JP5030997B2 - Soil purification method - Google Patents

Soil purification method Download PDF

Info

Publication number
JP5030997B2
JP5030997B2 JP2009143659A JP2009143659A JP5030997B2 JP 5030997 B2 JP5030997 B2 JP 5030997B2 JP 2009143659 A JP2009143659 A JP 2009143659A JP 2009143659 A JP2009143659 A JP 2009143659A JP 5030997 B2 JP5030997 B2 JP 5030997B2
Authority
JP
Japan
Prior art keywords
soil
metal
reducing agent
bubble
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009143659A
Other languages
Japanese (ja)
Other versions
JP2011000507A (en
Inventor
六夢 石井
哲哉 渡辺
孝芳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Mineral Co Ltd filed Critical JFE Mineral Co Ltd
Priority to JP2009143659A priority Critical patent/JP5030997B2/en
Publication of JP2011000507A publication Critical patent/JP2011000507A/en
Application granted granted Critical
Publication of JP5030997B2 publication Critical patent/JP5030997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、有機ハロゲン化物で汚染された土壌を、排土の排出量を削減しつつ浄化することのできる土壌浄化方法に関する。   The present invention relates to a soil purification method capable of purifying soil contaminated with organic halides while reducing the amount of discharged soil.

有機ハロゲン化物で汚染された土壌の浄化方法として、従来より、鉄粉などの金属系還元剤を、粉体のまま混合したり、水に懸濁させたスラリーとして注入したりすることにより汚染土壌に供給し、金属系還元剤による還元分解反応により汚染物質を原位置で分解して浄化する方法が広く知られている。   As a purification method for soil contaminated with organic halides, conventionally, contaminated soil is obtained by mixing a metal-based reducing agent such as iron powder in powder form or injecting it as a slurry suspended in water. A method is widely known in which contaminants are decomposed and purified in situ by a reductive decomposition reaction with a metal-based reducing agent.

この方法によると、汚染土壌に含まれる有機ハロゲン化物を分解、除去することができるものの、掘削時および鉄粉またはスラリーの供給時に削孔、攪拌および排泥の効率を高める目的で地盤に大量の水を供給するため、地盤の地耐力が著しく低下するという問題があった。また同時に、地盤に供給したスラリーおよび水と同量の排土が、地上に大量にオーバーフローされのであるが、この排土は前記のごとく大量の水を含んでいるため非常に軟泥状で再利用は困難であり、何らかの処分が必要とされていた。   According to this method, organic halide contained in contaminated soil can be decomposed and removed. Since water was supplied, there was a problem that the ground strength of the ground was remarkably lowered. At the same time, the same amount of slurry and water discharged to the ground is overflowed in large quantities on the ground, but this soil contains a large amount of water as described above, so it is very soft mud and reused. Was difficult and required some sort of disposition.

一方で、地盤の地耐力を向上させるために鉄粉とともに固化材を同時に地盤に供給する土壌の浄化方法が提案されている(たとえば、引用文献1および2参照)。   On the other hand, in order to improve the ground strength of the ground, a soil purification method that simultaneously supplies solidified material together with iron powder to the ground has been proposed (see, for example, cited references 1 and 2).

しかしながら、この場合、地上に排出される排土は固化材を含むため、現場において排土を産業廃棄物として回収して処分する必要があり、環境的にも、コスト的にも、改善されるべき課題となっていた。
特開2006−88110号公報 特開2006−159023号公報
However, in this case, since the soil discharged to the ground contains solidified material, it is necessary to collect and dispose of the soil as industrial waste at the site, which is improved both in terms of environment and cost. It was a problem to be solved.
JP 2006-88110 A JP 2006-159023 A

本発明は、以上の通りの事情に鑑みてなされたものであり、有機ハロゲン化物などで汚染された土壌を、排土の排出量を削減しつつ浄化することができる土壌浄化方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and provides a soil purification method capable of purifying soil contaminated with organic halides while reducing the amount of discharged soil. Is an issue.

この出願の発明者らは、掘削土に体積比で15〜40%の気泡及び適量の水が均質に加えられた混合体を地盤掘削時の安定液(以下、気泡安定液という)として用いる際の気泡安定液の掘削施工上の管理指標を明らかにし、これに基づく気泡安定液の調製方法と地盤の掘削のための新しい方法を提案している(特願2007−286732)。ここで、掘削土は、気泡及び適量の水との均質混合体となることで、溝壁安定性、流動性等を備えた気泡安定液として機能している。そしてこの気泡安定液における気泡は自然消泡または消泡剤により消泡されるため、溝壁安定性、流動性等の機能の必要がなくなれば消泡により気泡安定液を気泡混入前の掘削土に近い状態に戻すことができる。つまり、切削土に気泡を適用することで、所望の時間だけ掘削土に所望の流動性を付与することが出来るのである。この出願の発明者らは、この知見に着目し、更なる応用を模索する中で、本願発明を想到するに至ったものである。 The inventors of this application use a mixture in which 15 to 40% of bubbles and an appropriate amount of water are uniformly added to the excavated soil as a stabilizing solution for ground excavation (hereinafter referred to as a bubble stabilizing solution). of revealed foam stabilizer solution control indicators on the drilling application of proposes a new method for drilling foam stabilizer preparation with soil that are based on this (Japanese Patent Application No. 2007-286732). Here, the excavated soil functions as a bubble stabilizing liquid having groove wall stability, fluidity, and the like by forming a homogeneous mixture of bubbles and an appropriate amount of water. Since the bubbles in this bubble stabilizing liquid are defoamed by natural defoaming or an antifoaming agent, if there is no need for functions such as groove wall stability, fluidity, etc., the bubble stabilizing liquid is removed from the excavated soil before mixing with bubbles by defoaming. It is possible to return to a state close to. That is, by applying air bubbles to the cutting soil, desired fluidity can be imparted to the excavated soil for a desired time. The inventors of this application have arrived at the present invention in the search for further applications by paying attention to this knowledge.

すなわち、本発明の土壌浄化方法は、前記の課題を解決するために、以下のことを特徴としている。   That is, the soil purification method of the present invention is characterized by the following in order to solve the above problems.

第1に、
1)金属系還元剤の還元反応を阻害しない中性の界面活性剤系の起泡剤を重量比で10倍〜20倍の水を加えて希釈液とする、
2)該希釈液を体積が10倍〜30倍(発泡倍率)となるように発泡させて気泡安定液とする、
3)該気泡安定液1立方メートル当たりに、金属系還元剤である粒径2mm以下の鉄粉を50〜200kg加えて混合し、土壌浄化用の気泡液組成物を調製する、
4)該気泡液組成物を有機ハロゲン化物を含む汚染土壌に供給し撹拌する、
5)該気泡液組成物の汚染土壌への供給、撹拌によって、金属系還元剤である鉄粉の所要量を汚染土壌に均一に混合した後に、気泡液組成物と汚染土壌との混合系に消泡剤を供給しながら撹拌して、気泡を消泡する、
各工程からなる土壌浄化方法であることを特徴とする。
First,
1) A neutral surfactant-based foaming agent that does not inhibit the reduction reaction of the metal-based reducing agent is added to 10 to 20 times by weight of water to make a diluent.
2) The diluting solution is foamed so that the volume becomes 10 to 30 times (foaming ratio) to obtain a bubble stabilizing solution.
3) 50 to 200 kg of iron powder having a particle size of 2 mm or less, which is a metal-based reducing agent, is added and mixed per cubic meter of the bubble stabilizing solution to prepare a bubble liquid composition for soil purification.
4) Supply and stir the bubble liquid composition to the contaminated soil containing the organic halide.
5) Supplying and stirring the foam liquid composition to the contaminated soil and uniformly mixing the required amount of iron powder, which is a metal reducing agent, into the contaminated soil, and then mixing the foam liquid composition with the contaminated soil. Stir while supplying antifoaming agent to eliminate bubbles
It is the soil purification method which consists of each process, It is characterized by the above-mentioned.

第2に、上記第1の土壌浄化方法において、金属系還元剤の還元反応を阻害しない中性の界面活性剤系の起泡剤が、アルキルサルフェート系界面活性剤であることを特徴とする。 Second, in the first soil purification method, the neutral surfactant-based foaming agent that does not inhibit the reduction reaction of the metal-based reducing agent is an alkyl sulfate-based surfactant .

第3に、上記第1ないし第2の土壌浄化方法において、前記した金属系還元剤である鉄粉の所要量を、浄化対象の汚染土壌に対する体積比で、0.2〜0.6の範囲に設定することを特徴とする。 Thirdly, in the first to second soil purification methods, the required amount of iron powder as the metal-based reducing agent is in a range of 0.2 to 0.6 as a volume ratio to the contaminated soil to be purified. It is characterized by setting to .

また、第に、本発明の土壌浄化用の気泡液組成物は、上記第1ないし第3のいずれかに記載の方法のための気泡液組成物であることを特徴とする。 Further, the fourth, the bubble liquid compositions for soil remediation of the present invention is characterized by an air bubble liquid composition for the method according to any one of the first to third.

上記第1の発明によれば、金属系還元剤を気泡液に懸濁させた状態で掘削土と攪拌するため、少量の水の供給で掘削土の流動性を確保することができ、効率よく金属系還元剤を汚染土壌に均質に混合することができる。また、気泡は消泡することができるため、地上への排土の排出をごく少量に抑制することができる。   According to the first aspect of the invention, since the metal-based reducing agent is agitated with the excavated soil in a state of being suspended in the bubbling liquid, the fluidity of the excavated soil can be ensured by supplying a small amount of water and efficiently. Metal-based reducing agents can be homogeneously mixed into contaminated soil. Further, since the bubbles can be eliminated, the discharge of the soil to the ground can be suppressed to a very small amount.

また、第2の発明によれば、金属系還元剤として鉄粉を用いるため、上記の発明の効果に加え、効率よく有機ハロゲン化物の分解を行うことができる。   In addition, according to the second invention, since iron powder is used as the metal-based reducing agent, in addition to the effects of the above invention, the organic halide can be efficiently decomposed.

第3の発明によれば、適切な粒径の鉄粉を用いるため、上記の発明の効果に加え、気泡の形成を妨げることなく、十分な有機ハロゲン化物の分解効果を得ることができる。   According to the third invention, since iron powder having an appropriate particle size is used, a sufficient decomposition effect of the organic halide can be obtained without impeding the formation of bubbles in addition to the effects of the above invention.

第4の発明によれば、上記の発明の効果に加え、気泡液において長時間安定して金属系還元剤を分散させることができ、より好適に金属系還元剤を汚染土壌に混合することができる。   According to the fourth invention, in addition to the effects of the above invention, the metal-based reducing agent can be stably dispersed for a long time in the bubble liquid, and the metal-based reducing agent can be more suitably mixed into the contaminated soil. it can.

第5の発明によれば、上記の発明の効果に加え、土壌を汚染する成分を含むことなく、安定した気泡液により土壌の混合を行うことができる。   According to 5th invention, in addition to the effect of said invention, soil mixing can be performed by the stable bubble liquid, without including the component which pollutes soil.

そして、第6の発明によれば、土壌浄化用の気泡液組成物が提供される。   And according to 6th invention, the bubble liquid composition for soil purification is provided.

本発明の土壌浄化方法において特徴的なことは、有機ハロゲン化物を含む汚染土壌に金属系還元剤を供給する際に、予め金属系還元剤を気泡に分散させて気泡液とし、この気泡液を掘削した汚染土壌と混合、攪拌することにある。金属系還元剤を気泡液の状態で汚染土壌の掘削土と混合することで、金属系還元剤を汚染土壌の掘削土に均一に分散させる事が容易に可能となる。また、この気泡液を掘削した汚染土壌の掘削土と混合、攪拌することで気泡安定液としての機能を付与し、掘削土に流動性、安定性、止水性を付与することができ、連続した汚染土壌の掘進および攪拌をスムーズに行うことが可能となる。これにより、容易に金属系還元剤を汚染土壌に均一に供給することが可能となる。   What is characteristic in the soil purification method of the present invention is that when supplying a metal reducing agent to contaminated soil containing an organic halide, the metal reducing agent is dispersed in bubbles in advance to obtain a bubble liquid. It is to mix and agitate with excavated contaminated soil. By mixing the metal-based reducing agent with the excavated soil of the contaminated soil in a bubble liquid state, the metal-based reducing agent can be easily dispersed uniformly in the excavated soil of the contaminated soil. Moreover, the function as a bubble stabilizer can be given by mixing and stirring this excavated soil with the excavated soil of the contaminated soil, and the excavated soil can be given fluidity, stability, and water-stopping properties. It is possible to smoothly excavate and agitate the contaminated soil. Thereby, it becomes possible to easily supply the metal-based reducing agent uniformly to the contaminated soil.

本発明において、気泡は、気泡コンクリート、エアーモルタル等に使用されている消泡しにくく、気泡の粒度がおおよそ20〜500μm程度の範囲のものであれば、その種類等に特に制限なく使用することができる。例えば、泡剤原液を水で希釈し、これをミキサーで泡立てて作成した気泡などを用いることができる。泡剤は、それぞれの仕様によって異なるが、代表的には、泡剤:水の割合が、重量で、1:10〜20となるように希釈し、この希釈液を体積が10〜30倍(発泡倍率)となるように発泡させて調整することができる。泡剤の希釈率は、泡剤の仕様書に規定された希釈倍率でよく、仕様が上記の値と異なる場合には気泡安定液における気泡としての機能を十分に発揮することができる希釈倍率を採用すればよい。泡剤としては、例えば、気泡コンクリート、エアーモルタル等に使用されている製品等を用いることができ、具体的には、アルキルサルフェート系界面活性剤、部分加水分解蛋白質、アルキルエーテル系化合物複合体等の各種のものを考慮することができる。なかでも、消泡し難く、少量の添加で優れた起泡力を示すため経済的であるのに加え、中性であって、金属系還元剤の還元反応を阻害することがなく、また、生分解性を有しているため環境に良いことなどから、界面活性剤系の泡剤を用いるのが好ましく、さらには、アルキルサルフェート系界面活性剤を使用するのが好ましい。 In the present invention, the bubbles are not easily defoamed used in cellular concrete, air mortar, etc., and if the cell size is in the range of about 20 to 500 μm, the type is not particularly limited. Can do. For example, an electromotive foams stock was diluted with water, which can be used as the bubbles created by whipping in a mixer. Causing foaming agent varies depending their specifications, typically caused foams: the proportion of water, by weight, 1: 10 to 20 and diluted to, the diluent volume is 10 to 30 It can be adjusted by foaming so as to be double (foaming ratio). Dilution of foaming agent can be a dilution ratio defined in the specifications of the electromotive foams, if the specification is different from the above values can sufficiently exhibit the function as a bubble in the bubble stabilizer dilution What is necessary is just to employ | adopt a magnification. The foaming agent, for example, cellular concrete, can be used products such as used in air mortar, specifically, alkyl sulfate surfactant, partially hydrolyzed proteins, alkyl ether compound complexes Etc. can be considered. Among them, it is difficult to defoam, it is economical because it exhibits excellent foaming power with a small amount of addition, it is neutral and does not inhibit the reduction reaction of the metal reducing agent, etc. it good for the environment because it has biodegradability, it is preferable to use foaming agent surfactant system, more preferably used an alkyl sulfate surfactant.

本発明の金属系還元剤としては、鉄粉、コロイド鉄粉、電界鉄粉、酸化鉄粉等や、これらの比表面積を調整したもの、これらに電極反応を促進させる物質を添加したもの等を考慮することができる。このような鉄粉は特定のものに限定されない。   Examples of the metal reducing agent of the present invention include iron powder, colloidal iron powder, electric field iron powder, iron oxide powder, etc., those adjusted in specific surface area, those added with a substance that promotes electrode reaction, etc. Can be considered. Such iron powder is not limited to a specific one.

これらの鉄粉の粒径は、好適には2mm以下とすることが考慮される。鉄粉の粒径が2mm以下の場合は、施工に要する時間や、気泡液への鉄粉の安定した分散保持等がより良好となる。さらに、鉄粉の粒径を0.02〜2mm程度とすると、現場で鉄粉の取り扱いが容易になるため好ましい。   It is considered that the particle size of these iron powders is preferably 2 mm or less. When the particle size of the iron powder is 2 mm or less, the time required for construction, stable dispersion and holding of the iron powder in the bubble liquid, and the like become better. Furthermore, when the particle size of the iron powder is about 0.02 to 2 mm, it is preferable because the iron powder can be easily handled on site.

鉄粉は、汚染土壌の性質や汚染濃度にもよるが、代表的には、汚染土壌に対して、重量で、5%程度を目安として添加することが例示される。また、掘削時の気泡液の供給量については、現地盤の土質に応じて、孔壁安定性、流動性などの安定液の特性が所望のものとなるように設定することができ、概ね、掘削土に対する体積比で、例えば、0.2〜0.6の範囲に設定することが好適な例として示される。これらのことから、気泡液における鉄粉重量を、好適には気泡液1立米あたり50〜200kg程度とすることが考慮される。より好ましくは、おおよその目安として、気泡液1立米あたり100〜200kg程度である。   Although iron powder depends on the nature of the contaminated soil and the concentration of contamination, typically, about 5% by weight is added to the contaminated soil as a guide. In addition, the amount of bubble liquid supplied during excavation can be set so that the characteristics of the stable liquid such as hole wall stability and fluidity are as desired according to the local soil conditions. As a preferable example, the volume ratio to the excavated soil is set to a range of 0.2 to 0.6, for example. From these facts, it is considered that the weight of the iron powder in the bubbling liquid is preferably about 50 to 200 kg per 1 bubbling of bubbling liquid. More preferably, it is about 100-200 kg per bubble liquid as a rough standard.

気泡への金属系還元剤の分散は、予め泡立てた気泡に対して金属系還元剤をふりかけ、飛散しないように低速で混合すること等で、容易に行うことができる。   Dispersion of the metal-based reducing agent in the bubbles can be easily performed by sprinkling the metal-based reducing agent on the previously bubbled bubbles and mixing at low speed so as not to scatter.

なお、気泡の添加量は、例えば、掘削地盤の土質の変化に応じて変化させることもできる。また、気泡の最小添加量は、おおよその目安として、掘削土1m3あたり粘性土で0.25m3程度、砂礫土で0.35m3程度であって、このときに排土量が最も少なくなり、これより気泡量を多くしても気泡安定液の流動性にはあまり変化がない。しかし、気泡量を多くすると気泡安定液の単位体積重量が小さくなるため、例えば、ワイヤーで吊り下げるタイプの掘削機を用いる場合等には、掘削機械の種類を考慮して、気泡量を多く設定することなども可能である。したがって、気泡液における金属系還元剤の分散量も、適宜調節することも可能とされる。 Note that the amount of bubbles added can be changed in accordance with, for example, the change in soil quality of the excavated ground. The minimum amount of air bubbles, as a rough guide, approximately 0.25 m 3 in excavated soil 1 m 3 per cohesive soil, a 0.35 m 3 approximately in gravel soil, earth removal amount becomes smallest at this time, this Even if the amount of bubbles is increased, the fluidity of the bubble stabilizer does not change much. However, since the unit volume weight of the bubble stabilizer is reduced when the amount of bubbles is increased, for example, when using an excavator that is suspended by a wire, the amount of bubbles is set in consideration of the type of excavator. It is also possible to do. Therefore, the amount of the metal-based reducing agent dispersed in the bubble liquid can be adjusted as appropriate.

金属系還元剤が分散された気泡液を供給しながらの掘削、撹拌は、単軸または多軸の掘削機などを用いて、公知の手法により行うことができる。なお、土壌の状態によっては、気泡液と水を供給しながら掘削することも考慮することができる。このような場合であっても、水の供給量は、例えば、気泡液を用いずに金属系還元剤をスラリーとして土壌に供給したり、掘削時に水を供給したりする場合に比べて格段に少ない量でよく、消泡後の地盤の含水量も抑制されたものとなる。   The excavation and stirring while supplying the bubble liquid in which the metal reducing agent is dispersed can be performed by a known method using a single-axis or multi-axis excavator. Depending on the state of the soil, excavation while supplying bubble liquid and water can be considered. Even in such a case, the amount of water supplied is much higher than when the metal-based reducing agent is supplied to the soil as a slurry without using bubble liquid, or when water is supplied during excavation. A small amount is sufficient, and the water content of the ground after defoaming is also suppressed.

なお、本発明においても、鉄粉に加え、セメント等の固化剤を気泡液に分散させることもできるが、セメントのアルカリ性雰囲気により鉄の浄化作用が期待できなくなるために現実的ではない。ただし、必要であれば、固化剤として石膏等を用いることができる。   In the present invention, in addition to the iron powder, a solidifying agent such as cement can be dispersed in the bubble liquid, but this is not realistic because the purification action of iron cannot be expected due to the alkaline atmosphere of the cement. However, if necessary, gypsum or the like can be used as a solidifying agent.

気泡液と掘削土の均質な混合体は、上記のとおりの安定性、止水性、流動性等に優れた気泡安定液として機能するが、この気泡安定液における気泡は消泡剤を供給することで容易に消泡することができる。したがって、必要量の金属系還元剤を汚染土壌に均一に混合した後は、気泡安定液に消泡剤を供給しながら攪拌することで気泡を消泡し、気泡安定液を金属系還元剤、掘削土、泡剤およびその希釈水が均質に混合した状態に戻すことができる。なおここで希釈水は極めて少量であるため、地盤は含水量が若干増えた状態にとどまり軟泥状ではないため、そのまま地盤としての利用も可能とされる。また、前記のとおり、気泡剤は界面活性剤系であるため、一定期間後に地盤中で生分解されることが期待される。 The homogeneous mixture of bubbling liquid and excavated soil functions as a bubbling stabilizer excellent in stability, water-stopping, fluidity, etc. as described above, but the bubbling in this bubbling stabilizing liquid supplies an antifoaming agent. Can be easily defoamed. Therefore, after the required amount of metal-based reducing agent is uniformly mixed in the contaminated soil, the bubbles are removed by stirring while supplying the anti-foaming agent to the bubble stabilizer, and the bubble stabilizer is removed from the metal-based reducing agent, excavated soil, foaming agents, and can be returned to the state in which the dilution water are mixed homogeneously. In addition, since dilution water is very small here, the ground remains in a state where the water content is slightly increased and is not soft mud, so that it can be used as it is. Further, as described above, since the foaming agent is a surfactant system, it is expected to biodegrade in the ground after a certain period.

消泡剤については、特に制限はないものの、撹拌時にも気泡の再発生が生じない種類のものを用いるのが好適である。というのは、消泡剤の種類によっては撹拌作用により気泡が再発生することがあるからである。消泡剤の使用量は、消泡効果を加味した最も経済的な量とし、おおよその目安として、気泡材と同量とすることが例示される。   Although there is no restriction | limiting in particular about an antifoamer, It is suitable to use the kind which does not generate | occur | produce a bubble also at the time of stirring. This is because, depending on the type of antifoaming agent, bubbles may be regenerated due to the stirring action. The amount of the antifoaming agent used is the most economical amount considering the antifoaming effect, and the approximate amount is exemplified by the same amount as the foam material.

諸条件にもよるが、施工後約2週間〜3ヶ月程度の期間で有機ハロゲン化物は金属系還元剤の作用により分解されて、有機ハロゲン化物に汚染されていた土壌を浄化することができる。   Although depending on various conditions, the organic halide is decomposed by the action of the metal reducing agent in a period of about 2 weeks to 3 months after the construction, and the soil contaminated with the organic halide can be purified.

また、上記のとおりの気泡液は、土壌浄化用の気泡液組成物として、様々な現場、工法において使用することができる。   Moreover, the bubble liquid as described above can be used as a bubble liquid composition for soil purification at various sites and construction methods.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.

<実施例1>
金属系還元剤を気泡に分散させた気泡液を調整し、その安定性について評価した。
<Example 1>
A bubble liquid in which a metal reducing agent was dispersed in bubbles was prepared, and its stability was evaluated.

金属系還元剤としては、鉄粉(JFEミネラル(株)製、粒径 0.02〜2mm)を、起泡剤としては、アルキルサルフェート系界面活性剤系の土木・建築用起泡剤であるフローリックFA−100(株式会社フローリック製)を用いた。 As metal-based reducing agent, iron powder (manufactured by JFE Mineral Co., Ltd., particle size: 0.02 to 2 mm), and as foaming agent, alkyl sulfate surfactant-based foaming agent for civil engineering and construction. Floric FA-100 (manufactured by Floric) was used.

まず、泡剤を仕様に従い、表1に示したように重量で20倍に希釈し、発泡機を用いて体積で25倍に発泡させた。 First, in accordance with the electromotive foams specifications, was diluted 20-fold in weight as shown in Table 1, it was foamed to 25 times by volume with foaming machine.

Figure 0005030997
Figure 0005030997

次いで、発泡させた気泡に鉄分を薬さじでふりかけ、羽型撹拌機で混合した。鉄分は、薬さじにて低速で緩やかに混合することで、気泡に均一に分散させることができ、気泡液を調整した。   Next, iron was sprinkled on the foamed bubbles with a spoon and mixed with a feather stirrer. The iron content can be uniformly dispersed in the bubbles by gently mixing at low speed with a spoon, and the bubble liquid was adjusted.

気泡に分散させる鉄粉の割合を変化させ、それぞれの気泡液の経時安定性を評価した結果を表2に示した。   Table 2 shows the results of changing the ratio of the iron powder dispersed in the bubbles and evaluating the temporal stability of each of the bubble liquids.

Figure 0005030997
Figure 0005030997

表2に示したとおり、単位体積(ml)あたりの気泡に対する鉄粉添加量(g)が10%未満の場合には、30分後も気泡液において鉄粉は良好に分散状態を保っていることが確認された。一般に、気泡液を供給しながらの掘削には、気泡液を調整してから、攪拌および混合を終えるまでに15分程度の時間を要する。気泡液が安定した状態で施工を行うには、鉄粉の添加量を、好適には気泡1mに対し、200kg以下程度とすればよいことが確認できた。
<実施例2>
実施例1と同様に金属系還元剤を気泡に分散させた気泡液を調整し、その安定性について評価した。
As shown in Table 2, when the amount of iron powder added (g) to the bubbles per unit volume (ml) is less than 10%, the iron powder is well dispersed in the bubble liquid after 30 minutes. It was confirmed. Generally, excavation while supplying the bubbling liquid takes about 15 minutes from the adjustment of the bubbling liquid to the completion of stirring and mixing. In order to perform the construction in a state where the bubbling liquid is stable, it has been confirmed that the amount of iron powder added is preferably about 200 kg or less per 1 m 3 of bubbles.
<Example 2>
In the same manner as in Example 1, a bubble liquid in which a metal-based reducing agent was dispersed in bubbles was prepared, and its stability was evaluated.

金属系還元剤としては、鉄粉(JFEミネラル(株)製)を用い、その粒径を(a) 0.075mm以下、(b)0.075mm超過〜2mm以下、(c)2mm超過の3通りで変化させて、気泡液の安定性を評価した。また、起泡剤としては、アルキルサルフェート系界面活性剤系の土木・建築用起泡剤であるフローリックFA−100(株式会社フローリック製)を用いた。その結果を表3に示した。 As the metal-based reducing agent, iron powder (manufactured by JFE Mineral Co., Ltd.) is used, and the particle size thereof is (a) 0.075 mm or less, (b) 0.075 mm or more to 2 mm or less, (c) 2 mm or more. The stability of the bubbly liquid was evaluated by changing the flow. In addition, as a foaming agent, Floric FA-100 (manufactured by Floric Co., Ltd.), which is an alkyl sulfate surfactant-based foaming agent for civil engineering and construction, was used. The results are shown in Table 3.

Figure 0005030997
Figure 0005030997

鉄粉の粒径が2mm以下の場合は、鉄粉を気泡に混ぜて攪拌すると鉄粉は気泡内に均一に分散、保持され、気泡液は15分以上安定した状態であった。鉄粉の粒径が2mmを超える場合は、気泡に鉄粉を添加すると沈降する鉄粉が見られ、鉄粉を気泡液中に安定して分散維持させることが必ずしも良好でないことがわかった。   When the particle size of the iron powder was 2 mm or less, when the iron powder was mixed in the bubbles and stirred, the iron powder was uniformly dispersed and held in the bubbles, and the bubble liquid was stable for 15 minutes or more. When the particle size of the iron powder exceeded 2 mm, iron powder that settled when iron powder was added to the bubbles was found, and it was found that it is not always good to stably maintain the iron powder in the bubble liquid.

Claims (4)

1)金属系還元剤の還元反応を阻害しない中性の界面活性剤系の起泡剤を重量比で10倍〜20倍の水を加えて希釈液とする、
2)該希釈液を体積が10倍〜30倍(発泡倍率)となるように発泡させて気泡安定液とする、
3)該気泡安定液1立方メートル当たりに、金属系還元剤である粒径2mm以下の鉄粉を50〜200kg加えて混合し、土壌浄化用の気泡液組成物を調製する、
4)該気泡液組成物を有機ハロゲン化物を含む汚染土壌に供給し撹拌する、
5)該気泡液組成物の汚染土壌への供給、撹拌によって、金属系還元剤である鉄粉の所要量を汚染土壌に均一に混合した後に、気泡液組成物と汚染土壌との混合系に消泡剤を供給しながら撹拌して、気泡を消泡する、
各工程からなることを特徴とする土壌浄化方法。
1) A neutral surfactant-based foaming agent that does not inhibit the reduction reaction of the metal-based reducing agent is added to 10 to 20 times by weight of water to make a diluent.
2) The diluting solution is foamed so that the volume becomes 10 to 30 times (foaming ratio) to obtain a bubble stabilizing solution.
3) 50 to 200 kg of iron powder having a particle size of 2 mm or less, which is a metal-based reducing agent, is added and mixed per cubic meter of the bubble stabilizing solution to prepare a bubble liquid composition for soil purification.
4) Supply and stir the bubble liquid composition to the contaminated soil containing the organic halide.
5) Supplying and stirring the foam liquid composition to the contaminated soil and uniformly mixing the required amount of iron powder, which is a metal reducing agent, into the contaminated soil, and then mixing the foam liquid composition with the contaminated soil. Stir while supplying antifoaming agent to eliminate bubbles
A soil purification method comprising each step .
前記した金属系還元剤の還元反応を阻害しない中性の界面活性剤系の起泡剤がアルキルサルフェート系界面活性剤であることを特徴とする請求項1に記載の土壌浄化方法。 The soil purification method according to claim 1, wherein the neutral surfactant-based foaming agent that does not inhibit the reduction reaction of the metal-based reducing agent is an alkyl sulfate-based surfactant . 前記した金属系還元剤である鉄粉の所要量を、浄化対象の汚染土壌に対する体積比で、0.2〜0.6の範囲に設定することを特徴とする請求項1ないし請求項2に記載の土壌浄化方法。 The required amount of iron powder as the metal-based reducing agent is set to a range of 0.2 to 0.6 as a volume ratio with respect to the contaminated soil to be purified. The soil purification method as described. 請求項1ないしのいずれかに記載の方法のための気泡液組成物であることを特徴とする有機ハロゲン化物を含む汚染土壌浄化用の気泡液組成物。 A bubble liquid composition for the purification of contaminated soil , comprising an organic halide , which is a bubble liquid composition for the method according to any one of claims 1 to 3 .
JP2009143659A 2009-06-16 2009-06-16 Soil purification method Active JP5030997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143659A JP5030997B2 (en) 2009-06-16 2009-06-16 Soil purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143659A JP5030997B2 (en) 2009-06-16 2009-06-16 Soil purification method

Publications (2)

Publication Number Publication Date
JP2011000507A JP2011000507A (en) 2011-01-06
JP5030997B2 true JP5030997B2 (en) 2012-09-19

Family

ID=43558938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143659A Active JP5030997B2 (en) 2009-06-16 2009-06-16 Soil purification method

Country Status (1)

Country Link
JP (1) JP5030997B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153192B2 (en) * 2013-03-27 2017-06-28 株式会社フジタ Soil purification method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276842A (en) * 1996-04-12 1997-10-28 Canon Inc Method for transporting bacteria into soil and method for purifying contaminated soil environment using the same
US5928433A (en) * 1997-10-14 1999-07-27 The Lubrizol Corporation Surfactant-assisted soil remediation
JP3612258B2 (en) * 2000-01-27 2005-01-19 株式会社間組 Soil purification agent and soil purification method
JP4374884B2 (en) * 2003-04-01 2009-12-02 東ソー株式会社 Detoxification method for workpieces contaminated with organic halogen compounds
JP4390551B2 (en) * 2003-12-25 2009-12-24 ケミカルグラウト株式会社 Contaminated soil cleaning equipment

Also Published As

Publication number Publication date
JP2011000507A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5030997B2 (en) Soil purification method
US11680199B2 (en) Wellbore servicing fluid and methods of making and using same
JP3955255B2 (en) Ground improvement cement composition additive, ground improvement cement composition and ground improvement method using the same
JP2007016502A (en) Construction method of high performance impervious wall
JP2010163619A (en) Soil amelioration grouting material and method for insolubilizing soil pollutant using the grouting material
JP4687969B2 (en) Methods for insolubilizing hazardous substances
JP2010236349A (en) Construction method for stage type solidification
JP2011241337A (en) Frothing agent for air-foam drilling
JP5317938B2 (en) Construction method of soil cement pillar and soil cement continuous wall
JP6383634B2 (en) Bubble shield method
JP2007099561A (en) Rheology modifier
JP4056868B2 (en) Air grout material
JP2008063759A (en) Manufacturing method for liquefied soil
JP2006150341A (en) Method for improving/solidifying soil
JP5554490B2 (en) Chemical for building impermeable walls and method for constructing impermeable walls
JP6530008B2 (en) Foaming material for air bubble shield method
CN104724993B (en) A kind of high dispersive higher suspension high permeable cement slurry and preparation method thereof
JP2015101524A (en) Admixture for concrete in water, concrete in water and manufacturing method for concrete in water
JP4800021B2 (en) Hydraulic composition for ground injection
JPH05239848A (en) Force feed system of soil and sand
JPH04270152A (en) Production of underwater lightweight soil mortar material
CN112680203B (en) Nanoparticle synergistic low-interfacial-tension foam system and preparation method thereof
JP2010132797A (en) Agent for constructing impervious wall and method for constructing impervious wall
JP2017061791A (en) Bubble shield method
JPH1150444A (en) Grout for underwater ground improvement and underwater ground improvement method lising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Ref document number: 5030997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250