / l. To be controlled.

繰り返し使用された冷却洗浄液は、SOが取り込まれて硫酸が生成し、所定使用期間の後に廃酸として抜き出され、廃酸石膏の製造工程に送られる。尚、冷却洗浄液(廃酸)中の硫酸濃度は、通常140〜210g/l程度である。このようにして得られた冷却洗浄液(廃酸)は、不純物の量が少なく、特に水銀(Hg)の含有量を従来に比べて大幅に低減させることができる。従って、従来の廃酸のように水銀の除去処理を行う必要がなく、そのまま廃酸石膏製造工程に供給して、水銀濃度が低い良品の廃酸石膏を製造することができる。 The repeatedly used cooling and washing liquid takes SO 3 to produce sulfuric acid, and is extracted as waste acid after a predetermined period of use and sent to the manufacturing process of waste acid gypsum. The concentration of sulfuric acid in the cooling cleaning liquid (waste acid) is usually about 140 to 210 g / l. The cooling washing liquid (waste acid) thus obtained has a small amount of impurities, and in particular, the mercury (Hg) content can be greatly reduced as compared with the conventional case. Therefore, it is not necessary to remove mercury as in the case of conventional waste acid, and it can be supplied to the waste acid gypsum production process as it is to produce good quality waste acid gypsum with a low mercury concentration.

図1に示す白煙灰スラリー調整装置を用い、白煙灰と工業用水を混合することにより、白煙灰スラリー3を調整した。この白煙灰スラリー3を、循環配管4に循環させながら、図2に示す増湿塔6のオーバーフロー樋9に供給して、冷却洗浄液7に白煙灰を添加した。その際、白煙灰スラリー3の流量をコントロールして、冷却洗浄液7中における白煙灰濃度を、それぞれ0.05g/l、0.15g/l、及び0.3g/lとなるように調整した。   The white smoke ash slurry 3 was adjusted by mixing the white smoke ash and industrial water using the white smoke ash slurry adjusting device shown in FIG. The white smoke ash slurry 3 was supplied to the overflow tank 9 of the humidification tower 6 shown in FIG. 2 while being circulated through the circulation pipe 4, and the white smoke ash was added to the cooling cleaning liquid 7. At that time, the flow rate of the white smoke ash slurry 3 was controlled to adjust the white smoke ash concentrations in the cooling washing liquid 7 to 0.05 g / l, 0.15 g / l, and 0.3 g / l, respectively.

上記3種の白煙灰濃度の冷却洗浄液7を用い、それぞれ増湿塔6にて銅製錬排ガスを冷却洗浄した。一定時間の冷却洗浄を実施した後、各冷却洗浄液7中のHg濃度を測定し、それぞれ水銀除去率を求めた。得られた水銀除去率を、各冷却洗浄液中の硫酸濃度と共に、各冷却洗浄液の白煙灰濃度ごとに図3に示す。   The copper smelting exhaust gas was cooled and washed in the humidification tower 6 using the above three types of cooling washing liquids 7 having white smoke ash concentration. After carrying out cooling washing for a certain time, the Hg concentration in each cooling washing liquid 7 was measured, and the mercury removal rate was determined for each. The obtained mercury removal rate is shown in FIG. 3 for each white smoke ash concentration of each cooling cleaning liquid, together with the sulfuric acid concentration in each cooling cleaning liquid.

図3のグラフから分るように、白煙灰濃度0.05g/lの冷却洗浄液での水銀除去率は約7〜20%程度であり、白煙灰濃度0.15g/lでの水銀除去率は約30〜50%程度と増大し、白煙灰濃度0.3g/lでの水銀除去率は約30〜40%と若干減少した。また、この間の冷却洗浄液中の硫酸濃度は140〜210g/lの範囲であるが、いずれの白煙灰濃度でも、200g/l程度の硫酸濃度の場合に高い水銀除去効率が得られることが分る。   As can be seen from the graph of FIG. 3, the mercury removal rate with the white smoke ash concentration of 0.05 g / l is about 7 to 20%, and the mercury removal rate with the white smoke ash concentration of 0.15 g / l is The mercury removal rate increased to about 30 to 50%, and the mercury removal rate at white smoke ash concentration of 0.3 g / l slightly decreased to about 30 to 40%. Moreover, although the sulfuric acid concentration in the cooling washing liquid during this period is in the range of 140 to 210 g / l, it can be seen that high mercury removal efficiency is obtained when the sulfuric acid concentration is about 200 g / l at any white smoke ash concentration. .

白煙灰スラリー調整装置の具体例を示す概略図である。It is the schematic which shows the specific example of a white smoke ash slurry adjustment apparatus. 増湿塔での銅製錬排ガスのガス精製工程を示す概略図である。It is the schematic which shows the gas purification process of the copper smelting waste gas in a humidification tower. 水銀除去率と冷却洗浄液の硫酸濃度の関係を冷却洗浄液中の白煙灰濃度ごとに示したグラフである。It is the graph which showed the relationship between the mercury removal rate and the sulfuric acid concentration of the cooling cleaning liquid for each white smoke ash concentration in the cooling cleaning liquid.

