JP5039846B1 - Vaporizer for liquefied gas - Google Patents

Vaporizer for liquefied gas Download PDF

Info

Publication number
JP5039846B1
JP5039846B1 JP2011180562A JP2011180562A JP5039846B1 JP 5039846 B1 JP5039846 B1 JP 5039846B1 JP 2011180562 A JP2011180562 A JP 2011180562A JP 2011180562 A JP2011180562 A JP 2011180562A JP 5039846 B1 JP5039846 B1 JP 5039846B1
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
vaporizer
heat
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011180562A
Other languages
Japanese (ja)
Other versions
JP2013044347A (en
Inventor
勝二 福谷
一生 春名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2011180562A priority Critical patent/JP5039846B1/en
Priority to PCT/JP2011/073488 priority patent/WO2013027301A1/en
Priority to KR1020147002673A priority patent/KR101868198B1/en
Priority to TW100137831A priority patent/TWI542832B/en
Application granted granted Critical
Publication of JP5039846B1 publication Critical patent/JP5039846B1/en
Publication of JP2013044347A publication Critical patent/JP2013044347A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser

Abstract

A vaporizer according to the present invention causes vaporization of liquefied gas by heating a heating medium. The vaporizer comprises: heating medium containers (1, 2) which house a heating medium in such a way that said heating medium can be replenished; and a helical heat transfer pipe (3) which extends from the lower part to the top part of the heating medium containers (1, 2) and extends in such a way as to fold back at the bottom once again. The top end of the heat transfer pipe (3) is not fixed, only the lower end of the heat transfer pipe is supported by the heating medium containers (1, 2), and liquefied gas to be vaporized flows continuously to the heat transfer pipe (3) and is vaporized.

Description

本発明は窒素、酸素、アルゴンやLNG(液化天然ガス)、プロパンなど液化したガスを気化蒸発させガス状で需要者に供給する気化器に関する。   The present invention relates to a vaporizer that vaporizes and evaporates a liquefied gas such as nitrogen, oxygen, argon, LNG (liquefied natural gas), propane, etc., and supplies the vaporized gas to consumers.

液化窒素、液化酸素、液化アルゴンおよび液化炭酸ガスなどに代表される産業用ガスに加えて、LNG(液化天然ガス)、LPG(液化プロパンガス)などの燃料ガスを液状でタンクに蓄え、気化器などで蒸発気化させてガス状にして供給することは各産業分野で液化ガスの貯蔵と消費を繰り返す重要な工業的手法として用いられている。気化器の加熱源としては、ガスの物性に応じて様々なものを使用することができるが、雰囲気空気を使用するのが一般的である。この場合、液化窒素、液化酸素や液化アルゴンは−180℃以下で、液化炭酸ガスは−25℃以下で、LNGは−160℃以下で、LPGは−40℃以下の低温で貯蔵しているので、気化器で蒸発気化させるときには雰囲気空気中の湿分が凍結し伝熱管に氷が蓄積し伝熱抵抗が著しく増大する。従って、例えばLNGサテライト(中心となる大型のLNG貯蔵施設から離れた複数箇所に設置される中規模又は小規模のLNG貯蔵施設をいう)にあっては、気化器は少なくとも2基並列設置され、所定時間(例えば4時間)ごとに2基を切換え運転し、一方の気化器で気化運転を行っている間に、氷結した他方の気化器を停止させて解氷を行うようにしている。また、加熱源として海水などの液体媒体を利用する気化器も公知となっている。加熱源として海水や雰囲気空気を利用する従来の気化器は、例えば下記特許文献1〜3に開示されている。   In addition to industrial gases such as liquefied nitrogen, liquefied oxygen, liquefied argon, and liquefied carbon dioxide, fuel gases such as LNG (liquefied natural gas) and LPG (liquefied propane gas) are stored in liquid tanks and vaporizers. Evaporating and supplying the gas in the form of gas is used as an important industrial technique for repeatedly storing and consuming liquefied gas in each industrial field. A variety of heating sources for the vaporizer can be used depending on the physical properties of the gas, but atmospheric air is generally used. In this case, liquefied nitrogen, liquefied oxygen and liquefied argon are stored at a low temperature of −180 ° C. or lower, liquefied carbon dioxide gas is −25 ° C. or lower, LNG is −160 ° C. or lower, and LPG is stored at a low temperature of −40 ° C. or lower. When evaporating and evaporating with a vaporizer, moisture in the atmosphere air is frozen and ice is accumulated in the heat transfer tube, so that the heat transfer resistance is remarkably increased. Therefore, for example, in an LNG satellite (referring to a medium-scale or small-scale LNG storage facility installed in a plurality of locations apart from a large LNG storage facility as a center), at least two vaporizers are installed in parallel. Two units are switched and operated every predetermined time (for example, 4 hours), and while one vaporizer is performing the vaporization operation, the other vaporizer that has frozen is stopped and the ice is melted. A vaporizer that uses a liquid medium such as seawater as a heating source is also known. Conventional vaporizers that use seawater or atmospheric air as a heating source are disclosed in, for example, Patent Documents 1 to 3 below.

例えば代表的な液化ガスであるLNGを加温して気化させる気化器の場合、特開平5−203098号公報(特許文献1)にみられるように、LNGを通過させる複数の伝熱管とそれらに溶接固定された管板で仕切られた室で構成される、いわゆるシェルアンドチューブ式の熱交換器が使われていた。これは複数の伝熱管を管板の間に組み込んで、シェル側に海水を流しLNGを加温して蒸発気化させるものであった。   For example, in the case of a vaporizer that heats and vaporizes LNG, which is a typical liquefied gas, as seen in JP-A-5-203098 (Patent Document 1), a plurality of heat transfer tubes that allow LNG to pass therethrough and to them A so-called shell-and-tube heat exchanger composed of a chamber partitioned by a welded tube sheet was used. In this method, a plurality of heat transfer tubes were incorporated between the tube plates, seawater was flowed to the shell side, and LNG was heated to evaporate.

また、特開平5−332499号公報(特許文献2)は、オープンラック式と呼ばれる気化器を開示するもので、2重管構造の伝熱管を竪方向に複数本連立させ、上下のマニホールドに溶接固定することにより、全体としてパネル状の構造にし、外部に海水を散水させて加温蒸発させていた。   Japanese Laid-Open Patent Publication No. 5-332499 (Patent Document 2) discloses a vaporizer called an open rack type, in which a plurality of heat transfer tubes having a double tube structure are connected in the vertical direction and welded to upper and lower manifolds. By fixing, a panel-like structure was formed as a whole, and seawater was sprinkled on the outside to heat and evaporate.

さらに、特開2005−156141号公報(特許文献3)は、雰囲気空気を利用して加温する気化器を開示しており、図5に概略的に示すように、上下方向に間隔をあけたマニホールド21,22の間にフィン付伝熱管23(フィンは図示せず)を並列に配置している。気化されるLNGは、下部マニホールド21から導入され、複数のフィン付伝熱管23に振り分けられて流れる間に空気との熱交換により蒸発し、上部マニホールド22にて合流回収され、導出管24を介して図外の利用場所に供給される。なお、図5において符号25は、伝熱管23と上下のマニホールド21,22との溶接部を示している。   Furthermore, Japanese Patent Laying-Open No. 2005-156141 (Patent Document 3) discloses a vaporizer that warms using atmospheric air, and is spaced apart in the vertical direction as schematically shown in FIG. A finned heat transfer tube 23 (fins not shown) are arranged in parallel between the manifolds 21 and 22. The LNG to be vaporized is introduced from the lower manifold 21, is evaporated by heat exchange with air while being distributed to the plurality of finned heat transfer tubes 23, and is merged and recovered by the upper manifold 22, and is passed through the outlet tube 24. To be used in places outside the figure. In FIG. 5, reference numeral 25 indicates a welded portion between the heat transfer tube 23 and the upper and lower manifolds 21 and 22.

以上のように、従来技術による気化器は共通してパイプを複数本立て、その上下に仕切り室やマニホールドを設け溶接固定して使用されるもので、LNGはまず下部から供給され、次に各伝熱管内を上昇しながら気化したガスが上部のマニホールドや仕切り室に集まり、外気で加温されて引出されるものであった。   As described above, the carburetor according to the prior art is used by standing a plurality of pipes in common, and installing and fixing a partition chamber and a manifold above and below the pipe. The gas vaporized while rising in the heat pipe gathered in the upper manifold and the partition chamber, and was heated by outside air and drawn out.

特許文献1に開示された気化器においては、加熱は海水で加温しているので海水が充分量流れている場合は−160℃に近い温度で送入されるLNGによって海水が氷結する問題は起こらないが、伝熱管が上下の管板に溶接固定されているのでLNGの送入量により加温の程度が変わると伝熱管が伸縮し管板との溶接箇所に熱応力がかかる。その結果、送入量が変化を続けるとこの熱応力の繰り返しが起こり、最後には熱疲労で管板に固定されている溶接部が破壊する。また、伝熱管が複数本あるのでこの内部でのLNGの液分散が悪いと管板に固定されている各溶接部の温度のばらつきが起こり管板に歪が生じて、上記熱疲労を加速させる。   In the vaporizer disclosed in Patent Document 1, since the heating is heated with seawater, when a sufficient amount of seawater flows, the problem that seawater freezes due to LNG fed at a temperature close to −160 ° C. Although it does not occur, since the heat transfer tubes are welded and fixed to the upper and lower tube sheets, if the degree of heating changes depending on the amount of LNG fed, the heat transfer tubes expand and contract and thermal stress is applied to the welded portion with the tube sheets. As a result, if the feed amount continues to change, this thermal stress repeats, and finally the welded portion fixed to the tube sheet is destroyed due to thermal fatigue. Also, since there are a plurality of heat transfer tubes, if the liquid dispersion of LNG in this interior is poor, the temperature of each welded portion fixed to the tube plate will vary, causing distortion in the tube plate and accelerating the thermal fatigue. .

同様な問題は、管板に相当するマニホールドに伝熱管が溶接固定されている特許文献2に記載の気化器でも起こる。   A similar problem also occurs in the vaporizer described in Patent Document 2 in which a heat transfer tube is welded and fixed to a manifold corresponding to a tube sheet.

一方、図5に示す特許文献3の空気加熱式の気化器では、伝熱管23の内部には−160℃近い低温液体が導入されると同時に外部から雰囲気空気で加熱されるため、空気中の水分が伝熱管23の表面で氷結(氷結部を符号FZにて示す)し、伝熱効率が著しく低下する。また、下部マニホールド21から上部マニホールド22に向け複数本の伝熱管23にLNGを均一に振り分けて流すことは困難であり、特にLNGの流量を減らして蒸発負荷を小さくした場合には、図5に示すように、異なる伝熱管23ごとに氷結部FZの長さも異なり、異なる伝熱管23の間で温度差が生じ、この温度差の違いにから各伝熱管の伸び縮みの長さも異なることになる。例えば、伝熱管23の材料としてアルミニウムを採用した場合において100℃の温度差の違いが生じると1mあたり2.3mmの伸縮量の違いが生じ、ステンレス鋼製の伝熱管では1mあたり1.5mmの伸縮量の違いが生じ、鉄製の伝熱管では1mあたり1.2mmの伸縮量の違いが生じる。このため、マニホールド21,22に固定されている溶接部25に過剰な応力がかかり、気化器を間欠運転すると溶接部25に割れが生じる問題をしばしば起こしていた。   On the other hand, in the air heating type vaporizer of Patent Document 3 shown in FIG. 5, since a low-temperature liquid close to −160 ° C. is introduced into the heat transfer tube 23 and is simultaneously heated with atmospheric air from the outside, Water is frozen on the surface of the heat transfer tube 23 (the frozen portion is indicated by a symbol FZ), and the heat transfer efficiency is significantly reduced. In addition, it is difficult to distribute LNG evenly through the plurality of heat transfer tubes 23 from the lower manifold 21 to the upper manifold 22, and particularly when the evaporation load is reduced by reducing the flow rate of LNG, FIG. As shown, the length of the icing portion FZ is different for each of the different heat transfer tubes 23, and a temperature difference occurs between the different heat transfer tubes 23, and the length of expansion and contraction of each heat transfer tube is also different due to the difference in temperature difference. . For example, when aluminum is used as the material of the heat transfer tube 23, a difference in expansion / contraction amount of 2.3 mm / m occurs when a temperature difference of 100 ° C. occurs, and a heat transfer tube made of stainless steel has a difference of 1.5 mm / m. A difference in the amount of expansion and contraction occurs, and a difference in the amount of expansion and contraction of 1.2 mm per meter occurs in the steel heat transfer tube. For this reason, excessive stress is applied to the welded portions 25 fixed to the manifolds 21 and 22, and often causes a problem that the welded portions 25 are cracked when the vaporizer is operated intermittently.

さらに、液化ガスの気化器は高圧ガス保安法のガス設備に指定されているために、気化器は3年間に1回、必ず溶接部および内部構成の公的な開放検査が必要となり、そのために点検時に簡単に溶接部も含めて内部構成が目視検査できるような構造が要求されていた。   In addition, since the liquefied gas vaporizer is designated as a gas facility of the High Pressure Gas Safety Act, the vaporizer must be subjected to a public open inspection of the welded part and internal configuration once every three years. A structure that can easily inspect the internal structure including the welded portion at the time of inspection is required.

特開平5−203098号公報JP-A-5-203098 特開平5−332499号公報JP-A-5-332499 特開2005−156141号公報JP 2005-156141 A

以上に鑑み、本発明が解決しようとする主たる課題は、繰り返し熱応力が負荷されても伝熱管の溶接部に破壊などの問題を生じることが極めて少ない気化器を提供することにある。   In view of the above, a main problem to be solved by the present invention is to provide a carburetor that hardly causes problems such as breakage in a welded portion of a heat transfer tube even when repeated thermal stress is applied.

また、本発明の補足的な課題は、雰囲気空気で加温する場合のような伝熱管表面での湿気の凍結による熱交換率の低下のために、同じ気化器を2基設置して、交互に運転と解氷を行う必要のない気化器を提供することにある。   Further, the supplementary problem of the present invention is that two identical vaporizers are installed alternately to reduce the heat exchange rate due to freezing of moisture on the surface of the heat transfer tube as in the case of heating with ambient air. It is to provide a vaporizer that does not require operation and de-icing.

さらに、本発明の別の補足的な課題は、高圧ガス保安法の対象となるガス設備として、溶接部および内部構成全体の公的検査が受けやすいような構造の気化器を提供することにある。   Furthermore, another supplementary problem of the present invention is to provide a carburetor having a structure that is easily subjected to public inspection of the welded portion and the entire internal structure as a gas facility subject to the High Pressure Gas Safety Law. .

本発明は、上記課題を解決するために次のような手段を提起採用した。   The present invention proposes and employs the following means in order to solve the above problems.

