JP2004327458A - Cold-cathode fluorescent lamp - Google Patents

Cold-cathode fluorescent lamp Download PDF

Info

Publication number
JP2004327458A
JP2004327458A JP2004246037A JP2004246037A JP2004327458A JP 2004327458 A JP2004327458 A JP 2004327458A JP 2004246037 A JP2004246037 A JP 2004246037A JP 2004246037 A JP2004246037 A JP 2004246037A JP 2004327458 A JP2004327458 A JP 2004327458A
Authority
JP
Japan
Prior art keywords
cylindrical electrode
arc tube
cathode fluorescent
fluorescent lamp
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246037A
Other languages
Japanese (ja)
Inventor
Hirobumi Yamashita
博文 山下
Haruo Yamazaki
治夫 山崎
Toshihiro Terada
年宏 寺田
Shinji Kihara
慎二 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004246037A priority Critical patent/JP2004327458A/en
Publication of JP2004327458A publication Critical patent/JP2004327458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold-cathode fluorescent lamp capable of reducing wear of mercury and realizing a longer life through restraint of sputtering by discharge, in spite of a small-diameter light-emitting tube with large lamp current. <P>SOLUTION: An inner diameter (D1) of the light-emitting tube 1 is to be within the range of 1 to 6 mm, and an interval (d) between an inner face of the light-emitting tube 1 and an outer face of a cylindrical electrode 4 is regulated within the range of 0<d≤0.2 mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、液晶ディスプレイ装置等のバックライトに使用する冷陰極蛍光ランプに関する。   The present invention relates to a cold cathode fluorescent lamp used for a backlight of a liquid crystal display device or the like.

液晶ディスプレイ装置のバックライト用光源として使用される冷陰極蛍光ランプは、ガラス管の内面に蛍光体が塗布された発光管に電極として円筒や板状の金属を設け、水銀などを封入して、放電により発光管の内部で発生した紫外線により蛍光体を励起し可視光を得るよう構成されている。   A cold cathode fluorescent lamp used as a backlight light source for a liquid crystal display device is provided with a cylindrical or plate-shaped metal as an electrode in an arc tube in which a phosphor is coated on the inner surface of a glass tube, and mercury is sealed therein. The fluorescent material is excited by ultraviolet rays generated inside the arc tube by the discharge to obtain visible light.

このような冷陰極蛍光ランプは、液晶ディスプレイ装置の多様化に伴い、小型化、細径化、高輝度化、長寿命化といった各種の検討が行われている。例えば、高出力での放電を行う際にランプ内の水銀消耗を抑制し、かつ電極の放電面積を最適化するために、金属製の筒状電極を発光管の端部に設けて長寿命化を図る冷陰極蛍光ランプが提案されている(例えば、特許文献1参照。)。   With the diversification of liquid crystal display devices, various studies have been made on such cold cathode fluorescent lamps, such as miniaturization, diameter reduction, high brightness, and long life. For example, in order to suppress the consumption of mercury in the lamp when performing high-power discharge and to optimize the discharge area of the electrode, a metal cylindrical electrode is provided at the end of the arc tube to extend the life. A cold-cathode fluorescent lamp has been proposed (see, for example, Patent Document 1).

しかしながら、上記のように構成された従来の冷陰極蛍光ランプは、ランプ電流が5mA以上と比較的に大電流で、かつ発光管の内径が1〜6mmと極めて細径の場合には、筒状電極の内面と外面の両方が放電にさらされる。そのため、放電により発生する電極スパッタ物質が増加してランプ内の水銀が消耗される、いわゆる水銀トラップ現象が助長され、冷陰極蛍光ランプの長寿命化を妨げることになる。
特開平1−151148号公報
However, the conventional cold cathode fluorescent lamp configured as described above has a cylindrical shape when the lamp current is a relatively large current of 5 mA or more and the inner diameter of the arc tube is as small as 1 to 6 mm. Both the inner and outer surfaces of the electrode are exposed to the discharge. Therefore, a so-called mercury trap phenomenon is promoted, in which mercury in the lamp is consumed due to an increase in electrode sputtered substances generated by the discharge, which hinders a long life of the cold cathode fluorescent lamp.
JP-A-1-151148

本発明は、上記問題点に鑑み、ランプ電流が大きく、発光管が細径であっても、放電によるスパッタリングを抑制して水銀の消耗を低減でき長寿命化が実現できる冷陰極蛍光ランプを提供することを目的とする。   In view of the above problems, the present invention provides a cold cathode fluorescent lamp that suppresses sputtering due to discharge, reduces mercury consumption, and achieves a longer life, even when the lamp current is large and the arc tube has a small diameter. The purpose is to do.

本発明の請求項1記載の冷陰極蛍光ランプは、密封されるとともに内面に蛍光体が塗布された発光管の端部に筒状電極を設け、放電によって前記発光管の内部で発生した紫外線で前記発光管に設けた蛍光体を励起し可視光を得る冷陰極蛍光ランプであって、前記発光管の内径(D1)が1〜6mmの範囲であり、前記発光管の内面と前記筒状電極の外面との距離(d)を0<d≦0.2mmの範囲で規制したことを特徴とする。   The cold cathode fluorescent lamp according to claim 1 of the present invention is provided with a cylindrical electrode at the end of an arc tube which is hermetically sealed and coated with a phosphor on its inner surface, and is provided with ultraviolet rays generated inside the arc tube by discharge. A cold cathode fluorescent lamp that excites a phosphor provided in the arc tube to obtain visible light, wherein an inner diameter (D1) of the arc tube is in a range of 1 to 6 mm, and an inner surface of the arc tube and the cylindrical electrode. Is characterized in that the distance (d) to the outer surface is restricted within the range of 0 <d ≦ 0.2 mm.

また、本発明の請求項2記載の冷陰極蛍光ランプは、密封されるとともに内面に蛍光体が塗布された発光管の端部に筒状電極を設け、放電によって前記発光管の内部で発生した紫外線で前記発光管に設けた蛍光体を励起し可視光を得る冷陰極蛍光ランプであって、前記発光管の内径(D1)が1〜6mmの範囲であり、前記筒状電極の外径(D2)をD1−0.4≦D2<D1mmの範囲で規制したことを特徴とする。   Further, the cold cathode fluorescent lamp according to claim 2 of the present invention is provided with a cylindrical electrode at the end of the arc tube, which is sealed and coated with a phosphor on the inner surface, and is generated inside the arc tube by discharge. A cold cathode fluorescent lamp for exciting visible light by exciting a phosphor provided on the arc tube with ultraviolet light, wherein the inner diameter (D1) of the arc tube is in the range of 1 to 6 mm, and the outer diameter of the cylindrical electrode ( D2) is regulated in a range of D1-0.4 ≦ D2 <D1 mm.

また、本発明の請求項3記載の冷陰極蛍光ランプは、請求項1もしくは2のいずれかに記載の冷陰極蛍光ランプであって、最大ランプ電流が5mA以上であることを特徴とする。   A cold cathode fluorescent lamp according to a third aspect of the present invention is the cold cathode fluorescent lamp according to any one of the first and second aspects, wherein the maximum lamp current is 5 mA or more.

また、本発明の請求項4記載の冷陰極蛍光ランプは、請求項1ないし3のいずれかに記載の冷陰極蛍光ランプであって、前記筒状電極の内面と外面とを異なる材料で形成し、前記外面を形成する材料の仕事関数を前記内面を形成する材料の仕事関数よりも大きくしたことを特徴とする。   A cold cathode fluorescent lamp according to claim 4 of the present invention is the cold cathode fluorescent lamp according to any one of claims 1 to 3, wherein the inner surface and the outer surface of the cylindrical electrode are formed of different materials. The work function of the material forming the outer surface is made larger than the work function of the material forming the inner surface.

また、本発明の請求項5記載の冷陰極蛍光ランプは、請求項1ないし4のいずれかに記載の冷陰極蛍光ランプであって、前記筒状電極の内部に、前記筒状電極の内面を形成する材料の仕事関数よりも小さい仕事関数の材料を含む電子放射物質を設けたことを特徴とする。   A cold cathode fluorescent lamp according to a fifth aspect of the present invention is the cold cathode fluorescent lamp according to any one of the first to fourth aspects, wherein an inner surface of the cylindrical electrode is provided inside the cylindrical electrode. An electron-emitting substance including a material having a work function smaller than the work function of the material to be formed is provided.

また、本発明の請求項6記載の冷陰極蛍光ランプは、請求項1ないし5のいずれかに記載の冷陰極蛍光ランプであって、前記筒状電極の外面に前記発光管の内面と当接する凸部を設けたことを特徴とする。   A cold cathode fluorescent lamp according to a sixth aspect of the present invention is the cold cathode fluorescent lamp according to any one of the first to fifth aspects, wherein an outer surface of the cylindrical electrode contacts an inner surface of the arc tube. It is characterized in that a projection is provided.

本発明によれば、大電流でかつ細径の発光管であっても、電極の過剰なスパッタリングを抑制でき、水銀の消耗速度を抑制して冷陰極蛍光ランプの長寿命化が図れる。特に、発光管の内径(D1)が1〜6mmと細径で、最大ランプ電流が5mA以上と大きい場合でも、筒状電極の外径(D2)をD1−0.4≦D2<D1mmの範囲とすることで、放電スパッタの増加による水銀消耗を抑制でき、電極の消耗を低減して長寿命化が図れ、より一層の実用上の改良効果が得られる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a large-current and small-diameter arc tube, excessive sputtering of an electrode can be suppressed, the consumption rate of mercury can be suppressed, and the life of a cold cathode fluorescent lamp can be extended. In particular, even when the inner diameter (D1) of the arc tube is as small as 1 to 6 mm and the maximum lamp current is as large as 5 mA or more, the outer diameter (D2) of the cylindrical electrode is in the range of D1−0.4 ≦ D2 <D1 mm. By doing so, it is possible to suppress the consumption of mercury due to the increase in discharge sputtering, to reduce the consumption of the electrodes, to extend the life, and to obtain a further practical improvement effect.

以下、本発明の各実施の形態を図1〜図4を用いて説明する。
(実施の形態1)
図1は、本実施の形態1における冷陰極蛍光ランプを示す。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(Embodiment 1)
FIG. 1 shows a cold cathode fluorescent lamp according to the first embodiment.

図1において、ガラス管2の内面に蛍光体3が被着された発光管1の端部には、電極支持リード5を介して導電性の筒状電極4が設けられ、発光管1の内部には適切な量の水銀と希ガスとが封入され密封されている。電極支持リード5を介して筒状電極4に電流が供給されると、発光管1の内部で放電が生じ、この放電により発生した紫外線により蛍光体3が励起され可視光が得られる。また、図1において、6は筒状電極4と電極支持リード5との接続点である。   In FIG. 1, a conductive tubular electrode 4 is provided via an electrode support lead 5 at an end of a light emitting tube 1 in which a phosphor 3 is attached to an inner surface of a glass tube 2. Is sealed with an appropriate amount of mercury and a rare gas. When a current is supplied to the cylindrical electrode 4 via the electrode support lead 5, a discharge is generated inside the arc tube 1, and the ultraviolet light generated by the discharge excites the phosphor 3 to obtain visible light. In FIG. 1, reference numeral 6 denotes a connection point between the cylindrical electrode 4 and the electrode support lead 5.

上記のように構成された冷陰極蛍光ランプにおいて、本実施の形態1では、点灯時にランプ内の水銀が電極スパッタ物質による水銀トラップ現象により枯渇しないよう発光管1の内面と筒状電極4の外面との距離dを規制している。具体的には、発光管1の内径D1が1〜6mmと細径で、点灯中のランプ電流が5mA以上と比較的に大電流である場合でも過剰なスパッタを抑制して安定した点灯が行えるよう、筒状電極4の外径D2を下記(1)式のように規制している。なお、ここでいう発光管1の内径D1とは、ガラス管2の内径に相当する。   In the cold cathode fluorescent lamp configured as described above, in the first embodiment, the inner surface of the arc tube 1 and the outer surface of the cylindrical electrode 4 so that the mercury in the lamp is not depleted by the mercury trapping phenomenon due to the electrode sputtered substance at the time of lighting. Is restricted. Specifically, even when the inner diameter D1 of the arc tube 1 is as small as 1 to 6 mm and the lamp current during lighting is a relatively large current of 5 mA or more, excessive sputtering is suppressed and stable lighting can be performed. Thus, the outer diameter D2 of the cylindrical electrode 4 is regulated as in the following equation (1). The inner diameter D1 of the arc tube 1 here corresponds to the inner diameter of the glass tube 2.

Figure 2004327458
このような構成とすると、点灯中の放電が筒状電極4の外側に移行しにくくなり、過剰のスパッタリングを抑制して水銀の消耗速度を抑えることができ、冷陰極蛍光ランプの長寿命化が図れる。
Figure 2004327458
With such a configuration, it is difficult for the discharge during lighting to move to the outside of the cylindrical electrode 4, it is possible to suppress excessive sputtering and suppress the consumption rate of mercury, and to extend the life of the cold cathode fluorescent lamp. I can do it.

さらに、発光管1の内面と筒状電極4の外面との間隙距離dが下記(2)式を満たすようにすると、点灯中の適切な放電維持が行え、特に、スパッタ量が常温に比して大きくなる低温の使用環境下(0°C以下)においても発光管1の内面と筒状電極4の外面との間に形成された隙間への放電を抑制できるため、過剰なスパッタによる水銀の短期間での大量消耗を抑制でき、早期の電極消耗などによる短寿命化を抑制でき、長寿命化が図れる。   Further, when the gap distance d between the inner surface of the arc tube 1 and the outer surface of the cylindrical electrode 4 satisfies the following formula (2), appropriate discharge maintenance during lighting can be performed, and in particular, the amount of spatter is lower than that at room temperature. Even in a low-temperature use environment (0 ° C. or less), the discharge to the gap formed between the inner surface of the arc tube 1 and the outer surface of the cylindrical electrode 4 can be suppressed. It is possible to suppress a large amount of consumption in a short period of time, and it is possible to suppress a short life due to early electrode consumption and the like, and to achieve a long life.

Figure 2004327458
(実施の形態2)
図2は、本実施の形態2における冷陰極蛍光ランプを示す。なお、実施の形態1で説明した部材に対応する部材には同一の符号を付して、説明を省略する。
Figure 2004327458
(Embodiment 2)
FIG. 2 shows a cold cathode fluorescent lamp according to the second embodiment. The members corresponding to those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

本実施の形態2における冷陰極蛍光ランプは、筒状電極4の外面と内面を異なる材料で形成した点で上記の実施の形態1と異なる。
詳細には、筒状電極4は、外側と内側とが異なる材料にて形成された2層構造となっており、外層4a(外面)を形成する材料の仕事関数が内層4b(内面)を形成する材料の仕事関数よりも大きくなるよう形成されている。このような材料の組み合わせとしては、例えば、筒状電極4の外層4aがニッケルで形成され、内層4bがチタン、ニオブ、タンタルなどの材料で構成されたものが挙げられる。
The cold cathode fluorescent lamp according to the second embodiment is different from the first embodiment in that the outer surface and the inner surface of the cylindrical electrode 4 are formed of different materials.
Specifically, the cylindrical electrode 4 has a two-layer structure in which the outside and the inside are formed of different materials, and the work function of the material forming the outer layer 4a (the outer surface) forms the inner layer 4b (the inner surface). It is formed to be larger than the work function of the material to be formed. Examples of such a combination of materials include a material in which the outer layer 4a of the cylindrical electrode 4 is formed of nickel and the inner layer 4b is formed of a material such as titanium, niobium, or tantalum.

上記のように構成された筒状電極4を用いると、筒状電極4の外側での放電を抑制でき、筒状電極4の外側での余分な放電スパッタによる水銀消耗や、電極の早期消耗を抑制できるので、冷陰極蛍光ランプの長寿命化が図れる。   By using the cylindrical electrode 4 configured as described above, discharge outside the cylindrical electrode 4 can be suppressed, and mercury consumption due to extra discharge spatter outside the cylindrical electrode 4 and early consumption of the electrode can be reduced. Since it can be suppressed, the life of the cold cathode fluorescent lamp can be extended.

なお、ここでは、外層4aを筒状電極4の外側の全面に設けたが、これに限定されるものではなく、この仕事関数の大きい材料で形成された外層4aは、筒状電極4の開口部側の外周面の約1/4以上となるように形成されていれば同様の効果が得られる。   Here, the outer layer 4 a is provided on the entire outer surface of the cylindrical electrode 4. However, the present invention is not limited to this, and the outer layer 4 a formed of a material having a large work function The same effect can be obtained if it is formed so as to be about 1/4 or more of the outer peripheral surface on the part side.

また、外層4aと内層4bの各層の厚みは特に限定されるものではなく、例えば、内層4bが電極の基体金属であり、外層4aが基体金属をコートする程度のものであっても良い。   The thickness of each of the outer layer 4a and the inner layer 4b is not particularly limited. For example, the inner layer 4b may be a base metal of the electrode, and the outer layer 4a may be such that the outer layer 4a coats the base metal.

また、上記説明では、筒状電極4を外層4aと内層4bとからなる二層構造としたが、これに限定されるものではなく、筒状電極4の外側が内側よりも仕事関数の高い材料にて形成されていれば、2層以上の構成となっていてもよい。   In the above description, the cylindrical electrode 4 has a two-layer structure including the outer layer 4a and the inner layer 4b. However, the present invention is not limited to this, and a material having a higher work function on the outside of the cylindrical electrode 4 than on the inside. , It may have a configuration of two or more layers.

(実施の形態3)
図3は、本実施の形態3における冷陰極蛍光ランプを示す。なお、実施の形態1で説明した部材に対応する部材には同一の符号を付して、説明を省略する。
(Embodiment 3)
FIG. 3 shows a cold cathode fluorescent lamp according to the third embodiment. The members corresponding to those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

上記の実施の形態2では、筒状電極4の外面と内面を異なる材料で形成したが、本実施の形態3では、従来の筒状電極4の内側に筒状電極4の内面よりも仕事関数の低い材料を設けている。このような構成によっても、上記と同様に、筒状電極4の外側での放電を抑制でき、筒状電極4の外側での余分な放電スパッタによる水銀消耗や、電極の早期消耗を抑制できるので、冷陰極蛍光ランプの長寿命化が図れる。   In the second embodiment, the outer surface and the inner surface of the cylindrical electrode 4 are formed of different materials. However, in the third embodiment, the work function is larger inside the conventional cylindrical electrode 4 than the inner surface of the cylindrical electrode 4. Low material. With such a configuration, similarly to the above, discharge outside the cylindrical electrode 4 can be suppressed, and mercury consumption due to extra discharge sputtering outside the cylindrical electrode 4 and early consumption of the electrode can be suppressed. The life of the cold cathode fluorescent lamp can be extended.

具体的には、筒状電極4の内部に、筒状電極4の内面を形成する材料の仕事関数よりも仕事関数の小さい材料を含む電子放射物質を設ける。例えば、ニッケルにて形成された筒状電極4の内側に、このニッケルよりも仕事関数の小さいバリウムを含む酸化物より成る電子放射物質7を被着した構成とする。電子放射物質7としては、Cs、Li、Mgといったアルカリ金属またはアルカリ土類金属の酸化物や合金などが挙げられる。   Specifically, an electron-emitting substance including a material having a work function smaller than the work function of the material forming the inner surface of the cylindrical electrode 4 is provided inside the cylindrical electrode 4. For example, an electron emitting material 7 made of an oxide containing barium having a work function smaller than that of nickel is applied to the inside of the cylindrical electrode 4 made of nickel. Examples of the electron emitting material 7 include oxides and alloys of alkali metals or alkaline earth metals such as Cs, Li, and Mg.

(実施の形態4)
図4は、本実施の形態4における冷陰極蛍光ランプを示す。なお、実施の形態1で説明した部材に対応する部材には同一の符号を付して、説明を省略する。本実施の形態4における冷陰極蛍光ランプは、筒状電極4の外面に発光管1の内面と当接する凸部8を設けた点で上記の実施の形態1と異なる。
(Embodiment 4)
FIG. 4 shows a cold cathode fluorescent lamp according to the fourth embodiment. The members corresponding to the members described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The cold cathode fluorescent lamp according to the fourth embodiment is different from the above-described first embodiment in that a convex portion 8 that contacts the inner surface of the arc tube 1 is provided on the outer surface of the cylindrical electrode 4.

具体的には、図4(a)、(b)に示すように、図1と同様に構成された冷陰極蛍光ランプにおいて、筒状電極4の外面に、発光管1の内面と当接して筒状電極4の発光管1への装着位置を位置決めする凸部8を周方向に等間隔で複数設ける。   Specifically, as shown in FIGS. 4A and 4B, in the cold cathode fluorescent lamp configured as in FIG. 1, the outer surface of the cylindrical electrode 4 is brought into contact with the inner surface of the arc tube 1. A plurality of protrusions 8 for positioning the mounting position of the cylindrical electrode 4 on the arc tube 1 are provided at equal intervals in the circumferential direction.

このような凸部8を設けると、発光管1の端部の内壁に対して筒状電極4が偏ったりあるいは傾斜したりして発光管1の内壁に接触するのを防止できるとともに、筒状電極4の外面と発光管1の内面との間隙を一定距離に保つことができる。また、管内径が1〜6mmの超細径の冷陰極蛍光ランプであっても、筒状電極4を発光管1の端部に封着する場合の筒状電極4と発光管1の内壁との接触を防止でき、発光管1の外壁の局所的な温度上昇を抑制できる。   By providing such a convex portion 8, it is possible to prevent the cylindrical electrode 4 from being biased or inclined with respect to the inner wall at the end of the arc tube 1 and coming into contact with the inner wall of the arc tube 1. The gap between the outer surface of the electrode 4 and the inner surface of the arc tube 1 can be kept at a constant distance. Even in the case of an ultra-small cold-cathode fluorescent lamp having an inner diameter of 1 to 6 mm, the cylindrical electrode 4 and the inner wall of the arc tube 1 are not sealed when the cylindrical electrode 4 is sealed to the end of the arc tube 1. Can be prevented, and a local rise in temperature of the outer wall of the arc tube 1 can be suppressed.

なお、上記説明では実施の形態1における冷陰極蛍光ランプを例に挙げて説明したが、これに限定されるものではなく、図2、図3に示す冷陰極蛍光ランプにも適用できる。また、図4では4個の凸部8を設けた例を挙げて説明したが、凸部8の数は特に限定されるものではなく、また環状の凸部としても同様の効果が得られる。また、凸部8を形成する材質としては、放電に影響を及ぼさない材料が好適に使用でき、例えば、絶縁性のセラミックなどが適用できる。   In the above description, the cold cathode fluorescent lamp in the first embodiment has been described as an example. However, the present invention is not limited to this, and can be applied to the cold cathode fluorescent lamps shown in FIGS. 2 and 3. In FIG. 4, an example in which four convex portions 8 are provided has been described. However, the number of the convex portions 8 is not particularly limited, and the same effect can be obtained by using an annular convex portion. Further, as a material for forming the convex portion 8, a material that does not affect the discharge can be suitably used, and for example, an insulating ceramic or the like can be used.

以下に、上記各実施の形態における具体例を示す。
(実施例1)
図1に示す冷陰極蛍光ランプを、以下の手順にて作成した。
Hereinafter, specific examples in the above embodiments will be described.
(Example 1)
The cold cathode fluorescent lamp shown in FIG. 1 was produced according to the following procedure.

ホウケイ酸ガラスよりなる内径D1が1.6mmのガラス管2の内面に、色温度5000Kの三波長域発光蛍光体3を所要量だけ被着して発光管1を形成し、発光管1の端部には、ニッケル材料にて形成された外径D2が1.2mm、内径0.8mm、長さ5mmの有底の筒状電極4を設けた。   An inner surface of a glass tube 2 made of borosilicate glass and having an inner diameter D1 of 1.6 mm is coated with a required amount of a three-wavelength region light-emitting phosphor 3 having a color temperature of 5000 K to form an arc tube 1. The bottom was provided with a bottomed cylindrical electrode 4 having an outer diameter D2 of 1.2 mm, an inner diameter of 0.8 mm, and a length of 5 mm formed of a nickel material.

発光管1に、水銀を200μg、アルゴン−ネオン混合ガスを8kPa封入して、定格ランプ電流8mA、全長300mmの冷陰極ランプを作成し、試作ランプAとした。また、筒状電極4の外径D2を1.0mmとした以外は試作ランプAと同様にして作成したものを試作ランプBとした。   200 μg of mercury and 8 kPa of a mixed gas of argon and neon were filled in the arc tube 1, and a cold cathode lamp having a rated lamp current of 8 mA and a total length of 300 mm was prepared. A prototype lamp B was prepared in the same manner as the prototype lamp A except that the outer diameter D2 of the cylindrical electrode 4 was 1.0 mm.

試作ランプAと試作ランプBとを用い、点灯周波数60kHzの高周波インバータ点灯回路を用い、常温の周囲温度環境下で、ランプ電流を6mAとして点灯実験を行った。
試作ランプAおよびBに用いた筒状電極4は、筒状電極4の内面だけで放電に必要な電極面積を確保できるものではないが、試作ランプAは、発光管1の内面と筒状電極4の外面との距離を本発明の範囲としたため、筒状電極4の外面での放電を抑制でき、放電が筒状電極4の内面を主体に行われ、ホロー構造によるほぼ完全なホロー効果が得られた。このように筒状電極4の内面で放電が行われると、発生したスパッタ物質は再度、電極の内面に付着して再利用されて電極スパッタの発生が抑制されるため、水銀の消耗量を後述の試作ランプBの約10分の1程度にまで抑えることができ、目標とする寿命時間である30,000時間を支障なく満足できた。
A lighting experiment was performed using the prototype lamp A and the prototype lamp B, using a high-frequency inverter lighting circuit having a lighting frequency of 60 kHz, and a lamp current of 6 mA under a normal ambient temperature environment.
The cylindrical electrode 4 used for the prototype lamps A and B cannot secure the electrode area required for discharge only by the inner surface of the cylindrical electrode 4, but the prototype lamp A has the inner surface of the arc tube 1 and the cylindrical electrode. Since the distance from the outer surface of the cylindrical electrode 4 to the outer surface of the cylindrical electrode 4 is within the range of the present invention, the discharge on the outer surface of the cylindrical electrode 4 can be suppressed, and the discharge is mainly performed on the inner surface of the cylindrical electrode 4. Obtained. When the discharge is performed on the inner surface of the cylindrical electrode 4 as described above, the generated sputtered substance adheres to the inner surface of the electrode again and is reused to suppress the generation of electrode spatter. Was reduced to about 1/10 of the prototype lamp B, and the target life time of 30,000 hours was satisfied without any trouble.

なお、ホロー効果とは、電極を円筒状にしたときに電極より放出された電子が向かい側の面に当ってこれを加熱し、再び元の面近くに反射して帰ることにより電子放出率を向上させるものであり、このような効果が得られる電極構造をホロー構造と言う。   The hollow effect means that when the electrode is made cylindrical, the electrons emitted from the electrode hit the opposite surface, heat it, reflect it back near the original surface and improve the electron emission rate The electrode structure that provides such an effect is called a hollow structure.

一方、試作ランプBは、発光管1の内面と筒状電極4の外面との間隔が本発明の範囲よりも広いため、筒状電極4の外面での放電を抑制できず、完全なホロー効果が得られず、目標とする寿命時間である30,000時間に達する前の15,000時間でランプ内の水銀が電極スパッタ物質による水銀トラップ現象により完全に枯渇し、ランプ輝度が初期輝度の50%以下まで低下した。   On the other hand, in the prototype lamp B, since the distance between the inner surface of the arc tube 1 and the outer surface of the cylindrical electrode 4 is wider than the range of the present invention, discharge on the outer surface of the cylindrical electrode 4 cannot be suppressed. And the mercury in the lamp was completely depleted by 15,000 hours before reaching the target life time of 30,000 hours due to the mercury trap phenomenon by the electrode sputtered substance, and the lamp luminance was reduced to 50 times the initial luminance. %.

この実験結果を踏まえて、発光管1の内径D1と筒状電極4の外径D2を種々変えて実験したところ、発光管1の内径D1が1〜6mmの範囲にある場合には、筒状電極4の外径D2が下記(1)式を満たすときに放電が筒状電極4の外周面に漏れずホロー電極としての効果が十分に得られることが確認された。また、筒状電極4はガラス管2の内面に接触しないので、電極部に対応するガラス管2の外面温度が高くならず、実使用に耐え得ることが明らかになった。   Based on the results of this experiment, experiments were conducted with various changes in the inner diameter D1 of the arc tube 1 and the outer diameter D2 of the cylindrical electrode 4. When the inner diameter D1 of the arc tube 1 was in the range of 1 to 6 mm, the cylindrical shape was changed. It has been confirmed that when the outer diameter D2 of the electrode 4 satisfies the following formula (1), discharge does not leak to the outer peripheral surface of the cylindrical electrode 4 and a sufficient effect as a hollow electrode is obtained. Further, since the cylindrical electrode 4 does not contact the inner surface of the glass tube 2, it has been clarified that the temperature of the outer surface of the glass tube 2 corresponding to the electrode portion does not increase and can be used in actual use.

Figure 2004327458
また、筒状電極4の外径D2がD1−0.4mm以下であると、放電が筒状電極4の外周面に漏れて電極スパッタ物質が増加し、水銀の消耗量が増加するため、目標寿命を達成できなかった。また、ガラス管2の内径D1と筒状電極4の外径D2とが等しいものは、筒状電極3がガラス管2の内面に接触するため、電極部に対応するガラス管2の外面温度が高くなり、実使用に耐え得るものではなかった。
Figure 2004327458
If the outer diameter D2 of the cylindrical electrode 4 is less than D1-0.4 mm, the discharge leaks to the outer peripheral surface of the cylindrical electrode 4 to increase the amount of electrode sputtered material and increase the consumption of mercury. Life could not be achieved. In the case where the inner diameter D1 of the glass tube 2 is equal to the outer diameter D2 of the cylindrical electrode 4, since the cylindrical electrode 3 contacts the inner surface of the glass tube 2, the outer surface temperature of the glass tube 2 corresponding to the electrode portion is lower. It was not high enough for practical use.

(実施例2)
次に、発光管1の内径D1が1〜6mmと細径で、正弦波出力波形のインバータでランプ電流が5mA以上の冷陰極蛍光ランプについて、筒状電極4の最適設計条件を求めるために以下の実験を行った。
(Example 2)
Next, in order to determine the optimal design conditions of the cylindrical electrode 4 for a cold cathode fluorescent lamp in which the inner diameter D1 of the arc tube 1 is as small as 1 to 6 mm and the lamp current is 5 mA or more using a sine wave output waveform inverter. Was conducted.

まず、発光管1を形成するガラス管2の内径D1が1.4mm、筒状電極4の外径D2が1.0mm、内径が0.8mm、長さが3mmの冷陰極蛍光ランプにおいて、発光管1の内面と筒状電極4の外面との間隙距離dを0.2mmで一定として試作ランプCを作成した。   First, in a cold cathode fluorescent lamp in which the inner diameter D1 of the glass tube 2 forming the arc tube 1 is 1.4 mm, the outer diameter D2 of the cylindrical electrode 4 is 1.0 mm, the inner diameter is 0.8 mm, and the length is 3 mm. A trial lamp C was prepared with a constant gap distance d between the inner surface of the tube 1 and the outer surface of the cylindrical electrode 4 of 0.2 mm.

また、筒状電極4を傾かせて発光管1の内面と筒状電極4の外面との間隙距離dを0.35〜0.05mmとした試作ランプDを作成した。
得られた試作ランプCと試作ランプDを用いて、周囲温度0℃の使用環境下で点灯実験を行った。
In addition, a trial lamp D was prepared in which the cylindrical electrode 4 was inclined so that the gap distance d between the inner surface of the arc tube 1 and the outer surface of the cylindrical electrode 4 was 0.35 to 0.05 mm.
Using the obtained prototype lamp C and prototype lamp D, a lighting experiment was performed in a use environment at an ambient temperature of 0 ° C.

試作ランプCは、水銀の消耗量において実用上の支障はなかった。一方、試作ランプDは、水銀の消耗量は増加したものの目標寿命は達成できた。しかし、発光管1の内面と筒状電極4の外面との間隙が広い側に放電の漏れが集中して、発光管1の外面の温度が高くなった。   The prototype lamp C had no practical problem in mercury consumption. On the other hand, in the prototype lamp D, the target life was able to be achieved although the consumption of mercury increased. However, discharge leakage was concentrated on the side where the gap between the inner surface of the arc tube 1 and the outer surface of the cylindrical electrode 4 was wide, and the temperature of the outer surface of the arc tube 1 was increased.

この結果から、発光管1の内面と筒状電極4の外面との間隙距離dが下記(2)式を満たすときに、水銀の消耗量の抑制が十分であるとともに、間隙の広い側への放電の漏れ集中を抑制して発光管1の外面の温度上昇を抑制する実用上の改良効果が得られることが明らかとなった。   From this result, when the gap distance d between the inner surface of the arc tube 1 and the outer surface of the cylindrical electrode 4 satisfies the following expression (2), the amount of mercury consumed can be sufficiently suppressed and the gap toward the wide side of the gap can be reduced. It has been clarified that a practical improvement effect of suppressing the concentration of discharge leakage and suppressing the temperature rise on the outer surface of the arc tube 1 can be obtained.

Figure 2004327458
(実施例3)
図2に示すように、筒状電極4の外層4aが内層4bに比べて仕事関数が大きくなるよう、外層4aがニッケルにて形成され、内層4bがニッケルよりも仕事関数の小さいチタン、タンタル、ニオブもしくはそれらの合金等の材料にて形成された筒状電極4を作成した。そしてそれ以外は試作ランプAと同様にして、試作ランプEを作成した。また、試作ランプEの筒状電極4の外層4aと内層4bの材料を逆にした筒状電極4を有する試作ランプFを作成した。
Figure 2004327458
(Example 3)
As shown in FIG. 2, the outer layer 4a of the cylindrical electrode 4 is formed of nickel so that the outer layer 4a has a higher work function than the inner layer 4b, and the inner layer 4b is formed of titanium, tantalum, and titanium having a smaller work function than nickel. A cylindrical electrode 4 made of a material such as niobium or an alloy thereof was prepared. Otherwise, a prototype lamp E was prepared in the same manner as the prototype lamp A. Further, a trial lamp F having a tubular electrode 4 in which the material of the outer layer 4a and the inner layer 4b of the tubular electrode 4 of the trial lamp E was reversed was prepared.

試作ランプEと試作ランプFを用いて、点灯周波数60kHzの高周波インバータ点灯回路を用い、周囲温度0℃の環境下で、ランプ電流を6mAとして点灯実験を行った。
試作ランプEは、放電が仕事関数の低い筒状電極4の内面に主に起こり、外面への放電漏れが低減できるため電極スパッタ量が抑制され、水銀の消耗量が減少した。一方、試作ランプFは、放電が仕事関数の低い筒状電極の外面にだけ発生し、ホロー効果による内面への放電入り込みが少なくなって電極スパッタ量が増加し、水銀の消耗量も増加した。
Using the prototype lamp E and the prototype lamp F, a lighting experiment was performed using a high-frequency inverter lighting circuit having a lighting frequency of 60 kHz and an ambient temperature of 0 ° C. and a lamp current of 6 mA.
In the prototype lamp E, discharge mainly occurred on the inner surface of the cylindrical electrode 4 having a low work function, and discharge leakage to the outer surface could be reduced, so that the amount of electrode spatter was suppressed and the consumption of mercury was reduced. On the other hand, in the prototype lamp F, discharge was generated only on the outer surface of the cylindrical electrode having a low work function, and the amount of discharge from the inner surface due to the hollow effect was reduced, the amount of electrode spatter increased, and the amount of mercury consumed increased.

このように筒状電極4の外層4aを内層4bに比べて仕事関数の大きな材料で形成すると、上記実施例1で作成した試作ランプAよりも更に実用上の利点が大きいことが明らかになった。   Thus, when the outer layer 4a of the cylindrical electrode 4 is formed of a material having a larger work function than the inner layer 4b, it is clear that the practical advantage is larger than that of the prototype lamp A manufactured in the first embodiment. .

なお、この実施例3では、筒状電極の外側全面を外側材料で形成した例を挙げて説明したが、筒状電極の開口部側の外周面の約1/4以上が外側材料で形成されていれば同様の効果が得られることが確認された。   In the third embodiment, an example in which the entire outer surface of the cylindrical electrode is formed of the outer material is described. However, about 1 / or more of the outer peripheral surface of the cylindrical electrode on the opening side is formed of the outer material. It was confirmed that a similar effect could be obtained if it was performed.

(実施例4)
実施例1で作成した試作ランプAのニッケルからなる筒状電極4の内部に、図3に示すように、ニッケルに比べて仕事関数の低い物質を含む電子放射物質としてバリウム酸化物を含有する電子放射物質を設けて試作ランプGを作成した。
(Example 4)
As shown in FIG. 3, an electron containing barium oxide as an electron emitting material containing a material having a lower work function than nickel is provided inside a cylindrical electrode 4 made of nickel of the prototype lamp A made in Example 1. Prototype lamp G was prepared by providing a radiation material.

この試作ランプGを用いて上記と同様の点灯実験を行ったところ、放電は筒状電極4の内面だけに入って外面への放電漏れがなく、電極スパッタ量が抑制され、水銀の消耗量を減少できるという実用上の改善効果が確認された。   When a lighting experiment similar to the above was conducted using this prototype lamp G, discharge entered only the inner surface of the cylindrical electrode 4 and there was no discharge leakage to the outer surface, the amount of electrode spatter was suppressed, and the consumption of mercury was reduced. A practical improvement effect of being able to reduce was confirmed.

(実施例5)
内径D1が1〜6mmと細径のガラス管2を用いた発光管1の端部に筒状電極4を封着する際に、筒状電極4が傾斜して固定されないようにする手段を検討した。
(Example 5)
When sealing the cylindrical electrode 4 to the end of the arc tube 1 using the glass tube 2 having an inner diameter D1 of 1 to 6 mm, a means for preventing the cylindrical electrode 4 from being inclined and fixed is studied. did.

実施例1で作成した試作ランプAの筒状電極4の先端付近の外面に、図4に示すように、周方向に等間隔に配置され発光管1の内面と当接するセラミック製の凸部8を2箇所に設けた。   As shown in FIG. 4, a ceramic projection 8 which is arranged at equal intervals in the circumferential direction and is in contact with the inner surface of the arc tube 1 on the outer surface near the tip of the cylindrical electrode 4 of the prototype lamp A prepared in Example 1. Were provided in two places.

この筒状電極4を実施例1と同様の発光管1に装着して試作ランプHとした。試作ランプHは、筒状電極4が適正な位置に配置されてガラス管2の端部に封着され、また、セラミックは熱伝導率が低いので、点灯中の電極とガラスが接触した部分のガラス外面の局所温度上昇が無く、また水銀の消耗による寿命低下も発生しなかった。また、この凸部8は2箇所以上設けられていれば、筒状電極4の発光管1への安定した装着が実現できることが確認された。   This cylindrical electrode 4 was mounted on the same arc tube 1 as in Example 1 to obtain a prototype lamp H. In the prototype lamp H, the cylindrical electrode 4 is arranged at an appropriate position and sealed at the end of the glass tube 2. Since ceramic has a low thermal conductivity, the portion where the electrode and the glass in contact with the electrode being lit come into contact with each other. There was no local temperature rise on the outer surface of the glass, and no reduction in life due to consumption of mercury occurred. In addition, it was confirmed that stable attachment of the cylindrical electrode 4 to the arc tube 1 can be realized if the protrusions 8 are provided at two or more places.

なお、上記各実施の形態および各実施例では、筒状電極4として円筒状の有底のものを用いた例を挙げて説明したが、本発明はこれに限定されるものではなく、無底のものでも適用でき、また、筒状電極4の外側が絶縁物質で構成されているものや、筒状電極4の外側に酸化された皮膜が形成されたものなどにも適用できる。   In each of the above-described embodiments and examples, an example is described in which a cylindrical bottomed electrode is used as the cylindrical electrode 4. However, the present invention is not limited to this. Also, the present invention can be applied to a case where the outside of the cylindrical electrode 4 is made of an insulating material, a case where an oxidized film is formed on the outside of the cylindrical electrode 4, and the like.

また、冷陰極蛍光ランプの寸法、設計、材料、形、定格等は上記のものに限定されるものではない。   Further, the size, design, material, shape, rating and the like of the cold cathode fluorescent lamp are not limited to those described above.

本発明にかかる冷陰極蛍光ランプは放電によるスパッタリングを抑制して水銀の消耗を低減でき長寿命化が実現でき、発光管が細径でランプ電流が大きい冷陰極蛍光ランプを使用する液晶パネル等に有用である。   The cold-cathode fluorescent lamp according to the present invention suppresses sputtering by electric discharge, reduces consumption of mercury, can achieve a long life, and is used for a liquid crystal panel or the like using a cold-cathode fluorescent lamp having a small arc tube and a large lamp current. Useful.

本発明の実施の形態1における冷陰極蛍光ランプの要部を示す側断面図FIG. 2 is a side cross-sectional view illustrating a main part of the cold cathode fluorescent lamp according to the first embodiment of the present invention. 本発明の実施の形態2における冷陰極蛍光ランプの要部を示す側断面図Side sectional view showing a main part of a cold cathode fluorescent lamp according to Embodiment 2 of the present invention. 本発明の実施の形態3における冷陰極蛍光ランプの要部を示す側断面図Side sectional view showing a main part of a cold cathode fluorescent lamp according to Embodiment 3 of the present invention. 本発明の実施の形態4における冷陰極蛍光ランプの要部を示す側断面図とA−A´線に沿う拡大縦断面図4 is a side sectional view showing an essential part of a cold cathode fluorescent lamp according to a fourth embodiment of the present invention, and an enlarged longitudinal sectional view taken along line AA ′.

符号の説明Explanation of reference numerals

1 発光管
2 ガラス管
3 蛍光体
4 筒状電極
4a 外層
4b 内層
5 電極支持リード
6 筒状電極と電極支持リードの接続点
7 電子放射物質
8 凸部
DESCRIPTION OF SYMBOLS 1 Arc tube 2 Glass tube 3 Phosphor 4 Cylindrical electrode 4a Outer layer 4b Inner layer 5 Electrode support lead 6 Connection point between cylindrical electrode and electrode support lead 7 Electron emitting material 8 Convex part

Claims (6)

密封されるとともに内面に蛍光体が塗布された発光管の端部に筒状電極を設け、放電によって前記発光管の内部で発生した紫外線で前記発光管に設けた蛍光体を励起し可視光を得る冷陰極蛍光ランプであって、前記発光管の内径(D1)が1〜6mmの範囲であり、前記発光管の内面と前記筒状電極の外面との距離(d)を0<d≦0.2mmの範囲で規制したことを特徴とする冷陰極蛍光ランプ。   A tubular electrode is provided at the end of the arc tube, which is sealed and coated with a phosphor on the inner surface, and excites the phosphor provided on the arc tube with ultraviolet light generated inside the arc tube by discharge to generate visible light. The inner diameter (D1) of the arc tube is in the range of 1 to 6 mm, and the distance (d) between the inner surface of the arc tube and the outer surface of the cylindrical electrode is 0 <d ≦ 0. A cold-cathode fluorescent lamp characterized by being regulated within a range of 2 mm. 密封されるとともに内面に蛍光体が塗布された発光管の端部に筒状電極を設け、放電によって前記発光管の内部で発生した紫外線で前記発光管に設けた蛍光体を励起し可視光を得る冷陰極蛍光ランプであって、前記発光管の内径(D1)が1〜6mmの範囲であり、前記筒状電極の外径(D2)をD1−0.4≦D2<D1mmの範囲で規制したことを特徴とする冷陰極蛍光ランプ。   A tubular electrode is provided at the end of the arc tube, which is sealed and coated with a phosphor on the inner surface, and excites the phosphor provided on the arc tube with ultraviolet light generated inside the arc tube by discharge to generate visible light. A cold cathode fluorescent lamp to be obtained, wherein the inner diameter (D1) of the arc tube is in the range of 1 to 6 mm, and the outer diameter (D2) of the cylindrical electrode is regulated in the range of D1-0.4 ≦ D2 <D1 mm. A cold cathode fluorescent lamp characterized in that: 最大ランプ電流が5mA以上であることを特徴とする請求項1もしくは2のいずれかに記載の冷陰極蛍光ランプ。   3. The cold cathode fluorescent lamp according to claim 1, wherein a maximum lamp current is 5 mA or more. 前記筒状電極の内面と外面とを異なる材料で形成し、前記外面を形成する材料の仕事関数を前記内面を形成する材料の仕事関数よりも大きくした請求項1ないし3のいずれかに記載の冷陰極蛍光ランプ。   4. The cylindrical electrode according to claim 1, wherein the inner surface and the outer surface are formed of different materials, and the work function of the material forming the outer surface is larger than the work function of the material forming the inner surface. Cold cathode fluorescent lamp. 前記筒状電極の内部に、前記筒状電極の内面を形成する材料の仕事関数よりも小さい仕事関数の材料を含む電子放射物質を設けた請求項1ないし4のいずれかに記載の冷陰極蛍光ランプ。   The cold-cathode fluorescent light according to any one of claims 1 to 4, wherein an electron-emitting substance containing a material having a work function smaller than the work function of a material forming the inner surface of the cylindrical electrode is provided inside the cylindrical electrode. lamp. 前記筒状電極の外面に前記発光管の内面と当接する凸部を設けた請求項1ないし5のいずれかに記載の冷陰極蛍光ランプ。
The cold cathode fluorescent lamp according to any one of claims 1 to 5, wherein a convex portion that contacts an inner surface of the arc tube is provided on an outer surface of the cylindrical electrode.
JP2004246037A 2004-08-26 2004-08-26 Cold-cathode fluorescent lamp Pending JP2004327458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246037A JP2004327458A (en) 2004-08-26 2004-08-26 Cold-cathode fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246037A JP2004327458A (en) 2004-08-26 2004-08-26 Cold-cathode fluorescent lamp

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001091524A Division JP2002289138A (en) 2001-03-28 2001-03-28 Cold cathode fluorescent lamp

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005364165A Division JP2006093162A (en) 2005-12-19 2005-12-19 Cold cathode fluorescent lamp

Publications (1)

Publication Number Publication Date
JP2004327458A true JP2004327458A (en) 2004-11-18

Family

ID=33509518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246037A Pending JP2004327458A (en) 2004-08-26 2004-08-26 Cold-cathode fluorescent lamp

Country Status (1)

Country Link
JP (1) JP2004327458A (en)

Similar Documents

Publication Publication Date Title
KR100854648B1 (en) Cold-cathode fluorescent lamp
TWI330381B (en)
JP2006269301A (en) Discharge lamp and lighting system
JP2000100389A (en) Discharge lamp
JP2003151496A (en) Cold cathode discharge lamp and lighting device
JP4199022B2 (en) Cold cathode fluorescent lamp
JP2004327458A (en) Cold-cathode fluorescent lamp
JP2004363115A (en) Cold-cathode fluorescent lamp
JP2002025499A (en) Cold cathode fluorescent lamp
JP2006093162A (en) Cold cathode fluorescent lamp
JP2003187740A (en) Cold-cathode type electrode, discharge lamp and lighting system
JP3970788B2 (en) Discharge tube
KR100582236B1 (en) Cold cathode fluorescent lamp
JP2001176445A (en) Cold-cathode low-pressure discharge lamp
JP2006294548A (en) Cold cathode fluorescent lamp
JP3970418B2 (en) Discharge tube
JP2005174632A (en) Light source device and liquid crystal display using it
JP2004127538A (en) Cold cathode fluorescent lamp
JPH1021873A (en) Discharge lamp electrode, manufacture of discharge lamp electrode, discharge lamp and back light device, and illumination system
JP2005251585A (en) Cold cathode fluorescent lamp
JP2002033076A (en) Cold cathode fluorescent lamp
JP2003323862A (en) Cold-cathode fluorescent lamp
JP2007012610A (en) Cold cathode lamp and electrode for same
JP2002042724A (en) Cold cathode fluorescent tube
JP2003123692A (en) Cold-cathode fluorescent lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A02 Decision of refusal

Effective date: 20051018

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20051219

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051227

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20060303

Free format text: JAPANESE INTERMEDIATE CODE: A912

A521 Written amendment

Effective date: 20070622

Free format text: JAPANESE INTERMEDIATE CODE: A523