符号の説明Explanation of symbols

1 混合槽
2 撹拌機
3 白煙灰スラリー
4 循環配管
5 流量測定器
6 増湿塔
7 冷却洗浄液
8 増湿塔カローコン
9 オーバーフロー樋
10 増湿塔ポンプタンク
11 循環配管
DESCRIPTION OF SYMBOLS 1 Mixing tank 2 Stirrer 3 White smoke ash slurry 4 Circulation piping 5 Flow rate measuring device 6 Humidification tower 7 Cooling washing liquid 8 Humidification tower narrow con 9 Overflow tank 10 Humidification tower pump tank 11 Circulation piping

Claims (1)

銅製錬工程から排出されたSOを主成分とする製錬排ガスのガス精製工程において、該製錬排ガスを冷却洗浄する冷却洗浄液中に、上記銅製錬工程における転炉煙灰の集塵機から回収した白煙灰を0.05〜0.3g/l添加することを特徴とする銅製錬排ガスの冷却洗浄方法。 In the gas purification process of the smelting exhaust gas mainly containing SO 2 discharged from the copper smelting process, the white recovered from the dust collector of the converter smoke ash in the copper smelting process in the cooling cleaning liquid for cooling and cleaning the smelting exhaust gas A method for cooling and cleaning copper smelting exhaust gas, comprising adding 0.05 to 0.3 g / l of smoke ash.
JP2007007560A 2007-01-17 2007-01-17 Method for cooling and cleaning copper smelting exhaust gas Active JP5040324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007560A JP5040324B2 (en) 2007-01-17 2007-01-17 Method for cooling and cleaning copper smelting exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007007560A JP5040324B2 (en) 2007-01-17 2007-01-17 Method for cooling and cleaning copper smelting exhaust gas

Publications (2)

Publication Number Publication Date
JP2008173542A JP2008173542A (en) 2008-07-31
JP5040324B2 true JP5040324B2 (en) 2012-10-03

Family

ID=39700976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007560A Active JP5040324B2 (en) 2007-01-17 2007-01-17 Method for cooling and cleaning copper smelting exhaust gas

Country Status (1)

Country Link
JP (1) JP5040324B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229371B2 (en) * 1985-11-18 1990-06-29 Nippon Mining Co HAIGASUNOSHORIHOHO
JPH0738935B2 (en) * 1990-11-13 1995-05-01 日立造船株式会社 Method of removing mercury from exhaust gas of refuse incinerator
FI117617B (en) * 2000-12-08 2006-12-29 Outokumpu Oy A method for removing mercury from a gas
JP4794071B2 (en) * 2001-06-26 2011-10-12 小名浜製錬株式会社 Method for removing mercury contained in exhaust gas

Also Published As

Publication number Publication date
JP2008173542A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
CN1449861A (en) Method and device for removing sulphur dioxide in flue gas by zinc oxide
CN107892280A (en) A kind of high concentration SO2The method of metallurgical off-gas acid-making
CN102755826A (en) Tail gas desulfuration adopting zinc oxide method in smelting industry
JP2008188479A (en) Method and apparatus for treating waste acid liquid
WO2018161682A1 (en) Method for selectively removing monovalent anion impurities from sulfuric acid system electrolyte solution
CN110116991A (en) A kind of recovery process of metallurgical off-gas acid-making purification waste acid
JP2009248036A (en) Method for desulfurizing exhaust gas
CN108300859A (en) A kind of method to dechlorinate in zinc electrolyte
US3954451A (en) Method for the manufacture of mercury free sulfuric acid
KR950002347B1 (en) Process for the treatment of wash water from the gas washing system of an iron ore reduction plant
US4057423A (en) Method for the manufacture of mercury free sulfuric acid
JP5040324B2 (en) Method for cooling and cleaning copper smelting exhaust gas
WO2000076917A1 (en) Process for removing selenium and mercury from aqueous solutions
CN102586621B (en) Method and device for removing sulfur and fluorine as well as chlorine and by zinc oxide serous fluid
JP2009095699A (en) Method for treating unreacted slurry in flue gas desulfurizer
KR100432551B1 (en) Thermal regeneration method of waste acid
CN108744863B (en) Wastewater reduction treatment device and method
JP2020089804A (en) Detoxification method of exhaust gas containing sulfur dioxide
JP5320861B2 (en) Operation method of wastewater treatment process of zinc and lead smelting method
CN105273760A (en) Waste water zero-discharge acetylene production technology
JP4014679B2 (en) Wastewater treatment method
JP4239801B2 (en) Method for producing waste acid gypsum
WO2019134752A1 (en) Process and plant for cleaning sulfur dioxide containing gas
CN108996744A (en) The method and system of valuable metal recovery in a kind of smelting waste acid
JP2019205983A (en) Processing method of process liquid and processing method of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3