すなわち、本発明は液化ガスを熱媒で加熱して気化させる気化器であって、熱媒が補充可能に収容される熱媒容器と、前記熱媒容器の下部から上部に延びて再び下部に折り返すように延びるスパイラル状の伝熱管と、を含み、前記伝熱管の上端部を固定せず、当該伝熱管の下端部のみを前記熱媒容器に支持させ、前記伝熱管に気化すべき液化ガスを連続的に流して気化させるようにした、気化器を提供する。   That is, the present invention is a vaporizer that heats and vaporizes a liquefied gas with a heat medium, and includes a heat medium container that can be replenished with the heat medium, and extends from the lower part to the upper part of the heat medium container and again to the lower part. A liquefied gas to be vaporized in the heat transfer tube, the upper end portion of the heat transfer tube not being fixed, and only the lower end portion of the heat transfer tube supported by the heat medium container. A vaporizer is provided that continuously vaporizes the gas.

以上の構成によれば、伝熱管はスパイラル状であり、伝熱管は蒸発量の変動により冷却と加温を繰り返し伸縮しても長さの変化を吸収できるようにしている。従って、伝熱管の熱媒容器に対する支持部(接合部)に過大な応力が負荷されるのを回避でき、支持部の破壊などの問題を解消ないし軽減できる。しかも、伝熱管の巻数や巻き密度を調整することで、延べ長さを調整することで伝熱面積を変えることもできる。   According to the above configuration, the heat transfer tube has a spiral shape, and the heat transfer tube can absorb the change in length even if the cooling and heating are repeatedly expanded and contracted due to the fluctuation of the evaporation amount. Therefore, it is possible to avoid an excessive stress being applied to the support portion (joint portion) of the heat transfer tube with respect to the heat transfer medium container, and it is possible to eliminate or reduce problems such as breakage of the support portion. Moreover, the heat transfer area can be changed by adjusting the total length by adjusting the number of turns and the winding density of the heat transfer tube.

また、雰囲気空気や海水を利用する場合とは異なり、温水などの熱媒で常温以上の温度、例えば+60℃で伝熱管を加温する。従って、伝熱管の表面に凍結は起こらない。その結果、凍結した気化器を待機させて解氷させる必要がないため2基の気化器を設置する必要がなくなり、1基だけで気化を続けることが可能となる。しかも、空気や海水で加温した場合と比較して例えば+60℃の温水を用いると加熱側と被加熱側との温度差が大きくなるため、伝熱面積を大幅に低減して、気化器をコンパクトにできる。   Further, unlike the case of using atmospheric air or seawater, the heat transfer tube is heated at a temperature not lower than room temperature, for example, + 60 ° C. with a heat medium such as warm water. Therefore, freezing does not occur on the surface of the heat transfer tube. As a result, it is not necessary to place the frozen vaporizer on standby and defrost, so there is no need to install two vaporizers, and vaporization can be continued with only one. Moreover, compared to the case of heating with air or seawater, for example, when + 60 ° C hot water is used, the temperature difference between the heated side and the heated side increases, so the heat transfer area is greatly reduced, and the vaporizer is Can be made compact.

好ましくは、前記伝熱管は、その上流側から下流側にかけて内径が段階的に大きくなるように構成している。これにより、LNGなどの液化ガスが液体から気体に変化していく過程で容積が70倍以上に達しても、伝熱管内の蒸発量に合わせて液体もしくは気体の流速を最適化できる。   Preferably, the heat transfer tube is configured such that the inner diameter increases stepwise from the upstream side to the downstream side. Thereby, even if the volume reaches 70 times or more in the process of changing the liquefied gas such as LNG from liquid to gas, the flow rate of the liquid or gas can be optimized according to the evaporation amount in the heat transfer tube.

好ましくは、前記伝熱管は、その下流側の最も太い部分の内径断面積が上流側の最も細い部分の内径断面積の1.5倍〜10倍の範囲になるように、内径が段階的に大きくなるように構成している。   Preferably, the inner diameter of the heat transfer tube is stepwise so that the inner diameter cross-sectional area of the thickest portion on the downstream side is in the range of 1.5 to 10 times the inner diameter cross-sectional area of the thinnest portion on the upstream side. It is configured to be large.

好ましくは、前記熱媒容器は、底板と、前記底板に着脱可能に接合された本体ハウジングと、を含んでおり、前記伝熱管の上流側端部と下流側端部とは前記底板にのみ固定されている。この構成によれば、覆いとなっている本体ハウジングを底板から取り外すだけで伝熱管を内蔵した全ての構成物が直接点検整備できる。   Preferably, the heat transfer medium container includes a bottom plate and a main body housing detachably joined to the bottom plate, and the upstream end and the downstream end of the heat transfer tube are fixed only to the bottom plate. Has been. According to this configuration, all the components incorporating the heat transfer tubes can be directly inspected and maintained simply by removing the covering main body housing from the bottom plate.

好ましくは、前記伝熱管の上流側端部と下流側端部とはそれぞれキャップを介して前記底板に対して支持されており、前記キャップは第1の溶接部を介して前記上流側端部または下流側端部に接合されるとともに、第2の溶接部を介して前記底板に接合されている。この構成によれば、伝熱管とキャップの伸縮に伴う応力をそれぞれ第1の溶接部と第2の溶接部とに分散することができ、応力集中を回避できる。   Preferably, the upstream end portion and the downstream end portion of the heat transfer tube are respectively supported by the bottom plate via a cap, and the cap is connected to the upstream end portion or the first end via a first welded portion. While being joined to the downstream end, it is joined to the bottom plate via a second weld. According to this structure, the stress accompanying expansion and contraction of the heat transfer tube and the cap can be distributed to the first welded portion and the second welded portion, respectively, and stress concentration can be avoided.

好ましくは、前記キャップは曲面状の天井壁を有しており、前記伝熱管は前記キャップの天井壁を貫通しており、前記第1の溶接部は前記伝熱管および前記キャップの天井壁を鈍角に跨って接合している。この構成によっても溶接部への応力集中をさらに効果的に回避することができる。   Preferably, the cap has a curved ceiling wall, the heat transfer tube passes through the ceiling wall of the cap, and the first welded portion has an obtuse angle with respect to the heat transfer tube and the ceiling wall of the cap. It is joined across. Also with this configuration, stress concentration on the welded portion can be more effectively avoided.

好ましくは、前記熱媒容器には、その内部に熱媒を供給するための熱媒導入ノズルが設けられており、前記熱媒導入ノズルの開口は前記熱媒容器の外周壁の円周方向に沿って熱媒を噴射する。これにより、熱媒による液化ガスへの熱交換効率が向上する。   Preferably, the heat medium container is provided with a heat medium introduction nozzle for supplying a heat medium therein, and the opening of the heat medium introduction nozzle is arranged in a circumferential direction of the outer peripheral wall of the heat medium container. A heat medium is sprayed along. Thereby, the heat exchange efficiency to the liquefied gas by a heat medium improves.

好ましくは、前記熱媒容器には、その内部における熱媒の液面を規定する熱媒オーバーフロー管が設けられており、その熱媒オーバーフロー管の上端開口を越えてオーバーフローする熱媒を前記熱媒容器の外部に排出するように構成されている。   Preferably, the heat medium container is provided with a heat medium overflow pipe that defines a liquid surface of the heat medium inside the heat medium container, and the heat medium that overflows beyond the upper end opening of the heat medium overflow pipe is disposed in the heat medium. It is configured to discharge to the outside of the container.

好ましくは、前記熱媒容器において前記伝熱管から漏洩した液化ガスを検知するためのガスリーク検出手段がさらに設けられる。これにより、ガスがリークした状態のままで運転が継続されるのを回避することができる。   Preferably, a gas leak detection means for detecting liquefied gas leaked from the heat transfer tube in the heat medium container is further provided. Thereby, it is possible to avoid the operation from being continued in a state where the gas has leaked.

本発明の気化器は、液化天然ガス(LNG)を気化させるのに特に適しているものであるが、LNGの気化のみならず、沸点が−183℃の液化酸素、−186℃の液化アルゴン、−196℃の液化窒素、−42℃のプロパンなどを液状で低温貯蔵された液化ガスを気化させる場合にも適用できる。   The vaporizer of the present invention is particularly suitable for vaporizing liquefied natural gas (LNG), but not only LNG vaporization, but also liquefied oxygen having a boiling point of −183 ° C., liquefied argon having −186 ° C., The present invention can also be applied to the case of vaporizing a liquefied gas stored in a liquid form at a low temperature, such as liquefied nitrogen at -196 ° C, propane at -42 ° C.

本発明のさらなる特徴と作用・効果については、以下に添付図面に基づいて説明する実施形態より明らかとなろう。   Further features, operations, and effects of the present invention will become apparent from the embodiments described below with reference to the accompanying drawings.

本発明の実施形態に係る気化器の概略構成とその内部における伝熱管コイルの構成を主体的に示す部分縦断面図である。It is a fragmentary longitudinal cross-sectional view which mainly shows the schematic structure of the vaporizer | carburetor which concerns on embodiment of this invention, and the structure of the heat exchanger tube coil in the inside. 同気化器における伝熱管以外の部材の概略構成を主体的に示す部分縦断面図である。It is a fragmentary longitudinal cross-sectional view which mainly shows schematic structure of members other than the heat exchanger tube in the vaporizer. 同気化器の概略構成を示す横断面図である。It is a cross-sectional view which shows schematic structure of the vaporizer. 同気化器における溶接箇所の構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the welding location in the same vaporizer. 従来の気化器における要部を示す概略構成図である。It is a schematic block diagram which shows the principal part in the conventional vaporizer | carburetor.

図1〜4は、本発明の実施形態に係る液化ガス用気化器の構成を示しており、当該気化器は、主として、底板1と、シェル状の本体ハウジング2と、伝熱管3と、熱媒導入ノズル4と、熱媒オーバーフロー管5と熱媒ドレン管6と、ガスリーク検出管7と、を含んでいる。なお、これらの図1〜4において、本体ハウジング2、伝熱管3、熱媒導入ノズル4、熱媒オーバーフロー管5、熱媒ドレン排出管6などの肉厚は簡略化のために図示を省略している。また、以下においては、気化される液化ガスが液化天然ガス(LNG)であり、加熱媒体が温水であるものとして説明を進める場合もあるが、本発明はこれらに限定されるものではない。   1 to 4 show a configuration of a vaporizer for liquefied gas according to an embodiment of the present invention. The vaporizer mainly includes a bottom plate 1, a shell-like main body housing 2, a heat transfer tube 3, and a heat exchanger. A medium introduction nozzle 4, a heat medium overflow pipe 5, a heat medium drain pipe 6, and a gas leak detection pipe 7 are included. 1 to 4, the thickness of the main body housing 2, the heat transfer pipe 3, the heat medium introduction nozzle 4, the heat medium overflow pipe 5, the heat medium drain discharge pipe 6, etc. is omitted for the sake of simplicity. ing. In the following description, the liquefied gas to be vaporized is liquefied natural gas (LNG) and the heating medium is warm water. However, the present invention is not limited to these.

底板1は、例えばステンレス鋼製であり、複数の伝熱管挿通孔1a,1b(図1では2個の伝熱管挿通孔)と、複数のボルト孔1cと、を有している。底板1は、LNGサテライトの足場板を兼ねるものであってもよい。   The bottom plate 1 is made of, for example, stainless steel, and has a plurality of heat transfer tube insertion holes 1a and 1b (two heat transfer tube insertion holes in FIG. 1) and a plurality of bolt holes 1c. The bottom plate 1 may also serve as a scaffolding plate for the LNG satellite.

本体ハウジング2は、例えばステンレス鋼製であり、下端部は開口しており、上端部は部分球面状又は曲面状の天井壁2aにて閉鎖されている。従って、本体ハウジング2は略釣鐘状の形態を有している。本体ハウジング2の開口下端部の外周には円環状のフランジ2bが一体形成されており、当該フランジ2bには底板1のボルト孔1cに対応するボルト孔2cが設けられている。本体ハウジング2と底板1とは、それぞれのボルト孔1c,2cに挿入されるボルト(図示せず)によって相互に密封状態にて固定されている。従って、図外のボルトを外すことにより、本体ハウジング2は底板1から容易に取り外すことができ、内部構造を容易に目視により検査することができる。本実施形態においては、底板1と本体ハウジング2とで温水などの熱媒を収容するための熱媒容器が規定される。なお、図示してはいないが、本体ハウジング2のフランジ2bと底板1との間には適宜のシール材が介装されており、密封状態が保たれるようになっている。   The main body housing 2 is made of, for example, stainless steel, the lower end is open, and the upper end is closed by a partially spherical or curved ceiling wall 2a. Therefore, the main body housing 2 has a substantially bell-shaped form. An annular flange 2 b is integrally formed on the outer periphery of the lower end of the opening of the main body housing 2, and a bolt hole 2 c corresponding to the bolt hole 1 c of the bottom plate 1 is provided in the flange 2 b. The main body housing 2 and the bottom plate 1 are fixed in a sealed state to each other by bolts (not shown) inserted into the respective bolt holes 1c and 2c. Therefore, the main body housing 2 can be easily detached from the bottom plate 1 by removing the bolts not shown, and the internal structure can be easily inspected visually. In the present embodiment, the bottom plate 1 and the main body housing 2 define a heat medium container for accommodating a heat medium such as warm water. Although not shown, an appropriate sealing material is interposed between the flange 2b of the main body housing 2 and the bottom plate 1 so that the sealed state is maintained.

図1に示すように、伝熱管3は、底板1の一方の伝熱管挿通孔1aを介して本体ハウジング2の内部に引き込まれ、スパイラル状に上方に延びた後、下方に折り返して底板1の他方の伝熱管挿通孔1bを介して外部に導出される。この結果、伝熱管3が温度変化により伸び縮みしても、スパイラル状に延びる部分により充分に吸収することができ、底板1に対する接続部分(その構造の詳細は後述する)に応力が伝達され難くなっている。   As shown in FIG. 1, the heat transfer tube 3 is drawn into the inside of the main body housing 2 through one heat transfer tube insertion hole 1 a of the bottom plate 1, extends upward in a spiral shape, and then turns downward to return to the bottom plate 1. It leads out outside through the other heat exchanger tube insertion hole 1b. As a result, even if the heat transfer tube 3 expands and contracts due to a temperature change, it can be sufficiently absorbed by the spirally extending portion, and stress is not easily transmitted to the connecting portion to the bottom plate 1 (details of the structure will be described later). It has become.

図示の実施形態においては、伝熱管3は、その上流側から下流側に延びるに従って段階的に直径が大きくなっており、上流側の小径部3aと、この小径部3aから折り返しの頂部まで延びる中径部3bと、この中径部3bから底板1に向けて延びる大径部3cと、を含んでいる。小径部3aと中径部3bとの間はレデューサ3d(直径の異なる管体を接続する公知の要素)により接続されており、中径部3bと大径部3cとの間はレデューサ3eにより接続されている。具体的には、小径部3aは例えば内径27.2mmΦのステンレス鋼管であり、中径部3bは例えば内径35.5mmΦあるいは内径52.7mmΦのステンレス鋼管(断面積比で1.7倍から3.8倍の太さに大きくする)であり、さらに大径部3cは内径65.9mmΦのステンレス鋼管(断面積比で中径部3bに対して1.6倍から3.4倍に大きくする)である。但し、伝熱管3の内径を2段階で増大させてもよいし(この場合、内径27.2mmΦから内径65.9mmΦまで断面積比で一度に5.9倍に大きくする)、4段階以上に分けて内径を増大させてもよい。   In the illustrated embodiment, the heat transfer tube 3 gradually increases in diameter as it extends from the upstream side to the downstream side, and extends from the upstream side small diameter portion 3a and from the small diameter portion 3a to the folded top. A diameter portion 3b and a large diameter portion 3c extending from the medium diameter portion 3b toward the bottom plate 1 are included. The small-diameter portion 3a and the medium-diameter portion 3b are connected by a reducer 3d (a known element for connecting pipes having different diameters), and the medium-diameter portion 3b and the large-diameter portion 3c are connected by a reducer 3e. Has been. Specifically, the small diameter portion 3a is, for example, a stainless steel tube having an inner diameter of 27.2 mmΦ, and the medium diameter portion 3b is, for example, a stainless steel tube having an inner diameter of 35.5 mmΦ or an inner diameter of 52.7 mmΦ (the cross-sectional area ratio is 1.7 times to 3. The large diameter portion 3c is a stainless steel pipe having an inner diameter of 65.9 mmΦ (increase the cross-sectional area ratio from 1.6 to 3.4 times that of the medium diameter portion 3b). It is. However, the inner diameter of the heat transfer tube 3 may be increased in two stages (in this case, the cross-sectional area ratio is increased 5.9 times from the inner diameter 27.2 mmΦ to the inner diameter 65.9 mmΦ) at four stages or more. The inner diameter may be increased separately.

伝熱管3の小径部3aは、その上流端において、例えばLNG貯蔵タンクから延びる配管に接続されている。一方、伝熱管3の大径部3cは、その下流端において、例えば天然ガス利用サイトにつながる配管に接続されている。   The small diameter portion 3a of the heat transfer tube 3 is connected to a pipe extending from, for example, an LNG storage tank at the upstream end thereof. On the other hand, the large diameter portion 3c of the heat transfer tube 3 is connected to a pipe connected to, for example, a natural gas utilization site at the downstream end thereof.

図2及び3に示すように、熱媒導入ノズル4は、例えばステンレス鋼管からなり、図示されていない熱媒供給源(温水供給源)から延びる配管に接続されているとともに、底板1を貫通して上方に延びている。熱媒導入ノズル4の上端は、本体ハウジング2の下部において外周壁の円周方向に沿って開口しており、本体ハウジング2の内部に導入された熱媒が渦流となるように熱媒を噴射するようになっている。熱媒としては、温水、エタノールまたはエチレングリコールなどの液体を使用できるが、コストと取り扱いの容易性を考慮すると温水を用いるのが好ましい。   As shown in FIGS. 2 and 3, the heat medium introduction nozzle 4 is made of, for example, a stainless steel pipe, is connected to a pipe extending from a heat medium supply source (warm water supply source) (not shown), and penetrates the bottom plate 1. Extending upward. The upper end of the heat medium introduction nozzle 4 is opened along the circumferential direction of the outer peripheral wall at the lower part of the main body housing 2, and the heat medium is injected so that the heat medium introduced into the main body housing 2 becomes a vortex. It is supposed to be. As the heating medium, liquid such as warm water, ethanol or ethylene glycol can be used, but it is preferable to use warm water in consideration of cost and ease of handling.

熱媒オーバーフロー管5は、例えばステンレス鋼管からなり、シールされた状態にて底板1を貫通して延びている。熱媒オーバーフロー管5の上端開口5aは、本体ハウジング2の天井壁2の近傍に位置し、熱媒導入ノズル4から熱媒が順次供給されることによりオーバーフローする熱媒を外部に排出する。熱媒オーバーフロー管5を介して排出された熱媒は、図外の再加熱手段により再加熱され、再び図外の熱媒供給源に循環される。   The heat medium overflow pipe 5 is made of, for example, a stainless steel pipe, and extends through the bottom plate 1 in a sealed state. The upper end opening 5 a of the heat medium overflow pipe 5 is located in the vicinity of the ceiling wall 2 of the main body housing 2, and the heat medium that overflows when the heat medium is sequentially supplied from the heat medium introduction nozzle 4 is discharged to the outside. The heat medium discharged through the heat medium overflow pipe 5 is reheated by a reheating means (not shown) and is circulated again to a heat medium supply source (not shown).

熱媒ドレン管6は、本体ハウジング2を底板1から取り外して内部を保守点検するのに先立って、内部の熱媒を排出するためのものであり、底板1の貫通孔を介してシールされた状態にて本体ハウジング2の内部に連通している。熱媒ドレン管6は、例えばステンレス鋼管にて構成される。   The heat medium drain pipe 6 is for discharging the internal heat medium before the main body housing 2 is removed from the bottom plate 1 and the inside is inspected and is sealed through the through hole of the bottom plate 1. It communicates with the inside of the main body housing 2 in a state. The heat medium drain pipe 6 is made of, for example, a stainless steel pipe.

ガスリーク検出管7は、LNGなどの液化ガスが本体ハウジング2の内部でリークしたときのチェック用ノズルとしての機能を果たすために設けられており、その上端7aはオーバーフロー管5の上端開口5a(熱媒の液面を規定)と本体ハウジング2の天井壁2aとの間に位置している。本体ハウジング2の内部でリークした液化ガスは、気体となってガスリーク検出管7により外部に導出され、当該ガスリーク検出管7に接続された図外のセンサによって検知される。液化ガスのリークが検出された場合には、点検修理が実施されることになる。   The gas leak detection pipe 7 is provided to serve as a check nozzle when a liquefied gas such as LNG leaks inside the main body housing 2, and its upper end 7 a is the upper end opening 5 a (heat The liquid level of the medium is defined) and the ceiling wall 2 a of the main body housing 2. The liquefied gas leaked inside the main body housing 2 is converted into a gas and led out to the outside by the gas leak detection pipe 7 and detected by a sensor (not shown) connected to the gas leak detection pipe 7. When a leak of liquefied gas is detected, inspection and repair are performed.

次に、伝熱管3の底板1に対する接続構造について説明する。伝熱管3は、底板1に対して、2箇所、すなわち伝熱管挿通孔1a,1bの位置にて接続されているが、直径の大小の差はあるものの、基本的な接続構造は同じであるので、代表例として小径部3aの伝熱管挿通孔1aにおける接続構造について図4を参照して説明することにする。   Next, the connection structure with respect to the baseplate 1 of the heat exchanger tube 3 is demonstrated. The heat transfer tube 3 is connected to the bottom plate 1 at two locations, that is, at the positions of the heat transfer tube insertion holes 1a and 1b, but the basic connection structure is the same, although there is a difference in diameter. Therefore, as a representative example, a connection structure in the heat transfer tube insertion hole 1a of the small diameter portion 3a will be described with reference to FIG.

図4に示すように、伝熱管挿通孔1aはキャップ8により塞がれており、このキャップ8の半球面状又は曲面状天井壁8aの中央部を伝熱管3の小径部3aが貫通している。伝熱管3の小径部3aとキャップ8の天井壁8aと間は溶接部9aにより接合されており、キャップ8の裾部と底板1との間は溶接ビード9bにより接合されている。この結果、伝熱管3とキャップ8はそれぞれ異なる点で接合固定されているので、伝熱管3の伸び縮みとキャップ8の伸び縮みは別々にフリーとなり2つの熱応力は2箇所の溶接部9a,9bに分散される。また、伝熱管3に対する溶接部9aについては、キャップ8における半球面状又は曲面状天井壁8aによる応力分散効果が追加的に作用する。従って、伝熱管3をスパイラル構造にしたことによる伸縮吸収効果と相まって、溶接部9a,9bへの応力集中は起こらなくなる。なお、キャップ8は、伝熱管3と同様の例えばステンレス鋼製とするのが望ましい。   As shown in FIG. 4, the heat transfer tube insertion hole 1 a is closed by a cap 8, and the small-diameter portion 3 a of the heat transfer tube 3 passes through the central portion of the hemispherical or curved ceiling wall 8 a of the cap 8. Yes. The small diameter portion 3a of the heat transfer tube 3 and the ceiling wall 8a of the cap 8 are joined by a welded portion 9a, and the skirt portion of the cap 8 and the bottom plate 1 are joined by a weld bead 9b. As a result, since the heat transfer tube 3 and the cap 8 are joined and fixed at different points, the expansion and contraction of the heat transfer tube 3 and the expansion and contraction of the cap 8 are separately free, and the two thermal stresses are caused by two welds 9a, 9b. In addition, with respect to the welded portion 9 a to the heat transfer tube 3, a stress dispersion effect due to the hemispherical or curved ceiling wall 8 a in the cap 8 additionally acts. Therefore, coupled with the expansion / contraction absorption effect due to the heat transfer tube 3 having a spiral structure, stress concentration on the welds 9a and 9b does not occur. The cap 8 is preferably made of, for example, stainless steel similar to the heat transfer tube 3.

以上の構成の気化器を運転するに際しては、熱媒導入ノズル4を介して本体ハウジング2に例えば+60℃程度の温水が供給されて、本体ハウジング2の内部をほぼ満たす。供給された温水は、本体ハウジング2の内部を渦流となって上昇し、過剰となった温水は熱媒オーバーフロー管5を介して外部に排出され、再加熱された上で熱媒供給源に循環される。   When the vaporizer having the above configuration is operated, hot water of about + 60 ° C., for example, is supplied to the main body housing 2 through the heat medium introducing nozzle 4 to substantially fill the inside of the main body housing 2. The supplied hot water rises as a vortex in the main body housing 2, and the excess hot water is discharged to the outside through the heat medium overflow pipe 5 and recirculated to the heat medium supply source. Is done.

一方、液化ガスであるLNGはスパイラル状に巻かれた伝熱管3内を一旦上昇し、次いで下降する間に熱媒である温水による加熱を受けて液体から気体に変化する。その過程で液体であるLNGは、0.3MPaGで−145℃のガスに変化していくと、その容積が約70倍に増加する。しかしながら、上述したように、伝熱管3の内径は段階的に増加しているので、流体の流れに対する抵抗が不当に上昇することはなく、LNG又は気化したガスの最適な流速が確保される。気化された天然ガスは、伝熱管3の内部にて最終的には
常温付近まで加熱され排出される。
On the other hand, LNG that is a liquefied gas once rises in the heat transfer tube 3 wound in a spiral shape, and then changes from a liquid to a gas by being heated by hot water that is a heating medium while descending. In the process, LNG, which is a liquid, increases its volume by about 70 times when it is changed to a gas of −145 ° C. at 0.3 MPaG. However, as described above, since the inner diameter of the heat transfer tube 3 increases stepwise, the resistance to the flow of fluid does not increase unduly, and an optimal flow rate of LNG or vaporized gas is ensured. The vaporized natural gas is finally heated to near normal temperature inside the heat transfer tube 3 and discharged.

例えば、600kg/hのLNGを蒸発気化するのに+60℃の温水を用いると、伝熱管3の表面積は約13m2程度必要となるが、これを空気や海水で加温することになると伝熱面積は約2倍以上必要となり、機器高さが高くなると同時に設置面積も大きくなる。従って、本実施形態によれば、気化器の小型化と設置面積の縮小化を実現することができる。 For example, if hot water of + 60 ° C. is used to evaporate 600 kg / h of LNG, the surface area of the heat transfer tube 3 needs to be about 13 m 2, but if this is heated with air or seawater, The area needs to be about twice or more, and the height of the equipment increases and the installation area also increases. Therefore, according to this embodiment, it is possible to reduce the size of the vaporizer and the installation area.

以上、本発明の実施形態について説明したが、当該実施形態による効果を纏めると以下のとおりである。
(1)伝熱管3をスパイラル状としたので温度変化による伝熱管の伸縮変化が吸収でき、溶接部に応力がかかり難く、溶接部の破壊も起こり難い。特に、図示の実施形態のように、1本のスパイラル状の伝熱管を用いる場合には、複数の伝熱管を用いる場合のような伝熱管ごとの熱応力差がなく熱疲労もさらに起こり難い。また、スパイラル状の伝熱管3を採用したことにより、スパイラルの巻数と巻き密度を調整することにより、延べ伝熱管長さを調整することで容易に伝熱面積を変えることができる。
(2)伝熱管3の底板1に対する接合をキャップ8を介して2箇所の溶接部9a,9bに分けて行っているので、伝熱管3とキャップ8のそれぞれの伸縮に伴う熱応力を干渉させることなく分散することができる。しかも、伝熱管3に対する溶接部9aについては、キャップ8における半球面状又は曲面状天井壁8aによる応力分散効果が追加的に作用するので、全体としての応力分散効果がさらに高まる。
(3)LNGが液体から気体に変化していく過程で容積は70倍以上に達しても、伝熱管3内の蒸発量に合わせて伝熱管3の内径を段階的に大きくしているので、液体もしくは気体の流速を最適化できる。
(4)温水などの熱媒を用いるので加熱側と被加熱側との温度差が大きくなり伝熱面積を小さくして、コンパクトにできる。また、熱媒を用いるため、凍結した気化器を待機させて解氷させる必要がないため2基の気化器を設置する必要がなく1基だけで気化ができる。
(5)伝熱管3を覆う本体ハウジング2を釣鐘状又はキャップ状として底板1に着脱自在に接合しており、しかも伝熱管3を底板1のみに溶接接合しているので、本体ハウジング2を底板1から外すだけで、伝熱管3の状態や溶接箇所を容易に目視にて点検整備することができる。
As mentioned above, although embodiment of this invention was described, it is as follows when the effect by the said embodiment is put together.
(1) Since the heat transfer tube 3 has a spiral shape, the expansion and contraction of the heat transfer tube due to a temperature change can be absorbed, stress is not easily applied to the welded portion, and the welded portion is not easily broken. In particular, when a single spiral heat transfer tube is used as in the illustrated embodiment, there is no difference in thermal stress between heat transfer tubes as in the case of using a plurality of heat transfer tubes, and thermal fatigue is less likely to occur. Moreover, by adopting the spiral heat transfer tube 3, the heat transfer area can be easily changed by adjusting the total heat transfer tube length by adjusting the number of turns and the winding density of the spiral.
(2) Since the joining of the heat transfer tube 3 to the bottom plate 1 is divided into two welded portions 9a and 9b via the cap 8, the thermal stress accompanying the expansion and contraction of the heat transfer tube 3 and the cap 8 is caused to interfere. Can be dispersed without any problem. Moreover, since the stress dispersion effect by the hemispherical or curved ceiling wall 8a in the cap 8 acts additionally on the welded portion 9a to the heat transfer tube 3, the stress dispersion effect as a whole is further enhanced.
(3) Even if the volume reaches 70 times or more in the process of changing LNG from liquid to gas, the inner diameter of the heat transfer tube 3 is increased stepwise according to the evaporation amount in the heat transfer tube 3, The flow rate of liquid or gas can be optimized.
(4) Since a heat medium such as warm water is used, the temperature difference between the heating side and the heated side becomes large, and the heat transfer area can be reduced to make it compact. In addition, since a heating medium is used, it is not necessary to wait for a frozen vaporizer to be defrosted, so there is no need to install two vaporizers, and vaporization can be performed with only one.
(5) Since the main body housing 2 covering the heat transfer tube 3 is detachably joined to the bottom plate 1 in a bell shape or a cap shape, and the heat transfer tube 3 is welded to only the bottom plate 1, the main body housing 2 is attached to the bottom plate. Only by removing from 1, the state of the heat transfer tube 3 and the welded portion can be easily visually inspected and maintained.

本発明はその基本思想から逸脱しない範囲で種々に変形することができる。例えば、図示の実施形態では、伝熱管3等の素材をステンレス鋼製としたが、軽量化が望まれる場合にはアルミニウムやアルミニウム合金にて構成することもできる。また、図示の実施形態では1本の伝熱管3を用いているが、複数のスパイラル状の伝熱管を相互に配置上干渉しないように設けてもよく、個々の伝熱管について底板1に対して図4に示したような接合構造を採用することができる。さらに、本発明の気化器は、LNGの気化のみならず、沸点が−183℃の液化酸素、−186℃の液化アルゴン、−196℃の液化窒素、−42℃のプロパンなどを液状で低温貯蔵された液化ガスを気化させる場合にも適用できるものである。   The present invention can be variously modified without departing from the basic idea. For example, in the illustrated embodiment, the material such as the heat transfer tube 3 is made of stainless steel. However, when it is desired to reduce the weight, it can be made of aluminum or an aluminum alloy. In the illustrated embodiment, one heat transfer tube 3 is used. However, a plurality of spiral heat transfer tubes may be provided so as not to interfere with each other in arrangement, and each heat transfer tube may be provided with respect to the bottom plate 1. A joining structure as shown in FIG. 4 can be employed. Furthermore, the vaporizer of the present invention is not only for vaporizing LNG but also for storing liquid oxygen having a boiling point of −183 ° C., liquefied argon of −186 ° C., liquefied nitrogen of −196 ° C., propane of −42 ° C. in a liquid state at low temperature. The present invention is also applicable when vaporizing the liquefied gas.

1 底板
2 本体ハウジング
2a 本体ハウジングの天井壁
2b 本体ハウジングのフランジ
3 伝熱管
3a 伝熱管の小径部
3b 伝熱管の中径部
3c 伝熱管の大径部
4 熱媒導入ノズル
4a 熱媒導入ノズルの開口
5 熱媒オーバーフロー管
5a 熱媒オーバーフロー管の上端開口
6 熱媒ドレン管
7 ガスリーク検出管
7a ガスリーク検出管の上端
8 キャップ
8a キャップの天井壁
9a,9b 溶接部
DESCRIPTION OF SYMBOLS 1 Bottom plate 2 Main body housing 2a Main body housing ceiling wall 2b Main body housing flange 3 Heat transfer tube 3a Heat transfer tube small diameter portion 3b Heat transfer tube medium diameter portion 3c Heat transfer tube large diameter portion 4 Heat transfer nozzle 4a Heat transfer nozzle Opening 5 Heat medium overflow pipe 5a Upper end opening of heat medium overflow pipe 6 Heat medium drain pipe 7 Gas leak detection pipe 7a Upper end of gas leak detection pipe 8 Cap 8a Ceiling walls 9a, 9b Welded portion

Claims (9)

液化ガスを熱媒で加熱して気化させる気化器であって、熱媒が補充可能に収容される熱媒容器と、前記熱媒容器の下部から上部に延びて再び下部に折り返すように延びるスパイラル状の伝熱管と、を含み、前記熱媒容器は、底板と、前記底板に着脱可能に接合された本体ハウジングと、を含んでおり、前記スパイラル状の伝熱管の上端部を固定せず、当該スパイラル状の伝熱管の上流側端部と下流側端部とは前記底板にのみ溶接接合されており、前記本体ハウジングを上記底板から外すことにより、前記伝熱管の前記底板に対する溶接箇所を目視により点検できるように構成し、前記伝熱管に気化すべき液化ガスを連続的に流して気化させるようにした、気化器。 A vaporizer for heating and vaporizing a liquefied gas with a heat medium, a heat medium container in which the heat medium is replenished, and a spiral extending from the lower part to the upper part of the heat medium container and extending back to the lower part A heat transfer tube, and the heat medium container includes a bottom plate and a main body housing detachably joined to the bottom plate, and does not fix the upper end of the spiral heat transfer tube, the upstream end and the downstream end of the spiral heat exchanger tube are welded only to the bottom plate, by removing the body Haujin grayed from the bottom plate, the welded portion with respect to the bottom plate of the heat transfer tube configured to cut with Inspect visually and to vaporize flowing liquefied gas to be vaporized in the heat transfer tube continuously vaporizer. 前記伝熱管は、その上流側から下流側にかけて内径が段階的に大きくなる、請求項1に記載の気化器。   The carburetor according to claim 1, wherein the heat transfer tube has an inner diameter that increases stepwise from the upstream side to the downstream side. 前記伝熱管は、その下流側の最も太い部分の内径断面積が上流側の最も細い部分の内径断面積の1.5倍〜10倍の範囲になるように、内径が段階的に大きくなる、請求項2に記載の気化器。   The inner diameter of the heat transfer tube increases stepwise so that the inner diameter cross-sectional area of the thickest portion on the downstream side is in the range of 1.5 to 10 times the inner diameter cross-sectional area of the narrowest portion on the upstream side, The vaporizer according to claim 2. 前記伝熱管の上流側端部と下流側端部とはそれぞれキャップを介して前記底板に対して支持されており、前記キャップは第1の溶接部を介して前記伝熱管の上流側端部または下流側端部に接合されるとともに、第2の溶接部を介して前記底板に接合されている、請求項に記載の気化器。 The upstream end portion and the downstream end portion of the heat transfer tube are respectively supported by the bottom plate via a cap, and the cap is connected to the upstream end portion of the heat transfer tube via the first welded portion. The vaporizer according to claim 1 , wherein the vaporizer is joined to the downstream end and joined to the bottom plate via a second weld. 前記キャップは曲面状の天井壁を有しており、前記伝熱管は前記キャップの天井壁を貫通しており、前記第1の溶接部は前記伝熱管および前記キャップの天井壁を鈍角に跨って接合している、請求項に記載の気化器。 The cap has a curved ceiling wall, the heat transfer tube passes through the ceiling wall of the cap, and the first welded portion straddles the obtuse angle of the heat transfer tube and the ceiling wall of the cap. The vaporizer according to claim 4 , wherein the vaporizer is bonded. 前記熱媒容器には、その内部に熱媒を供給するための熱媒導入ノズルが設けられており、前記熱媒導入ノズルの開口は前記熱媒容器の外周壁の円周方向に沿って熱媒を噴射する、請求項1に記載の気化器。   The heat medium container is provided with a heat medium introduction nozzle for supplying a heat medium therein, and the opening of the heat medium introduction nozzle is heated along the circumferential direction of the outer peripheral wall of the heat medium container. The vaporizer according to claim 1, which injects a medium. 前記熱媒容器には、その内部における熱媒の液面を規定する熱媒オーバーフロー管が設けられており、その熱媒オーバーフロー管の上端開口を越えてオーバーフローする熱媒を前記熱媒容器の外部に排出する、請求項1に記載の気化器。   The heating medium container is provided with a heating medium overflow pipe that defines the liquid level of the heating medium inside the heating medium container, and the heating medium overflowing beyond the upper end opening of the heating medium overflow pipe is disposed outside the heating medium container. The vaporizer according to claim 1, wherein 前記熱媒容器において前記伝熱管から漏洩した液化ガスを検知するためのガスリーク検出手段をさらに備えている、請求項1に記載の気化器。   The vaporizer according to claim 1, further comprising gas leak detection means for detecting liquefied gas leaked from the heat transfer tube in the heat medium container. 前記液化ガスは液化天然ガス(LNG)であり、LNGサテライトに供される、請求項1に記載の気化器。   The vaporizer according to claim 1, wherein the liquefied gas is liquefied natural gas (LNG) and is supplied to an LNG satellite.
JP2011180562A 2011-08-22 2011-08-22 Vaporizer for liquefied gas Active JP5039846B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011180562A JP5039846B1 (en) 2011-08-22 2011-08-22 Vaporizer for liquefied gas
PCT/JP2011/073488 WO2013027301A1 (en) 2011-08-22 2011-10-13 Vaporizer for liquefied gas
KR1020147002673A KR101868198B1 (en) 2011-08-22 2011-10-13 Vaporizer for liquefied gas
TW100137831A TWI542832B (en) 2011-08-22 2011-10-19 Gasifier for liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180562A JP5039846B1 (en) 2011-08-22 2011-08-22 Vaporizer for liquefied gas

Publications (2)

Publication Number Publication Date
JP5039846B1 true JP5039846B1 (en) 2012-10-03
JP2013044347A JP2013044347A (en) 2013-03-04

Family

ID=47087563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180562A Active JP5039846B1 (en) 2011-08-22 2011-08-22 Vaporizer for liquefied gas

Country Status (4)

Country Link
JP (1) JP5039846B1 (en)
KR (1) KR101868198B1 (en)
TW (1) TWI542832B (en)
WO (1) WO2013027301A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699081A (en) * 2018-02-16 2020-09-22 株式会社 Ihi Method for removing object to be removed

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776443B (en) * 2015-03-20 2017-04-12 佛山市伟华文五金机械制造有限公司 Natural heat exchange type welding and cutting oil-gas converter
KR101586657B1 (en) 2015-06-04 2016-01-19 (주)태진중공업 Seamless pipe expanding apparatus of ambient air vaporizer and seamless pipe expanding method using the same
KR101603063B1 (en) 2015-10-07 2016-03-14 (주)태진중공업 Heat exchanges pipe of ambient air vaporizer
JP6293331B1 (en) * 2017-04-06 2018-03-14 日本ガス開発株式会社 Vaporizer
KR102080401B1 (en) * 2018-07-23 2020-02-21 (주)마이텍 Cold test method of carburetor weld using jig tank

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410338A (en) * 1966-11-07 1968-11-12 Hooker Chemical Corp Thermal conduit coupling for heat storage apparatus
US4246958A (en) * 1978-03-21 1981-01-27 Westinghouse Electric Corp. Tube to tubesheet connection system
JPS5524617U (en) * 1978-07-28 1980-02-18
US4590770A (en) * 1985-06-03 1986-05-27 National Semiconductor Corporation Cryogenic liquid heat exchanger
US4637347A (en) * 1985-07-18 1987-01-20 Leonard Troy Improved continuous low fluid exchange water heater
JPS6380465U (en) * 1986-11-14 1988-05-27
JPH04115267U (en) * 1991-03-20 1992-10-13 古河電気工業株式会社 Heat exchange piping
JPH05203098A (en) 1991-05-28 1993-08-10 Osaka Gas Co Ltd Vaporizing device for liquefied natural gas
JP2668484B2 (en) 1992-06-03 1997-10-27 東京瓦斯株式会社 Liquefied natural gas vaporizer
JP3402792B2 (en) * 1994-10-11 2003-05-06 有限会社チリウヒーター Heat exchanger
FR2826436A1 (en) * 2001-06-22 2002-12-27 Jacques Bernier Heat or cold exchanger has outer tank which encloses metal tube with polymeric sheath arranged as double helix after a hairpin bend has been made and is welded to polymeric tank entry flange
JP2003083174A (en) * 2001-09-06 2003-03-19 Toyota Industries Corp Egr cooler, egr device with egr cooler and cooling method of egr gas
JP4016272B2 (en) * 2003-03-28 2007-12-05 株式会社ノーリツ Liquefied gas vaporization system
JP2005156141A (en) 2003-10-29 2005-06-16 Showa Denko Kk Air temperature type liquefied gas vaporizer
JP5155744B2 (en) * 2008-06-17 2013-03-06 ミクニキカイ株式会社 Liquefied gas vaporizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111699081A (en) * 2018-02-16 2020-09-22 株式会社 Ihi Method for removing object to be removed
JP7057415B2 (en) 2018-02-16 2022-04-19 株式会社Ihi Removal target body removal method

Also Published As

Publication number Publication date
WO2013027301A1 (en) 2013-02-28
TWI542832B (en) 2016-07-21
KR20140050026A (en) 2014-04-28
TW201309979A (en) 2013-03-01
JP2013044347A (en) 2013-03-04
KR101868198B1 (en) 2018-06-15

Similar Documents

Publication Publication Date Title
JP5039846B1 (en) Vaporizer for liquefied gas
JP6684789B2 (en) Device and method for cooling a liquefied gas
CA2633928A1 (en) Enhanced lng regas
CN109154421B (en) Device for supplying a combustible gas to a gas-consuming component and for liquefying said combustible gas
US20100006256A1 (en) Heat exchanger
Egashira LNG vaporizer for LNG re-gasification terminal
JP5354543B2 (en) Outside air type vaporizer
KR20160084444A (en) Liquefied fuel gas evaporation promoting device and fuel gas supply system for ships
US10775080B2 (en) LNG gasification systems and methods
PL190683B1 (en) Method of and apparatus for preventing evaporation of liquefied gas being stored in an impermeable and thermally insulated tank
RU2585348C2 (en) Method and device for evaporation of liquefied natural gas
JP2018003860A (en) Carburetor
JP6092065B2 (en) Liquefied gas vaporization system and liquefied gas vaporization method
CN109404720A (en) The cooling of the vaporized component of liquefied gas for dynamic power machine, equipment or the vehicles
US20230383907A1 (en) Long heat path support structure
JP6126569B2 (en) Vaporizer for liquefied gas
CN102829326B (en) Steam-heated water-bath type vaporizer
JP6633888B2 (en) Liquefied gas vaporizer and liquefied gas vaporization system
KR20200088611A (en) Plate type Heat Exchanger for Cryogenic Liquefied Gas
CN214037840U (en) Condensing unit of storage tank
JP2907745B2 (en) Line heater for city gas
KR20220121402A (en) Hybrid ambient air vaporizer
JP3018116U (en) Liquefied gas storage tank with evaporator
JP2004044975A (en) Fluid circulating device, its welded part examining method, air heating-type liquefied gas evaporator, and its welded part examining method
EA046074B1 (en) SUPPLY TANK WITH SIGNS OF DECREASED PRESSURE, SATURATION AND DECREASING SATURATION

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5039846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250