JP5036757B2 - Substrate surface inspection apparatus and surface inspection method - Google Patents

Substrate surface inspection apparatus and surface inspection method Download PDF

Info

Publication number
JP5036757B2
JP5036757B2 JP2009125388A JP2009125388A JP5036757B2 JP 5036757 B2 JP5036757 B2 JP 5036757B2 JP 2009125388 A JP2009125388 A JP 2009125388A JP 2009125388 A JP2009125388 A JP 2009125388A JP 5036757 B2 JP5036757 B2 JP 5036757B2
Authority
JP
Japan
Prior art keywords
light
angle
signal
received
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009125388A
Other languages
Japanese (ja)
Other versions
JP2009186492A (en
Inventor
佐藤  達也
祐一郎 加藤
健司 三友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009125388A priority Critical patent/JP5036757B2/en
Publication of JP2009186492A publication Critical patent/JP2009186492A/en
Application granted granted Critical
Publication of JP5036757B2 publication Critical patent/JP5036757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、基板の表面に存在する欠陥を光学的に検出して欠陥種類の判別を行う表面検査装置及び表面検査方法に関し、特に、半導体ウェハの表面上に存在する、例えば、異物と結晶欠陥、或いは異物とスクラッチの判別精度を向上した表面検査装置及び表面検査方法に関する。   The present invention relates to a surface inspection apparatus and a surface inspection method for optically detecting defects existing on the surface of a substrate and discriminating the type of defect, and in particular, for example, foreign matters and crystal defects existing on the surface of a semiconductor wafer. Alternatively, the present invention relates to a surface inspection apparatus and a surface inspection method that improve the discrimination accuracy of foreign matter and scratches.

半導体ウェハにあっては、その素材として、高純度の多結晶シリコンが使用される。この素材の表面に欠陥があるときは製品の品質に影響を及ぼすことから、表面検査装置により検査を行っている。ウェハ表面に発生する欠陥には、一例として、表面に付着した塵埃や研磨剤などの微小な異物、該表面に形成される結晶欠陥(COP(Crystal Originated Particle ))、研磨によって生ずるスクラッチ(研磨キズ)などがある。結晶欠陥は、シリコン原子が酸化されて微小な酸化物がウェハ表面に形成され、それがウェハの洗浄によりウェハ表面から欠落することによって生じるものであり、ウェハ表面上に凹み状に形成される。スクラッチは、ウェハ表面を研磨することによって生じるものであり、ウェハ表面上に線状に形成される。これらの各種欠陥の効果的な検出方法として、従来の表面検査装置は、ウェハ表面上にレーザー光を照射し、前記各欠陥の形状、大きさ等に対してそれぞれ異なって検出される光学的性質、すなわち、前記レーザー光の反射光や散乱光を受光して欠陥を検出する方法を用いている。   For semiconductor wafers, high-purity polycrystalline silicon is used as the material. If there is a defect on the surface of this material, it will affect the quality of the product, so inspection is performed with a surface inspection device. Examples of defects generated on the wafer surface include fine foreign matters such as dust and abrasives attached to the surface, crystal defects (COP (Crystal Originated Particles)) formed on the surface, and scratches (polishing scratches) caused by polishing. )and so on. The crystal defects are caused by oxidation of silicon atoms to form minute oxides on the wafer surface, which are lost from the wafer surface by cleaning the wafer, and are formed in a concave shape on the wafer surface. The scratch is generated by polishing the wafer surface, and is formed linearly on the wafer surface. As an effective method for detecting these various defects, the conventional surface inspection apparatus irradiates a laser beam on the wafer surface, and detects the optical properties that are detected differently with respect to the shape and size of each defect. That is, a method of detecting a defect by receiving reflected light or scattered light of the laser light is used.

従来、ウェハ表面に存在する異物と結晶欠陥を検出する表面検査装置として、例えば、特開平9−304289号公報に示された装置がある。上記の表面検査装置では、ウェハ表面に照射したレーザー光の散乱光を低角度受光器と中角度受光器の両方で受光したときに異物の検出処理を行い、該レーザー光の散乱光を中角度受光器でのみ受光したときに結晶欠陥の検出処理を行う。また、ウェハ表面に存在する異物とスクラッチを検出する表面検査装置として、次のような装置がある。ウェハ表面に照射したレーザー光の散乱光を中角度受光器と高角度受光器とで受光したときに異物の検出処理を行い、該レーザー光の散乱光を低角度受光器でのみ受光したときにスクラッチの検出処理を行う。   Conventionally, as a surface inspection apparatus for detecting foreign matters and crystal defects existing on the wafer surface, for example, there is an apparatus disclosed in JP-A-9-304289. In the above surface inspection apparatus, when the scattered light of the laser beam irradiated on the wafer surface is received by both the low angle receiver and the medium angle receiver, the foreign object is detected, and the scattered light of the laser beam is detected at the medium angle. A crystal defect detection process is performed when light is received only by the light receiver. Further, there are the following apparatuses as surface inspection apparatuses for detecting foreign matter and scratches existing on the wafer surface. When the scattered light of the laser beam irradiated on the wafer surface is received by the medium angle receiver and the high angle receiver, foreign matter detection processing is performed, and when the scattered light of the laser beam is received only by the low angle receiver Scratch detection processing is performed.

ところで、結晶欠陥は、シリコン酸化物の欠損程度によって深さや直径が異なってくることから、ウェハ表面上には様々な形状の結晶欠陥が発生する。そのため、結晶欠陥の形状によっては、中角度受光器の方向に指向性をもって散乱すべき散乱光が該方向以外の方向にも指向性をもって散乱することがある。そのような場合、上記の表面検査装置においては、中角度受光器だけでなく低角度受光器においても結晶欠陥による散乱光を受光してしまうため、結晶欠陥が異物として検出されてしまうという問題があった。また、スクラッチにおいても、その長さ、幅あるいは深さが異なる様々な形状のものがウェハ表面に発生する。そのため、スクラッチの形状によっては、低角度受光器の方向に指向性をもって散乱すべき散乱光が該方向以外の方向にも指向性をもって散乱することがある。そのような場合、上記の表面検査装置において、低角度受光系だけでなく中角度受光系と高角度受光系においてもスクラッチによる散乱光を受光してしまうため、スクラッチが異物として検出されてしまうという問題があった。   By the way, since the crystal defects have different depths and diameters depending on the degree of defects of the silicon oxide, crystal defects of various shapes are generated on the wafer surface. For this reason, depending on the shape of the crystal defect, scattered light that should be scattered with directivity in the direction of the medium angle light receiver may be scattered with directivity in directions other than the direction. In such a case, in the above surface inspection apparatus, not only the medium angle light receiver but also the low angle light receiver receives the scattered light due to the crystal defect, so that the crystal defect is detected as a foreign substance. there were. Also, scratches having various shapes with different lengths, widths or depths are generated on the wafer surface. Therefore, depending on the shape of the scratch, scattered light that should be scattered with directivity in the direction of the low-angle light receiver may be scattered with directivity in directions other than the direction. In such a case, in the above surface inspection apparatus, not only the low-angle light-receiving system but also the medium-angle light-receiving system and the high-angle light-receiving system receive scattered light due to scratches, so that the scratch is detected as a foreign object. There was a problem.

本発明は、上述の点に鑑みて為されたものであり、基板の表面検査にあたって異物と結晶欠陥とを高精度に判別できる表面検査装置及び表面検査方法を提供しようとするものである。また、基板の表面検査にあたって異物とスクラッチとを高精度に判別できる表面検査装置及び表面検査方法を提供しようとするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a surface inspection apparatus and a surface inspection method capable of discriminating foreign matters and crystal defects with high accuracy in the surface inspection of a substrate. It is another object of the present invention to provide a surface inspection apparatus and a surface inspection method capable of discriminating foreign substances and scratches with high accuracy in the surface inspection of a substrate.

本発明に係る基板の表面検査装置は、光ビーム(例えばレーザー光)を基板(例えば半導体基板)の表面に照射し、該レーザー光の散乱光を異なる角度で受光して、第1及び第2の受光信号を出力する光学系と、前記第1及び第2の受光信号のレベルの相関関係を定義する基準関数を設定し、該基準関数を比較基準として前記第1及び第2の受光信号のレベルを比較し、この比較結果に基づき前記半導体基板の表面に存在する欠陥が複数の種類の異なる欠陥のいずれかに該当するかを判別する判別手段とを具えることを特徴とする。これによれば、光学系が出力する第1及び第2の受光信号のレベルの相関関係を定義する基準関数を用いて該第1及び第2の受光信号のレベルを比較することにより、半導体基板の表面に存在する欠陥が複数の種類の異なる欠陥のいずれかに該当するかを判別するようにしたので、半導体基板の表面に存在する例えば異物と結晶欠陥とを高精度に判別することができるという優れた効果を奏する。また、基板の表面検査方法は、光ビーム(例えばレーザー光)を基板(例えば半導体基板)の表面に照射し、該光ビームの散乱光を異なる角度で受光して、第1及び第2の受光信号を出力する工程と、前記第1及び第2の受光信号のレベルの相関関係を定義する基準関数を設定し、該基準関数を比較基準として前記第1及び第2の受光信号のレベルを比較し、この比較結果に基づき前記基板の表面に存在する欠陥が複数の種類の異なる欠陥のいずれかに該当するかを判別する工程とを含むことを特徴とする。これによっても、上記の効果と同様な効果を得ることができる。   A substrate surface inspection apparatus according to the present invention irradiates a surface of a substrate (eg, a semiconductor substrate) with a light beam (eg, laser light), receives scattered light of the laser light at different angles, and performs first and second operations. An optical system that outputs the received light signal and a reference function that defines a correlation between the levels of the first and second received light signals are set, and the first and second received light signals are compared using the reference function as a comparison reference. And determining means for comparing levels and determining whether a defect present on the surface of the semiconductor substrate corresponds to one of a plurality of different types of defects based on the comparison result. According to this, by comparing the levels of the first and second received light signals using the reference function that defines the correlation between the levels of the first and second received light signals output from the optical system, the semiconductor substrate For example, foreign substances and crystal defects existing on the surface of the semiconductor substrate can be determined with high accuracy. There is an excellent effect. The substrate surface inspection method irradiates a surface of a substrate (for example, a semiconductor substrate) with a light beam (for example, laser light), receives scattered light of the light beam at different angles, and performs first and second light reception. A signal output step and a reference function that defines the correlation between the levels of the first and second light reception signals are set, and the levels of the first and second light reception signals are compared using the reference function as a comparison reference. And determining whether a defect existing on the surface of the substrate corresponds to any of a plurality of different types of defects based on the comparison result. Also by this, an effect similar to the above effect can be obtained.

また、本発明に係る基板の表面検査装置は、光ビーム(例えばレーザー光)を基板(例えば半導体基板)の表面に照射し、該レーザー光の散乱光を異なる角度で受光して、複数の受光信号を出力する光学系と、前記複数の受光信号のうち、所定の受光信号のレベルに所定の値を重み付けし、該所定の値を重み付けした受光信号のレベルと残りの受光信号のレベルの大小関係を判定することにより、前記半導体基板の表面に存在する複数の種類の異なる欠陥を判別する判別手段とを具えることを特徴とする。これによれば、光学系が出力する複数の受光信号のうち、所定の受光信号のレベルに所定の値を重み付けすることにより、該所定の値を重み付けした受光信号のレベルと残りの受光信号のレベルとを差別化できることから、当該所定の値を重み付けした受光信号のレベルと残りの受光信号のレベルの大小関係を判定することで、半導体基板の表面に存在する例えば異物とスクラッチとを高精度に判別することができるという優れた効果を奏する。また、基板の表面検査方法は、光ビーム(例えばレーザー光)を基板(例えば半導体基板)の表面に照射し、該光ビームの散乱光を異なる角度で受光して、複数の受光信号を出力する工程と、前記複数の受光信号のうち、所定の受光信号のレベルに所定の値を重み付けし、該所定の値を重み付けした受光信号のレベルと残りの受光信号のレベルの大小関係を判定することにより、前記基板の表面に存在する複数の種類の異なる欠陥を判別する工程とを含むことを特徴とする。これによっても、上記の効果と同様な効果を得ることができる。   The substrate surface inspection apparatus according to the present invention irradiates a surface of a substrate (for example, a semiconductor substrate) with a light beam (for example, a laser beam), receives scattered light of the laser beam at different angles, and receives a plurality of light receptions. An optical system for outputting a signal, and a predetermined value is weighted to a predetermined light reception signal level among the plurality of light reception signals, and the levels of the light reception signal weighted with the predetermined value and the levels of the remaining light reception signals And determining means for determining a plurality of different types of defects present on the surface of the semiconductor substrate by determining the relationship. According to this, among the plurality of light receiving signals output from the optical system, by weighting a predetermined value to the level of the predetermined light receiving signal, the level of the light receiving signal weighted with the predetermined value and the remaining light receiving signals Since the level can be differentiated, the level of the level of the received light signal weighted with the predetermined value and the level of the remaining received light signal are determined, so that, for example, foreign matter and scratches existing on the surface of the semiconductor substrate can be accurately detected. It has an excellent effect that it can be discriminated. In the substrate surface inspection method, a light beam (for example, laser light) is irradiated on the surface of the substrate (for example, a semiconductor substrate), scattered light of the light beam is received at different angles, and a plurality of light reception signals are output. And a step of weighting a predetermined value among predetermined light reception signals among the plurality of light reception signals, and determining a magnitude relationship between the levels of the light reception signals weighted with the predetermined values and the levels of the remaining light reception signals. And a step of discriminating a plurality of different types of defects present on the surface of the substrate. Also by this, an effect similar to the above effect can be obtained.

本発明に係る基板の表面検査装置の一実施例を示す概略構成図。1 is a schematic configuration diagram showing an embodiment of a substrate surface inspection apparatus according to the present invention. 図1に示す表面検査装置に係るデータ処理部の構成ブロック図。FIG. 2 is a configuration block diagram of a data processing unit according to the surface inspection apparatus shown in FIG. 1. 図1に示す表面検査装置による異物と結晶欠陥の判定処理のフローチャート。The flowchart of the foreign material and crystal defect determination processing by the surface inspection apparatus shown in FIG. 垂直照射/中角度光学系と斜方照射/低角度光学系による異物と結晶欠陥の輝度レベルデータの分布状態を示す説明図。Explanatory drawing which shows the distribution state of the brightness level data of the foreign material and crystal defect by a vertical irradiation / medium angle optical system and an oblique irradiation / low angle optical system. 異物と結晶欠陥との判定処理および判別処理を示す模式図。The schematic diagram which shows the determination process and discrimination | determination process of a foreign material and a crystal defect. 本発明に係る表面検査装置の他の実施例を示す概略構成図。The schematic block diagram which shows the other Example of the surface inspection apparatus which concerns on this invention. 図6に示す表面検査装置に係るデータ処理部の構成ブロック図。FIG. 7 is a configuration block diagram of a data processing unit according to the surface inspection apparatus shown in FIG. 6. 図6に示す表面検査装置による異物とスクラッチの判定処理のフローチャート。The flowchart of the foreign material and scratch determination processing by the surface inspection apparatus shown in FIG.

以下、添付図面を参照して、本発明に係る基板の表面検査装置の一実施例を説明する。図1において、表面検査装置Aは、検査光学系1と、回転・移動テーブル2と、駆動制御部3と、データ処理部4とを含んでおり、回転・移動テーブル2には、高純度の多結晶シリコンを素材とする検査対象の半導体ウェハ(以下、単に「ウェハ」と記す)Wが搭載される。検査光学系1は、投光系と受光系とをそれぞれ備える斜方照射/低角度光学系5と、垂直照射/中角度光学系6とを有する。斜方照射/低角度光学系5は、斜方照射光源5aと、低角度受光器5bとを備えており、これらがウェハW表面上に発生した欠陥すなわち結晶欠陥を検出するように、ウェハW表面に対して所定の仰角をもって所定位置に各々配置される。垂直照射/中角度光学系6は、垂直照射光源6aと、中角度受光器6bとを備えており、これらがウェハW表面上に発生した欠陥すなわち異物と結晶欠陥とを検出するように、ウェハW表面に対して上記の斜方照射/低角度光学系5よりも高角度の仰角をもって所定位置に各々配置される。また、斜方照射/低角度光学系5は、斜方照射光源5aによりウェハW表面上にレーザースポットを形成するようにレーザー光L1を斜方照射し、該ウェハW表面上を螺旋状に走査する(これをスパイラル走査と呼ぶ)。垂直照射/中角度光学系6は、垂直照射光源6aによりウェハW表面上にレーザースポットを形成するようにレーザー光L2を垂直照射し、該ウェハW表面上を螺旋状に走査するスパイラル走査を行う。この実施例では、回転テーブル2aによりウェハW自体を回転させると同時に直線移動機構2bにより該ウェハWを半径方向に移動することで、スパイラル走査を行っている。勿論、ウェハW自体を回転テーブル2aにより回転させると同時に光学系5,6全体を該ウェハWの半径方向に移動することで、スパイラル走査を行うようにしてもよい。なお、回転・移動テーブル2は、駆動制御部3を介してデータ処理部4により制御される。   Hereinafter, an embodiment of a substrate surface inspection apparatus according to the present invention will be described with reference to the accompanying drawings. In FIG. 1, the surface inspection apparatus A includes an inspection optical system 1, a rotation / movement table 2, a drive control unit 3, and a data processing unit 4, and the rotation / movement table 2 has a high purity. A semiconductor wafer (hereinafter simply referred to as “wafer”) W to be inspected which is made of polycrystalline silicon is mounted. The inspection optical system 1 includes an oblique irradiation / low angle optical system 5 and a vertical irradiation / medium angle optical system 6 each including a light projecting system and a light receiving system. The oblique illumination / low-angle optical system 5 includes an oblique illumination light source 5a and a low-angle light receiver 5b, and the wafer W is detected so that these detect defects generated on the wafer W surface, that is, crystal defects. Each is arranged at a predetermined position with a predetermined elevation angle with respect to the surface. The vertical irradiation / medium angle optical system 6 includes a vertical irradiation light source 6a and a medium angle light receiver 6b, so that these detect defects generated on the surface of the wafer W, that is, foreign matter and crystal defects. The oblique irradiation / low angle optical system 5 is arranged at a predetermined position with respect to the W surface at an elevation angle higher than that of the oblique irradiation / low angle optical system 5. Further, the oblique irradiation / low angle optical system 5 irradiates the laser beam L1 obliquely so as to form a laser spot on the surface of the wafer W by the oblique irradiation light source 5a, and scans the surface of the wafer W spirally. (This is called spiral scanning). The vertical irradiation / medium angle optical system 6 performs spiral scanning by vertically irradiating the laser beam L2 with a vertical irradiation light source 6a so as to form a laser spot on the surface of the wafer W, and scanning the surface of the wafer W in a spiral manner. . In this embodiment, spiral scanning is performed by rotating the wafer W itself by the rotary table 2a and simultaneously moving the wafer W in the radial direction by the linear movement mechanism 2b. Of course, spiral scanning may be performed by rotating the wafer W itself by the turntable 2a and simultaneously moving the entire optical systems 5 and 6 in the radial direction of the wafer W. The rotation / movement table 2 is controlled by the data processing unit 4 via the drive control unit 3.

スパイラル走査を行っている際に、ウェハW表面の平滑面に欠陥(異物や結晶欠陥)があると、その欠陥の凹凸によってレーザスポットが乱反射して散乱する。異物はウェハW表面上に塵埃や研磨剤が付着してできる凸状の欠陥であることから、ウェハW表面に異物が存在する場合、レーザースポットはランダムな方向に散乱する。一方、結晶欠陥はシリコン酸化物が欠落してできる凹み状の欠陥であることから、ウェハW表面に結晶欠陥が存在する場合、レーザースポットは特定の方向に強調されて散乱する。すなわち、異物はランダムな方向に散乱光(つまり、特定の方向に強調されることがない無指向性の散乱光)を発生させるが、結晶欠陥では凹み面に応じた指向性の鋭い散乱光を発生させる。従って、レーザースポットの同一の走査位置において、ウェハW表面上に異物があるときは、低角度受光器5bと中角度受光器6bとで異物による散乱光を受光するが、ウェハW表面上に結晶欠陥があるときには、中角度受光器6bでのみ結晶欠陥による散乱光を受光する。散乱光を受光した低角度受光器5bおよび中角度受光器6bは、それぞれ、図2に示すように、A/D変換器7,8を介して受光信号D1,D2をデータ処理部4に出力する。   During the spiral scanning, if there is a defect (foreign matter or crystal defect) on the smooth surface of the wafer W surface, the laser spot is irregularly reflected and scattered by the irregularities of the defect. Since the foreign matter is a convex defect formed by dust or polishing agent adhering to the surface of the wafer W, when the foreign matter is present on the surface of the wafer W, the laser spot is scattered in a random direction. On the other hand, since the crystal defect is a dent-like defect formed by missing silicon oxide, when a crystal defect exists on the surface of the wafer W, the laser spot is emphasized and scattered in a specific direction. In other words, the foreign matter generates scattered light in a random direction (that is, omnidirectional scattered light that is not emphasized in a specific direction), but crystal defects generate directional sharp scattered light according to the concave surface. generate. Therefore, if there is a foreign substance on the surface of the wafer W at the same scanning position of the laser spot, the low-angle light receiver 5b and the medium-angle light receiver 6b receive scattered light from the foreign substance, but the crystal on the surface of the wafer W is received. When there is a defect, only the medium angle light receiver 6b receives the scattered light due to the crystal defect. The low-angle light receiver 5b and the medium-angle light receiver 6b that have received the scattered light output light reception signals D1 and D2 to the data processing unit 4 via the A / D converters 7 and 8, respectively, as shown in FIG. To do.

ところで、結晶欠陥は、シリコン酸化物の欠損程度によって深さや直径が異なることから、比較的大きな結晶欠陥、例えば、深さが浅く直径の大きい結晶欠陥では、凹み面が平面に近い面形状となることから、散乱光の指向性範囲が広がり、その散乱光が中角度受光器6bのみならず低角度受光器5bにも受光されることがある。このように、斜方照射/低角度光学系5および垂直照射/中角度光学系6により結晶欠陥による散乱光を受光したような場合には、そのままでは異物との区別がつかなくなるので、データ処理部4では、受光信号D1,D2の検出レベル(輝度レベル)の相関関係を定義する基準関数を設定した欠陥判定テーブルを用いて異物と結晶欠陥とを判別する判別処理を行う。すなわち、欠陥判定テーブルの基準関数を比較基準として受光信号D1,D2の検出レベルを比較し、この比較結果に基づきウェハW表面に存在する欠陥が異物と結晶欠陥のいずれかに該当するかを判別する。   By the way, since the depth and diameter of crystal defects differ depending on the degree of silicon oxide defects, a relatively large crystal defect, for example, a crystal defect having a shallow depth and a large diameter, has a concave surface that is nearly flat. Accordingly, the directivity range of scattered light is widened, and the scattered light may be received not only by the medium angle light receiver 6b but also by the low angle light receiver 5b. In this way, when scattered light due to crystal defects is received by the oblique irradiation / low angle optical system 5 and the vertical irradiation / medium angle optical system 6, it is impossible to distinguish from foreign matters as they are, so that data processing is performed. The unit 4 performs a discrimination process for discriminating foreign matters and crystal defects using a defect judgment table in which a reference function that defines a correlation between detection levels (luminance levels) of the received light signals D1 and D2 is set. That is, the detection levels of the light reception signals D1 and D2 are compared using the reference function of the defect determination table as a comparison reference, and it is determined based on the comparison result whether the defect existing on the surface of the wafer W corresponds to a foreign matter or a crystal defect. To do.

図3を参照してデータ処理部4での異物と結晶欠陥の判定処理および判別処理を説明する。データ処理部4のMPU4aは、メモリ4bに格納されているプログラムを実行し、低角度受光器5bより得られる受光信号D1と、中角度受光器6bより得られる受光信号D2をインターフェイス4cからデータバス4dを介して取り込む(ステップS1)。ステップS2では、受光信号D1を取り込んだか、受光信号D1とD2とを取り込んだかを判定する。受光信号D1を取り込んだ場合、結晶欠陥と判定して(ステップ3)、ステップ7に進む。受光信号D1とD2とを取り込んだ場合、ステップS4に進んで異物と結晶欠陥とを判別する判別処理を行う。散乱光測定方式の場合、垂直照射/中角度受光による異物および結晶欠陥の検出レベルが同じであるとき、斜方照射/低角度受光による異物の検出レベルは結晶欠陥の検出レベルよりも大きい。このような斜方照射/低角度受光による異物および結晶欠陥の検出レベルの大小関係は、垂直照射/中角度受光において、異物および結晶欠陥の検出レベルが同一であれば、該検出レベルの大・小に関係なく同じような傾向を示す。従って、上記のような斜方照射/低角度受光による異物および結晶欠陥の検出レベルの大小関係から異物の検出レベルデータと結晶欠陥の検出レベルデータとをある程度分離することができる。MPU4aは、上記の斜方照射/低角度受光による異物および結晶欠陥の検出レベルの相関関係に基づいて基準関数を設定した欠陥判定テーブルT(図4参照)を用いることで異物と結晶欠陥とを判別する。欠陥判定テーブルTは、図4に示すように、横軸(X軸)が垂直照射/中角度受光の受光信号D2の検出レベルに、縦軸(Y軸)が斜方照射/低角度受光の受光信号D1の検出レベルにそれぞれ対応しており、基準関数として、例えば、一次関数の弁別線Sが設定される。弁別線Sは、例えば、一般式y=ax+bで表される。ここに、「a」は、予め粒径が判っている複数種類の標準粒子について垂直照射/中角度受光および斜方照射/低角度受光で検出される検出レベルの検出比から求めた傾きであり、「b」は斜方照射/低角度受光の検出レベルのオフセットである。MPU4aでは、例えば、受光信号D1とD2の検出レベルデータが図4にて黒点で示す分布状態にあるとき、弁別線Sの下領域にある検出レベルデータのグループG1を結晶欠陥と判定し(ステップ5)、弁別線Sの上領域にある検出レベルデータのグループG2を異物と判定する(ステップ6)。そして、ステップS5において結晶欠陥と判定したグループG1をステップS3にて判定した結晶欠陥に追加する。このようにして、受光信号D1とD2における異物と結晶欠陥との判別処理が行われると、次に結晶欠陥と異物の大きさ判定処理が行われ(ステップS7)、次に結晶欠陥と異物の数を個別にカウントして総計を算出する検出値カウント処理が行われ(ステップS8)、次に結晶欠陥と異物をそれぞれCRT9にマップ表示するマップ出力処理が行われる(ステップS9)。   With reference to FIG. 3, the determination processing and determination processing of foreign matter and crystal defects in the data processing unit 4 will be described. The MPU 4a of the data processing unit 4 executes a program stored in the memory 4b, and receives the light reception signal D1 obtained from the low angle light receiver 5b and the light reception signal D2 obtained from the medium angle light receiver 6b from the interface 4c through the data bus. Capture through 4d (step S1). In step S2, it is determined whether the light reception signal D1 is captured or the light reception signals D1 and D2 are captured. When the received light signal D1 is taken, it is determined that the crystal defect is present (step 3), and the process proceeds to step 7. When the received light signals D1 and D2 are captured, the process proceeds to step S4 to perform a discrimination process for discriminating foreign matters and crystal defects. In the case of the scattered light measurement method, when the detection level of foreign matter and crystal defect by vertical irradiation / medium angle light reception is the same, the detection level of foreign matter by oblique irradiation / low angle light reception is higher than the detection level of crystal defect. The magnitude relationship between the detection levels of foreign matter and crystal defects by such oblique irradiation / low-angle light reception is such that if the detection levels of foreign matter and crystal defects are the same in vertical irradiation / medium-angle light reception, The same tendency is shown regardless of small. Therefore, the detection level data of the foreign matter and the detection level data of the crystal defect can be separated to some extent from the magnitude relationship between the detection level of the foreign matter and the crystal defect by oblique irradiation / low angle light reception as described above. The MPU 4a uses the defect determination table T (see FIG. 4) in which a reference function is set based on the correlation between the detection levels of the foreign matter and crystal defects due to the oblique irradiation / low-angle light reception as described above, so that the foreign matter and the crystal defects are detected. Determine. As shown in FIG. 4, in the defect determination table T, the horizontal axis (X axis) indicates the detection level of the light reception signal D2 for vertical irradiation / medium angle light reception, and the vertical axis (Y axis) indicates oblique irradiation / low angle light reception. For example, a discrimination line S of a linear function is set as the reference function corresponding to the detection level of the light reception signal D1. The discrimination line S is expressed by, for example, the general formula y = ax + b. Here, “a” is an inclination obtained from detection ratios of detection levels detected by vertical irradiation / medium angle light reception and oblique irradiation / low angle light reception for a plurality of types of standard particles whose particle diameters are known in advance. , “B” is an offset of the detection level of oblique irradiation / low-angle light reception. In the MPU 4a, for example, when the detection level data of the light reception signals D1 and D2 is in a distribution state indicated by black dots in FIG. 4, the group G1 of detection level data in the lower region of the discrimination line S is determined as a crystal defect (step 5) The group G2 of the detection level data in the upper area of the discrimination line S is determined as a foreign substance (step 6). Then, the group G1 determined as a crystal defect in step S5 is added to the crystal defect determined in step S3. In this way, when the discrimination processing between the foreign matter and the crystal defect in the light reception signals D1 and D2 is performed, the size judgment processing of the crystal defect and the foreign matter is then performed (step S7), and then the crystal defect and the foreign matter are detected. A detection value counting process for counting the number individually and calculating the total is performed (step S8), and then a map output process for displaying crystal defects and foreign matters on the CRT 9 is performed (step S9).

上記のMPU4aによる異物と結晶欠陥との判定処理および判別処理を容易に理解できるよう図5にそれらの処理の模式図を示す。図5に示すよう、垂直照射/中角度受光でのみ受光信号D1が得られた場合に、結晶欠陥と判定する。一方、垂直照射/中角度受光と斜方照射/低角度受光の両方から受光信号D1,D2が得られ場合に、欠陥判定テーブルTを用いて弁別線Sにより異物と結晶欠陥とを判別する。なお、斜方照射/低角度受光でのみ得られる受光信号については未定義としてキャンセルする。欠陥判定テーブルTにおいて、例えば、受光信号D1,D2の検出レベルデータが黒点で示す分布状態であるときに、弁別線Sの下領域にある検出レベルデータのグループG1を結晶欠陥(COP)と判定し、弁別線Sの上領域にある検出レベルデータのグループG2を異物と判定する。このように、斜方照射/低角度光学系5と垂直照射/中角度光学系6の両方で得られる受光信号D1,D2の相関が弁別線Sの下領域か上領域かを判定することによって、異物と結晶欠陥とを高精度に判別することができる。そして、その結晶欠陥(COP)を既決の結晶欠陥(COP)の判定結果に追加する。   FIG. 5 shows a schematic diagram of these processes so that the MPU 4a can easily understand the determination process and the determination process of foreign matters and crystal defects. As shown in FIG. 5, a crystal defect is determined when the light reception signal D1 is obtained only by vertical irradiation / medium angle light reception. On the other hand, when the light reception signals D1 and D2 are obtained from both the vertical irradiation / medium angle light reception and the oblique irradiation / low angle light reception, the foreign matter and the crystal defect are discriminated by the discrimination line S using the defect determination table T. Note that the received light signal obtained only by oblique irradiation / low-angle light reception is canceled as undefined. In the defect determination table T, for example, when the detection level data of the light reception signals D1 and D2 is in a distribution state indicated by black dots, the group G1 of detection level data in the region below the discrimination line S is determined as a crystal defect (COP). Then, the detection level data group G2 in the upper region of the discrimination line S is determined as a foreign object. Thus, by determining whether the correlation between the received light signals D1 and D2 obtained by both the oblique irradiation / low angle optical system 5 and the vertical irradiation / medium angle optical system 6 is the lower region or the upper region of the discrimination line S. Thus, foreign substances and crystal defects can be distinguished with high accuracy. Then, the crystal defect (COP) is added to the determined crystal defect (COP) determination result.

この実施例に係る表面検査装置において、欠陥判定テーブルTに一次関数の弁別線Sを設定しているが、弁別線Sはこれに限られるものでなく、判別対象となる欠陥種類に応じて傾き「a」およびオフセット「b」を適切な値に設定可能である。また、弁別線Sとして、一次関数以外にも曲線を含む関数を弁別線として適宜設定してよい。   In the surface inspection apparatus according to this embodiment, a discrimination line S of a linear function is set in the defect determination table T, but the discrimination line S is not limited to this, and is inclined according to the type of defect to be discriminated. “A” and offset “b” can be set to appropriate values. Further, as the discrimination line S, a function including a curve other than the linear function may be appropriately set as the discrimination line.

次に、図6を参照して他の実施例の表面検査装置を説明する。この実施例では、異物とスクラッチを検出する表面検査装置を説明する。なお、前述した表面検査装置と共通する構成部材には同じ符号を付す。図6において、表面検査装置Bは、検査光学系1として、投光系と受光系とをそれぞれ備える斜方照射/低角度光学系5と、垂直照射/中・高角度光学系11とを有する。斜方照射/低角度光学系5は、斜方照射光源5aと、低角度受光器5bとを備えており、これらがウェハW表面上に発生した欠陥すなわちスクラッチを検出するように、ウェハW表面に対して所定の仰角をもって所定位置に各々配置される。垂直照射/中・高角度光学系11は、垂直照射光源11aと、中角度受光器11bと、高角度受光器11cとを備えており、これらがウェハW表面上に発生した欠陥すなわち異物を検出するように、ウェハW表面に対して上記の斜方照射/低角度光学系5よりも高角度な仰角をもって所定位置に各々配置される。上述の実施例と同じように、斜方照射/低角度光学系5は、斜方照射光源5aによりウェハW表面上にレーザースポットを形成するようにレーザー光L1を斜方照射し、該ウェハW表面上を螺旋状に走査するスパイラル走査を行う。垂直照射/中・高角度光学系11は、垂直照射光源6aによりウェハW表面上にレーザースポットを形成するようにレーザー光L2を垂直照射し、該ウェハW表面上を螺旋上に走査するスパイラル走査を行う。この実施例においても、回転テーブル2aによりウェハW自体を回転させると同時に直線移動機構2bにより該ウェハWを半径方向に移動することで、スパイラル走査を行っている。勿論、ウェハW自体を回転テーブル2aにより回転させると同時に光学系5,11全体を該ウェハWの半径方向に移動することで、スパイラル走査を行うようにしてもよい。   Next, a surface inspection apparatus according to another embodiment will be described with reference to FIG. In this embodiment, a surface inspection apparatus for detecting foreign matter and scratches will be described. In addition, the same code | symbol is attached | subjected to the structural member which is common in the surface inspection apparatus mentioned above. In FIG. 6, the surface inspection apparatus B includes, as the inspection optical system 1, an oblique irradiation / low angle optical system 5 including a light projecting system and a light receiving system, and a vertical irradiation / medium / high angle optical system 11. . The oblique illumination / low-angle optical system 5 includes an oblique illumination light source 5a and a low-angle light receiver 5b. The wafer W surface is detected so that they detect defects or scratches generated on the wafer W surface. Are respectively arranged at predetermined positions with a predetermined elevation angle. The vertical irradiation / medium / high-angle optical system 11 includes a vertical irradiation light source 11a, a medium-angle light receiver 11b, and a high-angle light receiver 11c, which detect defects, that is, foreign matters generated on the surface of the wafer W. Thus, the wafer W is disposed at a predetermined position with an elevation angle higher than that of the oblique irradiation / low-angle optical system 5 described above. As in the above-described embodiment, the oblique irradiation / low-angle optical system 5 obliquely irradiates the laser beam L1 with the oblique irradiation light source 5a so as to form a laser spot on the surface of the wafer W. Spiral scanning is performed to spirally scan the surface. The vertical irradiation / medium / high angle optical system 11 spirally scans the surface of the wafer W spirally by vertically irradiating the laser beam L2 so as to form a laser spot on the surface of the wafer W by the vertical irradiation light source 6a. I do. Also in this embodiment, spiral scanning is performed by rotating the wafer W itself by the rotary table 2a and simultaneously moving the wafer W in the radial direction by the linear moving mechanism 2b. Of course, spiral scanning may be performed by rotating the wafer W itself by the turntable 2a and simultaneously moving the entire optical systems 5 and 11 in the radial direction of the wafer W.

スパイラル走査を行っている際に、ウェハW表面の平滑面に欠陥(異物やスクラッチ)があると、その欠陥の凹凸によってレーザスポットが乱反射して散乱する。上述したように、異物はウェハW表面上に塵埃や研磨剤が付着してできる凸状の欠陥であることから、ウェハW表面に異物が存在する場合、レーザースポットはランダムな方向に散乱する。一方、スクラッチはウェハW表面を研磨してできる線状の凹み欠陥であることから、ウェハW表面にスクラッチが存在する場合、レーザースポットは特定の方向に強調されて散乱する。すなわち、異物はランダムな方向に散乱光(つまり、特定の方向に強調されることがない無指向性の散乱光)を発生させるが、スクラッチでは深さや幅に応じた指向性の鋭い散乱光を発生させる。従って、レーザースポットの同一の走査位置において、ウェハW表面上に異物があるときは、中角度受光器11bと、高角度受光器11cとで異物による散乱光を受光するが、ウェハW表面上にスクラッチがあるときには、低角度受光器5bでのみスクラッチによる散乱光を受光する。散乱光を受光した低角度受光器5b、中角度受光器11bおよび高角度受光器11cは、それぞれ、図7に示すように、A/D変換器12,13,14を介して受光信号D3,D4,D5をデータ処理部4に出力する。   During the spiral scanning, if there is a defect (foreign matter or scratch) on the smooth surface of the wafer W, the laser spot is irregularly reflected and scattered by the irregularities of the defect. As described above, since the foreign matter is a convex defect formed by dust or abrasive on the surface of the wafer W, the laser spot is scattered in a random direction when the foreign matter is present on the surface of the wafer W. On the other hand, since the scratch is a linear dent defect formed by polishing the surface of the wafer W, when the scratch exists on the surface of the wafer W, the laser spot is emphasized and scattered in a specific direction. In other words, the foreign matter generates scattered light in a random direction (that is, omnidirectional scattered light that is not emphasized in a specific direction), but in the scratch, the directional sharp scattered light according to the depth and width is generated. generate. Therefore, when there is a foreign substance on the surface of the wafer W at the same scanning position of the laser spot, the medium-angle light receiver 11b and the high-angle light receiver 11c receive scattered light from the foreign substance. When there is a scratch, scattered light due to the scratch is received only by the low-angle light receiver 5b. As shown in FIG. 7, the low-angle light receiver 5b, the medium-angle light receiver 11b, and the high-angle light receiver 11c that have received the scattered light respectively receive the light reception signals D3 and D3 via the A / D converters 12, 13, and 14, respectively. D4 and D5 are output to the data processing unit 4.

ところで、スクラッチは、ウェハW表面を研磨してできる線状の凹み程度によって深さや幅が異なることから、比較的大きなスクラッチ、例えば、深さが浅く幅の大きいスクラッチでは、凹み面が平面に近い面形状となることから、散乱光の指向性範囲が広がり、その散乱光が低角度受光器5bのみならず中角度受光器11bおよび高角度受光器11cにも受光されることがある。特に、高角度受光器11cにおいては、比較的大きなスクラッチによる散乱光が検出される。なお、中角度受光器11bは、高角度受光器11cで受光されない散乱光を受光するためのものであり、高角度受光器11cの補完的な役割を果たすものとして用いられる。垂直照射/中・高角度光学系11でスクラッチによる散乱光を受光したような場合には、そのままでは異物との区別がつかなくなるので、データ処理部4では、受光信号D3,D4,D5の検出レベルデータ(輝度レベルデータ)のうち、受信信号D4,D5の検出レベルデータに所定の値を重み付けして、残りの受光信号D3の検出レベルデータとの大小関係を判定することにより、異物とスクラッチとを判別する判別処理を行う。   By the way, since the depth and the width of the scratch differ depending on the degree of the linear recess formed by polishing the surface of the wafer W, in a relatively large scratch, for example, a scratch having a shallow depth and a large width, the recess surface is almost flat. Due to the surface shape, the directivity range of scattered light is widened, and the scattered light may be received not only by the low-angle light receiver 5b but also by the medium-angle light receiver 11b and the high-angle light receiver 11c. In particular, in the high-angle light receiver 11c, scattered light due to a relatively large scratch is detected. The medium angle light receiver 11b receives scattered light that is not received by the high angle light receiver 11c, and is used as a complementary role to the high angle light receiver 11c. When the vertical irradiation / medium / high angle optical system 11 receives scattered light from scratches, the data processing unit 4 cannot detect the received light signals D3, D4, and D5. Among the level data (luminance level data), a predetermined value is weighted to the detection level data of the reception signals D4 and D5, and the magnitude relationship with the detection level data of the remaining light reception signal D3 is determined, whereby foreign matter and scratches are determined. A discrimination process for discriminating between is performed.

図8を参照してデータ処理部4での異物とスクラッチの判定処理および判別処理を説明する。データ処理部4のMPU4aは、メモリ4bに格納されているプログラムを実行し、低角度受光器5bより得られる受光信号D3と、中角度受光器11bおよび高角度受光器11cより得られる受光信号D4,D5をインターフェイス4cからデータバス4dを介して取り込む(ステップS11)。ステップS12では、受光信号D3を取り込んだか、受光信号D3とD4とD5とを取り込んだかを判定する。受光信号D3を取り込んだ場合、スクラッチと判定して(ステップ13)、ステップ17に進む。受光信号D3とD4とD5とを取り込んだ場合、ステップS14に進んで異物とスクラッチとを判別する判別処理を行う。すなわち、ステップS14では、受光信号D4,D5の検出レベルデータの加算値に対して所定の係数Kを積算して得られる値つまりK(D4+D5)より得られる値と、残りの受光信号D3の検出レベルデータとの大小関係を比較する。このように、垂直照射/中・高角度光学系11から得られる受光信号D4,D5の検出レベルデータに所定の係数Kを重み付けすることで、該所定の係数Kを重み付けした受光信号D4,D5と、斜方照射/低角度光学系5から得られる受光信号D3を差別化することができる。ステップS14において、K(D4+D5)≧D3dの場合(ステップS14の「Y」)にスクラッチと判定し(ステップS15)、K(D4d+D5d)<D3dの場合(ステップS14の「N」)には異物と判定する(ステップS16)。そして、ステップS16において判定したスクラッチをステップS13にて判定したスクラッチに追加する。このようにして、受信信号D3,D4,D5における異物とスクラッチとの判別処理が行われると、次にスクラッチと異物の大きさ判定処理が行われ(ステップS17)、次にスクラッチと異物の数を個別にカウントして総計を算出する検出値カウント処理が行われ(ステップS18)、次にスクラッチと異物をそれぞれCRT9にマップ表示するマップ出力処理が行われる(ステップS19)。   The foreign object / scratch determination process and determination process in the data processing unit 4 will be described with reference to FIG. The MPU 4a of the data processing unit 4 executes a program stored in the memory 4b, and receives a light reception signal D3 obtained from the low angle light receiver 5b and a light reception signal D4 obtained from the medium angle light receiver 11b and the high angle light receiver 11c. , D5 are fetched from the interface 4c via the data bus 4d (step S11). In step S12, it is determined whether the light reception signal D3 is captured or the light reception signals D3, D4, and D5 are captured. If the received light signal D3 is captured, it is determined as a scratch (step 13), and the process proceeds to step 17. When the received light signals D3, D4, and D5 are captured, the process proceeds to step S14 to perform a discrimination process for discriminating foreign objects and scratches. That is, in step S14, a value obtained by adding a predetermined coefficient K to the addition value of the detection level data of the light reception signals D4 and D5, that is, a value obtained from K (D4 + D5), and the detection of the remaining light reception signal D3. Compare magnitude relationship with level data. In this way, by weighting the detection coefficient data of the light reception signals D4 and D5 obtained from the vertical irradiation / medium / high angle optical system 11 with the predetermined coefficient K, the light reception signals D4 and D5 weighted with the predetermined coefficient K. And the received light signal D3 obtained from the oblique irradiation / low angle optical system 5 can be differentiated. In step S14, if K (D4 + D5) ≧ D3d (“Y” in step S14), a scratch is determined (step S15), and if K (D4d + D5d) <D3d (“N” in step S14) Determination is made (step S16). Then, the scratch determined in step S16 is added to the scratch determined in step S13. After the foreign matter and scratch determination process is performed in the reception signals D3, D4, and D5 in this way, the scratch and foreign matter size determination process is performed (step S17), and then the number of scratches and foreign objects is determined. A detection value counting process is performed to calculate the total by individually counting (step S18), and then a map output process for displaying the scratch and the foreign substance on the CRT 9 is performed (step S19).

以上のように、この実施例では、垂直照射/中・高角度光学系11から得られる受光信号D4,D5の検出レベルデータに所定の値を重み付けして、斜方照射/低角度光学系5から得られる受光信号D3の検出レベルデータと比較するので、異物とスクラッチとを高精度に判別することができる。勿論、検査光学系1の垂直照射/中・高角度光学系11に代えて、垂直照射光源11aと、高角度受光器11cとを備える垂直照射/高角度光学系を用いてもよい。   As described above, in this embodiment, the oblique illumination / low angle optical system 5 is weighted with a predetermined value on the detection level data of the light reception signals D4 and D5 obtained from the vertical illumination / medium / high angle optical system 11. Since the comparison is made with the detection level data of the light reception signal D3 obtained from the above, foreign substances and scratches can be discriminated with high accuracy. Of course, instead of the vertical irradiation / medium / high angle optical system 11 of the inspection optical system 1, a vertical irradiation / high angle optical system including a vertical irradiation light source 11a and a high angle light receiver 11c may be used.

また、上述の各実施例では、光ビームにレーザー光を用いた場合を例に説明したが、レーザー光に代えて白色光や紫外線照射光を用いてもよい。また、各実施例では、レーザー光がウェハ表面上を螺旋状に走査するスパイラル走査で説明しているが、走査はXYの二次元走査であってもよい。さらに、各実施例では、半導体ウェハ基板の表面検査について説明しているが、ガラス基板等の表面検査にも適用できる。   In each of the above-described embodiments, the case where laser light is used as the light beam has been described as an example. However, white light or ultraviolet irradiation light may be used instead of the laser light. In each of the embodiments, the laser beam is described as spiral scanning in which the surface of the wafer is spirally scanned. However, the scanning may be XY two-dimensional scanning. Further, in each embodiment, the surface inspection of the semiconductor wafer substrate has been described, but it can also be applied to the surface inspection of a glass substrate or the like.

以上説明したように、本発明に係る基板の表面検査装置及び表面検査方法によれば、光学系が出力する第1及び第2の受光信号のレベルの相関関係を定義する基準関数を用いて該第1及び第2の受光信号のレベルを比較することにより、基板の表面に存在する欠陥が複数の種類の異なる欠陥のいずれかに該当するかを判別するようにしたので、基板の表面に存在する例えば異物と結晶欠陥とを高精度に判別することができる。また、光学系が出力する複数の受光信号のうち、所定の受光信号のレベルに所定の値を重み付けすることにより、該所定の値を重み付けした受光信号のレベルと残りの受光信号のレベルとを差別化できることから、当該所定の値を重み付けした受光信号のレベルと残りの受光信号のレベルの大小関係を判定することで、基板の表面に存在する例えば異物とスクラッチとを高精度に判別することができる。   As described above, according to the substrate surface inspection apparatus and the surface inspection method of the present invention, the reference function that defines the correlation between the levels of the first and second received light signals output from the optical system is used. By comparing the levels of the first and second received light signals, it is possible to determine whether a defect existing on the surface of the substrate corresponds to one of a plurality of different types of defects. For example, foreign substances and crystal defects can be distinguished with high accuracy. In addition, by weighting a predetermined value to the level of a predetermined light receiving signal among a plurality of light receiving signals output from the optical system, the level of the light receiving signal weighted with the predetermined value and the level of the remaining light receiving signal are obtained. Because it can be differentiated, it is possible to discriminate between, for example, foreign matters and scratches existing on the surface of the substrate with high accuracy by determining the magnitude relationship between the level of the received light signal weighted with the predetermined value and the remaining received light signal level. Can do.

1 検査光学系 4 データ処理部
5 斜方照射/低角度光学系 5a 斜方照射光源
5b 低角度受光器 6 垂直照射/中角度光学系
6a 垂直照射光源 6b 中角度受光器
11 垂直照射/中・高角度光学系 11a 垂直照射光源
11b 中角度受光器 11c 高角度受光器
W ウェハ
DESCRIPTION OF SYMBOLS 1 Inspection optical system 4 Data processing part 5 Oblique irradiation / low angle optical system 5a Oblique irradiation light source 5b Low angle light receiver 6 Vertical irradiation / medium angle optical system 6a Vertical irradiation light source 6b Medium angle light receiver 11 Vertical irradiation / medium High angle optical system 11a Vertical irradiation light source 11b Medium angle light receiver 11c High angle light receiver W Wafer

Claims (4)

第1の光ビームを第1の仰角、及び前記第1の仰角よりも高い第2の仰角で基板の表面に照明する照明光学系と、
前記基板からの光を第1の角度で検出し、前記基板からの光を前記第1の角度よりも高い第2の角度で検出し、前記光を前記第2の角度よりも高い第3の角度で検出する検出光学系と、
前記第2の仰角で照明し前記第3の角度で検出した第1の受光信号と前記第2の仰角で照明し前記第2の角度で検出した第2の受光信号との和に所定の係数を乗算し、前記乗算した結果と前記第1の仰角で照明し前記第1の角度で受光した第3の受光信号とを比較することで異物とスクラッチとを弁別する処理部と、を有することを特徴とする基板の表面検査装置。
An illumination optical system that illuminates the surface of the substrate with a first light beam at a first elevation angle and a second elevation angle higher than the first elevation angle;
Light from the substrate is detected at a first angle, light from the substrate is detected at a second angle higher than the first angle, and the light is detected at a third angle higher than the second angle. A detection optical system that detects the angle;
A predetermined coefficient is added to the sum of the first received light signal illuminated at the second elevation angle and detected at the third angle and the second received light signal illuminated at the second elevation angle and detected at the second angle. And a processing unit that discriminates foreign matters from scratches by comparing the multiplied result with a third light receiving signal illuminated at the first elevation angle and received at the first angle. A substrate surface inspection apparatus.
請求項1記載の表面検査装置において、
前記処理部は、前記第1の受光信号、及び前記第2の受光信号は得ずに、前記第3の受光信号を得たと判断した場合は、前記スクラッチと判定し、前記第1の受光信号、前記第2の受光信号、及び前記第3の受光信号を得たと判断した場合は、前記第1の受光信号と前記第2の受光信号との和に前記係数を乗算し、前記乗算した結果と前記第3の受光信号とを比較することで前記異物と前記スクラッチとを弁別することを特徴とする基板の表面検査装置。
In the surface inspection apparatus according to claim 1,
When the processing unit determines that the third light receiving signal is obtained without obtaining the first light receiving signal and the second light receiving signal, the processing unit determines that the scratch is received, and the first light receiving signal is obtained. When it is determined that the second received light signal and the third received light signal have been obtained, the sum of the first received light signal and the second received light signal is multiplied by the coefficient, and the multiplication result is obtained. And the third light receiving signal to discriminate the foreign material from the scratch.
第1の光ビームを第1の仰角、及び前記第1の仰角よりも高い第2の仰角で基板の表面に照明する工程と、
前記基板からの光を第1の角度で検出し、前記基板からの光を前記第1の角度よりも高い第2の角度で検出し、前記光を前記第2の角度よりも高い第3の角度で検出する工程と、
前記第2の仰角で照明し前記第3の角度で検出した第1の受光信号と前記第2の仰角で照明し前記第2の角度で検出した第2の受光信号との和に所定の係数を乗算し、前記乗算した結果と前記第1の仰角で照明し前記第1の角度で受光した第3の受光信号とを比較することで異物とスクラッチとを弁別する処理工程と、を有することを特徴とする基板の表面検査方法。
Illuminating the surface of the substrate with a first light beam at a first elevation angle and a second elevation angle higher than the first elevation angle;
Light from the substrate is detected at a first angle, light from the substrate is detected at a second angle higher than the first angle, and the light is detected at a third angle higher than the second angle. Detecting by angle;
A predetermined coefficient is added to the sum of the first received light signal illuminated at the second elevation angle and detected at the third angle and the second received light signal illuminated at the second elevation angle and detected at the second angle. And a step of discriminating foreign matter from scratch by comparing the multiplied result with a third light receiving signal illuminated at the first elevation angle and received at the first angle. A method for inspecting a surface of a substrate.
請求項3記載の表面検査方法において、
前記処理工程は、前記第1の受光信号、及び前記第2の受光信号は得ずに、前記第3の受光信号を得たと判断した場合は、前記スクラッチと判定し、前記第1の受光信号、前記第2の受光信号、及び前記第3の受光信号を得たと判断した場合は、前記第1の受光信号と前記第2の受光信号との和に前記係数を乗算し、前記乗算した結果と前記第3の受光信号とを比較することで前記異物と前記スクラッチとを弁別することを特徴とする基板の表面検査方法。
The surface inspection method according to claim 3,
When the processing step determines that the third light reception signal is obtained without obtaining the first light reception signal and the second light reception signal, it is determined as the scratch, and the first light reception signal is obtained. When it is determined that the second received light signal and the third received light signal have been obtained, the sum of the first received light signal and the second received light signal is multiplied by the coefficient, and the multiplication result is obtained. And the third light reception signal to discriminate between the foreign matter and the scratch.
JP2009125388A 2009-05-25 2009-05-25 Substrate surface inspection apparatus and surface inspection method Expired - Fee Related JP5036757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125388A JP5036757B2 (en) 2009-05-25 2009-05-25 Substrate surface inspection apparatus and surface inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125388A JP5036757B2 (en) 2009-05-25 2009-05-25 Substrate surface inspection apparatus and surface inspection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000292676A Division JP2002098645A (en) 2000-09-26 2000-09-26 Surface inspecting apparatus and method for substrate

Publications (2)

Publication Number Publication Date
JP2009186492A JP2009186492A (en) 2009-08-20
JP5036757B2 true JP5036757B2 (en) 2012-09-26

Family

ID=41069836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125388A Expired - Fee Related JP5036757B2 (en) 2009-05-25 2009-05-25 Substrate surface inspection apparatus and surface inspection method

Country Status (1)

Country Link
JP (1) JP5036757B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650697B1 (en) * 2018-12-04 2024-03-25 삼성전자주식회사 Method and system for inspecing semicondutor wafer, and method of forming semiconductor device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2822243B2 (en) * 1989-12-20 1998-11-11 株式会社ニコン Defect inspection equipment
JPH04238207A (en) * 1991-01-22 1992-08-26 Toshiba Corp Defect inspecting device
JPH06308051A (en) * 1993-04-20 1994-11-04 Nippon Steel Corp Detection method for surface flaw on steel plate
JP3826578B2 (en) * 1998-08-25 2006-09-27 Jfeスチール株式会社 Surface inspection device
JP2000162141A (en) * 1998-11-27 2000-06-16 Hitachi Ltd Defect inspecting device and method

Also Published As

Publication number Publication date
JP2009186492A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP2002098645A (en) Surface inspecting apparatus and method for substrate
JP3996728B2 (en) Surface inspection apparatus and method
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
JP6507979B2 (en) Semiconductor wafer evaluation method
US7315366B2 (en) Apparatus and method for inspecting defects
JP6531579B2 (en) Wafer inspection method and wafer inspection apparatus
JP4343911B2 (en) Defect inspection equipment
JP5509581B2 (en) Semiconductor wafer evaluation method
JP2008216054A (en) Device and method for inspecting test object
JP2007218889A (en) Surface defect detection method and surface defect detecting device
US20140071442A1 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JP4643785B2 (en) Surface inspection device
JP5036757B2 (en) Substrate surface inspection apparatus and surface inspection method
JP5506243B2 (en) Defect inspection equipment
US20100246356A1 (en) Disk surface defect inspection method and apparatus
JP5585438B2 (en) Wafer defect detection method
JP5222635B2 (en) Inspection device and inspection method for inspection object
JPH09113465A (en) Detection apparatus for surface fault for galvanized steel plate
JP5427808B2 (en) Inspection device
JPH07146245A (en) Apparatus and method for detecting foreign matter
JP2010251542A (en) Method and device for discriminating working surface and method for manufacturing silicon wafer
TW201719153A (en) Wafer inspection method and wafer inspection device
JP6166867B2 (en) Surface defect inspection apparatus and surface defect inspection method
JP4648435B2 (en) Inspection device
JP5576526B2 (en) Surface inspection apparatus and method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees