JP2007218889A - Surface defect detection method and surface defect detecting device - Google Patents

Surface defect detection method and surface defect detecting device Download PDF

Info

Publication number
JP2007218889A
JP2007218889A JP2006071761A JP2006071761A JP2007218889A JP 2007218889 A JP2007218889 A JP 2007218889A JP 2006071761 A JP2006071761 A JP 2006071761A JP 2006071761 A JP2006071761 A JP 2006071761A JP 2007218889 A JP2007218889 A JP 2007218889A
Authority
JP
Japan
Prior art keywords
diffused light
surface defect
inspection object
defect
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006071761A
Other languages
Japanese (ja)
Inventor
Yoichiro Oyama
洋一郎 大山
Akihiro Kakurai
明宏 加倉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electro Sensory Devices Corp
Original Assignee
Nippon Electro Sensory Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electro Sensory Devices Corp filed Critical Nippon Electro Sensory Devices Corp
Priority to JP2006071761A priority Critical patent/JP2007218889A/en
Publication of JP2007218889A publication Critical patent/JP2007218889A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface defect inspection method and a surface defect inspecting device that prevent defects, such as cracks on a three-dimensional surface in a rotating inspection target, from being affected by the brightness of background, prevent confusion with surface state, such as contamination, and detect only the flaws that present seriousness to the quality, without detecting minute flaws that do not affect the quality. <P>SOLUTION: The surface defect inspection apparatus comprises a diffusion light lighting means for lighting a specular surface in the rotating inspection target by diffusion light; a plurality of imaging means, having a linear sensor array for imaging images on the specular surface of the inspection target; and an image processing means for detecting the minute irregular defects on the specular surface, in the inspection target from the intensity of a signal outputted from the linear sensor array. The diffusion light-lighting means lights the specular surface of the inspection target with strip-like and uniform diffusion light and is arranged so that it becomes dark visual field lighting for the imaging means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シリコンウエハの周端縁部などのように、鏡面状表面であってテーパやR部を含む三次元的な形状の検査対象物の部位に存在する欠陥を検出する表面欠陥検査方法および表面欠陥検査装置に関する。  The present invention relates to a surface defect inspection method for detecting defects existing in a part of a three-dimensional shape inspection target object having a mirror-like surface and including a taper and an R portion, such as a peripheral edge portion of a silicon wafer. And a surface defect inspection apparatus.

半導体製造に用いられるシリコンウエハの表面平面部の欠陥検査の重要性は言うまでもなく不良率の改善のために細心の注意で検査が行われる。一方、シリコンウエハの周端縁部およびそれに続く平坦部は最終製品には使用されない部位で、廃棄される部分であることから、その部分の検査についてはあまり重要と考えてはいなかった。近年になって、この部分の微細な欠陥が後工程への歩留まりに大きな影響があることが次第に明らかになってきた。即ち、終端縁部(エッジ部)に微細なクラックがあれば、その部分のひずみがシリコンウエハ全体に拡大し破損や周辺汚染に発展することや、あるいはエッジ部にある微細な凹凸欠陥や付着物が原因でパーティクルあるいは付着物が飛散して不良品が発生することが問題視されてきている。  Needless to say, the inspection of the surface flat portion of a silicon wafer used for semiconductor manufacturing is inspected with great care to improve the defect rate. On the other hand, the peripheral edge portion of the silicon wafer and the flat portion that follows the silicon wafer are portions that are not used in the final product, and are discarded portions. Therefore, the inspection of the portions has not been considered very important. In recent years, it has gradually become clear that the minute defects in this part have a great influence on the yield to the post-process. In other words, if there are fine cracks at the end edge (edge part), the distortion of the part spreads to the entire silicon wafer and develops to breakage or peripheral contamination, or fine uneven defects or deposits on the edge part. As a result, it has been regarded as a problem that particles or deposits are scattered and defective products are generated.

シリコンウエハのエッジ部は強度の面を考慮してテーパが設けられており、上側テーパ部、側面部、下側テーパ部を備え、上下のテーパ部と側面部との間はアール部が設けられているために、観測する対象面は立体的な面となっている。そのために、指向性のある照明を用いた場合には、テーパ部や側面部などの平坦な部位を検査部位では欠陥を検出することができるが、上下のテーパ部と側面部との間のアール部では、欠陥の無い箇所であっても影となり、欠陥であっても撮像手段により検出できないという問題がある。  The edge portion of the silicon wafer is tapered in consideration of strength, and includes an upper tapered portion, a side surface portion, and a lower tapered portion, and a rounded portion is provided between the upper and lower tapered portions and the side surface portion. Therefore, the target surface to be observed is a three-dimensional surface. For this reason, when directional illumination is used, a defect can be detected at the inspection site using a flat part such as a taper part or a side part, but the radius between the upper and lower taper parts and the side part is not limited. In the part, there is a problem that even if there is no defect, it becomes a shadow, and even a defect cannot be detected by the imaging means.

上記の問題点を解決するために、本出願人は特開2003−139523号公報に開示している表面欠陥検査方法を提案している。上記公報で開示されている検査方法は、円弧状あるいは門型に形成された拡散光照明手段により照明されているシリコンウエハのエッジ部を、テレセントリック光学系とリニアセンサで構成された複数の撮像手段により撮像することで、シリコンウエハのエッジ部表面の欠陥を検出している。この時、撮像装置は光源から出た照明光のうち、シリコンウエハのエッジ部表面で反射した正反射光を撮像するように配置されている。  In order to solve the above problems, the present applicant has proposed a surface defect inspection method disclosed in Japanese Patent Laid-Open No. 2003-139523. In the inspection method disclosed in the above publication, the edge portion of the silicon wafer illuminated by the diffused light illuminating means formed in an arc shape or a gate shape has a plurality of imaging means constituted by a telecentric optical system and a linear sensor. Thus, the defects on the surface of the edge portion of the silicon wafer are detected. At this time, the imaging device is arranged so as to capture the regular reflection light reflected on the surface of the edge portion of the silicon wafer out of the illumination light emitted from the light source.

円弧状あるいは門型に形成された拡散光照明手段を用いると、ウエハのエッジ部のすべての場所において撮像手段の撮像素子(リニアセンサアレイ)の主走査方向には様々な方向から照明光が入射するために上下のテーパ部と側面部との間をつなぐアール部においてもテーパ部や側面部のような平坦部と同様に様々な方向から照明光が当るために撮像装置に捉えられる正反射光が存在する結果、欠陥の有無を判定できる。  When the diffused light illumination means formed in an arc shape or a gate shape is used, illumination light is incident from various directions in the main scanning direction of the image pickup device (linear sensor array) of the image pickup means at all locations on the edge portion of the wafer. Therefore, the regular reflection light captured by the imaging device is also applied to the rounded portion connecting the upper and lower taper portions and the side surface portions in the same manner as the flat portions such as the taper portions and the side surface portions because the illumination light strikes from various directions. As a result, the presence or absence of defects can be determined.

これに対して、撮像素子の主走査方向と直交する方向即ち検査対象物の回転移動方向には指向性がある照明となっているために、上記検査方法における拡散光照明手段は、あらゆる方向から照明されている場合と異なり検査対象物の移動方向には指向性があり、欠陥の形状によっては微小な傷や付着物でも検出するという特徴を有する。  On the other hand, since the illumination is directional in the direction orthogonal to the main scanning direction of the image sensor, that is, the rotational movement direction of the inspection object, the diffused light illuminating means in the inspection method can be viewed from all directions. Unlike the case where the object is illuminated, the moving direction of the inspection object has directivity, and depending on the shape of the defect, it has a feature that even a minute scratch or attached matter is detected.

特開2003−139523号公報  JP 2003-139523 A

特開2003−139523号公報で提案している表面欠陥検査方法においては、欠陥であるか否かの判定は閾値を設けて行っているが、明視野照明方法であるために、背景即ち正常部分の明度に影響される結果、欠陥性状の判定が困難な事例が発生するという問題点がある。つまり、汚れや微少なレジスト膜剥がれなど凹凸が浅い表面状態と、本来の欠陥である欠け傷やクラックなどの凹凸が急峻で深い場合との違いを判定しにくいという欠点がある。従って、上述のような円弧状あるいは門型に形成された拡散性光源の特徴のために欠陥の形状によっては製品品質に影響を及ぼさないような浅く、軽微な異変も欠陥として検出してしまう問題がある。  In the surface defect inspection method proposed in Japanese Patent Application Laid-Open No. 2003-139523, the determination as to whether or not the defect is made is performed by setting a threshold value. As a result, it is difficult to determine the defect properties. That is, there is a drawback in that it is difficult to determine the difference between a surface state with shallow irregularities such as dirt or slight resist film peeling and a case where irregularities such as chippings and cracks, which are the original defects, are steep and deep. Therefore, due to the characteristics of the diffusive light source formed in the arc shape or the gate shape as described above, a problem that a shallow and slight anomaly that does not affect the product quality is detected as a defect depending on the shape of the defect. There is.

上記問題を鑑み、本発明は背景の明度に影響されることがなく、さらに汚れや浅い凹凸など、品質に影響を及ぼすことのない軽微な異変は欠陥として検出しない表面欠陥検査方法及びその装置を提供することを目的とする。  In view of the above problems, the present invention provides a surface defect inspection method and apparatus that is not affected by the brightness of the background, and that does not detect minor abnormalities such as dirt and shallow unevenness that do not affect quality as defects. The purpose is to provide.

本発明の立体形状鏡面を検査する表面欠陥検査方法は上記目的を達成するために、回転する検査対象物の鏡面状表面を拡散光照明手段によって照明し、リニアセンサアレイを備える複数の撮像手段により検査対象物の鏡面状表面の画像を撮像し、このリニアセンサアレイから出力される信号から画像処理手段により検査対象物の鏡面状表面の凹凸欠陥を検出する表面欠陥検出方法であって、前記拡散光照明手段は帯状でかつ均一な拡散光でもって検査対象物の鏡面状表面を照明するとともに、撮像手段にとって暗視野照明となるように配置されていることを特徴とする。  In order to achieve the above object, the surface defect inspection method for inspecting a three-dimensional mirror surface according to the present invention illuminates the mirror-like surface of a rotating inspection object with diffused light illuminating means, and uses a plurality of imaging means including a linear sensor array. A surface defect detection method for capturing an image of a mirror-like surface of an inspection object and detecting irregularities on the mirror-like surface of the inspection object by an image processing means from a signal output from the linear sensor array, wherein the diffusion The light illuminating means illuminates the specular surface of the object to be inspected with a band-like and uniform diffused light, and is arranged to provide dark field illumination for the imaging means.

上記の第1の課題解決手段によれば、検査対象物の立体形状鏡面を検査する際に、検査対象物の鏡面状表面を帯状でかつ均一な拡散光でもって検査対象物の鏡面状表面を照明するとともに撮像手段にとって暗視野照明となるように配置された拡散光照明手段により照明することで、背景の明度に影響されることがなく、さらに汚れなどの表面状態と混同することがない表面欠陥検査が可能となる。  According to the first problem-solving means, when inspecting the three-dimensional mirror surface of the inspection object, the mirror-like surface of the inspection object is shaped like a belt with uniform and diffused light. Illuminated and illuminated by diffused light illumination means arranged to be dark field illumination for the imaging means, so that the surface is not affected by the brightness of the background and is not confused with surface conditions such as dirt. Defect inspection is possible.

第2の課題解決手段は、第1の課題解決手段であって、前記拡散光照明手段は光源部が円弧状または楕円弧状または門型に形成されていることを特徴としており、シリコンウエハのエッジ部のような立体的な検査部位であっても、均一な照明光で照明することができる。  The second problem-solving means is the first problem-solving means, wherein the diffused light illuminating means is characterized in that a light source portion is formed in an arc shape, an elliptic arc shape, or a gate shape, and the edge of the silicon wafer Even a three-dimensional inspection site such as a section can be illuminated with uniform illumination light.

第3の課題解決手段は、第1の課題解決手段であって、前記拡散光照明手段は複数の照明装置で構成され、異なる方向から前記検査対象物を照明することを特徴としており、検査対象物を左右から照明することで、欠陥の方向性に関係なく欠陥を検出することが可能となる。  The third problem solving means is the first problem solving means, wherein the diffused light illuminating means is composed of a plurality of illumination devices, and illuminates the inspection object from different directions, By illuminating the object from the left and right, it becomes possible to detect the defect regardless of the directionality of the defect.

第4の課題解決手段は、回転する検査対象物の鏡面状表面を拡散光によって照明する拡散光照明手段と、検査対象物の鏡面状表面の画像を撮像するリニアセンサアレイを備える複数の撮像手段と、このリニアセンサアレイから出力される信号の明暗度から検査対象物の鏡面状表面の凹凸欠陥を検出する画像処理手段とを備える表面欠陥検出装置であって、前記拡散光照明手段は帯状でかつ均一な拡散光でもって検査対象物の鏡面状表面を照明するとともに、撮像手段にとって暗視野照明となるように配置されていることを特徴とする。  A fourth problem solving means includes a plurality of imaging means including a diffused light illuminating means for illuminating a mirror-like surface of a rotating inspection object with diffused light, and a linear sensor array for imaging an image of the mirror-like surface of the inspection object. And an image processing means for detecting irregularities on the specular surface of the object to be inspected from the brightness of the signal output from the linear sensor array, wherein the diffused light illuminating means has a belt shape In addition, the mirror surface of the object to be inspected is illuminated with uniform diffused light, and is arranged so as to provide dark field illumination for the imaging means.

第5の課題解決手段は、第4の課題解決手段であって、前記拡散光照明手段は光源部が円弧状または楕円弧状または門型に形成されていることを特徴とする。  A fifth problem solving means is the fourth problem solving means, characterized in that the diffused light illuminating means has a light source portion formed in an arc shape, an elliptic arc shape, or a gate shape.

第6の課題解決手段は、第4の課題解決手段であって、前記拡散光照明手段は複数の照明装置で構成され、異なる方向から前記検査対象物を照明することを特徴とする。  The sixth problem solving means is the fourth problem solving means, wherein the diffused light illuminating means is composed of a plurality of illumination devices, and illuminates the inspection object from different directions.

第7の課題解決手段は、第6の課題解決手段であって、前記複数の照明装置はその位置が調整可能に構成されていることを特徴としており、欠陥の形状に応じて最適な暗視野照明角度に照明手段を配置することができる。  The seventh problem-solving means is the sixth problem-solving means, characterized in that the positions of the plurality of illumination devices are adjustable, and an optimum dark field according to the shape of the defect. Illumination means can be arranged at the illumination angle.

従来の明視野照明を用いた表面欠陥検査方法では欠陥であるか否かの判定は閾値を設けて行っているが、背景即ち正常部分の明度に影響される結果、欠陥の判定が困難な事例が発生するという問題点がある。また、汚れなどが付着している場合や軽微な擦り傷のように凹凸が浅い表面状態と、本来の欠陥である欠け傷やクラックのように凹凸が深い場合との違いを判定しにくいという欠点がある。  In the conventional surface defect inspection method using bright field illumination, whether or not it is a defect is determined by setting a threshold value, but it is difficult to determine the defect as a result of being affected by the brightness of the background, that is, the normal part. There is a problem that occurs. In addition, there is a drawback that it is difficult to judge the difference between the surface state where the unevenness is shallow such as dirt or a slight scratch, and the case where the unevenness is deep such as chippings and cracks which are the original defects. is there.

本発明の表面欠陥検査方法及び表面欠陥検査装置は、帯状でかつ均一な拡散光照明手段でもって検査対象物の鏡面状表面を照明するとともに、撮像手段にとって暗視野照明となるように拡散光照明手段を配置しているために、ラインセンサアレイにとって均一な撮像条件が実現されるとともに、欠陥箇所ではコントラストの高い画像が得られ、欠陥の判定が確実かつ容易になる。  The surface defect inspection method and the surface defect inspection apparatus according to the present invention illuminate a mirror-like surface of an inspection object with a strip-shaped and uniform diffused light illuminating means, and diffuse light illumination so as to provide dark field illumination for the imaging means. Since the means is arranged, a uniform imaging condition is realized for the line sensor array, and an image with high contrast is obtained at the defective portion, so that the determination of the defect is reliable and easy.

また、汚れなどが付着しているような凹凸が浅い表面状態の場合であっても、明視野照明は暗く撮像されて欠陥と誤って判定される恐れがあるが、本発明の表面欠陥検査方法によれば前記暗視野照明による浅い凹凸の反射輝度は低レベルとなり、誤って欠陥と判定をする恐れがない。逆に、クラックなど深度を持った欠陥形状の場合は、暗視野照明による、明度の高い画像が撮像されるので、欠陥と知ることができる。  Moreover, even in the case of a shallow surface state where dirt or the like is attached, the bright field illumination may be imaged darkly and erroneously determined as a defect, but the surface defect inspection method of the present invention According to the above, the reflection luminance of the shallow unevenness due to the dark field illumination is at a low level, and there is no possibility of erroneously determining a defect. On the contrary, in the case of a defect shape having a depth such as a crack, an image with high brightness by dark field illumination is captured, so that it can be known as a defect.

図をもって本発明の方法および装置について詳細に説明する。なお、本発明は本実施例によって限定されるものではない。  The method and apparatus of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by a present Example.

図1は本発明による表面欠陥検査装置1を側面図でもって示すものであり、図2は表面欠陥検査装置1の平面図である。図1および図2でもって示す表面欠陥検査装置1は半導体製造用のシリコンウエハ6のエッジ部を検査対象物とする場合の実施例を示すものであり、撮像手段として上面用撮像手段2、側面用撮像手段3および下面用撮像手段4を備える。また、拡散光照明手段5として図2に示すように撮像手段の両側にC型光源51、52を設けてある。  FIG. 1 shows a surface defect inspection apparatus 1 according to the present invention in a side view, and FIG. 2 is a plan view of the surface defect inspection apparatus 1. A surface defect inspection apparatus 1 shown in FIG. 1 and FIG. 2 shows an embodiment in which an edge portion of a silicon wafer 6 for manufacturing a semiconductor is used as an inspection object. Imaging means 3 for lower surface and imaging means 4 for lower surface. Further, as shown in FIG. 2, C-type light sources 51 and 52 are provided on both sides of the imaging unit as the diffused light illumination unit 5.

シリコンウエハ6のエッジ部は図3に示すように、2つのテーパ部、上側テーパ面61と下側テーパ面63および側面62とからなる。それぞれの面と他の面との交叉部はR面で滑らかに繋がれている。また上側テーパ部61および下側テーパ部62に続く平坦部の部分はロールオフと呼ばれ、テーパ部とともに製品には使用されない部分である。  As shown in FIG. 3, the edge portion of the silicon wafer 6 includes two tapered portions, an upper tapered surface 61, a lower tapered surface 63 and a side surface 62. The intersection between each surface and the other surface is smoothly connected by the R surface. Moreover, the part of the flat part following the upper side taper part 61 and the lower side taper part 62 is called a roll-off, and is a part which is not used for a product with a taper part.

上面用撮像手段2、側面用撮像手段3および下面用撮像手段4は、撮像素子としてリニアセンサアレイを備えている。リニアセンサアレイは、CCD電荷素子を一列に配置した高い解像度を得られ受光素子であり、検査対象物の移動方向と直交する方向に配置してスキャンを行うことで2次元画像を得る撮像素子である。  The upper surface imaging unit 2, the side surface imaging unit 3, and the lower surface imaging unit 4 include a linear sensor array as an imaging element. The linear sensor array is a light receiving element that can obtain a high resolution in which CCD charge elements are arranged in a row, and is an imaging element that obtains a two-dimensional image by scanning in a direction orthogonal to the moving direction of the inspection object. is there.

シリコンウエハ6は、円形の形状をしており、図示しない回転テーブルに載置され、欠陥検出作業の際には一定速度で回転する。上面用撮像手段2、側面用撮像手段3および下面用撮像手段4のラインセンサアレイはCCD電荷素子の配列方向をシリコンウエハ6の回転方向に対して直交する向きに配置されており、シリコンウエハ6のエッジ部の画像を連続的にスキャンし、その出力を画像処理装置7に送って欠陥の検出を行う。図2に示すように、側面用撮像手段3の光軸をシリコンウエハの半径方向と一致させるように配置する。また、上面用撮像手段2及び側面用撮像手段3は、上側テーパ面61及び下側テーパ面63と正対するように配置する。  The silicon wafer 6 has a circular shape, is placed on a rotary table (not shown), and rotates at a constant speed during a defect detection operation. The line sensor arrays of the upper surface imaging means 2, the side surface imaging means 3, and the lower surface imaging means 4 are arranged so that the arrangement direction of the CCD charge elements is orthogonal to the rotation direction of the silicon wafer 6. The image of the edge portion is continuously scanned, and the output is sent to the image processing device 7 to detect the defect. As shown in FIG. 2, the optical axis of the side image pickup means 3 is arranged so as to coincide with the radial direction of the silicon wafer. Further, the upper surface imaging unit 2 and the side surface imaging unit 3 are arranged so as to face the upper tapered surface 61 and the lower tapered surface 63.

拡散光照明手段5は本実施例ではC型光源51,52の2つの照明装置から構成される。C型光源51,52は図1に示すように発光部がC形をした円弧状あるいは楕円弧状に稠密に並べて形成されている拡散光光源であり、C形をした円弧状の内側に照明光の出射口が配列されている。C形をした円弧状あるいは楕円弧状部分は保持部53に設けられた案内ガイド54によって支持されている。また、検査対象物の形状によっては円弧状ではなく、門型に形成してもよい。  In this embodiment, the diffused light illuminating means 5 is composed of two illuminating devices C-type light sources 51 and 52. As shown in FIG. 1, the C-type light sources 51 and 52 are diffused light sources in which light emitting portions are densely arranged in a C-shaped arc shape or elliptical arc shape, and illumination light is placed inside the C-shaped arc shape. Are arranged. The arc-shaped or elliptical arc-shaped portion having a C shape is supported by a guide guide 54 provided in the holding portion 53. Further, depending on the shape of the inspection object, it may be formed in a gate shape instead of an arc shape.

図5に示すように、C型光源51の保持部53には、案内ガイド54が固定され、C型光源52は案内ガイド54を案内に移動可能に組み込まれており、調整ねじ55を回転させることにより、C型光源51とC型光源52の距離を変えることにより照明装置の位置が調整できる構成となっている。  As shown in FIG. 5, a guide guide 54 is fixed to the holding portion 53 of the C-type light source 51, and the C-type light source 52 is incorporated so that the guide guide 54 can be moved to guide, and the adjustment screw 55 is rotated. Thus, the position of the illumination device can be adjusted by changing the distance between the C-type light source 51 and the C-type light source 52.

C型光源51,52は、図示しないハロゲンランプから複数の光ファイバーによりフレキシブルチューブ56および保持部53を経由してC型光源51,52の円弧部の出射口まで導かれており、シリコンウエハ6のエッジ部の表面を均一な拡散光で照明する。また図2に示すようにC型光源51,52は撮像手段の両側に配置され、撮像手段の光軸に対して斜めに照射するように配置されていて、シリコンウエハ6のエッジ部の表面における正反射光が撮像手段には入射しない暗視野照明となっている。  The C-type light sources 51 and 52 are guided from a halogen lamp (not shown) to the exit of the arc portion of the C-type light sources 51 and 52 via a plurality of optical fibers through the flexible tube 56 and the holding unit 53. Illuminate the surface of the edge with uniform diffused light. Further, as shown in FIG. 2, the C-type light sources 51 and 52 are arranged on both sides of the image pickup means, and are arranged so as to irradiate obliquely with respect to the optical axis of the image pickup means, and on the surface of the edge portion of the silicon wafer 6. The dark field illumination is such that the regular reflection light does not enter the imaging means.

次に本実施例の表面欠陥検査装置の機能と検査手順について説明する。図示しない回転テーブルに載置されたシリコンウエハ6はその中心軸を回転中心にして一定速度で回転している。上面用撮像手段2、側面用撮像手段3および下面用撮像手段4は、それぞれシリコンウエハ6の上側テーパ面61、側面62および下側テーパ面63にほぼ正対して配置されていて、上面用撮像手段2、側面用撮像手段3および下面用撮像手段4に備えられているラインセンサアレイがそれぞれ上側テーパ面61、側面62および下側テーパ面63の画像を連続的に撮像する。  Next, the function and inspection procedure of the surface defect inspection apparatus of this embodiment will be described. The silicon wafer 6 placed on a turntable (not shown) is rotated at a constant speed with its central axis as the center of rotation. The upper surface imaging means 2, the side surface imaging means 3, and the lower surface imaging means 4 are disposed substantially opposite to the upper tapered surface 61, the side surface 62, and the lower tapered surface 63 of the silicon wafer 6, respectively. The line sensor arrays provided in the means 2, the side image pickup means 3 and the lower surface image pickup means 4 continuously take images of the upper taper surface 61, the side surface 62 and the lower taper surface 63, respectively.

上側テーパ面61と側面62との接続部のアール部は、上面用撮像手段2および側面用撮像手段3のいずれでも撮像可能である。同様にして側面62と下側テーパ面63との接続部のアール部は、側面用撮像手段3および下面用撮像手段4のいずれでも撮像可能である。また、上面のロールオフ部および下面のロールオフ部は、それぞれ上面用撮像手段2および下面用撮像手段4で撮像される。  The rounded portion of the connecting portion between the upper tapered surface 61 and the side surface 62 can be imaged by either the upper surface imaging means 2 or the side surface imaging means 3. Similarly, the rounded portion of the connecting portion between the side surface 62 and the lower tapered surface 63 can be imaged by either the side surface imaging means 3 or the lower surface imaging means 4. Further, the upper surface roll-off portion and the lower surface roll-off portion are imaged by the upper surface imaging means 2 and the lower surface imaging means 4, respectively.

図6に拡散光光源5の照明光の照明する様子についてC型光源51を例にとって模式図で示すものである。拡散光照明手段5のC型光源51,52に設けられた光ファイバーの出射口は図6に示すように出射角度70°程度の広角度で出射される。C型光源51,52が円弧状の曲率を有するために、撮像手段のシリコンウエハ6上の撮像箇所に対して広い角度で照明光が入射する。  FIG. 6 is a schematic diagram illustrating the illumination of the illumination light from the diffused light source 5 with the C-type light source 51 as an example. The exit of the optical fiber provided in the C-type light sources 51 and 52 of the diffused light illuminating means 5 is emitted at a wide angle of about 70 ° as shown in FIG. Since the C-type light sources 51 and 52 have an arcuate curvature, the illumination light is incident at a wide angle with respect to the imaging location on the silicon wafer 6 of the imaging means.

撮像手段の両側に設けてあるC型光源51,52の照明光は、撮像手段の光軸に対して斜めに照射するように配置されているために、撮像手段には正反射光は入射せず乱反射した光のみ撮像する構成であり、いわゆる暗視野照明となっている。そのために、シリコンウエハ6の表面が正常であれば、その反射光は撮像手段の撮像素子に入射することはないのに対して、シリコンウエハ6の表面に欠け傷やクラックなどの深い凹凸がある場合にはその場所の異常の状態によってその箇所における反射光が撮像手段に入射し、このとき撮像素子による画像は、明るい像として撮像される。  Since the illumination lights of the C-type light sources 51 and 52 provided on both sides of the image pickup means are arranged to irradiate obliquely with respect to the optical axis of the image pickup means, regular reflection light is not incident on the image pickup means. Only the light that has been irregularly reflected is imaged, and so-called dark field illumination is obtained. For this reason, if the surface of the silicon wafer 6 is normal, the reflected light does not enter the image pickup device of the image pickup means, whereas the surface of the silicon wafer 6 has deep irregularities such as chips and cracks. In some cases, the reflected light at the location is incident on the imaging means depending on the abnormal state of the location, and at this time, the image by the imaging device is captured as a bright image.

図7に検査対象物の表面にできた欠陥による反射光の違いを示す。図7(a)では検査対象物の表面に凹凸などの欠陥がない場合を示すものであり、検査対象物表面で反射した光は撮像手段に入射することはなく、暗い画像として撮像される。また、図7(b)の緩やかに波打っている面の場合であっても反射した光は撮像手段に入射せず、やはり暗い画像となる。  FIG. 7 shows the difference in reflected light due to defects formed on the surface of the inspection object. FIG. 7A shows a case where there is no defect such as unevenness on the surface of the inspection object, and the light reflected on the surface of the inspection object does not enter the imaging means and is captured as a dark image. Further, even in the case of the gently undulating surface of FIG. 7B, the reflected light does not enter the image pickup means, and a dark image is formed.

一方、図7(c)および図7(d)に示すクラック状の欠陥の場合には、付近に破断面を備えた緩やかな傾斜面があり、これに急角度の裂け目部が続いているのが一般的である。ここに示す図はあくまでも模式的な説明図であり、実際のクラック状の欠陥は、図7(c)および図7(d)のように左右対称に近い形状とは限らず、緩やかな傾斜面が入口の一方にしか存在しない場合もある。  On the other hand, in the case of the crack-like defect shown in FIGS. 7 (c) and 7 (d), there is a gently inclined surface with a fractured surface in the vicinity, followed by a steep tear. Is common. The figure shown here is only a schematic explanatory diagram, and the actual crack-like defect is not necessarily a symmetrical shape as shown in FIG. 7C and FIG. May exist only on one side of the entrance.

図7(c)および図7(d)に示すように照明手段による照明光はクラックの入口に近い傾斜面で乱反射し、反射光の一部は撮像手段に捉えられ、明るい画像が撮像される。図7(c)に示す照明光の方向では、図の左側の傾斜面が撮像されないが、図7(d)のように反対方向からの照明手段も用いることにより、左右両方の傾斜面を撮像することが可能となる。本実施例では、C型光源51,52を撮像手段の両側に配置することにより2方向からの照明光を実現している。また、クラックの急角度の裂け目部に入射した光は、向かい合った壁は鏡面ではなく、次々と反射光量が減衰し、暗画像となる。  As shown in FIGS. 7 (c) and 7 (d), the illumination light from the illumination means is irregularly reflected on an inclined surface near the entrance of the crack, and a part of the reflected light is captured by the imaging means, and a bright image is taken. . In the direction of the illumination light shown in FIG. 7 (c), the left inclined surface in the figure is not imaged, but both left and right inclined surfaces are imaged by using illumination means from the opposite direction as shown in FIG. 7 (d). It becomes possible to do. In the present embodiment, illumination light from two directions is realized by disposing the C-type light sources 51 and 52 on both sides of the imaging means. In addition, the light incident on the crack having a sharp angle is not a mirror surface on the facing wall, and the reflected light amount is attenuated one after another to form a dark image.

図10(a)に本実施例の構成で撮像したクラック状欠陥の暗視野照明による画像を示す。一方、図10(b)は同じクラック状欠陥を明視野照明で撮像した画像である。図10(a)の暗視野照明による画像では、欠陥のない部分は暗黒の画面となり、欠陥の箇所のみ明るい画像となる。これに対して図10(b)の明視野照明による画像ではクラックの中心部のみ暗い画像となり、それ以外の欠陥のない部分はグレーの領域となる。  FIG. 10A shows an image obtained by dark-field illumination of a crack-like defect imaged with the configuration of this example. On the other hand, FIG.10 (b) is the image which imaged the same crack-like defect with bright field illumination. In the image by dark field illumination in FIG. 10A, a portion without a defect becomes a dark screen, and only a defective portion becomes a bright image. On the other hand, in the image by bright-field illumination in FIG. 10B, only the center portion of the crack is a dark image, and the other portions having no defect are gray regions.

本実施例で設けているC型光源51,52はシリコンウエハ6の表面に斜めに入射するが、C型光源51,52の位置によって入射角度が変わってくる。欠陥の形状とC型光源51,52の位置の関係から欠陥部で乱反射する光を撮像手段が捉えることができない場合が発生するが、そのような場合には、図5に示す調整ねじ55を回すことによりC型光源51,52間の距離を調整して欠陥による乱反射光が撮像手段に入射するようにすることにより適切な照明光を得ることができる。  Although the C-type light sources 51 and 52 provided in this embodiment are incident obliquely on the surface of the silicon wafer 6, the incident angle varies depending on the positions of the C-type light sources 51 and 52. Depending on the relationship between the shape of the defect and the position of the C-type light sources 51 and 52, the imaging means may not be able to capture the light that is irregularly reflected by the defective portion. In such a case, the adjustment screw 55 shown in FIG. By rotating, the distance between the C-type light sources 51 and 52 is adjusted so that irregularly reflected light due to the defect is incident on the image pickup means, whereby appropriate illumination light can be obtained.

図示しない回転装置によって一定速度で回転するシリコンウエハ6のエッジ部は、上面用撮像手段2、側面用撮像手段3および下面用撮像手段4によって連続的にスキャンすることによりシリコンウエハ6のエッジ部の全周の画像を得ることができる。シリコンウエハ6のエッジ部の表面上にクラックなどの欠陥がある場合には、図10(a)に示すように画像の該当箇所は明度が高い映像となる。  The edge portion of the silicon wafer 6 that is rotated at a constant speed by a rotating device (not shown) is scanned continuously by the upper surface imaging means 2, the side surface imaging means 3, and the lower surface imaging means 4, thereby forming the edge portion of the silicon wafer 6. An image of the entire circumference can be obtained. When there is a defect such as a crack on the surface of the edge portion of the silicon wafer 6, the corresponding portion of the image is a video with high brightness as shown in FIG.

欠陥の判定は図8に示すフロー図に示す手順で行う。欠陥判定のための閾値として低輝度値と高輝度値の2段階設けてあり、最初に低輝度の閾値で2値化を行う。クラックや打痕あるいは付着物などの欠陥がない箇所は暗黒であり、欠け傷やクラックなどの欠陥があれば明るい映像となる。低輝度閾値より明るい部分を抽出し、その部分をラベリングにより管理する。ここで、ラベリングされた箇所の形状に着目し、細長い形状のものはクラックと判定する。次に残ったラベリング箇所に対して高輝度の閾値を用いて判定を行う。閾値以上の輝度があれば欠け傷又はクラックと判定し、それ以外は浅いレジスト膜はがれや付着物などの軽微な異変と判定する。  The determination of the defect is performed according to the procedure shown in the flowchart shown in FIG. Two levels of low luminance value and high luminance value are provided as threshold values for defect determination. First, binarization is performed with a low luminance threshold value. Where there is no defect such as a crack, dent or deposit, the image is dark, and if there is a defect such as a chip or a crack, a bright image is obtained. A portion brighter than the low luminance threshold is extracted, and the portion is managed by labeling. Here, paying attention to the shape of the labeled part, an elongated shape is determined as a crack. Next, the remaining labeling location is determined using a high brightness threshold. If the luminance is higher than the threshold value, it is determined as a chip or a crack. Otherwise, it is determined that the shallow resist film is a slight change such as a peeling or a deposit.

本発明の暗視野照明を用いた表面欠陥検出方法は、上述のように致命的な欠陥である欠け傷やクラックなどと、修復可能な凹凸が浅い欠陥とを容易に判別することが可能となる。また欠陥部から反射する光のみ撮像するように構成しているために、欠陥部の画像が高いコントラストで得られる結果、欠陥の検出が容易になるという利点がある。欠陥の形状によっては一定位置に置いた拡散光光源では検出できないことがあるが、拡散光光源の位置を調整することで、傷の形状に応じた検出を実施することが可能である。  According to the surface defect detection method using dark field illumination of the present invention, it is possible to easily discriminate between a critical defect such as a chipped defect or a crack and a defect having a shallow unevenness that can be repaired. . Further, since only the light reflected from the defective portion is imaged, there is an advantage that the defect can be easily detected as a result of obtaining an image of the defective portion with high contrast. Depending on the shape of the defect, the diffused light source placed at a fixed position may not be detected, but detection according to the shape of the flaw can be performed by adjusting the position of the diffused light source.

また、本実施例で用いたC型光源51,52は、立体的な形状の検査対象物における撮像範囲のいずれの位置においても均一でかつ広角度で入射する照明光を保証する照明装置であり、本実施例で説明しているシリコンウエハ6のエッジ部にあるアール部のような立体的な部位であっても均一でかつ広角度で入射する照明を確保することができる。  The C-type light sources 51 and 52 used in the present embodiment are illumination devices that guarantee illumination light that is uniform and incident at a wide angle at any position in the imaging range of a three-dimensional inspection object. Even in a three-dimensional portion such as a round portion at the edge portion of the silicon wafer 6 described in the present embodiment, illumination that is incident at a uniform and wide angle can be ensured.

さらに、光源として近赤外線光を用いるか、あるいは撮像手段に近赤外線光のみ通すフィルターを用いることで、汚れの影響を受けにくい検査装置を構成することが可能となる。  Furthermore, by using near-infrared light as a light source or using a filter that allows only near-infrared light to pass through the imaging means, an inspection apparatus that is not easily affected by dirt can be configured.

また、本発明の表面欠陥検査方法および表面欠陥検査装置では、撮像素子にリニアセンサアレイを用いているために、2次元のエリアセンサと比較して高い解像度を得ることが可能となり、凹凸状欠陥の検出を行うことができる。また、リニアセンサアレイのスキャン速度はエリアセンサと比較して格段と速いので、高いスループットを保証し、検査処理能力が高い。  Moreover, in the surface defect inspection method and the surface defect inspection apparatus of the present invention, since a linear sensor array is used for the image sensor, it is possible to obtain a higher resolution than a two-dimensional area sensor, and the uneven defect Can be detected. Further, since the scanning speed of the linear sensor array is much faster than that of the area sensor, high throughput is ensured and inspection processing capability is high.

本実施例では、拡散光光源であるC型光源を撮像装置の両側に配置しているが、傷の性質が予測できる場合は一方だけを配置する構成としてもよい。  In this embodiment, the C-type light source, which is a diffused light source, is arranged on both sides of the imaging device. However, if the nature of the flaw can be predicted, only one may be arranged.

本発明の欠陥検査方法は、拡散光照明手段は帯状でかつ均一な拡散光でもって検査対象物の鏡面状表面を照明するとともに、前記拡散光照明手段は撮像手段にとって暗視野照明となるように配置するように拡散光照明手段を構成しているために、リニアセンサアレイにとって均一な撮像条件を実現するとともに、コントラストの高い欠陥箇所の画像が得られる。  In the defect inspection method of the present invention, the diffused light illuminating means illuminates the specular surface of the inspection object with a strip-shaped and uniform diffused light, and the diffused light illuminating means is dark field illumination for the imaging means. Since the diffused light illuminating means is configured so as to be arranged, uniform imaging conditions are realized for the linear sensor array, and an image of a defective portion with high contrast is obtained.

また、汚れなどの凹凸のない表面状態であっても、欠陥である欠け傷やクラックのようにコントラストの高い映像となることはなく、誤った判定をする恐れがない。その結果、欠陥の判定が容易で確実になる結果、検査に要する時間も軽減されるために高い生産歩留まり率を確保することが可能となり、産業への寄与が大なるものである。  Further, even in a surface state having no irregularities such as dirt, a high contrast image such as a chipped defect or a crack is not generated, and there is no risk of erroneous determination. As a result, the determination of defects is easy and reliable, and the time required for inspection is reduced, so that a high production yield rate can be ensured and the contribution to the industry is great.

本実施例の表面欠陥装置の外観を示す側面図である。  It is a side view which shows the external appearance of the surface defect apparatus of a present Example. 本実施例の表面欠陥装置の平面図である。  It is a top view of the surface defect apparatus of a present Example. シリコンウエハのエッジ部の詳細説明図である。  It is detailed explanatory drawing of the edge part of a silicon wafer. 照明手段と撮像装置の関係を示す説明図である。  It is explanatory drawing which shows the relationship between an illumination means and an imaging device. 照明手段の間隔調整機構を示す説明図である。  It is explanatory drawing which shows the space | interval adjustment mechanism of an illumination means. 拡散光光源の照明の様子を説明する説明図である。  It is explanatory drawing explaining the mode of illumination of a diffused light source. 欠陥の形状による反射光の状態を示す説明図である。  It is explanatory drawing which shows the state of the reflected light by the shape of a defect. クラック判定の手順を示すフロー図である。  It is a flowchart which shows the procedure of a crack determination. 実際のクラックを撮像した画像である。  It is the image which imaged the actual crack.

符号の説明Explanation of symbols

1 表面欠陥検査装置
2 上面用撮像手段
3 側面用撮像手段
4 下面用撮像手段
5 拡散光照明手段
6 シリコンウエハ
7 画像処理装置
51、52 C型光源
53 保持部
54 案内ガイド
55 調整ねじ
61 上側テーパ面
62 側面
63 下側テーパ面
DESCRIPTION OF SYMBOLS 1 Surface defect inspection apparatus 2 Imaging means for upper surfaces 3 Imaging means for side surfaces 4 Imaging means for lower surfaces 5 Diffused light illumination means 6 Silicon wafer 7 Image processing device 51, 52 C-type light source 53 Holding part 54 Guide guide 55 Adjustment screw 61 Upper taper Surface 62 Side surface 63 Lower tapered surface

Claims (7)

回転する検査対象物の鏡面状表面を拡散光照明手段によって照明し、リニアセンサアレイを備える複数の撮像手段により検査対象物の鏡面状表面の画像を撮像し、前記リニアセンサアレイから出力される信号から画像処理手段により検査対象物の鏡面状表面の凹凸欠陥を検出する表面欠陥検出方法であって、前記拡散光照明手段は検査対象物上のリニアセンサアレイの撮像箇所を帯状でかつ均一な拡散光でもって照明するとともに、撮像手段にとって暗視野照明となるように配置されていることを特徴とする表面欠陥検出方法。  Signals output from the linear sensor array by illuminating the mirror-like surface of the rotating inspection object with diffused light illuminating means, taking images of the mirror-like surface of the inspection object with a plurality of imaging means including a linear sensor array A surface defect detection method for detecting irregularities on a specular surface of an inspection object by an image processing means, wherein the diffused light illuminating means is a band-like and uniform diffusion of an imaging portion of a linear sensor array on the inspection object A surface defect detection method characterized by being illuminated with light and arranged to be dark field illumination for an imaging means. 前記拡散光照明手段は光源部が円弧状または楕円弧状または門型に形成されていることを特徴とする請求項1に記載の表面欠陥検出方法。  The surface defect detection method according to claim 1, wherein the diffused light illuminating means has a light source portion formed in an arc shape, an elliptical arc shape, or a gate shape. 前記拡散光照明手段は複数の照明装置で構成され、異なる方向から前記検査対象物を照明することを特徴とする請求項1に記載の表面欠陥検出方法。  The surface defect detection method according to claim 1, wherein the diffused light illuminating unit includes a plurality of illuminating devices, and illuminates the inspection object from different directions. 回転する検査対象物の鏡面状表面を拡散光によって照明する拡散光照明手段と、検査対象物の鏡面状表面の画像を撮像するリニアセンサアレイを備える複数の撮像手段と、このリニアセンサアレイから出力される信号の明暗度から検査対象物の鏡面状表面の凹凸欠陥を検出する画像処理手段とを備える表面欠陥検出装置であって、前記拡散光照明手段は帯状でかつ均一な拡散光でもって検査対象物の鏡面状表面を照明するとともに、撮像手段にとって暗視野照明となるように配置されていることを特徴とする表面欠陥検出装置。  Diffused light illuminating means for illuminating the mirror-like surface of the rotating inspection object with diffused light, a plurality of imaging means including a linear sensor array for taking an image of the mirror-like surface of the inspection object, and output from the linear sensor array An image processing means for detecting irregularities on the specular surface of the object to be inspected from the intensity of the signal to be inspected, wherein the diffused light illuminating means is inspected with a band-like and uniform diffused light A surface defect detection apparatus characterized by being arranged to illuminate a mirror-like surface of an object and to provide dark field illumination for an imaging means. 前記拡散光照明手段は光源部が円弧状または楕円弧状または門型に形成されていることを特徴とする請求項4に記載の表面欠陥検出装置。  The surface defect detection apparatus according to claim 4, wherein the diffused light illuminating means has a light source portion formed in an arc shape, an elliptical arc shape, or a gate shape. 前記拡散光照明手段は複数の照明装置で構成され、異なる方向から前記検査対象物を照明することを特徴とする請求項4に記載の表面欠陥検出装置。  The surface defect detection device according to claim 4, wherein the diffused light illuminating unit includes a plurality of illumination devices, and illuminates the inspection object from different directions. 前記複数の照明装置は前記検査対象物を照明する角度が調整可能に構成されていることを特徴とする請求項6に記載の表面欠陥検出装置。  The surface defect detection device according to claim 6, wherein the plurality of illumination devices are configured to be capable of adjusting an angle at which the inspection object is illuminated.
JP2006071761A 2006-02-15 2006-02-15 Surface defect detection method and surface defect detecting device Pending JP2007218889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071761A JP2007218889A (en) 2006-02-15 2006-02-15 Surface defect detection method and surface defect detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006071761A JP2007218889A (en) 2006-02-15 2006-02-15 Surface defect detection method and surface defect detecting device

Publications (1)

Publication Number Publication Date
JP2007218889A true JP2007218889A (en) 2007-08-30

Family

ID=38496332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071761A Pending JP2007218889A (en) 2006-02-15 2006-02-15 Surface defect detection method and surface defect detecting device

Country Status (1)

Country Link
JP (1) JP2007218889A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054403A1 (en) * 2007-10-23 2009-04-30 Shibaura Mechatronics Corporation Inspection device for disk-shaped substrate
JP2009105203A (en) * 2007-10-23 2009-05-14 Shibaura Mechatronics Corp Device of inspecting edge of semiconductor wafer
JP2009105202A (en) * 2007-10-23 2009-05-14 Shibaura Mechatronics Corp Device of inspecting edge of semiconductor wafer
JP2009115668A (en) * 2007-11-07 2009-05-28 Shibaura Mechatronics Corp Edge inspection device for plate-like substrate
JP2010091410A (en) * 2008-10-08 2010-04-22 Aisin Seiki Co Ltd Defect inspecting device
JP2011169676A (en) * 2010-02-17 2011-09-01 Konica Minolta Holdings Inc Method and device for inspecting condition of surface of object to be inspected having flexibility
JP2012208129A (en) * 2012-07-12 2012-10-25 Shibaura Mechatronics Corp Edge inspection device for tabular substrate
WO2015191620A1 (en) * 2014-06-09 2015-12-17 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
RU2637723C1 (en) * 2013-12-27 2017-12-06 ДжФЕ СТИЛ КОРПОРЕЙШН Method of detecting surface defects and device for detecting surface defects
CN111654242A (en) * 2015-10-26 2020-09-11 应用材料公司 Method and system for detecting a breach in a solar wafer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054403A1 (en) * 2007-10-23 2009-04-30 Shibaura Mechatronics Corporation Inspection device for disk-shaped substrate
JP2009105203A (en) * 2007-10-23 2009-05-14 Shibaura Mechatronics Corp Device of inspecting edge of semiconductor wafer
JP2009105202A (en) * 2007-10-23 2009-05-14 Shibaura Mechatronics Corp Device of inspecting edge of semiconductor wafer
JP2009115668A (en) * 2007-11-07 2009-05-28 Shibaura Mechatronics Corp Edge inspection device for plate-like substrate
JP2010091410A (en) * 2008-10-08 2010-04-22 Aisin Seiki Co Ltd Defect inspecting device
JP2011169676A (en) * 2010-02-17 2011-09-01 Konica Minolta Holdings Inc Method and device for inspecting condition of surface of object to be inspected having flexibility
JP2012208129A (en) * 2012-07-12 2012-10-25 Shibaura Mechatronics Corp Edge inspection device for tabular substrate
US10180401B2 (en) 2013-12-27 2019-01-15 Jfe Steel Corporation Surface defect detecting method and surface defect detecting apparatus
RU2637723C1 (en) * 2013-12-27 2017-12-06 ДжФЕ СТИЛ КОРПОРЕЙШН Method of detecting surface defects and device for detecting surface defects
US10705027B2 (en) 2013-12-27 2020-07-07 Jfe Steel Corporation Surface defect detecting method and surface defect detecting apparatus
EP3111469A4 (en) * 2014-06-09 2017-10-11 KLA - Tencor Corporation Miniaturized imaging apparatus for wafer edge
US9885671B2 (en) 2014-06-09 2018-02-06 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
TWI645182B (en) * 2014-06-09 2018-12-21 美商克萊譚克公司 Miniaturized imaging apparatus for wafer edge
WO2015191620A1 (en) * 2014-06-09 2015-12-17 Kla-Tencor Corporation Miniaturized imaging apparatus for wafer edge
CN111654242A (en) * 2015-10-26 2020-09-11 应用材料公司 Method and system for detecting a breach in a solar wafer
CN111654242B (en) * 2015-10-26 2023-12-29 应用材料公司 Method and system for detecting notch on solar wafer

Similar Documents

Publication Publication Date Title
JP2007218889A (en) Surface defect detection method and surface defect detecting device
JP3709426B2 (en) Surface defect detection method and surface defect detection apparatus
JP4511978B2 (en) Surface flaw inspection device
US9874436B2 (en) Hole inspection method and apparatus
JP4847128B2 (en) Surface defect inspection equipment
TWI648534B (en) Inspection method for back surface of epitaxial wafer, inspection device for back surface of epitaxial wafer, lift pin management method for epitaxial growth device, and manufacturing method for epitaxial wafer
JP4147682B2 (en) Defect inspection method and inspection apparatus for test object
JP2985160B2 (en) O-ring inspection device
JP6601119B2 (en) Epitaxial wafer back surface inspection apparatus and epitaxial wafer back surface inspection method using the same
JP6772084B2 (en) Surface defect inspection equipment and surface defect inspection method
JP2012078144A (en) Surface defect inspection device for transparent body sheet-like material
JP4158227B2 (en) Inspection method and inspection apparatus for minute unevenness
JP2006138830A (en) Surface defect inspection device
JPH06294749A (en) Flaw inspection method for plat glass
KR101001113B1 (en) Apparatus for Detecting Wafer Crack and Method for Detecting Wafer Defect
KR20160121716A (en) Surface inspection apparatus based on hybrid illumination
JP6605772B1 (en) Defect inspection apparatus and defect inspection method
JP2008286791A (en) Surface defect inspection method and apparatus
JP2006017685A (en) Surface defect inspection device
JP3078784B2 (en) Defect inspection equipment
JP5948974B2 (en) Surface defect inspection equipment
JP2002005845A (en) Defect inspecting apparatus
JPH09113465A (en) Detection apparatus for surface fault for galvanized steel plate
JP2000028535A (en) Defect inspecting device
JPH0299806A (en) Inspection of surface defect