JP5030927B2 - Condensed water detection device, condensed water detection method, and exhaust purification device - Google Patents

Condensed water detection device, condensed water detection method, and exhaust purification device Download PDF

Info

Publication number
JP5030927B2
JP5030927B2 JP2008306610A JP2008306610A JP5030927B2 JP 5030927 B2 JP5030927 B2 JP 5030927B2 JP 2008306610 A JP2008306610 A JP 2008306610A JP 2008306610 A JP2008306610 A JP 2008306610A JP 5030927 B2 JP5030927 B2 JP 5030927B2
Authority
JP
Japan
Prior art keywords
temperature
condensed water
sensor
temperature sensor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008306610A
Other languages
Japanese (ja)
Other versions
JP2010127268A (en
Inventor
浩人 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2008306610A priority Critical patent/JP5030927B2/en
Publication of JP2010127268A publication Critical patent/JP2010127268A/en
Application granted granted Critical
Publication of JP5030927B2 publication Critical patent/JP5030927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、排気ガス中の凝縮水の有無を検出する凝縮水検出装置及び凝縮水検出方法並びに排気浄化装置に関する。特に、ヒータを備えた特定ガス濃度センサが設けられた排気通路を流れる排気ガス中の凝縮水の有無を検出する凝縮水検出装置及び凝縮水検出方法、並びにそのような凝縮水検出装置が備えられた排気浄化装置に関する。   The present invention relates to a condensed water detection device, a condensed water detection method, and an exhaust purification device that detect the presence or absence of condensed water in exhaust gas. In particular, a condensed water detection device and a condensed water detection method for detecting the presence or absence of condensed water in exhaust gas flowing through an exhaust passage provided with a specific gas concentration sensor equipped with a heater, and such a condensed water detection device are provided. The present invention relates to an exhaust purification device.

ディーゼルエンジン等の内燃機関に接続された排気通路には、窒素酸化物(以下「NOX」と称する。)の濃度を検出するためのNOXセンサや、酸素濃度あるいは空燃比を検出するための酸素センサ等の、特定ガス濃度センサが設けられている。このうち、NOXセンサは、例えば、NOXを還元浄化する排気浄化装置における還元剤の供給量の制御に用いられる。また、酸素センサは、例えば、内燃機関の運転条件の制御に用いられる。 In an exhaust passage connected to an internal combustion engine such as a diesel engine, a NO x sensor for detecting the concentration of nitrogen oxides (hereinafter referred to as “NO x ”), an oxygen concentration or an air-fuel ratio is detected. A specific gas concentration sensor such as an oxygen sensor is provided. Among these, the NO X sensor is used, for example, for controlling the amount of reducing agent supplied in an exhaust purification device that reduces and purifies NO X. The oxygen sensor is used, for example, for controlling operating conditions of the internal combustion engine.

これらの特定ガス濃度センサには、特定ガス成分を検出するためのセンサ素子が備えられている。センサ素子は、活性温度に達したときに活性化する特性を有しているので、特定ガス濃度センサによる特定ガス濃度の検出を可能にするために、センサ素子を、活性温度まで昇温させて活性状態に保つ必要がある。そのため、内部にヒータが設けられ、このヒータを用いてセンサ素子を加熱する特定ガス濃度センサが知られている。   These specific gas concentration sensors are provided with sensor elements for detecting specific gas components. Since the sensor element has a property of being activated when the activation temperature is reached, the sensor element is heated to the activation temperature in order to enable detection of the specific gas concentration by the specific gas concentration sensor. It is necessary to keep it active. Therefore, a specific gas concentration sensor is known in which a heater is provided inside and the sensor element is heated using the heater.

ところで、内燃機関から排出される排気ガス中には水蒸気が含まれており、内燃機関の始動直後等、排気通路内の温度が低いときには、水蒸気が冷却されて凝縮することがある。上述のとおり、排気通路内の温度が低いときには、特定ガス濃度センサのセンサ素子が活性化していない場合が多く、ヒータによるセンサ素子の加熱が行われる場合が多い。このようにセンサ素子の加熱が行われる際に、センサ素子に凝縮水が付着すると、凝縮水が加熱されて気化するときの潜熱によってセンサ素子の表面の熱が奪われる。そうすると、センサ素子に局所的な歪みが生じてセンサ素子が割れてしまう、所謂素子割れが発生し、ひいては特定ガス濃度の測定が不能になるおそれがある。   By the way, the exhaust gas discharged from the internal combustion engine contains water vapor, and when the temperature in the exhaust passage is low, such as immediately after the start of the internal combustion engine, the water vapor may be cooled and condensed. As described above, when the temperature in the exhaust passage is low, the sensor element of the specific gas concentration sensor is often not activated, and the sensor element is often heated by the heater. When the condensed water adheres to the sensor element when the sensor element is heated in this way, the heat of the surface of the sensor element is taken away by latent heat when the condensed water is heated and vaporized. As a result, a local distortion occurs in the sensor element and the sensor element is cracked, so-called element cracking occurs, and there is a possibility that measurement of the specific gas concentration may become impossible.

ここで、排気ガス中に凝縮水が存在する間は特定ガス濃度センサに設けられたヒータへの通電を待機させる一方、凝縮水が消滅したと推定された後にヒータへの通電を開始する制御を行うために、排気通路に存在する凝縮水を高精度に検出できるようにした排気ガス検出装置が提案されている。具体的には、図9に示すように、センサ素子と当該センサ素子を加熱するヒータとを備え、内燃機関から排出された排気ガスが流れる排気通路に設けられる特定ガス濃度センサ302が備えられた排気ガス検出装置310であって、排気通路において特定ガス濃度センサ302の下流側に配置され、排気通路内の水分を滞留させるための水分滞留部303と、水分滞留部303に滞留している水分を検出する水分検出手段320とを備えた排気ガス検出装置310が開示されている(特許文献1参照)。   Here, while the condensed water is present in the exhaust gas, the energization to the heater provided in the specific gas concentration sensor is made to stand by, while the control to start energizing the heater after it is estimated that the condensed water has disappeared. For this purpose, an exhaust gas detection device has been proposed in which condensed water present in the exhaust passage can be detected with high accuracy. Specifically, as shown in FIG. 9, a specific gas concentration sensor 302 is provided that includes a sensor element and a heater that heats the sensor element, and is provided in an exhaust passage through which exhaust gas discharged from the internal combustion engine flows. The exhaust gas detection device 310 is disposed on the downstream side of the specific gas concentration sensor 302 in the exhaust passage and retains moisture in the exhaust passage, and moisture staying in the moisture retention portion 303 An exhaust gas detection device 310 that includes a moisture detection means 320 that detects water is disclosed (see Patent Document 1).

特開2004−360563号公報 (全文、全図)JP 2004-360563 A (the whole sentence, all figures)

しかしながら、特許文献1に記載の排気ガス検出装置310は、水分を滞留しやすくした水分滞留部303に滞留する水分の有無に基づいて排気通路内の水分の有無を検出するものであるため、水分滞留部303に水分が滞留していなければ、水分検出手段320で水分が検出されることがない。そのため、排気ガス中に凝縮水が存在し、特定ガス濃度センサ302の表面に凝縮水が付着するおそれがあるにもかかわらず、水分滞留部303に水分が滞留していない限り、特定ガス濃度センサ302におけるヒータへの通電が開始され、素子割れを生じるおそれがある。   However, since the exhaust gas detection device 310 described in Patent Document 1 detects the presence or absence of moisture in the exhaust passage based on the presence or absence of moisture that remains in the moisture retention portion 303 that easily retains moisture. If moisture does not stay in the staying part 303, the moisture is not detected by the moisture detecting means 320. For this reason, the condensed gas exists in the exhaust gas, and the condensed gas may adhere to the surface of the specific gas concentration sensor 302. Energization of the heater at 302 is started, and there is a risk of element cracking.

さらに、特許文献1に記載の排気ガス検出装置310は、排気ガス中にすでに凝縮水が存在せず、特定ガス濃度センサ302に付着した凝縮水が消滅した場合であっても、水分滞留部303に水分が滞留する限り水分検出手段320で水分が検出される。このため、特定ガス濃度センサ302におけるヒータへの通電が開始されずに遅延し、センサ素子の活性化が遅れることになる。その結果、特定ガス濃度センサ302を用いた排気浄化装置や内燃機関の制御開始までの待機時間が長くなるおそれがある。   Further, the exhaust gas detection device 310 described in Patent Document 1 has a moisture retention part 303 even when condensed water does not already exist in the exhaust gas and the condensed water adhering to the specific gas concentration sensor 302 disappears. As long as moisture remains in the water, the water detection means 320 detects the water. For this reason, energization to the heater in the specific gas concentration sensor 302 is delayed without being started, and activation of the sensor element is delayed. As a result, there is a possibility that the standby time until the start of control of the exhaust gas purification apparatus using the specific gas concentration sensor 302 or the internal combustion engine becomes long.

そこで、本発明の発明者は鋭意努力し、排気管に設けられ、凝縮水が付着しやすい第1の温度センサで検出される温度、及び凝縮水が付着しない第2の温度センサで検出される温度を比較して、排気ガス中における凝縮水の有無を検出することによりこのような問題を解決できることを見出し、本発明を完成させたものである。すなわち、本発明は、排気ガス中における凝縮水の消滅時期を精度良く検出することができる凝縮水検出装置及び凝縮水検出方法、並びに凝縮水検出装置を備えた排気浄化装置を提供することを目的とする。   Therefore, the inventors of the present invention have made diligent efforts and detected by the first temperature sensor that is provided in the exhaust pipe and is easily attached with condensed water, and the second temperature sensor that is not attached with condensed water. The inventors have found that such a problem can be solved by comparing the temperature and detecting the presence or absence of condensed water in the exhaust gas, and have completed the present invention. That is, an object of the present invention is to provide a condensed water detection device and a condensed water detection method that can accurately detect the disappearance timing of condensed water in exhaust gas, and an exhaust purification device including the condensed water detection device. And

本発明によれば、内燃機関に接続され、排気ガス中の特定成分を検出するためのセンサ素子とセンサ素子を加熱するヒータとを有する特定ガス濃度センサが備えられた排気通路を流れる排気ガス中における凝縮水の有無を検出するための凝縮水検出装置において、排気通路を形成する排気管に設けられた凝縮水が付着しやすい第1の温度センサで検知される第1の温度を検出する第1の温度検出部と、排気管に設けられた凝縮水が付着しない第2の温度センサで検知される第2の温度を検出する第2の温度検出部と、第1の温度及び第2の温度を比較することにより排気ガス中に凝縮水が存在するか否かを判定する凝縮水有無判定部と、を備えることを特徴とする凝縮水検出装置が提供され、上述した問題を解決することができる。   According to the present invention, in exhaust gas flowing through an exhaust passage connected to an internal combustion engine and provided with a specific gas concentration sensor having a sensor element for detecting a specific component in exhaust gas and a heater for heating the sensor element. In the condensed water detection device for detecting the presence or absence of condensed water in the first, the first temperature detected by the first temperature sensor that is easily attached to the condensed water provided in the exhaust pipe forming the exhaust passage is detected. A first temperature detection unit, a second temperature detection unit for detecting a second temperature detected by a second temperature sensor to which condensed water provided in the exhaust pipe does not adhere, a first temperature and a second temperature A condensed water detection device comprising: a condensed water presence / absence determining unit that determines whether condensed water exists in exhaust gas by comparing temperatures is provided, and solves the above-described problem Can do.

また、本発明の凝縮水検出装置を構成するにあたり、凝縮水検出装置は内燃機関の始動を検出する始動検出部を備え、凝縮水有無判定部は、内燃機関の始動から所定期間経過後に検出された第1の温度及び第2の温度を用いて判定を行うことが好ましい。   In configuring the condensed water detection device of the present invention, the condensed water detection device includes a start detection unit that detects the start of the internal combustion engine, and the condensed water presence / absence determination unit is detected after a predetermined period of time has elapsed since the start of the internal combustion engine. The determination is preferably performed using the first temperature and the second temperature.

また、本発明の凝縮水検出装置を構成するにあたり、凝縮水有無判定部は、検出された第1の温度及び第2の温度の温度差を算出するとともに、温度差が所定値未満であるときに排気通路内に凝縮水が存在しないと判定することが好ましい。   Further, in configuring the condensed water detection device of the present invention, the condensed water presence / absence determining unit calculates the temperature difference between the detected first temperature and the second temperature, and the temperature difference is less than a predetermined value. It is preferable to determine that condensed water is not present in the exhaust passage.

また、本発明の凝縮水検出装置を構成するにあたり、凝縮水有無判定部は、検出された第1の温度及び第2の温度の温度差を算出するとともに、温度差が所定期間継続して所定値未満であるときに排気通路内に凝縮水が存在しないと判定することが好ましい。   Further, in configuring the condensed water detection device of the present invention, the condensed water presence / absence determining unit calculates the temperature difference between the detected first temperature and the second temperature, and the temperature difference continues for a predetermined period. It is preferable to determine that there is no condensed water in the exhaust passage when it is less than the value.

また、本発明の凝縮水検出装置を構成するにあたり、検出された第1の温度及び第2の温度と、第1の温度センサの配置位置から第2の温度センサの配置位置までの排気管の長さと、排気管の円周の長さと、排気管の熱伝達率と、外気温度と、に基づいて、排気ガスが、第1の温度センサの配置位置から第2の温度センサの配置位置まで流れる間、又は第2の温度センサの配置位置から第1の温度センサの配置位置まで流れる間での排気ガスからの放熱量を算出する放熱量演算部と、放熱量に基づいて、第1の温度又は第2の温度のうちの少なくとも一方を補正する温度補正部と、を備えることが好ましい。   In configuring the condensed water detection device of the present invention, the detected first temperature and second temperature, and the exhaust pipe from the position where the first temperature sensor is disposed to the position where the second temperature sensor is disposed. Based on the length, the length of the circumference of the exhaust pipe, the heat transfer coefficient of the exhaust pipe, and the outside air temperature, the exhaust gas moves from the arrangement position of the first temperature sensor to the arrangement position of the second temperature sensor. Based on the heat radiation amount, the heat radiation amount calculation unit that calculates the heat radiation amount from the exhaust gas during the flow or between the second temperature sensor placement position and the first temperature sensor placement position, It is preferable to include a temperature correction unit that corrects at least one of the temperature and the second temperature.

また、本発明の凝縮水検出装置を構成するにあたり、凝縮水有無判定部が排気ガス中に凝縮水が存在しないと判定したときに、ヒータへの通電を許可するヒータ駆動制御部を備えることが好ましい。   Further, when configuring the condensed water detection device of the present invention, the apparatus may include a heater drive control unit that permits energization of the heater when the condensed water presence / absence determining unit determines that no condensed water exists in the exhaust gas. preferable.

また、本発明の凝縮水検出装置を構成するにあたり、第1の温度センサ及び第2の温度センサとは異なる、凝縮水が付着しやすい又は付着しない第3の温度センサで検知される第3の温度を検出する第3の温度検出部を備え、凝縮水有無検出部は、第3の温度も考慮して判定を行うことが好ましい。   Further, in configuring the condensed water detection device of the present invention, a third temperature sensor that is different from the first temperature sensor and the second temperature sensor and that is detected by a third temperature sensor that easily or does not adhere to condensed water. It is preferable that a third temperature detection unit for detecting the temperature is provided, and the condensed water presence / absence detection unit performs the determination in consideration of the third temperature.

また、本発明の別の態様は、内燃機関に接続され、排気ガス中の特定成分を検出するためのセンサ素子とセンサ素子を加熱するヒータとを有する特定ガス濃度センサが備えられた排気通路を流れる排気ガス中における凝縮水の有無を検出するための凝縮水検出方法において、内燃機関の始動後に、排気通路を形成する排気管に設けられた、凝縮水が付着しやすい第1の温度センサで検出される第1の温度と、凝縮水が付着しない第2の温度センサで検出される第2の温度と、を検出し、第1の温度及び第2の温度を比較することにより排気ガス中の凝縮水の有無を検出することを特徴とする凝縮水検出方法である。   Another aspect of the present invention provides an exhaust passage provided with a specific gas concentration sensor connected to an internal combustion engine and having a sensor element for detecting a specific component in the exhaust gas and a heater for heating the sensor element. In a condensed water detection method for detecting the presence or absence of condensed water in flowing exhaust gas, a first temperature sensor provided in an exhaust pipe that forms an exhaust passage after the internal combustion engine is started is attached to the first temperature sensor. By detecting the first temperature detected and the second temperature detected by the second temperature sensor to which the condensed water does not adhere, and comparing the first temperature and the second temperature in the exhaust gas It is a condensed water detection method characterized by detecting the presence or absence of condensed water.

また、本発明のさらに別の態様は、内燃機関の排気通路に介装され、排気通路に排気ガス中の特定成分を検出するためのセンサ素子とセンサ素子を加熱するヒータとを有する特定ガス濃度センサが備えられた排気浄化装置において、排気通路を形成する排気管に設けられた排気ガス中の凝縮水が付着しやすい第1の温度センサと、排気管に設けられた凝縮水が付着しない第2の温度センサと、内燃機関の始動後に、第1の温度センサで検知される第1の温度及び第2の温度センサで検知される第2の温度を検出するとともに、第1の温度及び第2の温度を比較することにより排気ガス中における凝縮水の有無を検出する凝縮水検出部と、を備えることを特徴とする排気浄化装置である。   According to still another aspect of the present invention, a specific gas concentration is provided in an exhaust passage of an internal combustion engine and includes a sensor element for detecting a specific component in the exhaust gas and a heater for heating the sensor element in the exhaust passage. In the exhaust gas purification apparatus provided with the sensor, the first temperature sensor provided in the exhaust pipe that forms the exhaust passage is easily attached with the condensed water in the exhaust gas, and the first temperature sensor provided in the exhaust pipe is not attached with the condensed water. The first temperature detected by the first temperature sensor and the second temperature detected by the second temperature sensor after the start of the internal combustion engine and the second temperature detected by the second temperature sensor are detected. And a condensed water detector that detects the presence or absence of condensed water in the exhaust gas by comparing the temperatures of the two.

また、本発明の排気浄化装置を構成するにあたり、第2の温度センサへの凝縮水の付着を防ぐための防水構造を備えることが好ましい。   In configuring the exhaust emission control device of the present invention, it is preferable to provide a waterproof structure for preventing the condensed water from adhering to the second temperature sensor.

本発明の凝縮水検出装置によれば、凝縮水が付着しやすい第1の温度センサで検知される第1の温度及び凝縮水が付着しにくい第2の温度センサで検知される第2の温度をそれぞれ検出する第1及び第2の温度検出部と、検出された第1及び第2の温度を比較して排気ガス中の凝縮水の有無を判定する凝縮水有無判定部とを備えているために、第1の温度と第2の温度との温度差に基づいて、凝縮水が付着しやすい第1の温度センサでの潜熱の有無が推定され、排気ガス中の凝縮水の有無が精度良く検出される。したがって、排気ガス中の凝縮水の消滅時期が精度良く見極められ、ヒータへの通電による素子割れが防止されるとともに、特定ガス濃度センサを用いた制御が迅速に開始されるようになる。
また、本発明の凝縮水検出装置は、温度センサを用いた検出が実行されるため、排気管に設けられる既存の温度センサを利用して凝縮水の有無を検出し、コストの増加を抑えることも可能になる。
According to the condensed water detection device of the present invention, the first temperature detected by the first temperature sensor to which the condensed water is likely to adhere and the second temperature detected by the second temperature sensor to which the condensed water is difficult to adhere. And a first and second temperature detection unit for detecting the presence of the condensed water, and a condensed water presence / absence determination unit for comparing the detected first and second temperatures to determine the presence / absence of condensed water in the exhaust gas. Therefore, based on the temperature difference between the first temperature and the second temperature, the presence or absence of latent heat at the first temperature sensor to which condensed water is likely to adhere is estimated, and the presence or absence of condensed water in the exhaust gas is accurately determined. It is well detected. Therefore, the disappearance time of the condensed water in the exhaust gas can be determined with high accuracy, the element cracking due to the energization of the heater can be prevented, and the control using the specific gas concentration sensor can be started quickly.
Further, since the condensed water detection device of the present invention performs detection using a temperature sensor, it detects the presence or absence of condensed water using an existing temperature sensor provided in the exhaust pipe, and suppresses an increase in cost. Is also possible.

また、本発明の凝縮水検出装置が内燃機関の始動検出部を備え、凝縮水有無判定部が、内燃機関の始動から所定期間経過後に検出された第1及び第2の温度を用いて凝縮水の有無を判定することにより、内燃機関の始動直後における、内燃機関の運転状態が不安定な期間に判定が実行され、誤判定されることが回避され、判定結果の精度が高められる。   In addition, the condensed water detection device of the present invention includes a start detection unit for the internal combustion engine, and the condensed water presence / absence determination unit uses the first and second temperatures detected after a predetermined period has elapsed since the start of the internal combustion engine. By determining whether or not there is, the determination is executed during a period in which the operating state of the internal combustion engine is unstable immediately after the start of the internal combustion engine, avoiding erroneous determination, and improving the accuracy of the determination result.

また、本発明の凝縮水検出装置において、凝縮水有無判定部が、第1及び第2の温度の温度差が所定値未満であるときに排気ガス中に凝縮水が存在しないと判定することにより、凝縮水が付着しやすい第1の温度センサでの凝縮水の蒸発に伴う潜熱が所定量未満であることに基づいて、排気ガス中に凝縮水が存在しないことを検出することができる。   Further, in the condensed water detection device of the present invention, the condensed water presence / absence determining unit determines that condensed water does not exist in the exhaust gas when the temperature difference between the first and second temperatures is less than a predetermined value. The presence of condensed water in the exhaust gas can be detected based on the fact that the latent heat accompanying the evaporation of the condensed water at the first temperature sensor where the condensed water is likely to adhere is less than a predetermined amount.

また、本発明の凝縮水検出装置において、凝縮水有無判定部が、第1及び第2の温度の温度差が所定期間継続して所定値未満であるときに排気ガス中に凝縮水が存在しないと判定することにより、凝縮水が一時的に消滅した後、短時間のうちに再凝縮した場合において、排気ガス中に凝縮水が存在しないと判定されることが回避され、判定結果の精度が高められる。   In the condensed water detection device of the present invention, the condensed water presence / absence determining unit has no condensed water in the exhaust gas when the temperature difference between the first and second temperatures is less than a predetermined value continuously for a predetermined period. By determining that the condensed water is temporarily lost and then re-condensed in a short time, it is avoided that the condensed water is not present in the exhaust gas, and the accuracy of the determination result is reduced. Enhanced.

また、本発明の凝縮水検出装置が所定の放熱量演算部と温度補正部とを備えることにより、排気ガスが、第1の温度センサの配置位置から第2の温度センサの配置位置までの間、又は第1の温度センサの配置位置から第2の温度センサの配置位置までの間に放熱される排気ガスの熱量を考慮して、第1の温度センサでの潜熱の有無に基づく第1及び第2の温度センサの温度差を精度良く算出することができる。したがって、第1及び第2の温度センサの配置位置が異なる場合であっても、第1の温度センサでの蒸発熱の有無に基づいて、排気ガス中の凝縮水の有無を精度良く判定することができる。   In addition, the condensed water detection device of the present invention includes the predetermined heat radiation amount calculation unit and the temperature correction unit, so that the exhaust gas is between the position where the first temperature sensor is disposed and the position where the second temperature sensor is disposed. Or the first and second based on the presence or absence of latent heat in the first temperature sensor in consideration of the amount of heat of the exhaust gas radiated between the position of the first temperature sensor and the position of the second temperature sensor. The temperature difference of the second temperature sensor can be calculated with high accuracy. Therefore, even when the arrangement positions of the first and second temperature sensors are different, the presence / absence of condensed water in the exhaust gas is accurately determined based on the presence / absence of heat of evaporation at the first temperature sensor. Can do.

また、本発明の凝縮水検出装置が所定のヒータ駆動制御部を備えることにより、排気ガス中に凝縮水が存在しないと判定されたときにヒータへの通電が開始され、センサ素子の素子割れを防止しつつ、センサ素子が迅速に活性化される。   In addition, since the condensed water detection device of the present invention includes a predetermined heater drive control unit, energization to the heater is started when it is determined that no condensed water is present in the exhaust gas, and the sensor element is cracked. The sensor element is quickly activated while preventing.

また、本発明の凝縮水検出装置が、第1及び第2の温度センサとは異なる位置に設けられた第3の温度センサで検知される温度を検出する第3の温度検出部を備えているために、第1の温度センサでの潜熱の有無がより正確に把握でき、排気ガス中の凝縮水の有無をより精度良く判定することができる。   Moreover, the condensed water detection apparatus of this invention is provided with the 3rd temperature detection part which detects the temperature detected by the 3rd temperature sensor provided in the position different from a 1st and 2nd temperature sensor. Therefore, the presence or absence of latent heat in the first temperature sensor can be grasped more accurately, and the presence or absence of condensed water in the exhaust gas can be determined with higher accuracy.

また、本発明の凝縮水検出方法によれば、凝縮水が付着しやすい第1の温度センサで検出される第1の温度及び凝縮水が付着しにくい第2の温度センサで検出される第2の温度を比較して排気ガス中の凝縮水の有無が検出されるために、第1の温度と第2の温度との温度差に基づいて、凝縮水が付着しやすい第1の温度センサでの潜熱の有無が推定され、排気ガス中の凝縮水の有無が精度良く検出される。したがって、排気ガス中の凝縮水の消滅時期が精度良く見極められ、ヒータへの通電による素子割れが防止されるとともに、特定ガス濃度センサを用いた制御が迅速に開始されるようになる。
また、本発明の凝縮水検出方法は、温度センサを用いた検出方法であるため、排気管に設けられる既存の温度センサを利用して凝縮水の有無が検出でき、コストの増加が抑えられる。
In addition, according to the condensed water detection method of the present invention, the first temperature detected by the first temperature sensor to which the condensed water is likely to adhere and the second temperature sensor to be detected by the second temperature sensor to which the condensed water is unlikely to adhere. In order to detect the presence or absence of condensed water in the exhaust gas by comparing the temperatures of the first and second temperatures, the first temperature sensor to which condensed water is likely to adhere is based on the temperature difference between the first temperature and the second temperature. The presence or absence of latent heat is estimated, and the presence or absence of condensed water in the exhaust gas is detected with high accuracy. Therefore, the disappearance time of the condensed water in the exhaust gas can be determined with high accuracy, the element cracking due to the energization of the heater can be prevented, and the control using the specific gas concentration sensor can be started quickly.
Moreover, since the condensed water detection method of this invention is a detection method using a temperature sensor, the presence or absence of condensed water can be detected using the existing temperature sensor provided in an exhaust pipe, and the increase in cost is suppressed.

また、本発明の排気浄化装置によれば、凝縮水が付着しやすい第1の温度センサ及び凝縮水が付着しにくい第2の温度センサを備えるとともに、当該第1及び第2の温度センサでそれぞれ検出される第1及び第2の温度を比較して排気ガス中の凝縮水の有無を検出する凝縮水検出部を備えるために、第1の温度と第2の温度との温度差に基づいて、凝縮水が付着しやすい第1の温度センサでの潜熱の有無が推定され、排気ガス中の凝縮水の有無が精度良く検出される。したがって、排気ガス中の凝縮水が消滅した後、速やかに特定ガス濃度センサを用いた排気浄化装置の制御が開始され、長時間に渡る排気エミッションの悪化が防止される。
また、本発明の排気浄化装置は、温度センサを用いた検出が実行されるため、排気管に設けられる既存の温度センサを利用して凝縮水の有無が検出でき、コストの増加が抑えられる。
Moreover, according to the exhaust gas purification apparatus of the present invention, the first temperature sensor that is easy to adhere condensed water and the second temperature sensor that is difficult to adhere condensed water are provided, and the first and second temperature sensors respectively. Based on the temperature difference between the first temperature and the second temperature in order to provide a condensed water detector that compares the detected first and second temperatures and detects the presence or absence of condensed water in the exhaust gas. The presence or absence of latent heat at the first temperature sensor where condensed water is likely to adhere is estimated, and the presence or absence of condensed water in the exhaust gas is detected with high accuracy. Therefore, after the condensed water in the exhaust gas disappears, the control of the exhaust gas purification apparatus using the specific gas concentration sensor is started immediately, and deterioration of the exhaust emission over a long time is prevented.
In addition, since the exhaust gas purification apparatus of the present invention performs detection using a temperature sensor, the presence or absence of condensed water can be detected using an existing temperature sensor provided in the exhaust pipe, and an increase in cost can be suppressed.

また、本発明の排気浄化装置において、第2の温度センサへの凝縮水の付着を防ぐための防水構造が備えられることにより、凝縮水が付着しない第2の温度センサが容易に構成される。したがって、新たに温度センサを付加することなく、既存の温度センサを利用して、凝縮水が付着しやすい第1の温度センサ及び凝縮水が付着しない第2の温度センサそれぞれの温度に基づく排気ガス中の凝縮水の有無の検出が可能になる。   Moreover, in the exhaust emission control device of the present invention, a waterproof structure for preventing the condensed water from adhering to the second temperature sensor is provided, so that the second temperature sensor to which the condensed water does not adhere is easily configured. Therefore, the exhaust gas based on the temperature of each of the first temperature sensor to which the condensed water easily adheres and the second temperature sensor to which the condensed water does not adhere is added using the existing temperature sensor without newly adding a temperature sensor. The presence or absence of condensed water in the inside can be detected.

以下、本発明の凝縮水検出装置及び凝縮水検出方法、並びに凝縮水検出装置を備えた排気浄化装置に関する実施の形態について、適宜図面を参照しながら具体的に説明する。ただし、以下の実施形態は、本発明の一態様を示すものであってこの発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。
なお、それぞれの図中、同じ符号を付してあるものについては同一の部材を示しており、適宜説明が省略されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments relating to a condensed water detection device, a condensed water detection method, and an exhaust gas purification device including the condensed water detection device according to the present invention will be specifically described below with reference to the drawings as appropriate. However, the following embodiment shows one aspect of the present invention and does not limit the present invention, and can be arbitrarily changed within the scope of the present invention.
In addition, in each figure, what has attached | subjected the same code | symbol has shown the same member, and description is abbreviate | omitted suitably.

1.排気浄化装置
(1)基本的構成
図1は、本実施形態にかかる内燃機関の排気浄化装置10の基本的な構成を示している。
この排気浄化装置10は、内燃機関5に接続された排気管11と、排気通路内に設けられ、還元剤を用いて排気ガス中のNOXを浄化する還元触媒13と、還元触媒13よりも上流側で排気通路内に還元剤を供給するための還元剤供給装置40と、還元剤供給装置40の動作を制御する制御装置60とを備えている。排気管11のうち、還元触媒13よりも上流側の排気管11には、第1の温度センサ16及び第2の温度センサ17と、排気ガス中のNOX濃度を検出する特定ガス濃度センサとしてのNOXセンサ20とが設けられている。また、還元触媒13よりも下流側の排気管11には、第3の温度センサ18が設けられている。
1. Exhaust Purification Device (1) Basic Configuration FIG. 1 shows a basic configuration of an exhaust purification device 10 for an internal combustion engine according to the present embodiment.
This exhaust purification device 10 is provided in an exhaust pipe 11 connected to the internal combustion engine 5, a reduction catalyst 13 provided in an exhaust passage for purifying NO x in exhaust gas using a reducing agent, and a reduction catalyst 13. A reducing agent supply device 40 for supplying the reducing agent into the exhaust passage on the upstream side, and a control device 60 for controlling the operation of the reducing agent supply device 40 are provided. In the exhaust pipe 11, the exhaust pipe 11 upstream of the reduction catalyst 13 includes a first temperature sensor 16 and a second temperature sensor 17, and a specific gas concentration sensor that detects the NO x concentration in the exhaust gas. NO x sensor 20 is provided. A third temperature sensor 18 is provided in the exhaust pipe 11 downstream of the reduction catalyst 13.

還元触媒13は、排気ガス中のNOXを浄化するために用いられる触媒であり、例えば、還元触媒13の上流側で供給された尿素水溶液や未燃燃料等の還元剤を利用してNOXを選択的に還元浄化する選択還元触媒が用いられる。 Reduction catalyst 13 is a catalyst used for purifying NO X in the exhaust gas, for example, by using a reducing agent such as supplied aqueous urea solution or unburned fuel in the upstream side of the reduction catalyst 13 NO X A selective reduction catalyst that selectively reduces and purifies is used.

制御装置60は、内燃機関5の燃料噴射量や燃料噴射タイミング、回転数等をはじめとする内燃機関5の運転状態に関する情報が読込可能になっているだけでなく、特定ガス濃度センサ18や第1の温度センサ16、第2の温度センサ17、第3の温度センサ18等のセンサ値が読込可能になっている。この制御装置60は、排気ガス中の凝縮水の有無を検出する凝縮水検出装置としての機能も有している。   The control device 60 can read not only information on the operating state of the internal combustion engine 5 including the fuel injection amount, fuel injection timing, rotation speed, etc. of the internal combustion engine 5, but also the specific gas concentration sensor 18 and the Sensor values of the first temperature sensor 16, the second temperature sensor 17, the third temperature sensor 18, and the like can be read. The control device 60 also has a function as a condensed water detection device that detects the presence or absence of condensed water in the exhaust gas.

(2)NOXセンサ
本実施形態の排気浄化装置10において、還元触媒13の上流側に設けられたNOXセンサ20は、還元触媒13に流入するNOXの流量の算出に用いられる。ただし、NOXセンサは、還元触媒13の下流側に設けられ、還元触媒13を通過したNOXの流量の算出に用いられる場合もある。
(2) NO X Sensor In the exhaust purification device 10 of the present embodiment, the NO X sensor 20 provided on the upstream side of the reduction catalyst 13 is used to calculate the flow rate of NO X flowing into the reduction catalyst 13. However, the NO X sensor is provided on the downstream side of the reduction catalyst 13 and may be used to calculate the flow rate of NO X that has passed through the reduction catalyst 13.

図2は、本実施形態の排気浄化装置10に備えられる特定ガス濃度センサとしてのNOXセンサ20の構成の一例を概略的に表した断面図を示している。このNOXセンサ20は、複数のガス通過孔33が設けられた保護カバー37と、保護カバー37内に配置されたセンサ素子29と、センサ素子29を加熱するためのヒータ24とを備えており、ガス通過孔33を通じて保護カバー37の内外を排気ガスが流通可能に構成されている。 FIG. 2 is a cross-sectional view schematically showing an example of the configuration of the NO x sensor 20 as the specific gas concentration sensor provided in the exhaust purification device 10 of the present embodiment. The NO X sensor 20 includes a protective cover 37 provided with a plurality of gas passage holes 33, a sensor element 29 disposed in the protective cover 37, and a heater 24 for heating the sensor element 29. The exhaust gas is configured to be able to flow inside and outside the protective cover 37 through the gas passage hole 33.

センサ素子29は、二つの固体電解質体19、21と、固体電解質体19、21によって形成された排気ガス流路22とを備えており、排気ガス流路22の途中には、第1空間25a及び第2空間25bが設けられている。また、排気ガス流路22の第1空間25aに面して第1素子26aが設けられ、第2空間25bに面して第2素子26bが設けられている。
第1素子26aは、固体電解質体21の両面に第1の内側電極27a及び第1の外側電極28aが配置されて構成されたものであり、第1の内側電極27aが第1空間25aに面し、第1の外側電極28aが基準ガス空間30に面している。また、第2素子26bは、固体電解質体21の両面に第2の内側電極27b及び第2の外側電極28bが配置されて構成されたものであり、第2の内側電極27bが第2空間25bに面し、第2の外側電極28bが基準ガス空間30に面している。
The sensor element 29 includes two solid electrolyte bodies 19, 21 and an exhaust gas passage 22 formed by the solid electrolyte bodies 19, 21, and the first space 25 a is disposed in the middle of the exhaust gas passage 22. And the 2nd space 25b is provided. The first element 26a is provided facing the first space 25a of the exhaust gas flow path 22, and the second element 26b is provided facing the second space 25b.
The first element 26a is configured by arranging the first inner electrode 27a and the first outer electrode 28a on both surfaces of the solid electrolyte body 21, and the first inner electrode 27a faces the first space 25a. The first outer electrode 28 a faces the reference gas space 30. The second element 26b is configured by arranging the second inner electrode 27b and the second outer electrode 28b on both surfaces of the solid electrolyte body 21, and the second inner electrode 27b is formed in the second space 25b. The second outer electrode 28 b faces the reference gas space 30.

第1素子26a及び第2素子26bを構成する固定電解質体21は、例えば、ZrO2を含むセラミック体が代表的な例であるが、酸素ポンプ素子を構成する従来公知の固体電解質体であれば好適に用いることができる。
また、固体電解質体21の両面に配置される第1及び第2の内側電極27a、27b及び第1及び第2の外側電極28a、28bは、それぞれ酸素分子を解離可能な多孔質電極からなり、固体電解質体と同様、従来公知の多孔質電極であれば好適に用いることができる。
The fixed electrolyte body 21 constituting the first element 26a and the second element 26b is typically a ceramic body containing, for example, ZrO 2 , but may be a conventionally known solid electrolyte body constituting an oxygen pump element. It can be used suitably.
Further, the first and second inner electrodes 27a, 27b and the first and second outer electrodes 28a, 28b arranged on both surfaces of the solid electrolyte body 21 are respectively porous electrodes capable of dissociating oxygen molecules. Similar to the solid electrolyte body, any conventionally known porous electrode can be suitably used.

これらの第1素子26a及び第2素子26bは、ともに酸素ポンプ素子として利用されるものであり、第1素子26a及び第2素子26bを構成する第1の内側電極27aと第1の外側電極28a、及び第2の内側電極27bと第2の外側電極28bはそれぞれ外部接続回路32に接続され、一対の電極間に電圧が印加されるようになっている。   Both the first element 26a and the second element 26b are used as oxygen pump elements, and the first inner electrode 27a and the first outer electrode 28a constituting the first element 26a and the second element 26b. The second inner electrode 27b and the second outer electrode 28b are connected to the external connection circuit 32, respectively, and a voltage is applied between the pair of electrodes.

このように構成されるセンサ素子29は、活性温度以上であるときに活性状態となる性質を有するため、NOXセンサ20は、センサ素子29に隣接してヒータ24が設けられている。このヒータ24は、制御装置60によって通電が制御される電熱線24aが基板層24bに埋設されて構成されたものであり、内燃機関5の始動時等、排気管11内の温度が低く、センサ素子29が活性温度未満であるような状況において通電され、センサ素子29を活性温度以上に昇温するとともに、センサ素子29の温度を活性温度以上に維持する。センサ素子29は、ヒータ24によって、例えば700℃以上に昇温させられる。 Since the sensor element 29 configured as described above has a property of being activated when the temperature is equal to or higher than the activation temperature, the NO X sensor 20 is provided with a heater 24 adjacent to the sensor element 29. The heater 24 is configured by embedding a heating wire 24a whose energization is controlled by the control device 60 in the substrate layer 24b, and the temperature in the exhaust pipe 11 is low when the internal combustion engine 5 is started. Energization is performed in a situation where the element 29 is lower than the activation temperature, the sensor element 29 is heated to the activation temperature or higher, and the temperature of the sensor element 29 is maintained to the activation temperature or higher. The sensor element 29 is heated to, for example, 700 ° C. or higher by the heater 24.

(3)温度センサ
本実施形態の排気浄化装置10において、第1の温度センサ16、第2の温度センサ17及び第3の温度センサ18は、それぞれの配置位置における排気温度を検出するために用いられる。これらの温度センサは、例えば、金属管の内部にサーミスタ素子を感温素子として備えて構成され、排気管に装着される。そして、サーミスタ素子を排気ガスが流れる排気管内に配置させて、排気ガスの温度検出に用いられる。なお、サーミスタ素子は、温度によって電気抵抗値が変化する感温部(サーミスタ焼結体)と、感温部の電気抵抗値の変化を取り出すための一対の電極線とから構成される。温度センサは、特定ガス濃度センサとは違って周囲温度によらず測定が可能であるとともに、素子割れのおそれがないセンサである。
(3) Temperature sensor In the exhaust purification apparatus 10 of this embodiment, the 1st temperature sensor 16, the 2nd temperature sensor 17, and the 3rd temperature sensor 18 are used in order to detect the exhaust temperature in each arrangement position. It is done. For example, these temperature sensors include a thermistor element as a temperature-sensitive element inside a metal tube, and are attached to an exhaust pipe. Then, the thermistor element is disposed in the exhaust pipe through which the exhaust gas flows, and is used for temperature detection of the exhaust gas. The thermistor element is composed of a temperature-sensitive part (thermistor sintered body) whose electric resistance value changes with temperature and a pair of electrode wires for taking out the change in electric resistance value of the temperature-sensitive part. Unlike the specific gas concentration sensor, the temperature sensor is a sensor that can measure regardless of the ambient temperature and has no risk of element cracking.

これらの温度センサのうち、第1の温度センサ16のセンサ値は、内燃機関5の制御等に用いられ、第2の温度センサ17及び第3の温度センサ18のセンサ値は、還元触媒13の温度推定に用いられる。
また、本実施形態の排気浄化装置10では、第1の温度センサ16及び第2の温度センサ17のセンサ値が、排気ガス中の凝縮水の有無の検出にも用いられる。すなわち、この排気浄化装置10は、新たな温度センサを付加することなく、既存の温度センサを利用して、排気ガス中の凝縮水の有無を検出するように構成されている。
Among these temperature sensors, the sensor value of the first temperature sensor 16 is used for control of the internal combustion engine 5 and the like, and the sensor values of the second temperature sensor 17 and the third temperature sensor 18 are the values of the reduction catalyst 13. Used for temperature estimation.
Further, in the exhaust purification apparatus 10 of the present embodiment, the sensor values of the first temperature sensor 16 and the second temperature sensor 17 are also used for detecting the presence or absence of condensed water in the exhaust gas. That is, the exhaust gas purification apparatus 10 is configured to detect the presence or absence of condensed water in the exhaust gas using an existing temperature sensor without adding a new temperature sensor.

ここで、排気ガス中の凝縮水の有無の検出に用いられる第1の温度センサ16及び第2の温度センサ17のうち、第1の温度センサ16は排気ガス中の凝縮水が付着しやすいセンサである一方、第2の温度センサ17は排気ガス中の凝縮水が付着しないセンサとして構成される。本実施形態では、二つの温度センサにおいて凝縮水の付着の可否に差を設けることで、凝縮水が付着しやすい第1の温度センサ16での潜熱の発生を推定し、当該潜熱の有無によって、排気ガス中の凝縮水の有無を検出するように構成されている。
凝縮水が付着しやすい第1の温度センサ16と凝縮水が付着しない第2の温度センサ17の構成は、各温度センサの配置位置で実現される場合もあれば、第2の温度センサ17に防水構造を施すことによって実現される場合もある。図1に示す排気浄化装置10の例では、各温度センサの配置位置によって、凝縮水の付着の可否が実現されている。
Here, of the first temperature sensor 16 and the second temperature sensor 17 used for detecting the presence or absence of condensed water in the exhaust gas, the first temperature sensor 16 is a sensor to which condensed water in the exhaust gas is likely to adhere. On the other hand, the second temperature sensor 17 is configured as a sensor to which condensed water in the exhaust gas does not adhere. In this embodiment, by providing a difference in whether or not the condensed water adheres between the two temperature sensors, the generation of latent heat in the first temperature sensor 16 where the condensed water is likely to adhere is estimated, and depending on the presence or absence of the latent heat, It is configured to detect the presence or absence of condensed water in the exhaust gas.
The configuration of the first temperature sensor 16 to which the condensed water easily adheres and the second temperature sensor 17 to which the condensed water does not adhere may be realized at an arrangement position of each temperature sensor, or may be provided in the second temperature sensor 17. It may be realized by applying a waterproof structure. In the example of the exhaust gas purification apparatus 10 shown in FIG. 1, whether or not the condensed water can be attached is realized depending on the arrangement position of each temperature sensor.

具体的には、内燃機関5から排出される排気ガスG中には、燃料と空気の燃焼反応によって生成された水蒸気が含まれているが、内燃機関5の始動時等、排気管11内の温度が低い場合には、排気ガス中の水蒸気が冷やされて凝縮する場合がある。
排気ガス中に発生した凝縮水は、例えば凝縮水自身の質量や排気ガスの慣性力、排気管11の形状等の影響を受けながら、排気管11の内壁や、排気管11内に臨むセンサ等に付着するが、排気管11内では、排気管11の形状によって、図3に示すように、凝縮水が付着しやすい位置と、凝縮水が付着しない位置とが存在する。主として、屈曲する排気管11の外側内周面には排気ガスGが当たりやすいため凝縮水が付着しやすい一方、屈曲する排気管11の内側内周面には排気ガスGが当たりにくく凝縮水が付着しにくい。本実施形態の排気浄化装置10では、このような実体を考慮して、凝縮水が付着しやすい位置に第1の温度センサ16が設けられ、凝縮水が付着しない位置に第2の温度センサ17が設けられ、各温度センサへの凝縮水の付着の可否が実現されている。
Specifically, the exhaust gas G discharged from the internal combustion engine 5 contains water vapor generated by the combustion reaction of fuel and air. However, when the internal combustion engine 5 is started, the exhaust gas G When the temperature is low, water vapor in the exhaust gas may be cooled and condensed.
The condensed water generated in the exhaust gas is affected by, for example, the mass of the condensed water itself, the inertial force of the exhaust gas, the shape of the exhaust pipe 11, etc., and the sensor facing the inside of the exhaust pipe 11 and the exhaust pipe 11. However, in the exhaust pipe 11, depending on the shape of the exhaust pipe 11, as shown in FIG. 3, there are positions where the condensed water is likely to adhere and positions where the condensed water does not adhere. Mainly, since the exhaust gas G easily hits the outer peripheral surface of the bent exhaust pipe 11, the condensed water tends to adhere to the inner peripheral surface of the bent exhaust pipe 11, while the exhaust gas G hardly hits the inner peripheral surface of the bent exhaust pipe 11. Hard to adhere. In the exhaust purification apparatus 10 of the present embodiment, in consideration of such an entity, the first temperature sensor 16 is provided at a position where the condensed water easily adheres, and the second temperature sensor 17 is located at a position where the condensed water does not adhere. Is provided, and whether or not the condensed water adheres to each temperature sensor is realized.

一方、第2の温度センサ17への凝縮水の付着を完全に防ぎたい場合には、図4に示すように、第2の温度センサ17に防水構造12を備えることが好ましい。このような防水構造12を備えるのであれば、第2の温度センサ17の配置位置にかかわらず、凝縮水が付着しない状態が容易に形成される。
図4に示す防水構造12は、箱型のカバー12A内に第2の温度センサ17を配置するとともに、当該カバー12Aを排気管11の外周面に固定し、カバー12A内に外気及び排気ガスが侵入しないように構成した防水構造12である。このカバー12Aは、排気管11と同じステンレス等によって構成されており、排気管11から効率的に熱伝達を受ける一方、第2の温度センサ17には外気が直接触れることがないため、排気通路内の温度が第2の温度センサ17によって正確に検出されるようになっている。また、カバー12Aは排気管11の外周面側に取り付けられるため、第2の温度センサ17を包囲するカバー12A自体に凝縮水が付着することによる、潜熱の影響を受けないようになっている。
On the other hand, when it is desired to completely prevent the condensed water from adhering to the second temperature sensor 17, it is preferable that the second temperature sensor 17 includes a waterproof structure 12 as shown in FIG. If such a waterproof structure 12 is provided, a state in which condensed water does not adhere is easily formed regardless of the arrangement position of the second temperature sensor 17.
In the waterproof structure 12 shown in FIG. 4, the second temperature sensor 17 is disposed in a box-shaped cover 12A, the cover 12A is fixed to the outer peripheral surface of the exhaust pipe 11, and outside air and exhaust gas are contained in the cover 12A. It is the waterproof structure 12 comprised so that it might not penetrate | invade. The cover 12A is made of the same stainless steel as the exhaust pipe 11 and efficiently receives heat from the exhaust pipe 11, while the second temperature sensor 17 is not directly in contact with outside air. The temperature inside is accurately detected by the second temperature sensor 17. In addition, since the cover 12A is attached to the outer peripheral surface side of the exhaust pipe 11, it is not affected by latent heat due to condensed water adhering to the cover 12A itself surrounding the second temperature sensor 17.

なお、本実施形態の排気浄化装置10では、凝縮水が付着しやすい第1の温度センサ16よりも凝縮水が付着しない第2の温度センサ17が排気下流側に設けられているが、逆に、凝縮水が付着しない第2の温度センサ17よりも凝縮水が付着しやすい第1の温度センサ16が排気下流側に設けられてもよい。さらには、第1の温度センサ16と第2の温度センサ17とが同じ位置に設けられてもよい。
また、図1に示す本実施形態の排気浄化装置10は、凝縮水の有無の検出に、第1の内燃機関5の制御や排気浄化装置10の制御に用いられる温度センサを利用しているが、新たに温度センサを付加して構成することもできる。
In addition, in the exhaust purification apparatus 10 of this embodiment, although the 2nd temperature sensor 17 to which condensed water does not adhere rather than the 1st temperature sensor 16 to which condensed water adheres is provided in the exhaust gas downstream, conversely The first temperature sensor 16 to which the condensed water is more likely to adhere than the second temperature sensor 17 to which the condensed water does not adhere may be provided on the exhaust downstream side. Furthermore, the first temperature sensor 16 and the second temperature sensor 17 may be provided at the same position.
Further, the exhaust purification device 10 of the present embodiment shown in FIG. 1 uses a temperature sensor used for control of the first internal combustion engine 5 and control of the exhaust purification device 10 for detecting the presence or absence of condensed water. A new temperature sensor can also be added.

(4)還元剤供給装置
還元剤供給装置40は、還元触媒13に還元剤を供給するための装置であり、還元触媒13よりも上流側で排気管11に固定された還元剤供給弁44と、還元剤が貯蔵された貯蔵タンク41と、貯蔵タンク41内の還元剤を還元剤供給弁44に対して圧送するポンプ42とを主たる要素として備えている。貯蔵タンク41とポンプ42との間には第1の供給経路58が接続され、ポンプ42と還元剤噴射弁44との間には第2の供給経路59が接続されている。この還元剤供給装置40は、内燃機関5の運転状態やNOXセンサ18で検出されるNOX濃度、還元触媒13の温度等に基づいて算出される量の還元剤が排気管11内に供給されるように、制御装置60によって供給制御が行われる。
(4) Reductant supply device The reductant supply device 40 is a device for supplying the reductant to the reduction catalyst 13, and includes a reductant supply valve 44 fixed to the exhaust pipe 11 upstream of the reduction catalyst 13. The main components are a storage tank 41 in which the reducing agent is stored, and a pump 42 that pumps the reducing agent in the storage tank 41 to the reducing agent supply valve 44. A first supply path 58 is connected between the storage tank 41 and the pump 42, and a second supply path 59 is connected between the pump 42 and the reducing agent injection valve 44. The reducing agent supply device 40 supplies the exhaust pipe 11 with an amount of reducing agent calculated based on the operating state of the internal combustion engine 5, the NO X concentration detected by the NO X sensor 18, the temperature of the reduction catalyst 13, and the like. As described above, supply control is performed by the control device 60.

この還元剤供給装置40では、内燃機関5の運転時において、貯蔵タンク41内の還元剤がポンプ42によって汲み上げられ、還元剤噴射弁44に向けて圧送される。制御装置60は、内燃機関5の運転状態やNOXセンサ18によって測定されるNOX濃度等の情報をもとに供給すべき還元剤量を決定し、それに応じた制御信号を還元剤噴射弁44に対して出力する。還元剤噴射弁44では、この制御信号に基づいてデューティ制御が行われ、適切な量の還元剤が排気管11内に供給される。 In the reducing agent supply device 40, during operation of the internal combustion engine 5, the reducing agent in the storage tank 41 is pumped up by the pump 42 and is pumped toward the reducing agent injection valve 44. The control device 60 determines the amount of reducing agent to be supplied based on information such as the operating state of the internal combustion engine 5 and the NO x concentration measured by the NO x sensor 18, and sends a control signal corresponding thereto to the reducing agent injection valve. 44 for output. In the reducing agent injection valve 44, duty control is performed based on this control signal, and an appropriate amount of reducing agent is supplied into the exhaust pipe 11.

2.制御装置(凝縮水検出装置)
(1)基本的構成
図1に示す排気浄化装置10に備えられる制御装置60では、基本的には、適切な量の還元剤が排気管11内に供給されるように、ポンプ42及び還元剤噴射弁44の動作制御が行われる。また、本実施形態の排気浄化装置10に備えられた制御装置60は、排気ガス中の凝縮水の有無を検出するための凝縮水検出装置としての機能を備えている。
2. Control device (Condensate detection device)
(1) Basic Configuration In the control device 60 provided in the exhaust emission control device 10 shown in FIG. 1, basically, the pump 42 and the reducing agent are supplied so that an appropriate amount of the reducing agent is supplied into the exhaust pipe 11. Operation control of the injection valve 44 is performed. Further, the control device 60 provided in the exhaust purification device 10 of the present embodiment has a function as a condensed water detection device for detecting the presence or absence of condensed water in the exhaust gas.

図1の制御装置60では、制御装置60が有する各機能がブロックで表されている。この制御装置60は、ポンプ42の駆動制御を行うポンプ駆動制御部(図1では「pump駆動制御」と表記。)と、排気管11内に供給する還元剤量を算出するとともに還元剤噴射弁44の駆動制御を行う還元剤噴射弁駆動制御部(図1では「Udv駆動制御」と表記。)と、排気管11内における凝縮水の有無を検出する凝縮水検出部(図1では「凝縮水検出」と表記。)と、NOXセンサ18に設けられたヒータに対する通電制御を行うヒータ制御部(図1では「ヒータ制御」と表記。)等を主要な要素として備えている。これらの各部は、具体的にはマイクロコンピュータ(図示せず)によるプラグラムの実行によって実現される。 In the control device 60 of FIG. 1, each function of the control device 60 is represented by a block. The control device 60 calculates a reducing agent injection valve while calculating a reducing agent amount to be supplied into the exhaust pipe 11, a pump driving control unit (indicated as “pump driving control” in FIG. 1) that controls the driving of the pump 42. The reducing agent injection valve drive control unit (indicated as “Udv drive control” in FIG. 1) that performs the drive control of 44 and the condensed water detection unit (in FIG. 1, “condensation”) detects the presence or absence of condensed water in the exhaust pipe 11. The main elements include a heater control unit (indicated as “heater control” in FIG. 1) and the like that perform energization control on the heater provided in the NO X sensor 18. Specifically, each of these units is realized by executing a program by a microcomputer (not shown).

ポンプ駆動制御部は、第2の供給経路59内の圧力が所定の圧力で維持されるように、第2の供給経路59内の還元剤の圧力を示す圧力センサ43のセンサ値Spに基づいて、ポンプ42のフィードバック制御を行う。また、還元剤噴射弁駆動制御部は、内燃機関5の運転状態に関する情報や、排気浄化装置10に備えられたNOXセンサ18のセンサ値Snに基づいて、排気ガス中のNOXを還元するために必要な還元剤の供給量を算出するとともに還元剤噴射弁44に対して駆動信号を出力する。
ヒータ制御部は、NOXセンサ18に備えられたヒータ24への通電のオンオフの制御を行う。
The pump drive control unit is based on the sensor value Sp of the pressure sensor 43 indicating the pressure of the reducing agent in the second supply path 59 so that the pressure in the second supply path 59 is maintained at a predetermined pressure. The feedback control of the pump 42 is performed. Further, the reducing agent injection valve drive control unit reduces NO X in the exhaust gas based on the information regarding the operating state of the internal combustion engine 5 and the sensor value Sn of the NO X sensor 18 provided in the exhaust purification device 10. Therefore, the supply amount of the reducing agent necessary for the calculation is calculated, and a drive signal is output to the reducing agent injection valve 44.
The heater control unit controls on / off of energization to the heater 24 provided in the NO X sensor 18.

このうちヒータ制御部は、後述する凝縮水検出部によって、排気ガス中に凝縮水が存在すると判定される間はNOXセンサ18に備えられたヒータ24への通電を遮断する。一方、排気ガス中に凝縮水が存在しないと判定されたときには、ヒータ制御部はヒータ24への通電を開始する。また、還元剤噴射弁駆動制御部は、NOXセンサ18に備えられたヒータ24への通電が開始され、NOXセンサ18のセンサ素子29が活性化した後に、還元剤噴射弁44の駆動制御を開始する。 Among heater control unit, the condensed water detector to be described later, while the condensed water is determined to be present in the exhaust gas is shut off power supply to the heater 24 provided in the NO X sensor 18. On the other hand, when it is determined that condensed water does not exist in the exhaust gas, the heater control unit starts energizing the heater 24. Further, the reducing agent injection valve drive control unit controls the driving of the reducing agent injection valve 44 after energization of the heater 24 provided in the NO X sensor 18 is started and the sensor element 29 of the NO X sensor 18 is activated. To start.

(2)凝縮水検出部
図5は、制御装置60の構成のうち、凝縮水検出部にかかる部分をさらに詳細に示すブロック図を示す。この凝縮水検出部は、内燃機関5の始動を検出する始動検出部(「図5では「始動検出」と表記。)と、第1の温度センサ16のセンサ値St1に基づいて第1の温度T1を検出する第1の温度検出部(「図5では「T1検出」と表記。)と、第2の温度センサ17のセンサ値St2に基づいて第2の温度T2を検出する第2の温度検出部(「図5では「T2検出」と表記。)と、第1の温度検出部及び第2の温度検出部において検出された第1の温度T1及び第2の温度T2のうちの少なくとも一方の値を補正する温度補正部(図5では「温度補正」と表記。)と、検出され、あるいは補正された第1の温度T1及び第2の温度T2に基づいて、排気管11内に凝縮水が存在するか否かを判定する凝縮水有無判定部(図5では「凝縮水有無判定」と表記。)とから構成されている。これらの各部についても、マイクロコンピュータ(図示せず)によるプログラムの実行によって実現される。
(2) Condensed water detection part FIG. 5: shows the block diagram which shows the part concerning a condensed water detection part further in detail among the structures of the control apparatus 60. As shown in FIG. The condensate detection unit detects the start of the internal combustion engine 5 (referred to as “start detection” in FIG. 5), and the first temperature based on the sensor value St1 of the first temperature sensor 16. A first temperature detection unit for detecting T1 (indicated as “T1 detection” in FIG. 5) and a second temperature for detecting the second temperature T2 based on the sensor value St2 of the second temperature sensor 17 And at least one of a first temperature T1 and a second temperature T2 detected by the detection unit ("T2 detection" in FIG. 5) and the first temperature detection unit and the second temperature detection unit. Based on the temperature correction unit (indicated as “temperature correction” in FIG. 5) and the detected or corrected first temperature T1 and second temperature T2, the exhaust pipe 11 is condensed. Condensed water presence / absence determination unit (denoted as “condensed water presence / absence determination” in FIG. 5) for determining whether or not water is present. ing. Each of these units is also realized by executing a program by a microcomputer (not shown).

始動検出部は、内燃機関5の回転数Ne等に基づいて、内燃機関5の始動を検出する。この始動検出部は、内燃機関5の始動が検出されたときに、凝縮水有無判定部に対して内燃機関5の始動が開始されたことを示す信号を出力する。   The start detection unit detects the start of the internal combustion engine 5 based on the rotational speed Ne of the internal combustion engine 5 or the like. When the start of the internal combustion engine 5 is detected, the start detection unit outputs a signal indicating that the start of the internal combustion engine 5 has started to the condensed water presence / absence determination unit.

第1及び第2の温度検出部は、それぞれ第1の温度センサ16のセンサ値St1又は第2の温度センサ17のセンサ値St2を継続的に読み込み、第1の温度T1又は第2の温度T2を算出する。本実施形態の制御装置60では、第1及び第2の温度検出部が第1の温度センサ16及び第2の温度センサ17における抵抗値変化を検出するとともに、当該抵抗値から第1の温度T1又は第2の温度T2を算出する構成となっている。温度センサ自身が温度を演算する機能を有するセンサである場合には、第1及び第2の温度検出部から、温度センサのセンサ値に基づいて温度を算出する機能が省略される。   The first and second temperature detection units continuously read the sensor value St1 of the first temperature sensor 16 or the sensor value St2 of the second temperature sensor 17, respectively, and the first temperature T1 or the second temperature T2 Is calculated. In the control device 60 of the present embodiment, the first and second temperature detectors detect changes in the resistance values in the first temperature sensor 16 and the second temperature sensor 17, and the first temperature T1 is determined from the resistance values. Alternatively, the second temperature T2 is calculated. When the temperature sensor itself is a sensor having a function of calculating the temperature, the function of calculating the temperature based on the sensor value of the temperature sensor is omitted from the first and second temperature detection units.

温度補正部は、第1及び第2の温度検出部において検出された第1の温度T1及び第2の温度T2のうちの少なくとも一方の値を補正する。
図1に示す本実施形態の排気浄化装置10では、第1の温度センサ16と第2の温度センサ17とが排気ガスの流れ方向において異なる位置に設けられているため、第1の温度センサ16が設けられた位置と第2の温度センサ17が設けられた位置とでは排気管11内の温度が異なってしまう。このため、第1の温度センサ16及び第2の温度センサ17が同じ温度条件下に配置されている仮定のもとで第1の温度T1と第2の温度T2との比較が行われるようにする。制御装置60の温度補正部は、上流側の第1の温度センサ16の配置位置から下流側の第2の温度センサ17の配置位置までの間での排気管11からの放熱量を考慮して、第1の温度T1及び第2の温度T2のうちのいずれか一方の値を補正する。
The temperature correction unit corrects at least one value of the first temperature T1 and the second temperature T2 detected by the first and second temperature detection units.
In the exhaust gas purification apparatus 10 of the present embodiment shown in FIG. 1, the first temperature sensor 16 and the second temperature sensor 17 are provided at different positions in the exhaust gas flow direction. The temperature in the exhaust pipe 11 differs between the position where the second temperature sensor 17 is provided and the position where the second temperature sensor 17 is provided. Therefore, the comparison between the first temperature T1 and the second temperature T2 is performed under the assumption that the first temperature sensor 16 and the second temperature sensor 17 are arranged under the same temperature condition. To do. The temperature correction unit of the control device 60 takes into consideration the amount of heat released from the exhaust pipe 11 from the arrangement position of the upstream first temperature sensor 16 to the arrangement position of the downstream second temperature sensor 17. The value of either one of the first temperature T1 and the second temperature T2 is corrected.

例えば、制御装置60の温度補正部は、第1の温度センサ16の配置位置から第2の温度センサ17の配置位置までの排気管11の長さと、排気管11の円周の長さと、排気管11の熱伝達率と、排気温度と、外気温度等に基づいて、第1の温度センサ16の配置位置から第2の温度センサ17の配置位置までの間で排気管11の表面から放出される熱量を求めた上で、この算出された放熱量に対応する温度を第2の温度T2に加算する補正を行い、補正後の第2の温度T2’を算出する。
ただし、温度補正の方法は、上述の算出された放熱量に対応する温度を第1の温度T1から減算する補正であってもよいし、あるいは、第1の温度T1から所定の温度を減算する一方、第2の温度T2に所定の温度を加算する補正であってもよい。いずれにしても、第1の温度センサ16の配置位置と第2の温度センサ17の配置位置とが異なることによる温度差分が吸収されるように補正が行われればよい。
For example, the temperature correction unit of the control device 60 includes the length of the exhaust pipe 11 from the arrangement position of the first temperature sensor 16 to the arrangement position of the second temperature sensor 17, the circumferential length of the exhaust pipe 11, and the exhaust gas. Based on the heat transfer coefficient of the tube 11, the exhaust temperature, the outside air temperature, etc., it is discharged from the surface of the exhaust tube 11 between the position where the first temperature sensor 16 is disposed and the position where the second temperature sensor 17 is disposed. After calculating the amount of heat to be corrected, correction is performed by adding the temperature corresponding to the calculated heat release amount to the second temperature T2, and the corrected second temperature T2 ′ is calculated.
However, the temperature correction method may be correction by subtracting the temperature corresponding to the calculated heat radiation amount from the first temperature T1, or subtracting a predetermined temperature from the first temperature T1. On the other hand, the correction may be performed by adding a predetermined temperature to the second temperature T2. In any case, it is only necessary to perform correction so that the temperature difference due to the difference between the arrangement position of the first temperature sensor 16 and the arrangement position of the second temperature sensor 17 is absorbed.

温度補正部がこのような温度補正を実行することで、第1の温度センサ16の配置位置と第2の温度センサ17の配置位置とが異なる場合であっても、凝縮水が付着しやすい第1の温度センサ16での凝縮水の蒸発による潜熱に起因した、第1の温度T1と第2の温度T2との温度差が精度良く検出される。   By performing such temperature correction by the temperature correction unit, even if the arrangement position of the first temperature sensor 16 and the arrangement position of the second temperature sensor 17 are different, the condensed water tends to adhere. The temperature difference between the first temperature T1 and the second temperature T2 caused by the latent heat due to the evaporation of the condensed water in the first temperature sensor 16 is detected with high accuracy.

凝縮水有無判定部は、検出され、あるいは補正された第1の温度T1と第2の温度T2とを読み込み、2つの温度を比較することにより、排気管11内に凝縮水が存在するか否かを判定する。本実施形態の制御装置60の温度判定部では、第1の温度T1と、補正後の第2の温度T2’とを比較するとともに、第1の温度T1と補正後の第2の温度T2’との温度差ΔTを算出し、この温度差ΔTが、所定の判定期間tm2中継続して所定の閾値ΔT0未満となるか否かを判定する。この判定期間tm2は、排気ガス中に凝縮水が生成されることがなくなったと確実に見極められるような期間を実験的に求めるなどして、設定される。この判定期間tm2は、タイマカウンタによって計測される。   The condensed water presence / absence determining unit reads the detected or corrected first temperature T1 and second temperature T2, and compares the two temperatures to determine whether condensed water exists in the exhaust pipe 11. Determine whether. In the temperature determination unit of the control device 60 of the present embodiment, the first temperature T1 is compared with the corrected second temperature T2 ′, and the first temperature T1 and the corrected second temperature T2 ′ are compared. The temperature difference ΔT is calculated, and it is determined whether or not the temperature difference ΔT is continuously less than the predetermined threshold value ΔT0 during the predetermined determination period tm2. This determination period tm2 is set by experimentally determining a period during which it can be reliably determined that condensed water is no longer generated in the exhaust gas. This determination period tm2 is measured by a timer counter.

また、本実施形態の制御装置60の凝縮水有無判定部は、内燃機関5の始動後、タイマカウンタによって計測される所定の待機期間tm1経過後に検出された第1の温度T1及び第2の温度T2を用いて、上記判定を行う。具体的には、内燃機関5の始動後、第1及び第2の温度検出部は、継続的に第1の温度センサ16のセンサ値St1及び第2の温度センサ17のセンサ値St2を読み込むとともに、温度補正部は、第1の温度T1及び第2の温度T2のうちのいずれか一方の値を補正するが、凝縮水有無判定部は、あらかじめ設定された待機期間tm1の経過後に読み込んだ温度をもとに上記判定を行い、判定結果を、ヒータ制御部及び還元剤噴射弁駆動制御部に対して出力する。   Further, the condensed water presence / absence determining unit of the control device 60 of the present embodiment is configured to detect the first temperature T1 and the second temperature detected after the predetermined waiting period tm1 measured by the timer counter after the internal combustion engine 5 is started. The above determination is performed using T2. Specifically, after the internal combustion engine 5 is started, the first and second temperature detection units continuously read the sensor value St1 of the first temperature sensor 16 and the sensor value St2 of the second temperature sensor 17. The temperature correction unit corrects the value of one of the first temperature T1 and the second temperature T2, but the condensed water presence / absence determination unit reads the temperature read after the preset waiting period tm1 has elapsed. Based on the above, the above determination is performed, and the determination result is output to the heater control unit and the reducing agent injection valve drive control unit.

3.凝縮水検出方法
次に、本実施形態の制御装置60によって行われる、凝縮水検出方法について、図6及び図7に示すタイミングチャート図と、図8に示すフロー図とを用いて説明する。
3. Condensed water detection method Next, a condensed water detection method performed by the control device 60 of the present embodiment will be described with reference to timing charts shown in FIGS. 6 and 7 and a flowchart shown in FIG.

(1)タイミングチャート
図6及び図7は、制御装置60によって行われる凝縮水検出方法を説明するためのタイミングチャート図であり、内燃機関5の始動時(t0)以降の時間経過に伴う、第1の温度T1、補正後の第2の温度T2’、第1の温度T1と第2の温度T2’との温度差ΔT、排気ガス中の凝縮水量、タイマ値それぞれの時間的変化を示している。
このうち、図6は、排気ガス中の凝縮水が継続して減少し、消滅する場合の例を示しており、図7は、内燃機関の運転状態が不安定な場合であって、排気ガス中の凝縮水が減少し一旦消滅した後、再び凝縮水が発現し、その後再度消滅する場合の例を示している。すなわち、図7は、短期間に凝縮水の消滅及び発生が繰り返される例を示している。
なお、図6及び図7において、第1の温度センサ16のセンサ値St1に基づいて得られる第1の温度T1が実線で、第2の温度センサ17のセンサ値St2に基づいて得られる補正後の第2の温度T2’が点線で表されている。
(1) Timing Chart FIGS. 6 and 7 are timing charts for explaining the condensed water detection method performed by the control device 60. The timing charts are obtained with the passage of time after the start of the internal combustion engine 5 (t0). 1 shows the temporal change of the temperature T1, the corrected second temperature T2 ′, the temperature difference ΔT between the first temperature T1 and the second temperature T2 ′, the amount of condensed water in the exhaust gas, and the timer value. Yes.
6 shows an example in which the condensed water in the exhaust gas continuously decreases and disappears, and FIG. 7 shows the case where the operating state of the internal combustion engine is unstable and the exhaust gas An example is shown in which condensed water in the inside decreases and disappears once, then condensed water appears again, and then disappears again. That is, FIG. 7 shows an example in which the disappearance and generation of condensed water are repeated in a short time.
6 and 7, the first temperature T1 obtained based on the sensor value St1 of the first temperature sensor 16 is a solid line, and after correction obtained based on the sensor value St2 of the second temperature sensor 17 The second temperature T2 ′ is represented by a dotted line.

まず、図6及び図7において、制御装置60は、内燃機関5の始動を検出したときに、タイマカウントを開始する(t0)。内燃機関5の始動後には、第1の温度T1及び補正後の第2の温度T2’、さらに第1の温度T1と補正後の第2の温度T2’との温度差ΔTの算出が開始される。ただし、内燃機関5の始動開始直後は内燃機関5の運転状態が不安定であるため、タイマ値が所定の待機時間tm1を経過するまで(t1、t11)の間、排気ガス中における凝縮水の有無の判定は行われない。   First, in FIGS. 6 and 7, the control device 60 starts a timer count when it detects the start of the internal combustion engine 5 (t0). After the internal combustion engine 5 is started, calculation of the first temperature T1, the corrected second temperature T2 ′, and the temperature difference ΔT between the first temperature T1 and the corrected second temperature T2 ′ is started. The However, since the operating state of the internal combustion engine 5 is unstable immediately after the start of the internal combustion engine 5, the condensed water in the exhaust gas is kept until the timer value has passed the predetermined standby time tm1 (t1, t11). The presence / absence determination is not performed.

内燃機関5の開始後、排気ガス中に凝縮水が存在すると、凝縮水が付着しやすい第1の温度センサ16では、付着した凝縮水が蒸発する際の潜熱によって第1の温度センサ16の表面温度が奪われるため、第1の温度T1と補正後の第2の温度T2との温度差ΔTが開いていく。その後、タイマ値が所定の待機時間tm1を経過した時点t1、t11から、第1の温度T1と補正後の第2の温度T2’との差ΔTに基づいて、排気ガス中における凝縮水の有無の判定が開始される。
そして、排気ガス中の凝縮水の減少に伴って温度差ΔTも減少傾向に転じ、制御装置60は、温度差ΔTが所定の閾値ΔT0未満となった時点t2でタイマカウントを開始する。
If the condensed water is present in the exhaust gas after the start of the internal combustion engine 5, the first temperature sensor 16, to which the condensed water is likely to adhere, has the surface of the first temperature sensor 16 due to latent heat when the condensed water that has adhered evaporates. Since the temperature is deprived, the temperature difference ΔT between the first temperature T1 and the corrected second temperature T2 increases. Thereafter, the presence or absence of condensed water in the exhaust gas based on the difference ΔT between the first temperature T1 and the corrected second temperature T2 ′ from the time point t1, t11 when the timer value has passed the predetermined waiting time tm1 The determination is started.
Then, as the condensed water in the exhaust gas decreases, the temperature difference ΔT also starts to decrease, and the control device 60 starts timer counting at time t2 when the temperature difference ΔT becomes less than the predetermined threshold value ΔT0.

その後、図6の例では、t3の時点で排気ガス中の凝縮水が消滅し、第1の温度T1と補正後の第2の温度T2’との温度差ΔTが0になるとともに、t4の時点で温度差ΔTが閾値ΔT0未満のまま、タイマ値が判定期間Tm2を経過し、制御装置60は、排気管11内における凝縮水が消滅したと判定する。   Thereafter, in the example of FIG. 6, the condensed water in the exhaust gas disappears at the time t3, the temperature difference ΔT between the first temperature T1 and the corrected second temperature T2 ′ becomes zero, and t4 At that time, the temperature difference ΔT remains less than the threshold value ΔT0, the timer value has passed the determination period Tm2, and the control device 60 determines that the condensed water in the exhaust pipe 11 has disappeared.

一方、内燃機関5の運転状態が不安定な図7の例では、タイマカウントが開始された後のt13の時点で排気ガス中の凝縮水が一旦消滅するが、その後、再び排気ガス中に凝縮水が生成され、凝縮水が付着しやすい第1の温度センサ16では付着した凝縮水の蒸発による潜熱によって表面温度が奪われ、第1の温度T1と補正後の第2の温度T2’との温度差ΔTが再び開き始める。そのため、t14の時点で温度差ΔTが閾値ΔT0に到達すると、制御装置60はタイマ値をリセットする。   On the other hand, in the example of FIG. 7 in which the operating state of the internal combustion engine 5 is unstable, the condensed water in the exhaust gas once disappears at the time t13 after the timer count is started, but thereafter, the condensed water is condensed again in the exhaust gas. In the first temperature sensor 16 where the water is generated and the condensed water is likely to adhere, the surface temperature is deprived by the latent heat due to the evaporation of the attached condensed water, and the first temperature T1 and the corrected second temperature T2 ′ are obtained. The temperature difference ΔT starts to open again. Therefore, when the temperature difference ΔT reaches the threshold value ΔT0 at time t14, the control device 60 resets the timer value.

その後、排気ガス中の凝縮水が再び減少しはじめるとともに温度差ΔTも減少傾向に転じ、制御装置60は、温度差ΔTが所定の閾値ΔT0未満となった時点t15でタイマカウントを開始する。そして、今度は、t16の時点で排気ガス中の凝縮水が消滅し、第1の温度T1と補正後の第2の温度T2’との温度差ΔTが0になるとともに、t16の時点で温度差ΔTが閾値ΔT0未満のまま、タイマ値が判定期間Tm2を経過し、制御装置60は、排気管11内における凝縮水が消滅したと判定する。   Thereafter, the condensed water in the exhaust gas begins to decrease again, and the temperature difference ΔT also starts to decrease, and the control device 60 starts timer counting at time t15 when the temperature difference ΔT becomes less than the predetermined threshold value ΔT0. Then, the condensed water in the exhaust gas disappears at the time t16, the temperature difference ΔT between the first temperature T1 and the corrected second temperature T2 ′ becomes 0, and the temperature at the time t16. While the difference ΔT remains less than the threshold ΔT0, the timer value has passed the determination period Tm2, and the control device 60 determines that the condensed water in the exhaust pipe 11 has disappeared.

本実施形態の凝縮水検出方法では、制御装置60は、温度差ΔTが閾値ΔT0未満となったt2、t12、t15の時点ではなく、温度差ΔTが閾値ΔT0未満のまま所定の判定期間tm2を経過した時点t4、t17で、排気ガス中の凝縮水が消滅したと判定する。したがって、排気ガス中の凝縮水の発生及び消滅が比較的短い期間に繰り返されるような状況下においても、排気ガス中の凝縮水が存在しなくなったときに、凝縮水が消滅したものと判定される。   In the condensed water detection method of the present embodiment, the control device 60 sets the predetermined determination period tm2 while the temperature difference ΔT is less than the threshold value ΔT0, not at the times t2, t12, and t15 when the temperature difference ΔT is less than the threshold value ΔT0. It is determined that the condensed water in the exhaust gas has disappeared at the time points t4 and t17. Therefore, even when the generation and disappearance of condensed water in the exhaust gas are repeated in a relatively short period, it is determined that the condensed water has disappeared when the condensed water in the exhaust gas is no longer present. The

(2)制御フロー
図1に示す本実施形態の排気浄化装置10で実行される本実施形態の凝縮水検出方法を図8の制御フローに基づいて説明すると、スタート後、まず、ステップS11で始動検出部が内燃機関5の回転数Neを読み込み、次いで、ステップS12で、始動検出部は内燃機関5の回転数Neに基づいて内燃機関5が始動したか否かを判別する。内燃機関5が始動するまではステップS11及びステップS12が繰り返され、内燃機関5が始動されたと判別されたときにステップS13に進む。
(2) Control Flow The condensate detection method of this embodiment executed by the exhaust purification apparatus 10 of this embodiment shown in FIG. 1 will be described based on the control flow of FIG. The detection unit reads the rotational speed Ne of the internal combustion engine 5, and then in step S12, the start detection unit determines whether the internal combustion engine 5 has started based on the rotational speed Ne of the internal combustion engine 5. Steps S11 and S12 are repeated until the internal combustion engine 5 is started. When it is determined that the internal combustion engine 5 has been started, the process proceeds to step S13.

ステップS13ではタイマTM1が作動する。次いで、ステップS14で、第1及び第2の温度検出部が、凝縮水が付着しやすい第1の温度センサ16のセンサ値St1及び凝縮水が付着しない第2の温度センサ17のセンサ値St2を読込んだ後、ステップS15で、第1及び第2の温度検出部は、各センサ値St1、St2に基づいて第1の温度T1及び第2の温度T2を算出する。   In step S13, the timer TM1 is activated. Next, in step S14, the first and second temperature detection units obtain the sensor value St1 of the first temperature sensor 16 to which the condensed water easily adheres and the sensor value St2 of the second temperature sensor 17 to which the condensed water does not adhere. After reading, in step S15, the first and second temperature detectors calculate the first temperature T1 and the second temperature T2 based on the sensor values St1 and St2.

次いで、ステップS16で、タイマTM1の値が待機期間tm1を経過したか否かが判断され、タイマTM1の値が待機期間tm1を経過していない場合にはステップS14に戻る一方、タイマTM1の値が待機期間tm1を経過した場合にはステップS17に進む。
ステップS17で、第1の温度センサ16及び第2の温度センサ17が同じ温度条件下に配置されている仮定のもとで第1の温度T1と第2の温度T2との比較が行われるようにするために、温度補正部が、第1の温度T1及び第2の温度T2のうちの少なくとも一方の補正を行う。本実施形態では、温度補正部は、第2の温度T2の補正を行う。
Next, in step S16, it is determined whether or not the value of the timer TM1 has passed the waiting period tm1, and if the value of the timer TM1 has not passed the waiting period tm1, the process returns to step S14, while the value of the timer TM1 When the waiting period tm1 has elapsed, the process proceeds to step S17.
In step S17, the comparison between the first temperature T1 and the second temperature T2 is performed under the assumption that the first temperature sensor 16 and the second temperature sensor 17 are arranged under the same temperature condition. In order to achieve this, the temperature correction unit corrects at least one of the first temperature T1 and the second temperature T2. In the present embodiment, the temperature correction unit corrects the second temperature T2.

次いで、ステップS18で、凝縮水有無判定部は、第1の温度T1及び補正後の第2の温度T2’を比較して、温度差ΔTを算出した後、ステップS19で、凝縮水有無判定部は、算出された温度差ΔTが閾値ΔT0未満か否かを判別する。温度差ΔTが閾値ΔT0以上である場合にはステップS24に進み、タイマTM2が作動中か否かが判別される。そして、タイマTM2が停止している場合にはそのままステップS14に戻る一方、タイマTM2が作動中である場合にはステップS25でタイマTM2をリセットした後、ステップS14に戻る。   Next, in step S18, the condensed water presence / absence determining unit compares the first temperature T1 and the corrected second temperature T2 ′ to calculate the temperature difference ΔT, and in step S19, the condensed water presence / absence determining unit. Determines whether the calculated temperature difference ΔT is less than a threshold value ΔT0. When the temperature difference ΔT is greater than or equal to the threshold value ΔT0, the process proceeds to step S24, and it is determined whether or not the timer TM2 is operating. If the timer TM2 is stopped, the process returns to step S14 as it is. If the timer TM2 is in operation, the timer TM2 is reset in step S25, and the process returns to step S14.

一方、ステップS19で、温度差ΔTが閾値ΔT0以上と判定された場合には、ステップS20に進み、タイマTM2が作動中か否かが判別される。タイマTM2が停止している場合にはステップS26でタイマTM2を作動させた後、ステップS14に戻る。一方、タイマTM2が作動中である場合には、ステップS21でタイマTM2の値が判定期間tm2を経過したか否かを判別する。そして、タイマTM2の値が判定期間tm2を経過していなければステップS14に戻る一方、タイマTM2の値が判定期間tm2を経過していればステップS22に進む。   On the other hand, if it is determined in step S19 that the temperature difference ΔT is greater than or equal to the threshold value ΔT0, the process proceeds to step S20, and it is determined whether the timer TM2 is operating. If the timer TM2 is stopped, the timer TM2 is activated in step S26, and then the process returns to step S14. On the other hand, if the timer TM2 is operating, it is determined in step S21 whether or not the value of the timer TM2 has passed the determination period tm2. If the value of the timer TM2 has not passed the determination period tm2, the process returns to step S14, whereas if the value of the timer TM2 has passed the determination period tm2, the process proceeds to step S22.

第1の温度T1と補正後の第2の温度T2’との温度差ΔTが閾値ΔT0未満の状態で判定期間tm2が経過して進んだステップS22では、凝縮水有無判定部は、排気ガス中の凝縮水が消滅したと判定し、さらに、ステップS23で、ヒータ制御部がヒータ24への通電を開始して、本ルーチンを終了する。   In step S22 in which the determination period tm2 has elapsed with the temperature difference ΔT between the first temperature T1 and the corrected second temperature T2 ′ being less than the threshold value ΔT0, the condensed water presence / absence determination unit In step S23, the heater control unit starts energizing the heater 24 and ends this routine.

以上のように、本実施形態の排気ガス中の凝縮水検出方法は、凝縮水が付着しやすい第1の温度センサ16での潜熱の有無によって排気ガス中に凝縮水が存在しているか否かを正確に判断することができる。そして、排気ガス中から凝縮水が消滅したと判定された後に、ヒータへの通電が開始されるため、潜熱に起因するセンサ素子の局所的な歪みによるセンサ素子の素子割れが確実に防止される。   As described above, the method for detecting condensed water in the exhaust gas according to the present embodiment determines whether condensed water exists in the exhaust gas depending on the presence or absence of latent heat in the first temperature sensor 16 where the condensed water tends to adhere. Can be accurately determined. Then, since it is determined that the condensed water has disappeared from the exhaust gas, the energization of the heater is started, so that element cracking of the sensor element due to local distortion of the sensor element due to latent heat is reliably prevented. .

4.応用例
これまで本発明の実施の形態の一つについて説明したが、本発明は上記実施の形態に限定されることなく様々な形態で実施することができる。
例えば、凝縮水が付着しやすい第1の温度センサ及び凝縮水が付着しない第2の温度センサの他に、排気ガスの凝縮水が付着しやすいあるいは付着しない第3の温度センサを設けて、排気浄化装置を構成してもよい。
4). Application Example One embodiment of the present invention has been described so far, but the present invention is not limited to the above embodiment and can be implemented in various forms.
For example, in addition to the first temperature sensor to which condensed water easily adheres and the second temperature sensor to which condensed water does not adhere, a third temperature sensor to which condensed gas of exhaust gas tends to adhere or does not adhere is provided, and the exhaust gas is exhausted. A purification device may be configured.

例えば、凝縮水が付着しやすい第1の温度センサ及び第3の温度センサを、排気通路の上流側及び下流側に位置をずらして配置するとともに、排気管表面からの放熱によって、排気通路内の温度が、第1の温度センサの配置位置での第1の温度と第3の温度センサの配置位置での第3の温度との中間温度になるような位置に、凝縮水が付着しない第2の温度センサを配置して排気浄化装置を構成することができる。このように構成された排気浄化装置の場合、潜熱が生じる第1の温度センサの配置位置での第1の温度と、同じく潜熱が生じる第3の温度センサの配置位置での第3の温度との平均値を、第2の温度センサの配置位置に設けられた凝縮水が付着しやすい仮想の温度センサのセンサ値として用いることができる。そのため、当該平均値と凝縮水が付着しない第2の温度センサの配置位置での第2の温度とを比較して、その温度差が所定の閾値未満であるか否かを判別することで、排気ガス中の凝縮水の有無をより正確に検出することができる。   For example, the first temperature sensor and the third temperature sensor to which the condensed water is likely to adhere are arranged with the positions shifted upstream and downstream of the exhaust passage, and the heat in the exhaust passage is radiated from the exhaust pipe surface. The second in which condensed water does not adhere to a position where the temperature is an intermediate temperature between the first temperature at the position where the first temperature sensor is disposed and the third temperature at the position where the third temperature sensor is disposed. The exhaust gas purification apparatus can be configured by arranging the temperature sensor. In the case of the exhaust gas purification apparatus configured as described above, the first temperature at the position where the first temperature sensor where the latent heat is generated and the third temperature where the third temperature sensor where the latent heat is also generated are the same. Can be used as the sensor value of a virtual temperature sensor to which condensed water provided at the arrangement position of the second temperature sensor is likely to adhere. Therefore, by comparing the average value and the second temperature at the position where the second temperature sensor to which the condensed water does not adhere is determined to determine whether the temperature difference is less than a predetermined threshold value, The presence or absence of condensed water in the exhaust gas can be detected more accurately.

あるいは、第1の温度センサの配置位置での第1の温度と第3の温度センサの配置位置での第3の温度との中間温度になるような位置に、凝縮水が付着しない第2の温度センサが配置されていなくても、排気管表面からの放熱量を考慮すれば、第1の温度及び第3の温度に基づいて、第2の温度センサの配置位置に設けられた凝縮水が付着しやすい仮想の温度センサのセンサ値を得ることができる。そのため、内燃機関の排気系に既存の温度センサが複数設けられている場合に、いずれか一つの温度センサを、凝縮水が付着しない温度センサとして構成すれば、コストを大幅に増加させることなく、本発明の凝縮水検出方法が実行可能になる。   Alternatively, the second in which condensed water does not adhere to a position that is an intermediate temperature between the first temperature at the arrangement position of the first temperature sensor and the third temperature at the arrangement position of the third temperature sensor. Even if the temperature sensor is not arranged, if the amount of heat released from the exhaust pipe surface is taken into consideration, the condensed water provided at the arrangement position of the second temperature sensor is based on the first temperature and the third temperature. A sensor value of a virtual temperature sensor that easily adheres can be obtained. Therefore, when a plurality of existing temperature sensors are provided in the exhaust system of the internal combustion engine, if any one of the temperature sensors is configured as a temperature sensor to which condensed water does not adhere, without significantly increasing the cost, The condensed water detection method of the present invention becomes feasible.

なお、特定ガス濃度センサはNOXセンサに限られず、その他空燃比センサ等であってもよい。 The specific gas concentration sensor is not limited to the NO x sensor, but may be other air-fuel ratio sensors or the like.

本実施形態の排気浄化装置の全体構成を示す図である。It is a figure which shows the whole structure of the exhaust gas purification apparatus of this embodiment. 特定ガス濃度センサの構成例を示す断面図である。It is sectional drawing which shows the structural example of a specific gas concentration sensor. 凝縮水が付着しやすい領域を説明するための図である。It is a figure for demonstrating the area | region where condensed water tends to adhere. 凝縮水が付着しない温度センサを構成するための防水構造の一例を示す図である。It is a figure which shows an example of the waterproof structure for comprising the temperature sensor to which condensed water does not adhere. 本実施形態にかかる凝縮水検出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the condensed water detection apparatus concerning this embodiment. 本実施形態にかかる凝縮水検出方法を説明するためのタイミングチャート図である。It is a timing chart for demonstrating the condensed water detection method concerning this embodiment. 本実施形態にかかる凝縮水検出方法を説明するためのタイミングチャート図である。It is a timing chart for demonstrating the condensed water detection method concerning this embodiment. 本実施形態にかかる凝縮水検出方法を説明するための制御フローである。It is a control flow for demonstrating the condensed water detection method concerning this embodiment. 従来の排気ガス検出装置の構成を示す図である。It is a figure which shows the structure of the conventional exhaust gas detection apparatus.

符号の説明Explanation of symbols

5:内燃機関、10:排気浄化装置、11:排気通路、12:防水構造、13:還元触媒、16:第1の温度センサ、17:第2の温度センサ、18:第3の温度センサ、19・21:固体電解質体、20:特定ガス濃度センサ(NOXセンサ)、22:排気ガス流路、24:ヒータ、24a:電熱線、24b:基板層、25a:第1空間、25b:第2空間、26a:第1素子、26b:第2素子、27a:第1の内側電極、27b:第2の内側電極、28a:第1の外側電極、28b:第2の外側電極、29:センサ素子、30:基準ガス空間、32:外部接続回路、33:ガス通過孔、37:保護カバー、40:還元剤供給装置、41:貯蔵タンク、42:ポンプ、43:圧力センサ、44:還元剤噴射弁、58:第1の供給通路、59:第2の供給通路、60:制御装置(凝縮水検出装置) 5: internal combustion engine, 10: exhaust purification device, 11: exhaust passage, 12: waterproof structure, 13: reduction catalyst, 16: first temperature sensor, 17: second temperature sensor, 18: third temperature sensor, 19.21: solid electrolyte body, 20: specific gas concentration sensor (NO X sensor), 22: exhaust gas flow path, 24: heater, 24a: heating wire, 24b: substrate layer, 25a: first space, 25b: first 2 spaces, 26a: first element, 26b: second element, 27a: first inner electrode, 27b: second inner electrode, 28a: first outer electrode, 28b: second outer electrode, 29: sensor Element: 30: Reference gas space, 32: External connection circuit, 33: Gas passage hole, 37: Protective cover, 40: Reducing agent supply device, 41: Storage tank, 42: Pump, 43: Pressure sensor, 44: Reducing agent Injection valve, 58: first supply passage, 5 : Second supply passage, 60: control device (condensed water detector)

Claims (10)

内燃機関に接続され、排気ガス中の特定成分を検出するためのセンサ素子と前記センサ素子を加熱するヒータとを有する特定ガス濃度センサが備えられた排気通路を流れる前記排気ガス中における凝縮水の有無を検出するための凝縮水検出装置において、
前記排気通路を形成する排気管に設けられた前記凝縮水が付着しやすい第1の温度センサで検知される第1の温度を検出する第1の温度検出部と、
前記排気管に設けられた前記凝縮水が付着しない第2の温度センサで検知される第2の温度を検出する第2の温度検出部と、
前記第1の温度及び前記第2の温度を比較することにより前記排気ガス中に前記凝縮水が存在するか否かを判定する凝縮水有無判定部と、
を備えることを特徴とする凝縮水検出装置。
Condensed water in the exhaust gas flowing through an exhaust passage provided with a specific gas concentration sensor connected to an internal combustion engine and having a sensor element for detecting a specific component in the exhaust gas and a heater for heating the sensor element In the condensed water detector for detecting the presence or absence,
A first temperature detection unit that detects a first temperature detected by a first temperature sensor that is easily attached to the condensed water provided in an exhaust pipe that forms the exhaust passage;
A second temperature detection unit that detects a second temperature detected by a second temperature sensor that is not attached to the condensed water provided in the exhaust pipe;
A condensed water presence / absence determining unit that determines whether the condensed water exists in the exhaust gas by comparing the first temperature and the second temperature;
A condensed water detection device comprising:
前記凝縮水検出装置は前記内燃機関の始動を検出する始動検出部を備え、前記凝縮水有無判定部は、前記内燃機関の始動から所定期間経過後に検出された前記第1の温度及び前記第2の温度を用いて前記判定を行うことを特徴とする請求項1に記載の凝縮水検出装置。   The condensed water detection device includes a start detection unit that detects start of the internal combustion engine, and the condensed water presence / absence determination unit is configured to detect the first temperature and the second temperature detected after a predetermined period has elapsed since the start of the internal combustion engine. The condensate detection device according to claim 1, wherein the determination is performed using a temperature. 前記凝縮水有無判定部は、検出された前記第1の温度及び前記第2の温度の温度差を算出するとともに、前記温度差が所定値未満であるときに前記排気通路内に前記凝縮水が存在しないと判定することを特徴とする請求項1又は2に記載の凝縮水検出装置。   The condensed water presence / absence determining unit calculates a temperature difference between the detected first temperature and the second temperature, and the condensed water is contained in the exhaust passage when the temperature difference is less than a predetermined value. It determines with not existing, The condensed water detection apparatus of Claim 1 or 2 characterized by the above-mentioned. 前記凝縮水有無判定部は、検出された前記第1の温度及び前記第2の温度の温度差を算出するとともに、前記温度差が所定期間継続して所定値未満であるときに前記排気通路内に前記凝縮水が存在しないと判定することを特徴とする請求項1〜3のいずれか一項に記載の凝縮水検出装置。   The condensed water presence / absence determining unit calculates a temperature difference between the detected first temperature and the second temperature, and when the temperature difference is continuously less than a predetermined value for a predetermined period, It determines with the said condensed water not existing in the condensed water detection apparatus as described in any one of Claims 1-3 characterized by the above-mentioned. 検出された前記第1の温度及び前記第2の温度と、前記第1の温度センサの配置位置から前記第2の温度センサの配置位置までの前記排気管の長さと、前記排気管の円周の長さと、前記排気管の熱伝達率と、外気温度と、に基づいて、前記排気ガスが、前記第1の温度センサの配置位置から前記第2の温度センサの配置位置まで流れる間、又は前記第2の温度センサの配置位置から前記第1の温度センサの配置位置まで流れる間での前記排気ガスからの放熱量を算出する放熱量演算部と、
前記放熱量に基づいて、前記第1の温度又は前記第2の温度のうちの少なくとも一方を補正する温度補正部と、
を備えることを特徴とする請求項1〜4のいずれか一項に記載の凝縮水検出装置。
The detected first temperature and the second temperature, the length of the exhaust pipe from the arrangement position of the first temperature sensor to the arrangement position of the second temperature sensor, and the circumference of the exhaust pipe The exhaust gas flows from the arrangement position of the first temperature sensor to the arrangement position of the second temperature sensor based on the length of the gas, the heat transfer coefficient of the exhaust pipe, and the outside air temperature, or A heat dissipation amount calculation unit that calculates a heat dissipation amount from the exhaust gas during the flow from the position where the second temperature sensor is disposed to the position where the first temperature sensor is disposed;
A temperature correction unit that corrects at least one of the first temperature and the second temperature based on the heat dissipation amount; and
The condensed water detection apparatus according to any one of claims 1 to 4, further comprising:
前記凝縮水有無判定部が前記排気ガス中に前記凝縮水が存在しないと判定したときに、前記ヒータへの通電を許可するヒータ駆動制御部を備えることを特徴とする請求項1〜5のいずれか一項に記載の凝縮水検出装置。   6. The heater drive control unit that permits energization of the heater when the condensed water presence / absence determining unit determines that the condensed water is not present in the exhaust gas. The condensed water detection apparatus according to claim 1. 前記第1の温度センサ及び前記第2の温度センサとは異なる、前記凝縮水が付着しやすい又は付着しない第3の温度センサで検知される第3の温度を検出する第3の温度検出部を備え、
前記凝縮水有無検出部は、前記第3の温度も考慮して前記判定を行うことを特徴とする請求項1〜6のいずれか一項に記載の凝縮水検出装置。
A third temperature detection unit that detects a third temperature that is different from the first temperature sensor and the second temperature sensor and that is detected by a third temperature sensor to which the condensed water tends to adhere or does not adhere. Prepared,
The condensed water detection apparatus according to claim 1, wherein the condensed water presence / absence detecting unit performs the determination in consideration of the third temperature.
内燃機関に接続され、排気ガス中の特定成分を検出するためのセンサ素子と前記センサ素子を加熱するヒータとを有する特定ガス濃度センサが備えられた排気通路を流れる前記排気ガス中における凝縮水の有無を検出するための凝縮水検出方法において、
前記内燃機関の始動後に、前記排気通路を形成する排気管に設けられた、前記凝縮水が付着しやすい第1の温度センサで検出される第1の温度と、前記凝縮水が付着しない第2の温度センサで検出される第2の温度と、を検出し、前記第1の温度及び前記第2の温度を比較することにより前記排気ガス中の前記凝縮水の有無を検出することを特徴とする凝縮水検出方法。
Condensed water in the exhaust gas flowing through an exhaust passage provided with a specific gas concentration sensor connected to an internal combustion engine and having a sensor element for detecting a specific component in the exhaust gas and a heater for heating the sensor element In the condensed water detection method for detecting the presence or absence,
After the start of the internal combustion engine, a first temperature detected by a first temperature sensor provided in an exhaust pipe forming the exhaust passage to which the condensed water is likely to adhere, and a second temperature in which the condensed water does not adhere. And detecting the presence or absence of the condensed water in the exhaust gas by detecting the second temperature detected by the temperature sensor and comparing the first temperature and the second temperature. Condensate detection method.
内燃機関の排気通路に介装され、前記排気通路に排気ガス中の特定成分を検出するためのセンサ素子と前記センサ素子を加熱するヒータとを有する特定ガス濃度センサが備えられた排気浄化装置において、
前記排気通路を形成する排気管に設けられた前記排気ガス中の凝縮水が付着しやすい第1の温度センサと、
前記排気管に設けられた前記凝縮水が付着しない第2の温度センサと、
前記内燃機関の始動後に、前記第1の温度センサで検知される第1の温度及び前記第2の温度センサで検知される第2の温度を検出するとともに、前記第1の温度及び前記第2の温度を比較することにより前記排気ガス中における前記凝縮水の有無を検出する凝縮水検出部と、
を備えることを特徴とする排気浄化装置。
In an exhaust gas purification apparatus provided with a specific gas concentration sensor interposed in an exhaust passage of an internal combustion engine and having a sensor element for detecting a specific component in exhaust gas and a heater for heating the sensor element in the exhaust passage. ,
A first temperature sensor that is easily attached to the condensed water in the exhaust gas provided in an exhaust pipe that forms the exhaust passage;
A second temperature sensor provided in the exhaust pipe to which the condensed water does not adhere;
After the internal combustion engine is started, a first temperature detected by the first temperature sensor and a second temperature detected by the second temperature sensor are detected, and the first temperature and the second temperature are detected. A condensed water detector for detecting the presence or absence of the condensed water in the exhaust gas by comparing the temperature of
An exhaust emission control device comprising:
前記第2の温度センサへの前記凝縮水の付着を防ぐための防水構造を備えることを特徴とする請求項9に記載の排気浄化装置。   The exhaust emission control device according to claim 9, further comprising a waterproof structure for preventing the condensed water from adhering to the second temperature sensor.
JP2008306610A 2008-12-01 2008-12-01 Condensed water detection device, condensed water detection method, and exhaust purification device Expired - Fee Related JP5030927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008306610A JP5030927B2 (en) 2008-12-01 2008-12-01 Condensed water detection device, condensed water detection method, and exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008306610A JP5030927B2 (en) 2008-12-01 2008-12-01 Condensed water detection device, condensed water detection method, and exhaust purification device

Publications (2)

Publication Number Publication Date
JP2010127268A JP2010127268A (en) 2010-06-10
JP5030927B2 true JP5030927B2 (en) 2012-09-19

Family

ID=42327829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306610A Expired - Fee Related JP5030927B2 (en) 2008-12-01 2008-12-01 Condensed water detection device, condensed water detection method, and exhaust purification device

Country Status (1)

Country Link
JP (1) JP5030927B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5784989B2 (en) * 2011-05-31 2015-09-24 株式会社クボタ Engine exhaust heat temperature detector
US20140292350A1 (en) 2011-12-20 2014-10-02 Toyota Jidosha Kabushiki Kaisha Failure detection apparatus for an electrically heated catalyst
JP6064528B2 (en) * 2012-11-06 2017-01-25 トヨタ自動車株式会社 Control device for internal combustion engine
JP6297996B2 (en) * 2015-03-05 2018-03-20 ヤンマー株式会社 engine
JP6734221B2 (en) * 2017-04-28 2020-08-05 トヨタ自動車株式会社 Control device for internal combustion engine
WO2024075264A1 (en) * 2022-10-07 2024-04-11 日産自動車株式会社 Exhaust purification method and device for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690167B2 (en) * 1985-07-23 1994-11-14 三菱自動車工業株式会社 Heater control device for oxygen sensor
JP2004316594A (en) * 2003-04-18 2004-11-11 Toyota Motor Corp Control system of exhaust system of internal combustion engine
JP2006299948A (en) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd Heating control device for exhaust pipe sensor
JP4802577B2 (en) * 2005-07-04 2011-10-26 日産自動車株式会社 Exhaust sensor heater control device
JP2008274858A (en) * 2007-04-27 2008-11-13 Denso Corp Condensate quantity detection device and sensor heating control device for internal combustion engine

Also Published As

Publication number Publication date
JP2010127268A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP5030927B2 (en) Condensed water detection device, condensed water detection method, and exhaust purification device
JP4645984B2 (en) Deterioration detection device for exhaust gas sensor
JP4483972B2 (en) Failure diagnosis device for exhaust purification system
JP5683055B2 (en) Heater control device for oxygen concentration sensor
JP5206730B2 (en) Catalyst energization controller
JP6550689B2 (en) Exhaust gas sensor heater control device
JP6612711B2 (en) Concentration calculation device, concentration calculation system, and concentration calculation method
JP2010144672A (en) Exhaust emission control device and water level measuring device
JP2007113403A (en) Outside air temperature detecting device and exhaust emission control device
JP2005207924A (en) Controller for exhaust gas sensor
WO2007069780A1 (en) Exhaust gas purification system for internal combustion engine
JP4802577B2 (en) Exhaust sensor heater control device
JP2009228564A (en) Control device for exhaust gas sensor
JP2015212527A (en) Exhaust emission control device of internal combustion engine
JP2008095603A (en) Exhaust emission control device for internal combustion engine
JP7125281B2 (en) Ammonia detector
JP4888426B2 (en) Exhaust gas sensor control device
JP4151547B2 (en) Exhaust gas sensor heater control device
JP5851333B2 (en) Control device for internal combustion engine
JP2013189865A (en) Control device for exhaust gas sensor
JP2006214885A (en) Temperature controller for sensor with heater
JP2006299948A (en) Heating control device for exhaust pipe sensor
JP4396534B2 (en) Heater control device
WO2014080846A1 (en) Gas concentration sensor and method for warming up same
JP2018071363A (en) Sensor control system and sensor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees