JP5036465B2 - Hollow cathode manufacturing jig and manufacturing method - Google Patents

Hollow cathode manufacturing jig and manufacturing method Download PDF

Info

Publication number
JP5036465B2
JP5036465B2 JP2007239941A JP2007239941A JP5036465B2 JP 5036465 B2 JP5036465 B2 JP 5036465B2 JP 2007239941 A JP2007239941 A JP 2007239941A JP 2007239941 A JP2007239941 A JP 2007239941A JP 5036465 B2 JP5036465 B2 JP 5036465B2
Authority
JP
Japan
Prior art keywords
hollow cathode
jig
cylinder
manufacturing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007239941A
Other languages
Japanese (ja)
Other versions
JP2009070746A (en
Inventor
義久 石黒
方紀 羽場
興宏 王
Original Assignee
義久 石黒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義久 石黒 filed Critical 義久 石黒
Priority to JP2007239941A priority Critical patent/JP5036465B2/en
Publication of JP2009070746A publication Critical patent/JP2009070746A/en
Application granted granted Critical
Publication of JP5036465B2 publication Critical patent/JP5036465B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、中空陰極を製造するために用いる治具、該治具を用いて行う中空陰極の製造方法、及び、該製造方法で製造した中空陰極に関するものである。   The present invention relates to a jig used for producing a hollow cathode, a method for producing a hollow cathode using the jig, and a hollow cathode produced by the production method.

従来から、液晶テレビジョンや液晶ディスプレイ等の液晶表示機器において画像を鮮麗、精細に表示するためのバックライトの光源として、主に、冷陰極蛍光ランプが使用されている。冷陰極蛍光ランプは、板状、筒状又は棒状の電極を使用できるので、コイル状のフィラメント電極を使用する熱陰極蛍光ランプに比べ、電極構造が簡単であり、ランプの細管化が期待でき、また、それに伴い、液晶表示機器の小形化も期待できる。   Conventionally, a cold cathode fluorescent lamp has been mainly used as a light source of a backlight for displaying images clearly and finely in a liquid crystal display device such as a liquid crystal television or a liquid crystal display. Since cold cathode fluorescent lamps can use plate-like, cylindrical or rod-like electrodes, the electrode structure is simpler than that of hot-cathode fluorescent lamps using coiled filament electrodes, and it is expected that the lamps will be made thin. Along with that, liquid crystal display devices can be expected to be miniaturized.

しかし、近年、液晶表示機器類の高性能化に伴い、光源としての蛍光ランプに対しても、高輝度化、低消費電力化、及び、小形化が、強く要求されるようになった(非特許文献1、参照)。   However, in recent years, with the improvement in performance of liquid crystal display devices, there has been a strong demand for higher luminance, lower power consumption, and downsizing of fluorescent lamps as light sources (non-native). Patent Document 1).

蛍光ランプの設計要素に、電極構造と電極材料がある。冷陰極電極は、その構造から、長寿命で、細管化し易いという長所をもっているが、逆に、電流密度が小さく、電極損失が大きく、そのため、高輝度化、高効率化(低消費電力化)を図る点で課題を抱えている(非特許文献1、参照)。   The design element of the fluorescent lamp includes an electrode structure and an electrode material. The cold cathode electrode has the advantages of long life and easy tube formation due to its structure, but conversely, the current density is small and the electrode loss is large, so that high brightness and high efficiency (low power consumption) are achieved. (See Non-Patent Document 1).

冷陰極電極の電極材料については、従来から、加工性に優れたNiが、主として使用されている。Niは、Moや、Nbのような高融点材料に比べ安価であるが、汎用材料に比べ高価であり、蛍光ランプの低コスト化を図る点で課題を抱えている。   Conventionally, Ni that is excellent in workability has been mainly used as an electrode material for the cold cathode electrode. Ni is less expensive than high melting point materials such as Mo and Nb, but is more expensive than general-purpose materials, and has a problem in terms of reducing the cost of fluorescent lamps.

電極から電子が放出し易い電極構造又は電極材料を採用することが、上記課題を解決するための有効策であることが、従来から知られていて、これまで、種々の提案がなされている(例えば、特許文献1〜4、参照)。   It has been conventionally known that adopting an electrode structure or an electrode material that easily emits electrons from an electrode is an effective measure for solving the above-described problems, and various proposals have been made so far ( For example, see Patent Documents 1 to 4).

特許文献1には、内側電極と、該内側電極を囲繞する外側電極からなる冷陰極において、内側電極を、外側電極を構成する金属(W、Ni、Cu、Feの少なくとも1種)より仕事関数の低い金属(Zr、Alの少なくとも1種)で構成することが記載されている。   In Patent Document 1, in a cold cathode composed of an inner electrode and an outer electrode surrounding the inner electrode, the inner electrode is made to have a work function that is higher than that of the metal constituting the outer electrode (at least one of W, Ni, Cu, and Fe). It is described that it is composed of a low metal (at least one of Zr and Al).

特許文献2には、Ni又はNi−Fe合金で構成する円筒型電極の円筒内底部に、仕事関数の小さいAl、Zr、又は、Al−Zr合金で構成した円板形状又は有底円筒形状の内部電極を設けた冷陰極が記載されている。   Patent Document 2 discloses a disk-shaped or bottomed-cylindrical shape made of Al, Zr, or an Al-Zr alloy having a small work function at the cylindrical inner bottom of a cylindrical electrode made of Ni or Ni-Fe alloy. A cold cathode provided with an internal electrode is described.

このように、仕事関数の小さい金属で構成した電極を併用すると、電極全体をNiだけで構成した場合に比べ、仕事関数が低い分、電子の放出や、取込みが容易となり、陰極降下電圧が低くなるので、電力消費や発熱を増大せずに、ランプ電流を増加させることができる。   In this way, when an electrode made of a metal having a low work function is used in combination, the work function is lower than that in the case where the entire electrode is made of only Ni, so that electrons can be easily emitted and taken in, and the cathode fall voltage is low. Therefore, the lamp current can be increased without increasing the power consumption and heat generation.

しかし、AlやZrは、水銀アマルガムを作り易い性質を有する金属であり、電極表面で必然的に生じるスパッタ現象による電極の消耗、及び、水銀アマルガムの生成は避けられず、蛍光ランプの長寿命化には限界がある。   However, Al and Zr are metals that have the property of easily producing mercury amalgam, and electrode wear due to the sputtering phenomenon that inevitably occurs on the electrode surface, and generation of mercury amalgam is inevitable, and the life of the fluorescent lamp is extended. Has its limits.

特許文献3には、表面に、蛍光ランプの点灯時に誘電体として機能する、絶縁体からなる電極被覆層を形成し、さらに、その上に、電子放射性物質からなる層を形成した電極が記載されている。しかし、電極は、電子放射性物質がある間は、期待通り機能するが、電子放射性物質が消耗するに従って機能が低下するので、蛍光ランプの高輝度化、長寿命化には限界がある。   Patent Document 3 describes an electrode in which an electrode coating layer made of an insulator that functions as a dielectric when a fluorescent lamp is turned on is formed on a surface, and further, a layer made of an electron-emitting material is formed thereon. ing. However, the electrode functions as expected while the electron-emitting substance is present, but the function decreases as the electron-emitting substance is consumed, so there is a limit to increasing the luminance and life of the fluorescent lamp.

特許文献4には、上記限界を踏まえ、電極表面を、水銀アマルガムを作り難い、Zr、W、Ta、Ti、Nb、Hf、Moの1種又は2種以上の炭化物とした冷陰極が記載されている。この冷陰極により、蛍光ランプを小型化、高輝度化することができるが、近年、蛍光ランプに対して強く要求されている高輝度、低消費電力、及び、小形化のレベルには達していないし、また、長寿命化の点でも限界がある。   Patent Document 4 describes a cold cathode in which the electrode surface is made of one or more kinds of carbides of Zr, W, Ta, Ti, Nb, Hf, and Mo, which makes it difficult to form mercury amalgam, based on the above limitations. ing. Although this cold cathode can reduce the size and increase the brightness of the fluorescent lamp, it has not yet reached the level of high brightness, low power consumption, and miniaturization that are strongly demanded in recent years for fluorescent lamps. Also, there is a limit in terms of extending the life.

近年、低電圧下で作動し、高輝度を得ることができる電極として、表面に、カーボンナノチューブ膜を形成した電界放出型冷陰極が提案されている(特許文献5〜7、参照)。しかし、上記陰極は平面電極であり、中空電極の円筒の内側表面に炭素膜を成膜する方法は開発されていない。   In recent years, field emission cold cathodes having a carbon nanotube film formed on the surface have been proposed as electrodes capable of operating under a low voltage and obtaining high luminance (see Patent Documents 5 to 7). However, the cathode is a planar electrode, and a method for forming a carbon film on the inner surface of the hollow electrode cylinder has not been developed.

特開平09−204899号公報Japanese Patent Laid-Open No. 09-204899 特開2002−117804号公報JP 2002-117804 A 特開2004−207183号公報JP 2004-207183 A 特開2005−085472号公報Japanese Patent Laying-Open No. 2005-085472 特開2001−015077号公報JP 2001-015077 A 特開2004−281388号公報JP 2004-281388 A 特開2007−188662号公報JP 2007-188862 A 光技術情報誌「ライトエッジ」No.2/特集 液晶バックライト光源(1995年春、発行)Optical technology information magazine "Light Edge" No. 2 / Special feature LCD backlight source (issued in spring 1995)

中空電極の円筒内部表面に炭素膜を成膜することができれば、蛍光ランプの細管化、高輝度化、及び、低消費電力化を、より一層推進し、液晶表示機器の一層の小形化を達成することができる。そこで、本発明は、中空電極の円筒内側表面に蒸着炭素膜を成膜することを課題とする。   If a carbon film can be formed on the cylindrical inner surface of the hollow electrode, the fluorescent lamps will be made thinner, higher brightness, and lower power consumption, and liquid crystal display devices will be further miniaturized. can do. Then, this invention makes it a subject to form a vapor deposition carbon film | membrane on the cylinder inner surface of a hollow electrode.

本発明者らは、プラズマ蒸着法を用いて上記課題を解決することを鋭意研究した。その結果、(i)一端を閉じた円筒の中空陰極部材、又は、円筒の外側底部に接続用端子を備えた中空陰極部材を準備し、(ii)中空陰極部材を特定構造の治具に装着してプラズマ蒸着を行うと、中空電極の円筒の内側表面にのみ、炭素膜を成膜することができることを見出した。なお、プラズマ蒸着による炭素膜の形成については後述する。   The inventors of the present invention have intensively studied to solve the above problems using a plasma deposition method. As a result, (i) a hollow cylindrical cathode member with one end closed or a hollow cathode member provided with a connection terminal on the outer bottom of the cylinder is prepared, and (ii) the hollow cathode member is mounted on a jig having a specific structure. Then, when plasma deposition was performed, it was found that a carbon film could be formed only on the inner surface of the hollow electrode cylinder. The formation of the carbon film by plasma deposition will be described later.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) 円筒の外側底部に接続用端子を備え、円筒の内側表面に蒸着炭素膜を備える中空陰極の製造に用いる治具であって、
(i)短辺上端を円弧状に成形した導電性の矩形板状体からなり、
(ii)上記矩形板状体の長辺側面に沿って、
(ii-1)長辺側面に開口し、かつ、
(ii-2)一端を閉じた円筒の中空陰極部材、又は、一端を閉じた円筒の外側底部に接続用端子を備える中空陰極部材を、長辺側面に垂直に、密着状態で収容する部材収容孔が形成されている
ことを特徴とする中空陰極の製造用治具。
(1) A jig used for manufacturing a hollow cathode provided with a connection terminal on the outer bottom of a cylinder and provided with a vapor deposition carbon film on the inner surface of the cylinder,
(I) a conductive rectangular plate formed by arc-shaped at the upper end of the short side,
(Ii) Along the long side surface of the rectangular plate-shaped body,
(Ii-1) open on the side of the long side, and
(Ii-2) Member housing that accommodates a cylindrical hollow cathode member with one end closed or a hollow cathode member having a connection terminal on the outer bottom of a cylinder with one end closed in a contact state perpendicular to the long side surface A jig for manufacturing a hollow cathode, wherein holes are formed.

(2) 前記矩形板状体が、融点800℃以上で、中空陰極部材と同じ金属材料、中空陰極部材の熱膨張率とほぼ同じ熱膨張率を有する金属材料、及び、中空陰極部材の熱膨張率より小さい熱膨張率を有する金属材料のいずれかで構成されていることを特徴とする前記(1)に記載の中空陰極の製造用治具。   (2) The rectangular plate-like body has a melting point of 800 ° C. or higher, the same metal material as that of the hollow cathode member, a metal material having the same thermal expansion coefficient as that of the hollow cathode member, and the thermal expansion of the hollow cathode member. The hollow cathode manufacturing jig according to (1), wherein the jig is made of a metal material having a coefficient of thermal expansion smaller than the coefficient.

(3) 前記矩形板状体が、中空陰極部材の熱膨張率とほぼ同じ熱膨張率を有する導電性のセラミック材料、又は、中空陰極部材の熱膨張率より小さい熱膨張率を有する導電性のセラミック材料で構成されていることを特徴とする前記(1)に記載の中空陰極の製造用治具。   (3) The rectangular plate-like body is a conductive ceramic material having a thermal expansion coefficient substantially the same as that of the hollow cathode member, or a conductive material having a thermal expansion coefficient smaller than that of the hollow cathode member. The jig for manufacturing a hollow cathode according to (1), which is made of a ceramic material.

(4) 前記部材収容孔が、前記矩形板状体の長辺側面に沿って、一列に配設されていることを特徴とする前記(1)〜(3)のいずれかに記載の中空陰極の製造用治具。   (4) The hollow cathode according to any one of (1) to (3), wherein the member accommodation holes are arranged in a line along a long side surface of the rectangular plate-like body. Jig for manufacturing.

(5) 前記部材収容孔が、前記矩形板状体の長辺側面に沿って、上下、複数列で配設されていることを特徴とする前記(1)〜(3)のいずれかに記載の中空陰極の製造用治具。   (5) The said member accommodation hole is arrange | positioned by the upper and lower sides and the multiple rows along the long side surface of the said rectangular plate-shaped object, In any one of said (1)-(3) characterized by the above-mentioned. A jig for manufacturing a hollow cathode.

(6) 前記矩形板状体の長辺側面に、一端を閉じた円筒の端部を覆うように加工した円孔を有する側面マスク部材を取り付けたことを特徴とする前記(1)〜(5)のいずれかに記載の中空電極の製造用治具。   (6) A side mask member having a circular hole processed so as to cover an end of a cylinder whose one end is closed is attached to a long side surface of the rectangular plate-like body. The jig for manufacturing a hollow electrode according to any one of the above.

(7) 前記(1)〜(6)のいずれかに記載の中空陰極の製造用治具を用いて中空陰極を製造する方法であって、
(i)一端を閉じた円筒の中空陰極部材、又は、一端を閉じた円筒の外側底部に接続用端子を備える中空陰極部材を、上記製造用治具の部材収容孔に装着し、
(ii)中空陰極部材を装着した製造用治具を、プラズマ蒸着装置のアノード側の電極上に載置し、
(iii)上記製造用治具の周囲に、炭素ラジカルを含むプラズマ雰囲気を形成して、中空陰極部材の円筒の内側表面にのみ炭素膜を成膜する、
ことを特徴とする中空陰極の製造方法。
(7) A method for producing a hollow cathode using the hollow cathode production jig according to any one of (1) to (6),
(I) A cylindrical hollow cathode member with one end closed, or a hollow cathode member having a connection terminal on the outer bottom of the cylinder with one end closed, is mounted in the member receiving hole of the manufacturing jig,
(Ii) A manufacturing jig equipped with a hollow cathode member is placed on the electrode on the anode side of the plasma deposition apparatus,
(Iii) forming a plasma atmosphere containing carbon radicals around the manufacturing jig, and forming a carbon film only on the inner surface of the hollow cathode member cylinder;
A method for producing a hollow cathode, comprising:

(8) 前記中空陰極部材の円筒が、Ni、Nb、Mo、Fe、及び、それらの合金のいずれかで構成されていることを特徴とする前記(7)に記載の中空電極の製造方法。   (8) The method for manufacturing a hollow electrode according to (7), wherein the hollow cathode member is made of any one of Ni, Nb, Mo, Fe, and alloys thereof.

(9) 前記炭素膜が、ナノ構造を有する炭素膜であることを特徴とする前記(7)又は(8)に記載の中空陰極の製造方法。   (9) The method for producing a hollow cathode according to (7) or (8), wherein the carbon film is a carbon film having a nanostructure.

本発明によれば、蛍光ランプの細管化、高輝度化、及び、低消費電力化を、より一層推進し、液晶表示機器の一層の小形化を達成することができる。   According to the present invention, it is possible to further promote downsizing, high brightness, and low power consumption of a fluorescent lamp and achieve further downsizing of a liquid crystal display device.

本発明について、図面に基づいて説明する。   The present invention will be described with reference to the drawings.

まず、図1に、従来の蛍光ランプ用中空電極の製造工程を示す。Ni、Mo、Zr、W、Nb製、又は、これらの合金製の円筒部材1、電極端子2、及び、リード線3を溶接等で接合し一体化する。次いで、電極を蛍光ランプに封入して固定するためのガラスビード4を、電極端子2に形成する。   First, FIG. 1 shows a manufacturing process of a conventional hollow electrode for a fluorescent lamp. The cylindrical member 1, the electrode terminal 2, and the lead wire 3 made of Ni, Mo, Zr, W, Nb, or an alloy thereof are joined and integrated by welding or the like. Next, a glass bead 4 for sealing the electrode in a fluorescent lamp and fixing it is formed on the electrode terminal 2.

図1に示す従来工程において、炭素膜を内側表面に形成した円筒部材1を用いると、円筒部材1と電極端子2を溶接する時の熱で、炭素膜が消失する。次の工程でのガラスビード4の形成は、通常、酸水素炎を用いて、空気中で行うが、その時の熱と雰囲気で、さらに、炭素膜が消失する。   In the conventional process shown in FIG. 1, when the cylindrical member 1 having a carbon film formed on the inner surface is used, the carbon film disappears due to heat generated when the cylindrical member 1 and the electrode terminal 2 are welded. The formation of the glass beads 4 in the next step is usually performed in the air using an oxyhydrogen flame, but the carbon film disappears further by the heat and atmosphere at that time.

そこで、本発明者らは、炭素膜を内側表面に形成した円筒部材1を用いても、製造中に炭素膜が消失しまい蛍光ランプ用中空電極の製造工程を開発した。その製造工程を、図2に示す。   Therefore, the present inventors have developed a manufacturing process of a hollow electrode for a fluorescent lamp because the carbon film disappears during manufacturing even when the cylindrical member 1 having a carbon film formed on the inner surface is used. The manufacturing process is shown in FIG.

図2に示す製造工程においては、円筒1bの外側底部に端子部材2aを設けた円筒部材1aを準備し、プラズマ蒸着装置7で、円筒1bの内側表面のみに炭素膜を成膜し(この成膜については、後述する。)、その後、端子部材2aに、別途、リード線3を接合し、さらに、ガラスビード4を形成した電極端子2bを嵌め込み、嵌込み外周部を溶接する。   In the manufacturing process shown in FIG. 2, a cylindrical member 1a having a terminal member 2a provided on the outer bottom portion of the cylinder 1b is prepared, and a carbon film is formed only on the inner surface of the cylinder 1b by the plasma deposition apparatus 7 (this formation is performed). The film will be described later.) Thereafter, the lead wire 3 is separately joined to the terminal member 2a, and the electrode terminal 2b on which the glass bead 4 is formed is further fitted, and the fitted outer peripheral portion is welded.

なお、電極端子2bへの、リード線3の接合、及び、ガラスビーズ4の形成は、従来手法で行ってよい。   In addition, you may perform the joining of the lead wire 3 to the electrode terminal 2b, and formation of the glass bead 4 by a conventional method.

円筒部材1aと電極端子2bの接合において、嵌込み−溶接の接合形態を採用すると、溶接は、嵌込み外周部を溶接するだけでよいので、円筒部材1aへの伝熱量が低減し、その結果、円筒1bの内側表面に成膜した炭素膜を損なうことなく、円筒部材1aと電極端子2bを接合することができる。なお、本発明者は、嵌込み−溶接の接合部は、強度の点で充分なものであることを確認した。   In the joining of the cylindrical member 1a and the electrode terminal 2b, if the fitting form of fitting-welding is adopted, the welding only needs to weld the fitting outer peripheral part, so that the amount of heat transfer to the cylindrical member 1a is reduced, and as a result. The cylindrical member 1a and the electrode terminal 2b can be joined without damaging the carbon film formed on the inner surface of the cylinder 1b. In addition, this inventor confirmed that the insertion-welding junction was sufficient in terms of strength.

ここで、円筒部材1aの円筒1bの内側表面のみに炭素膜を成膜する方法について説明する。   Here, a method for forming a carbon film only on the inner surface of the cylinder 1b of the cylindrical member 1a will be described.

炭素膜の成膜は、基本的には、プラズマ蒸着法によるが、所要の内径及び奥行きを有する円筒の内側表面のみへの成膜であるから、平面電極への成膜とは異なり、成膜手法及び手段は単純ではない。   Carbon film formation is basically performed by plasma deposition, but it is only performed on the inner surface of a cylinder having the required inner diameter and depth, so it is different from film formation on a planar electrode. Techniques and means are not simple.

本発明者らは、鋭意検討の結果、図3に示す構造の治具を用いると、プラズマ蒸着法で、炭素膜を、円筒部材の円筒内側表面にのみに成膜することができることを見出した。   As a result of intensive studies, the present inventors have found that a carbon film can be formed only on the cylindrical inner surface of a cylindrical member by plasma deposition using the jig having the structure shown in FIG. .

図3に示す治具(以下「本発明治具」ということがある)の本体は、導電性の矩形板状体5で構成されていて、その長辺側面に沿って、
(ii-1)長辺側面に開口し、かつ、
(ii-2)一端を閉じた円筒の中空陰極部材、又は、一端を閉じた円筒の外側底部に接続用端子を備える中空陰極部材(図2、参照)を、長辺側面に垂直に、密着状態で収容する部材収容孔6が形成されている。
The main body of the jig shown in FIG. 3 (hereinafter sometimes referred to as “the jig of the present invention”) is composed of a conductive rectangular plate-like body 5 along the long side surface thereof.
(Ii-1) open on the side of the long side, and
(Ii-2) A cylindrical hollow cathode member with one end closed, or a hollow cathode member (see FIG. 2) having a connection terminal on the outer bottom of a cylinder with one end closed, in close contact with the long side surface The member accommodation hole 6 accommodated in the state is formed.

炭素膜の成膜は、本発明治具を、プラズマ蒸着装置のアノード側電極に載置して行うが、プラズマ放電が矩形板状体5の短辺の上端部に集中するのを抑制するため、該上端部は、所要の曲率半径Rで、円弧状に成形されている。   The carbon film is formed by placing the jig of the present invention on the anode side electrode of the plasma vapor deposition apparatus in order to suppress the plasma discharge from concentrating on the upper end of the short side of the rectangular plate 5. The upper end portion is formed in an arc shape with a required radius of curvature R.

なお、矩形板状体5の短辺の下端部、及び、長辺の上端部及び下端部に、特別の加工を施す必要はないが、面取り程度の加工を施しておくのが好ましい。   In addition, although it is not necessary to give a special process to the lower end part of the short side of the rectangular plate-shaped body 5, and the upper end part and lower end part of a long side, it is preferable to perform the process of a chamfering grade.

図3では、部材収容孔6を、矩形板状体5の長辺側面に沿って一列に配設した態様を示したが、部材収容孔6は、矩形板状体の長辺側面に沿って、上下、複数列で配設してもよい。   In FIG. 3, the member accommodation holes 6 are arranged in a line along the long side surface of the rectangular plate-like body 5. However, the member accommodation hole 6 extends along the long side surface of the rectangular plate-like body. The upper and lower sides may be arranged in a plurality of rows.

矩形板状体5は、プラズマ蒸着装置のアノード側電極に載置され、電極と一体となって、円筒部材の円筒内側表面のみの成膜を達成するものであるから、通常、金属材料で構成するが、導電性のセラミック材料で構成してもよい。金属材料は、プラズマ雰囲気温度に耐え得るよう、融点800℃以上の金属材料が好ましい。   The rectangular plate-like body 5 is placed on the anode side electrode of the plasma deposition apparatus, and is integrated with the electrode to achieve film formation only on the cylindrical inner surface of the cylindrical member. However, it may be made of a conductive ceramic material. The metal material is preferably a metal material having a melting point of 800 ° C. or higher so that it can withstand the plasma atmosphere temperature.

円筒の内側表面のみへの成膜を達成するためには、中空陰極部材と部材収容孔の密着性を確保し、中空陰極部材の円筒の外側と部材収容孔の間に炭素が侵入するのを防止する必要がある。そのため、矩形板状体5を、中空陰極部材の金属材料と同じ金属材料、又は、熱膨張率が中空陰極部材の熱膨張率とほぼ同じか又は小さい金属材料で構成する。   In order to achieve film formation only on the inner surface of the cylinder, the adhesion between the hollow cathode member and the member accommodation hole is ensured, and carbon must penetrate between the outer side of the hollow cathode member cylinder and the member accommodation hole. There is a need to prevent. Therefore, the rectangular plate-like body 5 is made of the same metal material as the metal material of the hollow cathode member, or a metal material whose thermal expansion coefficient is substantially the same as or smaller than that of the hollow cathode member.

中空陰極部材の円筒の外側と中空陰極部材との間隙を、0.1mm以上(通常の間隙)とすると、円筒の外側に炭素膜が形成されてしまう。本発明者らの実験によれば、上記間隙は、0.08mm以下にすることが好ましい。0.08mm以下の間隙であれば、中空陰極部材と部材収容孔の密着性を充分に確保することができ、中空陰極部材の円筒の外側と部材収容孔の間に炭素が侵入するのを確実に防止することができる。   If the gap between the outside of the hollow cathode member cylinder and the hollow cathode member is 0.1 mm or more (normal gap), a carbon film is formed outside the cylinder. According to the experiments by the present inventors, the gap is preferably 0.08 mm or less. If the gap is 0.08 mm or less, sufficient adhesion between the hollow cathode member and the member receiving hole can be ensured, and carbon can surely enter between the outside of the hollow cathode member cylinder and the member receiving hole. Can be prevented.

また、中空陰極部材の円筒の外側と部材収容孔の間に炭素が侵入するのを確実に防止するとともに、該円筒の端部に炭素が蒸着するのを防止するため、図4に示すように、中空陰極部材を部材収容孔6に収容した後、矩形板状体5の長辺側面に、円筒1bの端部を覆うように加工した直径φの円孔13を有する側面マスク部材12を取り付けてもよい。取り付け手段(図示なし)は、公知の手段でよい。   Further, in order to prevent carbon from entering between the outer side of the cylinder of the hollow cathode member and the member accommodation hole, and to prevent carbon from being deposited on the end of the cylinder, as shown in FIG. After the hollow cathode member is accommodated in the member accommodating hole 6, a side mask member 12 having a circular hole 13 having a diameter φ processed so as to cover the end of the cylinder 1b is attached to the long side surface of the rectangular plate-like body 5. May be. The attachment means (not shown) may be a known means.

図4(a)に、直径φの円孔13を有する側面マスク部材12を取り付けた態様を示す。円孔13の直径φは、円筒1bの内径dと同じにするか、又は、円筒1bの内径dより小さくする。円孔13の直径φは、円筒1bの内径dより小さすぎると、円筒1b内への炭素ラジカル(後述)の侵入を妨げ、炭素膜の形成を阻害することになるので、炭素ラジカルの侵入を妨げない範囲で適宜設定する。なお、円孔13の直径φは、(円筒1bの内径d−0.05mm)程度が好ましい。   FIG. 4A shows a mode in which a side mask member 12 having a circular hole 13 having a diameter φ is attached. The diameter φ of the circular hole 13 is the same as the inner diameter d of the cylinder 1b or smaller than the inner diameter d of the cylinder 1b. If the diameter φ of the circular hole 13 is too smaller than the inner diameter d of the cylinder 1b, the penetration of carbon radicals (described later) into the cylinder 1b is prevented and the formation of the carbon film is inhibited. Set appropriately within the range that does not interfere. The diameter φ of the circular hole 13 is preferably about (the inner diameter d−0.05 mm of the cylinder 1b).

図4(b)に、円筒1b側が円錐状の直径φの円孔13を有する側面マスク部材12を取り付けた態様を示す。円孔13の直径φは、円筒1bの内径dより小さくするが、小さすぎると、円筒1bへの炭素ラジカルの侵入を妨げ、炭素膜の形成を阻害することになるので、炭素ラジカルの侵入を妨げない範囲で適宜設定する。なお、円錐状の円孔13の直径φは、(円筒1bの内径d−0.1mm)程度が好ましい。   FIG. 4B shows a mode in which a side mask member 12 having a circular hole 13 having a conical diameter φ is attached to the cylinder 1b side. The diameter φ of the circular hole 13 is made smaller than the inner diameter d of the cylinder 1b. However, if it is too small, the penetration of carbon radicals into the cylinder 1b is prevented and the formation of the carbon film is inhibited. Set appropriately within the range that does not interfere. In addition, it is preferable that the diameter φ of the conical circular hole 13 is about (the inner diameter d−0.1 mm of the cylinder 1b).

側面マスク部材の材質は、特に、限定されるものではないが、側面マスク部材は、矩形板状体と一体になって、中空陰極の製造用治具として機能するものであるから、矩形板状体と同じ材質が好ましい。なお、側面マスク部材の厚さは、円筒1b内への炭素ラジカルの侵入を妨げない範囲で適宜設定する。   The material of the side mask member is not particularly limited, but the side mask member is integrated with the rectangular plate and functions as a jig for manufacturing the hollow cathode. The same material as the body is preferred. Note that the thickness of the side mask member is appropriately set within a range that does not hinder the penetration of carbon radicals into the cylinder 1b.

導電性のセラミック材料としては、金属材料の場合と同様に、熱膨張率が中空陰極部材の熱膨張率とほぼ同じか又は小さいセラミック材料が好ましい。   As the conductive ceramic material, a ceramic material having a thermal expansion coefficient substantially equal to or smaller than that of the hollow cathode member is preferable as in the case of a metal material.

本発明治具は、前述したように、プラズマ蒸着装置のアノード側電極に載置され、電極と一体となって、円筒部材の円筒内側表面のみの成膜を達成するものであるから、その外形寸法(長辺:L、短辺:W、厚さ:T)は、(i)配設する部材収容孔の数及び内径、及び、(ii)電極寸法を考慮して適宜設定すればよい。   As described above, the jig of the present invention is placed on the anode side electrode of the plasma deposition apparatus and is integrated with the electrode to achieve film formation only on the cylindrical inner surface of the cylindrical member. The dimensions (long side: L, short side: W, thickness: T) may be appropriately set in consideration of (i) the number and inner diameter of the member housing holes to be disposed, and (ii) the electrode dimensions.

なお、部材収容孔の内径は、中空陰極部材の円筒の外径(即ち、中空陰極の外径)、及び、該円筒の外側と部材収容孔の間の間隙を考慮して設定する。中空陰極の外径は、蛍光ランプ用であれば、3mm以下程度であるが、中空陰極は、他の用途にも使用できるので、部材収容孔の内径は、特定の範囲に限定されるものではない。   The inner diameter of the member receiving hole is set in consideration of the outer diameter of the hollow cathode member cylinder (that is, the outer diameter of the hollow cathode) and the gap between the outer side of the cylinder and the member receiving hole. The outer diameter of the hollow cathode is about 3 mm or less for fluorescent lamps, but since the hollow cathode can be used for other purposes, the inner diameter of the member receiving hole is not limited to a specific range. Absent.

本発明者らの試験結果によれば、例えば、内径2.7mm程度、奥行き5mm程度の部材収容孔を、図3に示すように、片側に12個形成する場合、矩形板状体の長辺の長さL、短辺の長さW、及び、厚さTは、それぞれ、50〜54mm、25〜30mm、及び、4mm程度が好ましい。   According to the test results of the present inventors, for example, when 12 member receiving holes having an inner diameter of about 2.7 mm and a depth of about 5 mm are formed on one side as shown in FIG. 3, the long side of the rectangular plate-shaped body The length L, the short side length W, and the thickness T are preferably about 50 to 54 mm, 25 to 30 mm, and 4 mm, respectively.

部材収容孔に密着状態で収容される中空陰極部材の円筒は、Ni、Nb、Mo、Fe、及び、それらの合金のいずれのいずれかで製造したものが好ましい。なかでも、オーステナイト系ステンレス鋼は、加工性や、価格の点で、他の円筒材料に比べ有利である。   The cylinder of the hollow cathode member accommodated in the member accommodation hole in close contact is preferably made of any one of Ni, Nb, Mo, Fe, and alloys thereof. Among these, austenitic stainless steel is advantageous over other cylindrical materials in terms of workability and cost.

本発明においては、中空陰極部材を部材収容孔に装着した本発明治具を、プラズマ蒸着装置のアノード側電極に載置し(図2、参照)、プラズマ蒸着装置のチャンバー(この中に電極が配置されている)内に、メタンを含む水素を導入して、プラズマ放電でメタンを分解し、炭素ラジカルを生成する。   In the present invention, the jig of the present invention in which the hollow cathode member is mounted in the member accommodation hole is placed on the anode side electrode of the plasma deposition apparatus (see FIG. 2), and the chamber of the plasma deposition apparatus (the electrode is placed in this). Hydrogen containing methane is introduced into the gas, and the methane is decomposed by plasma discharge to generate carbon radicals.

そして、プラズマには、電極間に平行となる電界分布を形成し、これを利用して、炭素ラジカルに水平方向に移動する力を与える。   And in plasma, the electric field distribution which becomes parallel between electrodes is formed, The force which moves to a carbon radical in a horizontal direction is given using this.

本発明治具の構造的特徴と、炭素ラジカルの水平方向の移動との相乗作用で、中空陰極部材の円筒の内側表面のみへの成膜を達成することができる。   Film formation only on the inner surface of the cylinder of the hollow cathode member can be achieved by the synergistic effect of the structural features of the jig of the present invention and the horizontal movement of the carbon radicals.

本発明治具を用いて形成される炭素膜は、プラズマ雰囲気中で形成されるものであるので、カーボンナノチューブ(CNT)、カーボンナノウオール(CNW)、カーボンナオファイバー(CNF)、及び、カーボンナノコンプレックス(CNX)の1種又は2種以上のナノ構造を有する炭素膜である。   Since the carbon film formed using the jig of the present invention is formed in a plasma atmosphere, carbon nanotube (CNT), carbon nanowall (CNW), carbon nao fiber (CNF), and carbon nano It is a carbon film having one or more types of complex (CNX) nanostructures.

本発明治具を用いて、中空陰極部材の円筒の円筒内側表面のみに炭素膜を成膜して製造した中空陰極(以下「本発明陰極」)は、従来の陰極に比べ、放電開始電圧及び消費電力の低減において、極めて優れた陰極である。   A hollow cathode produced by forming a carbon film only on the cylindrical inner surface of a hollow cathode member cylinder using the jig of the present invention (hereinafter referred to as “the cathode of the present invention”) has a discharge initiation voltage and It is an extremely excellent cathode in reducing power consumption.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
本発明治具(図3)を用い、4%CH4を含むH2をチャンバー内に導入し、チャンバー圧力(成膜圧力)を80Torrに保ち、放電電力5kWで5分間、プラズマ放電を行い、外径2.7mm、内径1.8mm、長さ5mmの円筒の内側表面に炭素膜を成膜し、中空陰極を製造した。
(Example)
Using the jig of the present invention (FIG. 3), H 2 containing 4% CH 4 was introduced into the chamber, the chamber pressure (film formation pressure) was kept at 80 Torr, and plasma discharge was performed at a discharge power of 5 kW for 5 minutes. A carbon film was formed on the inner surface of a cylinder having an outer diameter of 2.7 mm, an inner diameter of 1.8 mm, and a length of 5 mm to produce a hollow cathode.

図5に示すように、2個の中空陰極8を、外径3mm、長さ300mmのガラス管9の両端に取り付け蛍光ランプ10を製造し、給排気装置(図示なし)に接続した測定用ガラス管11の中に配置した。   As shown in FIG. 5, two hollow cathodes 8 are attached to both ends of a glass tube 9 having an outer diameter of 3 mm and a length of 300 mm to produce a fluorescent lamp 10 and connected to a supply / exhaust device (not shown). Placed in tube 11.

次に、4%Arを含むNeを測定用ガラス管11の中に供給し、蛍光ランプ10の内圧を10,000Paに維持し、電極間に電圧を印加して、放電を誘発した。電圧を上げ、放電を安定化させた後も、電流が5mA、さらに、7mAとなるように電圧を上げ、電圧のオシロ波形から、放電開始電圧とランプ電圧を測定した。また、電力損失については、使用した直流安定化電源の一次側の電圧と電流を測定して算出した。   Next, Ne containing 4% Ar was supplied into the measurement glass tube 11, the internal pressure of the fluorescent lamp 10 was maintained at 10,000 Pa, and a voltage was applied between the electrodes to induce discharge. Even after the voltage was increased and the discharge was stabilized, the voltage was increased so that the current became 5 mA, and further 7 mA, and the discharge start voltage and the lamp voltage were measured from the oscilloscope waveform of the voltage. The power loss was calculated by measuring the voltage and current on the primary side of the DC stabilized power supply used.

また、炭素膜の効率を確認するため、炭素膜のない中空電極を用いて製造した蛍光ランプについても、同様の測定を行った。   In addition, in order to confirm the efficiency of the carbon film, the same measurement was performed for a fluorescent lamp manufactured using a hollow electrode without a carbon film.

測定結果を、表1に示す。   The measurement results are shown in Table 1.

Figure 0005036465
Figure 0005036465

表1から、本発明治具を用いて製造した中空陰極(円筒の内側表面のみに炭素膜が成膜されている)を用いた蛍光ランプにおいては、ランプ特性が向上していることが解る。例えば、入力電力でみると、15%以上の改善効果がある。   From Table 1, it is understood that the lamp characteristics are improved in the fluorescent lamp using the hollow cathode (carbon film is formed only on the inner surface of the cylinder) manufactured using the jig of the present invention. For example, in terms of input power, there is an improvement effect of 15% or more.

前述したように、本発明によれば、蛍光ランプの細管化、高輝度化、及び、低消費電力化を、より一層推進し、液晶表示機器の一層の小形化を達成することができる。したがって、本発明は、省エネルギー及び環境保護に貢献し、産業上の利用可能性が大きいものである。   As described above, according to the present invention, it is possible to further promote downsizing, high luminance, and low power consumption of a fluorescent lamp and achieve further downsizing of a liquid crystal display device. Therefore, the present invention contributes to energy saving and environmental protection, and has great industrial applicability.

従来の蛍光ランプ用中空陰極の製造工程を示す図である。It is a figure which shows the manufacturing process of the conventional hollow cathode for fluorescent lamps. 本発明に係る蛍光ランプ用中空陰極の製造工程を示す図である。It is a figure which shows the manufacturing process of the hollow cathode for fluorescent lamps which concerns on this invention. 本発明の製造用治具の一態様を示す図である。It is a figure which shows the one aspect | mode of the manufacturing jig of this invention. 本発明の製造用治具の別の態様を示す図である。(a)は、側面マスク部材を取り付けた態様を示し、(b)は、別の側面マスク部材を取り付けた態様を示す。It is a figure which shows another aspect of the jig for manufacture of this invention. (A) shows the aspect which attached the side mask member, (b) shows the aspect which attached another side mask member. 蛍光ランプの性能の測定態様を示す図である。It is a figure which shows the measurement aspect of the performance of a fluorescent lamp.

符号の説明Explanation of symbols

1、1a 円筒部材
1b 円筒
2、2b 電極端子
2a 端子部材
3 リード線
4 ガラスビーズ
5 矩形板状体
6 部材収容孔
7 プラズマ蒸着装置
8 中空陰極
9 ガラス管
10 蛍光ランプ
11 測定用ガラス管
12 側面マスク部材
13 円孔
R 曲率半径
L 長辺の長さ
W 短辺の長さ
T 厚さ
d 円筒の内径
φ 円孔の径
DESCRIPTION OF SYMBOLS 1, 1a Cylindrical member 1b Cylinder 2, 2b Electrode terminal 2a Terminal member 3 Lead wire 4 Glass bead 5 Rectangular plate-shaped body 6 Member accommodation hole 7 Plasma vapor deposition apparatus 8 Hollow cathode 9 Glass tube 10 Fluorescent lamp 11 Measurement glass tube 12 Side surface Mask member 13 Circular hole R Radius of curvature L Long side length W Short side length T Thickness d Inner diameter of cylinder φ Diameter of circular hole

Claims (9)

円筒の外側底部に接続用端子を備え、円筒の内側表面に蒸着炭素膜を備える中空陰極の製造に用いる治具であって、
(i)短辺上端を円弧状に成形した導電性の矩形板状体からなり、
(ii)上記矩形板状体の長辺側面に沿って、
(ii-1)長辺側面に開口し、かつ、
(ii-2)一端を閉じた円筒の中空陰極部材、又は、一端を閉じた円筒の外側底部に接続用端子を備える中空陰極部材を、長辺側面に垂直に、密着状態で収容する部材収容孔が形成されている
ことを特徴とする中空陰極の製造用治具。
A jig used for manufacturing a hollow cathode provided with a connection terminal on the outer bottom of the cylinder, and provided with a deposited carbon film on the inner surface of the cylinder,
(I) a conductive rectangular plate formed by arc-shaped at the upper end of the short side,
(Ii) Along the long side surface of the rectangular plate-shaped body,
(Ii-1) open on the side of the long side, and
(Ii-2) Member housing that accommodates a cylindrical hollow cathode member with one end closed or a hollow cathode member having a connection terminal on the outer bottom of a cylinder with one end closed in a contact state perpendicular to the long side surface A jig for manufacturing a hollow cathode, wherein holes are formed.
前記矩形板状体が、融点800℃以上で、中空陰極部材と同じ金属材料、中空陰極部材の熱膨張率とほぼ同じ熱膨張率を有する金属材料、及び、中空陰極部材の熱膨張率より小さい熱膨張率を有する金属材料のいずれかで構成されていることを特徴とする請求項1に記載の中空陰極の製造用治具。   The rectangular plate-like body has a melting point of 800 ° C. or higher and the same metal material as the hollow cathode member, a metal material having a thermal expansion coefficient substantially the same as that of the hollow cathode member, and smaller than the thermal expansion coefficient of the hollow cathode member The jig for manufacturing a hollow cathode according to claim 1, wherein the jig is made of a metal material having a coefficient of thermal expansion. 前記矩形板状体が、中空陰極部材の熱膨張率とほぼ同じ熱膨張率を有する導電性のセラミック材料、又は、中空陰極部材の熱膨張率より小さい熱膨張率を有する導電性のセラミック材料で構成されていることを特徴とする請求項1に記載の中空陰極の製造用治具。   The rectangular plate-shaped body is a conductive ceramic material having a thermal expansion coefficient substantially the same as that of the hollow cathode member, or a conductive ceramic material having a thermal expansion coefficient smaller than that of the hollow cathode member. It is comprised, The jig for manufacture of the hollow cathode of Claim 1 characterized by the above-mentioned. 前記部材収容孔が、前記矩形板状体の長辺側面に沿って、一列に配設されていることを特徴とする請求項1〜3のいずれか1項に記載の中空陰極の製造用治具。   The said member accommodation hole is arrange | positioned in a line along the long side surface of the said rectangular plate-shaped object, The manufacturing process of the hollow cathode of any one of Claims 1-3 characterized by the above-mentioned. Ingredients. 前記部材収容孔が、前記矩形板状体の長辺側面に沿って、上下、複数列で配設されていることを特徴とする請求項1〜3のいずれか1項に記載の中空陰極の製造用治具。   4. The hollow cathode according to claim 1, wherein the member accommodation holes are arranged in a plurality of rows in the vertical direction along the long side surface of the rectangular plate-like body. Manufacturing jig. 前記矩形板状体の長辺側面に、一端を閉じた円筒の端部を覆うように加工した円孔を有する側面マスク部材を取り付けたことを特徴とする請求項1〜5のいずれか1項に記載の中空電極の製造用治具。   6. A side mask member having a circular hole processed so as to cover an end of a cylinder whose one end is closed is attached to a long side surface of the rectangular plate-like body. A jig for producing a hollow electrode as described in 1. 請求項1〜6のいずれか1項に記載の中空陰極の製造用治具を用いて中空陰極を製造する方法であって、
(i)一端を閉じた円筒の中空陰極部材、又は、一端を閉じた円筒の外側底部に接続用端子を備える中空陰極部材を、上記製造用治具の部材収容孔に装着し、
(ii)中空陰極部材を装着した製造用治具を、プラズマ蒸着装置のアノード側の電極上に載置し、
(iii)上記製造用治具の周囲に、炭素ラジカルを含むプラズマ雰囲気を形成して、中空陰極部材の円筒の内側表面にのみ炭素膜を成膜する、
ことを特徴とする中空陰極の製造方法。
A method for producing a hollow cathode using the hollow cathode production jig according to any one of claims 1 to 6,
(I) A cylindrical hollow cathode member with one end closed, or a hollow cathode member having a connection terminal on the outer bottom of the cylinder with one end closed, is mounted in the member receiving hole of the manufacturing jig,
(Ii) A manufacturing jig equipped with a hollow cathode member is placed on the electrode on the anode side of the plasma deposition apparatus,
(Iii) forming a plasma atmosphere containing carbon radicals around the manufacturing jig, and forming a carbon film only on the inner surface of the hollow cathode member cylinder;
A method for producing a hollow cathode, comprising:
前記中空陰極部材の円筒が、Ni、Nb、Mo、Fe、及び、それらの合金のいずれかで構成されていることを特徴とする請求項7に記載の中空電極の製造方法。   The hollow electrode manufacturing method according to claim 7, wherein the hollow cathode member cylinder is made of any one of Ni, Nb, Mo, Fe, and alloys thereof. 前記炭素膜が、ナノ構造を有する炭素膜であることを特徴とする請求項7又は8に記載の中空陰極の製造方法。   The method for producing a hollow cathode according to claim 7 or 8, wherein the carbon film is a carbon film having a nanostructure.
JP2007239941A 2007-09-14 2007-09-14 Hollow cathode manufacturing jig and manufacturing method Expired - Fee Related JP5036465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007239941A JP5036465B2 (en) 2007-09-14 2007-09-14 Hollow cathode manufacturing jig and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007239941A JP5036465B2 (en) 2007-09-14 2007-09-14 Hollow cathode manufacturing jig and manufacturing method

Publications (2)

Publication Number Publication Date
JP2009070746A JP2009070746A (en) 2009-04-02
JP5036465B2 true JP5036465B2 (en) 2012-09-26

Family

ID=40606775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007239941A Expired - Fee Related JP5036465B2 (en) 2007-09-14 2007-09-14 Hollow cathode manufacturing jig and manufacturing method

Country Status (1)

Country Link
JP (1) JP5036465B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204560A (en) * 2010-03-26 2011-10-13 Jx Nippon Mining & Metals Corp Manufacturing jig of electrode for cold-cathode tube, and manufacturing method of electrode for cold-cathode tube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190537A (en) * 2005-01-05 2006-07-20 Dialight Japan Co Ltd Cold-cathode fluorescent lamp and liquid crystal display
JP5264055B2 (en) * 2006-01-12 2013-08-14 株式会社ライフ技術研究所 Field emission chip
JP4461110B2 (en) * 2006-03-14 2010-05-12 株式会社東芝 Diamond deposition method
JP2008258045A (en) * 2007-04-06 2008-10-23 Dialight Japan Co Ltd Cup-like electrode and cold-cathode fluorescent discharge tube equipped with this cup-like electrode
CN101802967B (en) * 2007-09-14 2013-08-28 国立大学法人东北大学 Cathode body and fluorescent tube using the same

Also Published As

Publication number Publication date
JP2009070746A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US7432643B2 (en) Lighting device
CN100499017C (en) Cold cathode discharge lamp
JPWO2006022352A1 (en) Backlight for liquid crystal display device
JP4243693B2 (en) LIGHTING DEVICE AND BACKLIGHT DEVICE USING THE SAME
JP5036465B2 (en) Hollow cathode manufacturing jig and manufacturing method
US7764009B2 (en) Fluorescent lamp
JP2009516344A (en) Improvement of electrodes and electrode parts
JP2008282791A (en) Electrode for cold-cathode fluorescent lamp, and cold-cathode fluorescent lamp including it
JP4578350B2 (en) Carbon film, electron emission source and field emission type lighting lamp
JP2008060056A (en) Electrode for cold-cathode fluorescent lamp
JPH07153422A (en) Fluorescent lamp
TWI260671B (en) Cold cathode fluorescent lamp and electrode thereof
KR101257159B1 (en) Cold cathode fluorescent lamp of high efficiency and long life for illumination
JP2006190537A (en) Cold-cathode fluorescent lamp and liquid crystal display
US20080001514A1 (en) Electrodes
TWI353002B (en) A field emission device and a field emission displ
JP3906223B2 (en) Barrier type cold cathode discharge lamp
JP5773252B2 (en) Short arc type discharge lamp
JP2010225420A (en) Hot-cathode fluorescent lamp, and electrode for fluorescent lamp
JP2009021225A (en) Cold cathode discharge lamp
JP2009152096A (en) Discharge lamp
JP2008181770A (en) Cold cathode lamp
JP2006073307A (en) Cold-cathode fluorescent lamp
JP2006093162A (en) Cold cathode fluorescent lamp
JP2004327458A (en) Cold-cathode fluorescent lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees