【0001】
【発明の属する技術分野】
本発明は、ディスプレイや誘導灯などの表示装置、あるいは液晶表示装置のバックライトなどに適する高輝度な発光が得られる冷陰極蛍光ランプに関する。
【0002】
【従来の技術】
たとえば液晶表示装置などは、その普及とともに高性能、高効率化、長寿命化などが要求されており、これらの要求に対応して、たとえば背面光源に使用されるランプの高性能化が進められている。そして、このような高性能化を図った光源ランプとして、内壁面に蛍光体被膜が形成され、かつアルゴン、ネオン、キセノンなどの希ガス及び水銀からなる放電媒体を封入する一方、一対の冷陰極を両端側に対向して封装させた構成の冷陰極蛍光ランプが開発されている。
【0003】
図8は、従来の冷陰極蛍光ランプの概略構成を示す断面図であり、発光管として機能する気密封止のガラス管1と、前記ガラス管1の内壁面に形成された蛍光体被膜2と、前記ガラス管1の両端側に封装された一対の冷陰極(放電電極)3a,3bと、前記冷陰極3a,3bに先端部が接続し、外部から放電電流を供給するためガラス管1壁を気密導入された一対の導入線(外部接続用リード線)4a,4bとを有する構造を採っている。なお、前記ガラス管1は、たとえば外径2.0〜15mm程度、長さ20〜800mm程度で、放電媒体としてたとえばキセノンガスを主体とした希ガス及び水銀が封入されている。
【0004】
上記例陰極蛍光ランプは、導入線4a,4bを介して冷陰極3a,3bに所要の高周波電圧、たとえば20〜100KHz、0.5〜2KV程度の電力を印加・供給すると、冷陰極3a,3b間で放電が開始し、ガラス管1内で紫外線を放射する。こうして放射された紫外線は、ガラス管1内壁面の蛍光体被膜2によって可視光線に変換され、ガラス管1外周面から可視光線を放射し、光源として機能する。
【0005】
【発明が解決しようとする課題】
上記冷陰極蛍光ランプは、光束の立ち上がりが速いという利点を有するが、バックライトなどしての利用において、さらなる大光量化(高輝度化)ないし高効率化が要求されている。そして、このような要求に対して、冷陰極蛍光ランプに大電力を入力することが試みられている。しかし、この種の冷陰極蛍光ランプは、冷陰極の表面積が小さいため、大電力を入力すると冷陰極のスパッタリングが多く、結果的に、冷陰極蛍光ランプの短寿命化を招来する。
【0006】
本発明は、上記事情に対処してなされたもので、長寿命で、かつ大光量化が図られた冷陰極蛍光ランプの提供を目的とする。すなわち、蛍光ランプの大光量化は、蛍光ランプの輝度向上、発光面積の拡大で達成できること、また、同電流での輝度向上は、放電空間の陽光柱を絞って単位面積当たりの発光強度の向上が寄与することに着目して、大光量のバックライトなどに適する冷陰極蛍光ランプを提供するに至ったものである。
【0007】
【課題を解決するための手段】
請求項1の発明は、長尺形の第1のガラス体と、前記第1のガラス体を内挿配置し、第1のガラス体の外周面との間に気密な空間領域(放電領域)を形成して封止一体化された長尺管状の第2のガラス体と、前記第1のガラス体外周面及び第2のガラス体内周面にそれぞれ形成された蛍光体被膜と、前記第1のガラス体の外周面及び第2のガラス体で形成する空間領域の両端部に対向して封装された一対の冷陰極と、前記冷陰極を封装する空間領域に封入された放電媒体とを有することを特徴とする冷陰極蛍光ランプである。
【0008】
請求項2の発明は、請求項1記載の冷陰極蛍光ランプにおいて、第1のガラス体が少なくとも一端が開口したガラス管であることを特徴とする。
【0009】
請求項3の発明は、請求項2記載の冷陰極蛍光ランプにおいて、第1のガラス体を成すガラス管内周面に光反射被膜が設けられていることを特徴とする。
【0010】
請求項4の発明は、請求項2記載の冷陰極蛍光ランプにおいて、第1のガラス体を成すガラス管内空間領域に熱吸収体もしくは放熱体を配置されていることを特徴とする。
【0011】
請求項5の発明は、請求項1ないし請求項4いずれか一記載の冷陰極蛍光ランプにおいて、第2のガラス体は外径20mm以下で、かつその内壁面が第1のガラス体外周面から0.5〜9mm離隔していることを特徴とする。
【0012】
請求項6の発明は、請求項1ないし請求項5いずれか一記載の冷陰極蛍光ランプにおいて、第1のガラス体の中心軸に対して第2のガラス体の中心軸が偏心して内挿配置されていることを特徴とする。
【0013】
請求項1ないし6の発明において、長尺形の第1のガラス体は、その外周面が蛍光体被膜形成面としても機能するもので、一般的に、内径1〜12mm程度、外径1.2〜13mm程度、長さ20〜800mm程度のガラス管、もしくは外径1.0〜13mm程度、長さ20〜800mm程度のガラス棒である。また、長尺管状の第2のガラス体は、内壁面が蛍光体被膜形成面として機能する一方、前記第1のガラス体を内挿配置し、第1のガラス体外周面との間に気密な空間領域(放電領域)を形成して封止一体化されたもので、一般的に、内径3〜15mm程度、外径4〜18mm程度、長さ20〜800mm程度のガラス管である。
【0014】
ここで、第1のガラス体は、第2のガラス体に同軸的もしくは偏心的に内挿配置され、第2のガラス体内壁面とで気密な空間領域(放電空間)を形成する。そして、第1のガラス体が少なくとも一端開口のガラス管である場合は、第1のガラス体の空間領域を性能アップに利用した構成を採れる。たとえばイットリア、アルミナなどを素材とした反射膜の形成具備、たとえばアルミ箔や金属棒などの放熱性膜の形成具備、あるいはアルコール類など揮発性の高い物質を素材とした熱吸収体の装着などの付設によって、さらなる性能向上を図ることができる。なお、第2のガラス体に第1のガラス体を内挿配置(封装)の構成において、第1のガラス体外周面と第2のガラス体(管)内壁面との距離は、0.5〜9mm程度が好ましい。
【0015】
請求項1ないし6の発明において、蛍光体被膜は、たとえば3波長型蛍光体など、この種の蛍光ランプで使用されているものである。また、冷陰極は、たとえばニッケル、ニッケル合金などを素材としたリング状、円筒状、円柱状、もしくは平板状であり、要すれば電子放出性物質を担持させたもので、この種の蛍光ランプで使用され、構造ないし形状など特に限定されない。さらに、放電媒体は、アルゴン、ネオン、キセノンなどの希ガス及び水銀の混合系であり、それらの組成及び封入量は、一般的な範囲で選択される。なお、導入線は、たとえばタングステン、ニッケル、鉄、モリブデンなどを素材としたもので、冷陰極の一端側に、たとえば溶接などによって接合された構成を採っている。
【0016】
【発明の実施の形態】
以下、図1ないし図7を参照して実施態様例を説明する。
【0017】
図1(a),(b)は、第1の実施例に係る冷陰極蛍光ランプの要部構成を示すもので、図1(a)は縦断面図、図1(b)は横断面図である。すなわち、冷陰極蛍光ランプは、たとえば3波長蛍光体被膜5を外周面に設けた長尺形の第1のガラス体6と、前記第1のガラス体6を内挿配置し、第1のガラス体6の外周面との間に気密な空間領域7を形成して封止一体化された3波長蛍光体被膜5を内壁面に設けた長尺管状の第2のガラス体8とで発光管本体が構成されている。ここで、第1のガラス体6は、たとえば内径0.5〜12mm程度、外径1.2〜13mm程度、長さ20〜800mm程度の両端開口のガラス管であり、また、第2のガラス体8は、内径3〜15mm程度、外径4〜18mm程度、長さ20〜800mm程度のガラス管で、その両開口端が前記第1のガラス体5の両端外周面と気密に封着されている。
【0018】
この実施例に係る冷陰極蛍光ランプにおいては、第1のガラス体6及び第2のガラス体8は、ほぼ同軸的に配置され、空間領域(隙間)7の高さが0.5〜9mm程度に設定されている。そして、前記空間領域7の両端側には、一対の導入線9a,9bが第2のガラス体8壁を介して気密に導入され、この導入線9a,9bの先端部に、電子放出性物質を担持させたリング状の冷陰極10a,10bが電気的にも接合して封装され、さらに、前記空間領域7には、キセノンガスを主体とした希ガス及び水銀からなる混合系の放電媒体が封入された構成を採っている。なお、ここでは、冷陰極10a,10bとして、リング状の空間領域7に対応して、リング状(ドーナッツ型)を封装したが、円筒状ないし棒状もしくは平板状であってもよい。
【0019】
上記構成の冷陰極蛍光ランプは、第2のガラス体(管)8の内壁面だけでなく、第1のガラス体6の外周面にも蛍光体被膜5が設けられて、発光部表面積を増大化した構成となっている。したがって、紫外線の可視光変換も効率よく行われ、容易に大光量の光源として機能する。また、第1のガラス体6が両端開口の中空型であるため、中空路6aを介して放電に伴う発熱が放熱・熱交換され易いので、放電領域における温度上昇を抑制でき、温度上昇に伴う発光機能の低減化を防止することができる。つまり、この種の冷陰極蛍光ランプは、ランプ入力を大電力化すると、温度上昇が著しくなって光束低下を招来し易いが、たとえば放熱性の付与・助長によって、光束低下を防止抑制できる。
【0020】
図2は、第2の実施例に係る冷陰極蛍光ランプの概略構成を示す縦断面図であり、基本的な構造は、第1の実施例の場合と同様なので、相違点を除く他の構成についての詳細な説明は省略する。すなわち、この実施例の場合は、第1のガラス体6の中空路6a内壁面に、たとえばイットリアやアルミニウムなどを素材とした光反射膜11を設けた点を特徴としている。この冷陰極蛍光ランプの場合は、第1の実施例の場合と同様の理由によって、大光量光源として機能化、及び長寿命化を図れるだけでなく、効率のよい発光放射が行われるので、大光量化が助長される。なお、上記光反射膜の形成は、一般的に、発光領域に対応する全面であるが、発光面に方向性を持たせるため、断面半円状あるいは帯び状に設けた構成としてもよい。
【0021】
図3は、第3の実施例に係る冷陰極蛍光ランプの概略構成を示す縦断面図であり、基本的な構造は、第1の実施例の場合と同様なので、相違点を除く他の構成についての詳細な説明は省略する。すなわち、この実施例の場合は、第1のガラス体6の中空路6aを通風路とし、かつこの通風路6a内に、たとえばアルコールなどの熱吸収体ないし放熱体12を装着配置した点を特徴としている。この冷陰極蛍光ランプの場合は、第1の実施例の場合と同様の理由によって、大光量光源として機能化、及び長寿命化を図れるだけでなく、温度上昇も抑制されるので、長寿命及び高輝度化が助長される。
【0022】
図4は、第4の実施例に係る冷陰極蛍光ランプの概略構成を示す縦断面図であり、基本的な構造は、第1の実施例の場合と同様なので、相違点を除く他の構成についての詳細な説明は省略する。すなわち、この実施例の場合は、第1のガラス体6として、ガラス管の代わりにガラス棒を使用した構成を採っている。この実施例の場合は、構造ないし製作が簡略である上、第2のガラス体(管)8の内壁面だけでなく、第1のガラス体6の外周面にも蛍光体被膜5が設けられて、発光部表面積を増大化した構成となっているため、紫外線の可視光変換も効率よく行われ、容易に大光量の低コスト型の光源として機能する。
【0023】
さらに、図5は、第5の実施例に係る冷陰極蛍光ランプの概略構成を示す部分縦断面図であり、基本的な構造は、第1の実施例の場合と同様なので、相違点を除く他の構成についての詳細な説明は省略する。すなわち、この実施例の場合は、冷陰極10a,10b(図示せず。)をリング状(ドーナッツ型)の代わりに棒状ないし平板状を使用した構成を採っている。この実施例の場合は、第2のガラス体(管)8の内壁面だけでなく、第1のガラス体6の外周面にも蛍光体被膜5が設けられて、発光部表面積を増大化した構成となっているため、紫外線の可視光変換も効率よく行われ、容易に大光量の光源として機能する。また、第1のガラス体6が両端開口の中空型であるため、中空路6aを介して放電に伴う発熱が放熱・熱交換され易いので、放電領域における温度上昇を抑制でき、温度上昇に伴う発光機能の低減化を防止することができる。
【0024】
なお、本発明に係る冷陰極蛍光ランプの変形例として、第1のガラス体6及び第2のガラス体8の挿通・配置の関係を非同軸的(偏心型)化し、空間領域における放電密度差を付けることによって、輝度の異なった発光面を得ることもできるので、用途ないし使用場所に応じた使い分けも可能になる。
【0025】
次に、ランプ輝度の向上改善、全光束の向上改善例について、具体的に説明する。上記図1に図示した構成において、第2のガラス体8が外径4mm、肉厚0.3mmのガラス管、第1のガラス体6が外径1.4mm、肉厚0.2mmのガラス管、全長200mmの冷陰極蛍光ランプを用意する。一方、比較例として図8に図示した構成において、外径4mm、肉厚0.5mm、全長200mmのガラス管を発光管とした冷陰極蛍光ランプを用意する。
【0026】
上記各冷陰極蛍光ランプを対応するバックライト照明装置に組み込んだ状態で、インバータ点灯回路に装着し、20〜100KHz、500〜2000V(0.5〜2KV)の高周波電圧を印加して点灯動作を行った。この点灯動作において、ランプ電流とランプ輝度との関係を調べた結果、実施例に係る冷陰極蛍光ランプは図6に曲線Aで、また、比較例の冷陰極蛍光ランプは図6に曲線aで示す如くであった。つまり、実施例に係る冷陰極蛍光ランプは、比較例の冷陰極蛍光ランプに較べて約1.5倍の高輝度が得られた。
【0027】
一方、上記点灯動作において、ランプ電流と全光束との関係を調べた結果、実施例に係る冷陰極蛍光ランプは図7に曲線Bで、また、比較例の冷陰極蛍光ランプは図7に曲線bで示す如くであった。つまり、実施例に係る冷陰極蛍光ランプは、比較例の冷陰極蛍光ランプに較べて約20%以上の高光束が得られた。
【0028】
本発明は、上記実施例に限定されるものでなく、発明の主旨を逸脱しない範囲でいろいろの変形を採ることができる。たとえばガラスの材質、冷陰極の材質・構造〔形状〕、導入線の材質や冷陰極に対する接続・固定手段など、通常の使用状態で任意な態様を選択できる。
【0029】
【発明の効果】
請求項1ないし6に係る発明によれば、発光面積が大幅に増大されているだけでなく、放電空間を狭く設定して陽光柱を絞ることができるため、高輝度発光型の蛍光ランプが提供される。また、第1のガラス体をパイプとし、その内壁面に光反射膜を設けることにより、高輝度化が助長され、あるいは中空部に放熱体ないし熱吸収体を装着することによって、ランプの温度上昇を抑制防止し、水銀など放電媒体の圧力を適正に維持して長寿命化などが助長された高輝度発光型の蛍光ランプが提供される。
【図面の簡単な説明】
【図1】第1の実施例に係る冷陰極蛍光ランプの要部構成を示すもので、(a)は縦断面図、(b)は横断面図。
【図2】第2の実施例に係る冷陰極蛍光ランプの要部構成を示す縦断面図。
【図3】第3の実施例に係る冷陰極蛍光ランプの要部構成を示す縦断面図。
【図4】第4の実施例に係る冷陰極蛍光ランプの要部構成を示す縦断面図。
【図5】第5の実施例に係る冷陰極蛍光ランプの要部構成を示す縦断面図。
【図6】実施例に係る冷陰極蛍光ランプ及び従来の冷陰極蛍光ランプについて、ランプ電流とランプ輝度との関係を比較して示す特性図。
【図7】実施例に係る冷陰極蛍光ランプ及び従来の冷陰極蛍光ランプについて、ランプ電流とランプ全光束との関係を比較して示す特性図。
【図8】従来の冷陰極蛍光ランプの要部構成を示す縦断面図。
【符号の説明】
5……蛍光体被膜
6……第1のガラス体(管もしくは棒)
7……空間領域(放電領域)
8……第2のガラス体(管)
9a,9b……導入線
10a,10b……冷陰極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cold-cathode fluorescent lamp capable of emitting high-luminance light suitable for a display device such as a display or a guide light, or a backlight of a liquid crystal display device.
[0002]
[Prior art]
For example, with the spread of liquid crystal display devices and the like, high performance, high efficiency, and long life are required, and in response to these demands, for example, the performance of lamps used for back light sources has been improved. ing. As a light source lamp with such high performance, a phosphor film is formed on the inner wall surface, and a discharge medium composed of a rare gas such as argon, neon, xenon and mercury is enclosed, while a pair of cold cathodes is provided. A cold-cathode fluorescent lamp having a structure in which the fluorescent lamp is sealed opposite to both ends has been developed.
[0003]
FIG. 8 is a cross-sectional view showing a schematic configuration of a conventional cold cathode fluorescent lamp, and includes a hermetically sealed glass tube 1 functioning as an arc tube, and a phosphor coating 2 formed on an inner wall surface of the glass tube 1. A pair of cold cathodes (discharge electrodes) 3a, 3b sealed at both ends of the glass tube 1; and a tip connected to the cold cathodes 3a, 3b, for supplying a discharge current from the outside to the wall of the glass tube 1. And a pair of lead wires (lead wires for external connection) 4a and 4b which are hermetically introduced. The glass tube 1 has, for example, an outer diameter of about 2.0 to 15 mm and a length of about 20 to 800 mm, and is filled with, for example, a rare gas mainly composed of xenon gas and mercury as a discharge medium.
[0004]
In the above-described cathode fluorescent lamp, when a required high-frequency voltage, for example, a power of about 20 to 100 KHz and about 0.5 to 2 KV is applied to and supplied to the cold cathodes 3a and 3b through the introduction lines 4a and 4b, the cold cathodes 3a and 3b Discharge starts between them, and ultraviolet rays are radiated in the glass tube 1. The ultraviolet light thus emitted is converted into visible light by the phosphor coating 2 on the inner wall surface of the glass tube 1, emits visible light from the outer peripheral surface of the glass tube 1, and functions as a light source.
[0005]
[Problems to be solved by the invention]
Although the cold cathode fluorescent lamp has an advantage that the light flux rises quickly, there is a demand for a further increase in the amount of light (higher luminance) or higher efficiency in use as a backlight or the like. In response to such a demand, attempts have been made to input a large amount of electric power to a cold cathode fluorescent lamp. However, in this type of cold cathode fluorescent lamp, since the cold cathode has a small surface area, when a large amount of power is input, the cold cathode is frequently sputtered, and as a result, the life of the cold cathode fluorescent lamp is shortened.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cold cathode fluorescent lamp having a long life and a large amount of light. In other words, increasing the light intensity of the fluorescent lamp can be achieved by improving the luminance of the fluorescent lamp and increasing the light emitting area, and improving the luminance at the same current by improving the light emitting intensity per unit area by narrowing the positive column in the discharge space. Paying attention to the contribution of the present invention, the present inventors have provided a cold cathode fluorescent lamp suitable for a backlight having a large amount of light.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is an airtight space area (discharge area) between a long first glass body and an outer peripheral surface of the first glass body in which the first glass body is interposed. Forming a long tubular second glass body which is sealed and integrated; a phosphor coating formed on an outer peripheral surface of the first glass body and a peripheral surface of the second glass body, respectively; A pair of cold cathodes sealed opposite to the outer peripheral surface of the glass body and both ends of a space region formed by the second glass body, and a discharge medium sealed in the space region sealing the cold cathode. It is a cold cathode fluorescent lamp characterized by the above.
[0008]
According to a second aspect of the present invention, in the cold cathode fluorescent lamp according to the first aspect, the first glass body is a glass tube having at least one open end.
[0009]
According to a third aspect of the present invention, in the cold cathode fluorescent lamp according to the second aspect, a light reflection coating is provided on an inner peripheral surface of the glass tube forming the first glass body.
[0010]
According to a fourth aspect of the present invention, in the cold cathode fluorescent lamp according to the second aspect, a heat absorber or a heat radiator is disposed in a space region in the glass tube forming the first glass body.
[0011]
According to a fifth aspect of the present invention, in the cold cathode fluorescent lamp according to any one of the first to fourth aspects, the second glass body has an outer diameter of 20 mm or less, and an inner wall surface of the second glass body extends from the outer peripheral surface of the first glass body. It is characterized by being separated by 0.5 to 9 mm.
[0012]
According to a sixth aspect of the present invention, in the cold-cathode fluorescent lamp according to any one of the first to fifth aspects, the central axis of the second glass body is eccentric with respect to the central axis of the first glass body. It is characterized by having been done.
[0013]
In the first to sixth aspects of the present invention, the elongated first glass body has an outer peripheral surface which also functions as a phosphor film forming surface, and generally has an inner diameter of about 1 to 12 mm and an outer diameter of 1. A glass tube having a length of about 2 to 13 mm and a length of about 20 to 800 mm, or a glass rod having an outer diameter of about 1.0 to 13 mm and a length of about 20 to 800 mm. Further, the second glass body having a long tubular shape has an inner wall surface functioning as a phosphor film forming surface, while the first glass body is interposed and airtightly sealed with the outer peripheral surface of the first glass body. It is a glass tube having an inner space of about 3 to 15 mm, an outer diameter of about 4 to 18 mm, and a length of about 20 to 800 mm, which is formed by forming a space region (discharge region) and sealing and integrating.
[0014]
Here, the first glass body is coaxially or eccentrically inserted into the second glass body and forms an airtight space region (discharge space) with the second glass body wall surface. When the first glass body is a glass tube having at least one open end, a configuration in which a space region of the first glass body is used for improving performance can be adopted. For example, the formation of a reflective film made of yttria, alumina, etc., the formation of a heat-dissipating film such as aluminum foil or a metal rod, or the attachment of a heat absorber made of a highly volatile material such as alcohol. The attachment can further improve the performance. Note that, in a configuration in which the first glass body is inserted (sealed) into the second glass body, the distance between the outer peripheral surface of the first glass body and the inner wall surface of the second glass body (tube) is 0.5. About 9 mm is preferable.
[0015]
In the first to sixth aspects of the present invention, the phosphor film is used in this type of fluorescent lamp, such as a three-wavelength phosphor. The cold cathode is, for example, a ring, a cylinder, a column, or a flat plate made of nickel, a nickel alloy, or the like, and supports an electron-emitting substance if necessary. And there is no particular limitation on the structure or shape. Further, the discharge medium is a mixed system of a rare gas such as argon, neon, and xenon, and mercury, and the composition and the amount of filling thereof are selected in a general range. The introduction wire is made of, for example, tungsten, nickel, iron, molybdenum, or the like, and is configured to be joined to one end of the cold cathode by, for example, welding.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment will be described with reference to FIGS.
[0017]
1 (a) and 1 (b) show a configuration of a main part of a cold cathode fluorescent lamp according to a first embodiment. FIG. 1 (a) is a longitudinal sectional view, and FIG. 1 (b) is a transverse sectional view. It is. That is, the cold cathode fluorescent lamp includes, for example, an elongated first glass body 6 having a three-wavelength phosphor coating 5 provided on an outer peripheral surface thereof and the first glass body 6 interposed therebetween. An elongate tubular second glass body 8 having an inner wall provided with a three-wavelength phosphor coating 5 integrally formed by forming an airtight space region 7 with the outer peripheral surface of the body 6 The main body is configured. Here, the first glass body 6 is, for example, a glass tube having an inner diameter of about 0.5 to 12 mm, an outer diameter of about 1.2 to 13 mm, and a length of about 20 to 800 mm, both ends of which are open. The body 8 is a glass tube having an inner diameter of about 3 to 15 mm, an outer diameter of about 4 to 18 mm, and a length of about 20 to 800 mm, both open ends of which are hermetically sealed with outer peripheral surfaces of both ends of the first glass body 5. ing.
[0018]
In the cold cathode fluorescent lamp according to this embodiment, the first glass body 6 and the second glass body 8 are arranged substantially coaxially, and the height of the space region (gap) 7 is about 0.5 to 9 mm. Is set to A pair of guide lines 9a and 9b are introduced into both ends of the space region 7 in a gas-tight manner through the wall of the second glass body 8, and the tip of the guide lines 9a and 9b is provided with an electron emitting material. The ring-shaped cold cathodes 10a and 10b carrying the metal are electrically joined and sealed, and a mixed discharge medium composed of a rare gas mainly composed of xenon gas and mercury is provided in the space region 7. It has an enclosed configuration. Here, although the cold cathodes 10a and 10b are sealed in a ring shape (donut type) corresponding to the ring-shaped space region 7, they may be cylindrical, rod-shaped, or plate-shaped.
[0019]
In the cold cathode fluorescent lamp having the above configuration, the phosphor coating 5 is provided not only on the inner wall surface of the second glass body (tube) 8 but also on the outer peripheral surface of the first glass body 6 to increase the surface area of the light emitting part. It has a structured configuration. Therefore, the conversion of ultraviolet light into visible light is also efficiently performed, and easily functions as a light source of a large amount of light. In addition, since the first glass body 6 is a hollow type having both ends opened, heat generated due to discharge is easily radiated and exchanged with heat through the hollow path 6a, so that a rise in temperature in the discharge region can be suppressed, and a rise in temperature can be suppressed. It is possible to prevent the light emitting function from being reduced. In other words, in this type of cold cathode fluorescent lamp, when the power of the lamp input is increased, the temperature rise becomes remarkable and the luminous flux is easily reduced.
[0020]
FIG. 2 is a longitudinal sectional view showing a schematic configuration of the cold cathode fluorescent lamp according to the second embodiment. The basic structure is the same as that of the first embodiment, and therefore other configurations except for the difference are described. A detailed description of is omitted. That is, this embodiment is characterized in that a light reflection film 11 made of, for example, yttria or aluminum is provided on the inner wall surface of the hollow path 6a of the first glass body 6. In the case of the cold cathode fluorescent lamp, not only is it possible to function as a large-intensity light source and extend the life, but also to perform efficient light emission for the same reason as in the first embodiment. Light quantity is promoted. The light reflecting film is generally formed on the entire surface corresponding to the light emitting region, but may be formed in a semicircular cross section or a band shape in order to give directionality to the light emitting surface.
[0021]
FIG. 3 is a longitudinal sectional view showing a schematic configuration of the cold cathode fluorescent lamp according to the third embodiment. Since the basic structure is the same as that of the first embodiment, other configurations except for the difference are described. A detailed description of is omitted. That is, this embodiment is characterized in that the hollow passage 6a of the first glass body 6 is used as a ventilation passage, and a heat absorber or radiator 12 such as alcohol is mounted and disposed in the ventilation passage 6a. And In the case of the cold cathode fluorescent lamp, for the same reason as in the first embodiment, not only the function as a large light amount light source and the long life can be achieved, but also the temperature rise is suppressed, so that the long life and Higher brightness is promoted.
[0022]
FIG. 4 is a longitudinal sectional view showing a schematic configuration of the cold cathode fluorescent lamp according to the fourth embodiment. The basic structure is the same as that of the first embodiment, and other configurations except for the difference are described. A detailed description of is omitted. That is, in the case of this embodiment, the first glass body 6 employs a configuration using a glass rod instead of a glass tube. In the case of this embodiment, the structure and manufacturing are simple, and the phosphor coating 5 is provided not only on the inner wall surface of the second glass body (tube) 8 but also on the outer peripheral surface of the first glass body 6. Since the surface area of the light emitting portion is increased, the visible light conversion of ultraviolet light is also efficiently performed, and the light source easily functions as a large light amount and low cost light source.
[0023]
Further, FIG. 5 is a partial longitudinal sectional view showing a schematic configuration of a cold cathode fluorescent lamp according to a fifth embodiment. The basic structure is the same as that of the first embodiment, and therefore, the difference is excluded. Detailed description of the other components is omitted. That is, in the case of this embodiment, a configuration is adopted in which the cold cathodes 10a and 10b (not shown) have a rod shape or a flat shape instead of a ring shape (donut type). In the case of this embodiment, the phosphor coating 5 is provided not only on the inner wall surface of the second glass body (tube) 8 but also on the outer peripheral surface of the first glass body 6 to increase the light emitting part surface area. Because of the configuration, the conversion of ultraviolet light into visible light is also efficiently performed, and the light source easily functions as a light source of a large amount of light. In addition, since the first glass body 6 is a hollow type having both ends opened, heat generated due to discharge is easily radiated and exchanged with heat through the hollow path 6a, so that a rise in temperature in the discharge region can be suppressed, and a rise in temperature can be suppressed. It is possible to prevent the light emitting function from being reduced.
[0024]
As a modification of the cold cathode fluorescent lamp according to the present invention, the relationship between the insertion and arrangement of the first glass body 6 and the second glass body 8 is made non-coaxial (eccentric), and the discharge density difference in the space region is changed. By attaching, light-emitting surfaces having different luminances can be obtained, so that they can be properly used depending on the use or the place of use.
[0025]
Next, specific examples of the improvement and improvement of the lamp luminance and the improvement and improvement of the total luminous flux will be described. In the configuration shown in FIG. 1, the second glass body 8 is a glass tube having an outer diameter of 4 mm and a wall thickness of 0.3 mm, and the first glass body 6 is a glass tube having an outer diameter of 1.4 mm and a wall thickness of 0.2 mm. A cold cathode fluorescent lamp having a total length of 200 mm is prepared. On the other hand, as a comparative example, a cold cathode fluorescent lamp using a glass tube having an outer diameter of 4 mm, a wall thickness of 0.5 mm, and a total length of 200 mm as an arc tube in the configuration shown in FIG. 8 is prepared.
[0026]
The above-mentioned cold cathode fluorescent lamps are mounted on a corresponding backlight lighting device and mounted on an inverter lighting circuit, and the lighting operation is performed by applying a high frequency voltage of 20 to 100 KHz and 500 to 2000 V (0.5 to 2 KV). went. In this lighting operation, as a result of examining the relationship between the lamp current and the lamp brightness, the cold cathode fluorescent lamp according to the example is represented by curve A in FIG. 6, and the cold cathode fluorescent lamp of the comparative example is represented by curve a in FIG. It was as shown. That is, the cold cathode fluorescent lamp according to the example obtained about 1.5 times higher luminance than the cold cathode fluorescent lamp of the comparative example.
[0027]
On the other hand, as a result of examining the relationship between the lamp current and the total luminous flux in the above-described lighting operation, the cold cathode fluorescent lamp according to the example is shown by a curve B in FIG. 7, and the cold cathode fluorescent lamp of the comparative example is shown by a curve in FIG. b. That is, the cold cathode fluorescent lamp according to the example obtained a high luminous flux of about 20% or more as compared with the cold cathode fluorescent lamp of the comparative example.
[0028]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention. For example, any mode can be selected under ordinary use conditions, such as the material of glass, the material and structure (shape) of the cold cathode, the material of the lead-in wire, and the means for connecting and fixing to the cold cathode.
[0029]
【The invention's effect】
According to the first to sixth aspects of the present invention, not only the emission area is greatly increased, but also the discharge space can be set narrow and the positive column can be narrowed, so that a high-luminance emission type fluorescent lamp is provided. Is done. In addition, the first glass body is made of a pipe, and a light reflection film is provided on the inner wall surface thereof, thereby enhancing the brightness. Or, by installing a heat radiator or a heat absorber in the hollow portion, the temperature of the lamp rises. The present invention provides a high-brightness light-emitting fluorescent lamp in which the pressure of a discharge medium such as mercury is appropriately suppressed, and a long life is promoted.
[Brief description of the drawings]
FIGS. 1A and 1B show a main configuration of a cold cathode fluorescent lamp according to a first embodiment, wherein FIG. 1A is a longitudinal sectional view, and FIG.
FIG. 2 is a longitudinal sectional view showing a configuration of a main part of a cold cathode fluorescent lamp according to a second embodiment.
FIG. 3 is a longitudinal sectional view showing a configuration of a main part of a cold cathode fluorescent lamp according to a third embodiment.
FIG. 4 is a longitudinal sectional view showing a configuration of a main part of a cold cathode fluorescent lamp according to a fourth embodiment.
FIG. 5 is a longitudinal sectional view showing a configuration of a main part of a cold cathode fluorescent lamp according to a fifth embodiment.
FIG. 6 is a characteristic diagram showing a comparison between the lamp current and the lamp brightness for the cold cathode fluorescent lamp according to the example and the conventional cold cathode fluorescent lamp.
FIG. 7 is a characteristic diagram comparing the relationship between the lamp current and the total luminous flux of the cold cathode fluorescent lamp according to the example and the conventional cold cathode fluorescent lamp.
FIG. 8 is a longitudinal sectional view showing a configuration of a main part of a conventional cold cathode fluorescent lamp.
[Explanation of symbols]
5 phosphor coating 6 first glass body (tube or rod)
7. Spatial area (discharge area)
8 Second glass body (tube)
9a, 9b ... introduction lines 10a, 10b ... cold cathode