JP5030676B2 - Optical element, optical system including the same, and endoscope using the same - Google Patents

Optical element, optical system including the same, and endoscope using the same Download PDF

Info

Publication number
JP5030676B2
JP5030676B2 JP2007155159A JP2007155159A JP5030676B2 JP 5030676 B2 JP5030676 B2 JP 5030676B2 JP 2007155159 A JP2007155159 A JP 2007155159A JP 2007155159 A JP2007155159 A JP 2007155159A JP 5030676 B2 JP5030676 B2 JP 5030676B2
Authority
JP
Japan
Prior art keywords
view
optical path
direct
image
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007155159A
Other languages
Japanese (ja)
Other versions
JP2008309861A (en
Inventor
孝吉 研野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007155159A priority Critical patent/JP5030676B2/en
Priority to EP08765557A priority patent/EP2163933A4/en
Priority to CN201210282519.4A priority patent/CN102798903B/en
Priority to CN200880019707.XA priority patent/CN101681013B/en
Priority to PCT/JP2008/060816 priority patent/WO2008153114A1/en
Publication of JP2008309861A publication Critical patent/JP2008309861A/en
Priority to US12/653,257 priority patent/US7929219B2/en
Application granted granted Critical
Publication of JP5030676B2 publication Critical patent/JP5030676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

本発明は光学素子、それを備えた光学系及びそれを用いた内視鏡に関し、特に2つの光路を有し、回転対称軸上の映像と回転対称軸と略直交する方向の2つの光路を合成する光学素子と、その光学素子を備え、1つの撮像素子に円形と円環状の映像として結像する機能を有する結像光学系又は投影光学系に関するものである。   The present invention relates to an optical element, an optical system including the optical element, and an endoscope using the optical element, and in particular, has two optical paths, and includes an image on a rotational symmetry axis and two optical paths in a direction substantially orthogonal to the rotational symmetry axis. The present invention relates to an optical element to be combined and an imaging optical system or projection optical system that includes the optical element and has a function of forming an image as a circular and annular image on one imaging element.

屈折光学系と、反射光学系と、結像光学系とが配置され、2つの光路を有し、パノラマ画像及び軸方向画像の撮像が可能な撮像光学系として特許文献1がある。また、同様に2つの光路を有する内視鏡として特許文献2がある。さらに、周囲全方位を観察できる内視鏡として特許文献3、周囲全方位を観察できるカプセル内視鏡として特許文献4がある。また、周囲全方位と前方を同時に撮像できる撮像装置として特許文献5がある。
特表2003−042743号公報 米国特許公開2004−0254424号公報 特開昭60−42728号公報 特開2001−174713号公報 特開2002−341409号公報
Patent Document 1 discloses an imaging optical system in which a refractive optical system, a reflection optical system, and an imaging optical system are arranged and has two optical paths and can capture panoramic images and axial images. Similarly, there is Patent Document 2 as an endoscope having two optical paths. Further, there is Patent Document 3 as an endoscope that can observe all surrounding directions, and Patent Document 4 as a capsule endoscope that can observe all surrounding directions. Further, Patent Document 5 is an imaging apparatus capable of simultaneously imaging all surrounding directions and the front.
Special Table 2003-042743 US Patent Publication No. 2004-0254424 JP 60-42728 A JP 2001-174713 A JP 2002-341409 A

しかしながら、どの特許文献に記載された光学系も小型で解像力の良い映像を得ることはできなかった。   However, the optical systems described in any of the patent documents cannot obtain an image with a small size and good resolution.

本発明は、従来技術のこのような状況に鑑みてなされたものであり、その目的は、簡単な構成で中心軸上の物点と中心軸と略直交する方向の全方位の画像の両方を同時に1つの撮像素子上に撮像することが可能な小型で安価な光学素子、それを備えた光学系及びそれを用いた内視鏡を提供することである。   The present invention has been made in view of such a situation in the prior art, and an object thereof is to display both an object point on the central axis and an omnidirectional image in a direction substantially orthogonal to the central axis with a simple configuration. It is an object to provide a small and inexpensive optical element capable of imaging on one imaging element at the same time, an optical system including the optical element, and an endoscope using the optical system.

上記目的を達成する本発明の光学素子は、中心軸の周りで回転対称な屈折率が1より大きい透明媒体からなり、前記透明媒体は、第1透過面と、前記第1透過面より中心軸側に配置された第1反射面と、前記第1反射面より像面と反対側に配置された第2反射面と、前記第2反射面より像面側に配置された第2透過面と、第3透過面と、前記第3透過面より像面側に配置された第4透過面と、を有し、前記透明媒体に入射する光束は、側視光路と直視光路とを有し、順光線追跡の順に、前記側視光路は、前記第1透過面を経て前記透明媒体内に入り、前記第1反射面で像面と反対側に反射され、前記第2反射面で像面側に反射され、前記第2透過面を経て前記透明媒体から像面側に外へ出る略Z字状の光路を構成し、前記直視光路は、前記第3透過面を経て前記透明媒体内に入り、前記第4透過面を経て前記透明媒体から像面側に外へ出る光路を構成し、前記直視光路中及び前記側視光路中で中間像を形成しないことを特徴とする。 An optical element of the present invention that achieves the above object comprises a transparent medium having a refractive index that is rotationally symmetric about a central axis and having a refractive index greater than 1. The transparent medium includes a first transmission surface and a central axis that is more central than the first transmission surface. A first reflecting surface disposed on the side, a second reflecting surface disposed on the opposite side of the image surface from the first reflecting surface, and a second transmitting surface disposed on the image surface side from the second reflecting surface; , a third transmission surface, anda fourth transmissive surface arranged on the image plane side of the third transmissive surface, the light beam incident on the transparent medium, and a direct view optical path to the side view optical path, In the order of forward ray tracing, the side viewing optical path enters the transparent medium through the first transmission surface, is reflected to the opposite side of the image surface by the first reflection surface, and is image side by the second reflection surface. A substantially Z-shaped optical path that is reflected from the transparent medium and exits from the transparent medium to the image plane side through the second transmission surface. Through the transmitting surface enters into the transparent medium, through the fourth transmitting surface constitutes a light path get outside the image plane side from the transparent medium, does not form an intermediate image at the direct view optical path and the side view optical path It is characterized by that.

また、前記側視光路は、前記中心軸に対して片側のみで構成されることを特徴とする。   Further, the side viewing optical path is configured only on one side with respect to the central axis.

また、前記中心軸近傍に前記第2透過面を配置し、その周辺部に前記第1反射面及び前記第2反射面を配置し、最外周部に前記第1透過面を配置したことを特徴とする。   Further, the second transmission surface is disposed in the vicinity of the central axis, the first reflection surface and the second reflection surface are disposed in the periphery thereof, and the first transmission surface is disposed in the outermost peripheral portion. And

また、前記第1反射面は、前記第2透過面と同一位置、同一形状の面であることを特徴とする。   The first reflecting surface may be a surface having the same position and shape as the second transmitting surface.

また、前記第1反射面は、前記第4透過面と同一位置、同一形状の面であることを特徴とする。   The first reflecting surface is a surface having the same position and shape as the fourth transmitting surface.

また、前記第2反射面は、前記第3透過面と同一位置、同一形状の面であることを特徴とする。   The second reflecting surface is a surface having the same position and shape as the third transmitting surface.

また、前記第1反射面及び前記第2反射面は、全反射作用を有することを特徴とする。   The first reflecting surface and the second reflecting surface have a total reflection function.

また、前記第1透過面は、円柱又は円錐状の面であることを特徴とする。   The first transmission surface may be a cylindrical or conical surface.

また、前記第1反射面と前記第2反射面のうち少なくとも1面は、対称面を持たない任意形状の線分を中心軸の周りで回転させて形成される拡張回転自由曲面で構成されていることを特徴とする。   Further, at least one of the first reflecting surface and the second reflecting surface is composed of an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment having no symmetry plane around the central axis. It is characterized by being.

また、前記透明媒体の有する面のうち少なくとも1面は、奇数次項を含む任意形状の線分を中心軸の周りで回転させて形状される拡張回転自由曲面で構成されていることを特徴とする。   In addition, at least one of the surfaces of the transparent medium is formed of an extended rotation free-form surface that is formed by rotating an arbitrary-shaped line segment including an odd-numbered term around the central axis. .

さらに、本発明の光学素子を備えた光学系は、前記直視光路は、前記中心軸近傍の物点を撮像又は投影し、前記側視光路は、前記中心軸周辺の物点を撮像又は投影することを特徴とする。   Furthermore, in the optical system including the optical element of the present invention, the direct-view optical path images or projects an object point near the central axis, and the side-view optical path images or projects an object point around the central axis. It is characterized by that.

また、前記側視光路と前記直視光路は、前記光学素子の一部を共有使用し、前記直視光路の円形状の映像と、その外周の前記側視光路の円環状の映像を同一平面内に形成することを特徴とする。   Further, the side viewing optical path and the direct viewing optical path share a part of the optical element, and a circular image of the direct viewing optical path and an annular image of the side viewing optical path on the outer periphery thereof are within the same plane. It is characterized by forming.

また、前記第2反射面は、前記開口側に凹面を向けて配置されることを特徴とする。   The second reflecting surface may be disposed with a concave surface facing the opening.

また、前記第1反射面は、前記開口側に凹面を向けて配置されることを特徴とする。   The first reflecting surface is disposed with a concave surface facing the opening.

また、前記光学素子の外形をDとするとき、When the outer shape of the optical element is D,
D<10mmD <10mm
なる条件を満足することを特徴とする。It satisfies the following condition.

また、前記側視光路の像の外形をDrとするとき、When the outer shape of the image of the side viewing optical path is Dr,
D/Dr<2D / Dr <2
なる条件を満足することを特徴とする。It satisfies the following condition.

また、前記第1反射面は負のパワーを有し、前記第2反射面は正のパワーを有することを特徴とする。The first reflecting surface has a negative power, and the second reflecting surface has a positive power.

さらに、前記光学系を用いる内視鏡を特徴とする。   Furthermore, an endoscope using the optical system is characterized.

以上の本発明の光学系においては、簡単な構成で異なる方向を観察又は異なる方向に映像を投影することが可能な小型で収差が良好に補正された解像力の良い光学系を得ることができる。   In the above optical system of the present invention, it is possible to obtain a compact optical system with good resolving power that can be observed in a different direction or projected an image in a different direction with a simple configuration and in which aberrations are well corrected.

以下、実施例に基づいて本発明の光学素子及びそれを備えた光学系について説明する。   Hereinafter, an optical element of the present invention and an optical system including the optical element will be described based on examples.

図3は、後述する実施例1の光学系1の中心軸(回転対称軸)2に沿ってとった断面図である。なお、以下の説明は、結像光学系として説明するが、光路を逆にとって投影光学系として用いることもできる。   FIG. 3 is a cross-sectional view taken along the central axis (rotation symmetry axis) 2 of the optical system 1 of Example 1 described later. In the following description, the imaging optical system will be described. However, it can be used as a projection optical system with the optical path reversed.

本発明の光学系1は、中心軸2に対して回転対称で、負のパワーを有する前群Gfと、開口Sと、正のパワーを有する後群Gbとからなり、中間像を光路中に形成することなく像を形成又は投影する光学系1である。   The optical system 1 according to the present invention includes a front group Gf having a negative power and rotational symmetry with respect to the central axis 2, an aperture S, and a rear group Gb having a positive power, and an intermediate image in the optical path. An optical system 1 that forms or projects an image without forming it.

実施例1の光学系1は、中心軸2の周りで回転対称な前群Gfと、中心軸2の周りで回転対称な後群Gbとからなり、前群Gfを負のパワーを有する第1群G1と光路合成光学系である第2群G2から構成され、開口Sの後ろ側に後群Gbである正パワーを有する第3群G3、接合レンズで正パワーを有する第4郡G4からなる光学系である。   The optical system 1 according to the first embodiment includes a front group Gf that is rotationally symmetric about the central axis 2 and a rear group Gb that is rotationally symmetric about the central axis 2, and the first group Gf has a negative power. It is composed of a group G1 and a second group G2 which is an optical path synthesis optical system, and is composed of a third group G3 having a positive power as a rear group Gb on the back side of the aperture S, and a fourth group G4 having a positive power as a cemented lens. It is an optical system.

この実施例では、前群の第2群G2が側視光路Aと直視光路Bを有し、後群Gbの第3群G3と第4群G4は第2群G2で合成された空中像を結像する作用を有し、1つの撮像面5上に、直視光路Bにより中心軸2上の映像を像中心に円形に形成し、その外側に異なる側視光路Aの映像を円環状に形成する働きを持つ。   In this embodiment, the second group G2 of the front group has a side viewing optical path A and a direct viewing optical path B, and the third group G3 and the fourth group G4 of the rear group Gb are aerial images synthesized by the second group G2. The image on the central axis 2 is formed in a circle around the center of the image by the direct-view optical path B, and the image of the different side-view optical path A is formed in an annular shape on the outer side. Have a work to do.

開口S付近に配置された並行平面板はフィルターF等として作用する。像面5近傍の平行平面板は撮像素子のカバーガラスC等である。   The parallel flat plate arranged in the vicinity of the opening S acts as a filter F or the like. The plane parallel plate in the vicinity of the image plane 5 is a cover glass C of the image sensor.

また、前群Gfを負,後群Gbを正にすることにより、所謂レトロフォーカスタイプとなり、中心軸2上の物点に対する直視光路Bに対して、特に観察画角を広く取りたい場合に有効である。   Also, by making the front group Gf negative and the rear group Gb positive, it becomes a so-called retrofocus type, which is particularly effective when a wide observation angle of view is desired with respect to the direct-view optical path B with respect to the object point on the central axis 2. It is.

本発明の光学素子は、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L2からなり、透明媒体L2は、第1透過面21と、第1透過面21より中心軸2側に配置された第1反射面22と、第1反射面22に対して像面5と反対側に配置された第2反射面23と、第2反射面23より像面5側に配置された第2透過面24と、第3透過面25と、第3透過面25より像面5側に配置された第4透過面26を有し、透明媒体L2に入射する光束は、側視光路Aと直視光路Bとを有し、順光線追跡の順に、側視光路Aは、第1透過面21を経て透明媒体L2内に入り、第1反射面22で像面5と反対側に反射され、第2反射面23で像面5側に反射され、第2透過面24を経て透明媒体L2から像面5側に外へ出る略Z字状の光路を構成し、直視光路Bは、第3透過面25を経て透明媒体L2内に入り、第4透過面26を経て透明媒体L2から像面5側に外へ出る光路を構成する。   The optical element of the present invention is composed of a transparent medium L2 having a refractive index that is rotationally symmetric around the central axis 2 and greater than 1. The transparent medium L2 includes the first transmission surface 21 and the first transmission surface 21 on the central axis 2 side. The first reflecting surface 22 disposed on the first reflecting surface 22, the second reflecting surface 23 disposed on the opposite side of the image surface 5 with respect to the first reflecting surface 22, and the second reflecting surface 23 disposed on the image surface 5 side. The light beam incident on the transparent medium L2 has a second transmission surface 24, a third transmission surface 25, and a fourth transmission surface 26 disposed on the image plane 5 side of the third transmission surface 25. And the direct-view optical path B, and in the order of forward ray tracing, the side-view optical path A enters the transparent medium L2 through the first transmission surface 21, and is reflected by the first reflection surface 22 to the opposite side to the image surface 5. A substantially Z-shaped optical path is reflected from the second reflecting surface 23 toward the image surface 5 and passes through the second transmitting surface 24 to the outside from the transparent medium L2 toward the image surface 5. And direct view optical path B enters the third transmissive surface 25 through to the transparent medium L2, constituting the optical path get outside the image plane 5 side from the transparent medium L2 through the fourth transmissive surface 26.

この構成により、側視光路Aの第1反射面22及び第2反射面23への入射角度を比較的小さくすることが可能となり、反射面で発生する偏心収差の発生を少なくすることが可能となる。また、中心軸2近傍を撮像する直視光路Bの中心軸2近傍の像の連続性が保たれ、滑らかな中心映像を形成することが可能となる。   With this configuration, it is possible to make the incident angle of the side viewing optical path A to the first reflecting surface 22 and the second reflecting surface 23 relatively small, and it is possible to reduce the occurrence of decentration aberration generated on the reflecting surface. Become. In addition, the continuity of the image in the vicinity of the central axis 2 of the direct-view optical path B that captures the vicinity of the central axis 2 is maintained, and a smooth central image can be formed.

また、側視光路Aを中心軸の片側のみで構成することにより、光学素子内の光路が中心軸2を跨ぐことがなくなり、光学素子を薄くすることが可能となる。   Further, by configuring the side viewing optical path A only on one side of the central axis, the optical path in the optical element does not straddle the central axis 2, and the optical element can be made thin.

また、中心軸2近傍に第2透過面24を配置し、その周辺部に第1反射面22及び第2反射面23を配置し、最周辺部に第1透過面21を配置したので、側視光路Aは略中心軸2と直交する方向から入射し、第1反射面22及び第2反射面23で反射後、第2透過面24を通過する構成にすることが可能となり、第1反射面21及び第2反射面23を内面反射面として構成することが可能となる。そして、内面反射面にすることにより、偏心収差の発生を小さくすることが可能となる。   In addition, the second transmission surface 24 is disposed in the vicinity of the central axis 2, the first reflection surface 22 and the second reflection surface 23 are disposed in the periphery thereof, and the first transmission surface 21 is disposed in the outermost periphery. The viewing optical path A is incident from a direction substantially perpendicular to the central axis 2 and can be configured to pass through the second transmission surface 24 after being reflected by the first reflection surface 22 and the second reflection surface 23, so that the first reflection is performed. It is possible to configure the surface 21 and the second reflecting surface 23 as inner reflecting surfaces. Further, by using an inner reflection surface, it is possible to reduce the occurrence of decentration aberrations.

また、第1反射面22と第2透過面24、第1反射面22と第4透過面26、第2反射面23と第3透過面25をそれぞれ同一位置同一形状で構成することにより加工性が向上して、製作が容易になる。開口側の面では直視光路Bと側視光路Aの光束の分離がしにくいので、特に、第1反射面22と第2透過面24を同一位置同一形状にすることにより両映像の間の何も映らない領域を小さくすることが可能である。   Further, the first reflective surface 22 and the second transmissive surface 24, the first reflective surface 22 and the fourth transmissive surface 26, and the second reflective surface 23 and the third transmissive surface 25 are configured at the same position and shape, respectively. This improves the manufacturing process. Since it is difficult to separate the light fluxes of the direct-view optical path B and the side-view optical path A on the surface on the aperture side, in particular, by making the first reflecting surface 22 and the second transmitting surface 24 in the same position and the same shape, It is possible to reduce the area that is not reflected.

また、第1反射面22及び第2反射面23は、全反射作用を有することにより、反射膜を付ける必要がなくなり、試作が容易になると同時に反射率も100%となり、明るい映像を撮像できる。   Further, since the first reflection surface 22 and the second reflection surface 23 have a total reflection function, it is not necessary to attach a reflection film, and the trial production becomes easy and the reflectance becomes 100%, so that a bright image can be taken.

また、第1透過面21は、円柱又は円錐状の面であることにより、光学素子を単体で構成することが可能となり、製作上好ましい。   Further, the first transmission surface 21 is a cylindrical or conical surface, so that the optical element can be formed as a single unit, which is preferable in production.

また、第1反射面22と第2反射面23のうち少なくとも1面は、対称面を持たない任意形状の線分を中心軸2の周りで回転させて形成される拡張回転自由曲面で構成されていることにより、画角周辺部分の歪みを補正することが可能となる。   Further, at least one of the first reflecting surface 22 and the second reflecting surface 23 is constituted by an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment having no symmetry plane around the central axis 2. By doing so, it becomes possible to correct the distortion around the angle of view.

また、透明媒体L2の有する面のうち少なくとも1面は、奇数次項を含む任意形状の線分を中心軸2の周りで回転させて形状される拡張回転自由曲面で構成されていることにより、画角中心に対して上下非対称な形状を与えることが可能であり、収差補正上好ましい。   In addition, at least one of the surfaces of the transparent medium L2 is formed of an extended rotation free-form surface that is formed by rotating an arbitrary-shaped line segment including an odd-order term around the central axis 2. It is possible to give a vertically asymmetric shape with respect to the corner center, which is preferable in terms of aberration correction.

さらに、前群Gfと、前群Gfより像面5側に配置された後群Gbと、前群Gfと後群Gbの間に配置された開口Sとを備え、光学素子は、前群Gfに配置され、直視光路Bは、中心軸2近傍の物点を撮像又は投影し、側視光路Aは、中心軸2周辺の物点を撮像又は投影するので、中心軸2近傍の画角における像の連続性が得られ、鮮明な映像を得ることができ、直視光路Bと側視光路Aが交差しない構成にすることが可能となり、反射面への入射角度を小さくすることが可能となる。また、光学素子を開口S周辺に配置すると直視光路Bと側視光路Aの映像が重なってしまう。また、開口Sより像面5側に配置すると、結像のために使える光学素子が少なくなってしまい鮮明な像を結像することができなくなってしまう。開口Sより物体側に配置することにより、直視光路Bと側視光路Aが作る像の領域が分離できると同時に、両光路で共有できる光学素子が増え明瞭な映像を形成することが可能となる。   Further, the optical system includes a front group Gf, a rear group Gb disposed on the image plane 5 side of the front group Gf, and an opening S disposed between the front group Gf and the rear group Gb. The direct-view optical path B captures or projects an object point near the central axis 2, and the side-view optical path A captures or projects an object point around the central axis 2. Image continuity is obtained, a clear image can be obtained, the direct-view optical path B and the side-view optical path A can be configured not to intersect, and the incident angle on the reflecting surface can be reduced. . Further, if the optical element is disposed around the opening S, the images of the direct-view optical path B and the side-view optical path A overlap each other. In addition, if it is arranged on the image plane 5 side with respect to the opening S, the number of optical elements that can be used for image formation decreases, and a clear image cannot be formed. By disposing on the object side from the opening S, it is possible to separate the image area formed by the direct-view optical path B and the side-view optical path A, and at the same time, the number of optical elements that can be shared by both optical paths is increased and a clear image can be formed. .

また、側視光路Aと直視光路Bは、光学素子の一部を共有使用し、直視光路Bの円形状の映像と、その外周の側視光路Aの円環状の映像を同一平面内に形成することにより、光学系を小型に構成することが可能となると共に、ひとつの撮像素子で両方の映像を、同時にピントを合わせて鮮明に撮像することが可能となる。   The side-view optical path A and the direct-view optical path B share part of the optical elements, and form a circular image of the direct-view optical path B and an annular image of the outer side-view optical path A in the same plane. By doing so, it is possible to make the optical system compact, and it is possible to pick up both images with a single image sensor and to focus on the image at the same time.

また、第1反射面22又は第2反射面23は、開口S側に凹面を向けて配置されるので、中心軸2と略直交する方向から来る光束を、中心軸2方向に反射することにより、側視光路Aと直視光路Bを合成するのに好ましい。また、強い負のパワーを物体側に配置することが可能となり、所謂テレフォトのパワー配置となり、画角を広く取ることが可能となる。   Moreover, since the 1st reflective surface 22 or the 2nd reflective surface 23 is arrange | positioned with the concave surface facing the opening S side, the light beam coming from the direction substantially orthogonal to the central axis 2 is reflected in the central axis 2 direction. It is preferable for synthesizing the side viewing optical path A and the direct viewing optical path B. Moreover, it becomes possible to arrange strong negative power on the object side, so-called telephoto power arrangement, and a wide angle of view can be obtained.

さらに、第1反射面22及び第2反射面23は、開口S側に凹面を向けて配置されるので、反射面のパワー配置は負正となりテレフォトタイプのパワー配置になり、画角を広く取れる。また側視光路Aのコマ収差の発生も少なくなり好ましい。   Further, since the first reflecting surface 22 and the second reflecting surface 23 are arranged with the concave surface facing the opening S, the power arrangement on the reflecting surface becomes negative and becomes a telephoto type power arrangement, and the angle of view is widened. I can take it. Further, the occurrence of coma aberration in the side viewing optical path A is preferably reduced.

また、側視光路Aの映像は、光路中で中間像を形成しないので、光学系の全長を短くすることが可能となり、光学系の小型化に大きく貢献する。   Further, since the image in the side viewing optical path A does not form an intermediate image in the optical path, the entire length of the optical system can be shortened, which greatly contributes to the miniaturization of the optical system.

さらに好ましくは、光学素子の外形をDとするとき
D<10mm ・・・(1)
なる条件を満足することが好ましい。
More preferably, when the outer shape of the optical element is D, D <10 mm (1)
It is preferable to satisfy the following conditions.

特に、内視鏡の撮像系として使用する場合は上記条件式を満足することが被験者への負担を減らす意味で好ましい。   In particular, when used as an imaging system for an endoscope, satisfying the above conditional expression is preferable in terms of reducing the burden on the subject.

さらに好ましくは、反射光路の像の外形をDrとするとき、
D/Dr<2 ・・・(2)
なる条件を満足することが好ましい。
More preferably, when the outer shape of the image of the reflected light path is Dr,
D / Dr <2 (2)
It is preferable to satisfy the following conditions.

上限を超えると光学系1の全体の外形に対して撮像エリアが小さくなりすぎ、撮像素子のノイズ等により良好な映像を撮影することができなくなってしまう。   When the upper limit is exceeded, the imaging area becomes too small with respect to the entire outer shape of the optical system 1, and it becomes impossible to shoot a good image due to noise of the imaging element or the like.

以下に、本発明の光学系の実施例1〜5を説明する。これら光学系の構成パラメータは後記する。   Examples 1 to 5 of the optical system according to the present invention will be described below. The configuration parameters of these optical systems will be described later.

座標系は、順光線追跡において、例えば図1に示すように、側視物体面3から第1面に向かう中心主光線の延長が中心軸2と交差する点を偏心光学面の原点Oとし、側視物体面3とは中心軸2に対して反対側の中心軸2に直交する方向をY軸正方向とし、図1の紙面内をY−Z平面とする。そして、図1の像面5側の方向をZ軸正方向とし、Y軸、Z軸と右手直交座標系を構成する軸をX軸正方向とする。なお、4は直視物体面を示す。   In the forward ray tracking, for example, as shown in FIG. 1, the coordinate system uses, as the origin O of the decentered optical surface, a point where the extension of the central principal ray from the side-viewing object surface 3 toward the first surface intersects the central axis 2; A direction perpendicular to the central axis 2 opposite to the central axis 2 with respect to the side-viewing object plane 3 is defined as a Y-axis positive direction, and a plane in FIG. 1 is defined as a YZ plane. The direction on the image plane 5 side in FIG. 1 is the Z axis positive direction, and the Y axis, the Z axis, and the axis constituting the right-handed orthogonal coordinate system are the X axis positive direction. Reference numeral 4 denotes a direct-view object surface.

偏心面については、その面が定義される座標系の上記光学系1の原点Oからの偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、光学系1の原点Oに定義される座標系のX軸、Y軸、Z軸それぞれを中心とする各面を定義する座標系の傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、各面を定義する座標系を光学系の原点に定義される座標系のまずX軸の回りで反時計回りにα回転させ、次に、その回転した新たな座標系のY軸の回りで反時計回りにβ回転させ、次いで、その回転した別の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。   For the decentered surface, the decentering amount from the origin O of the optical system 1 of the coordinate system in which the surface is defined (X-axis direction, Y-axis direction, and Z-axis direction are X, Y, and Z, respectively), and the optical system 1 The inclination angles (α, β, γ (°), respectively) of the coordinate system defining the respective planes centered on the X axis, the Y axis, and the Z axis of the coordinate system defined by the origin O are given. . In this case, positive α and β mean counterclockwise rotation with respect to the positive direction of each axis, and positive γ means clockwise rotation with respect to the positive direction of the Z axis. Note that the α, β, and γ rotations of the central axis of the surface are performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Then rotate it around the Y axis of the new rotated coordinate system by β and then rotate it around the Z axis of another rotated new coordinate system by γ. It is.

また、各実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には面間隔が与えられており、その他、面の曲率半径、媒質の屈折率、アッベ数が慣用法に従って与えられている。   Further, among the optical action surfaces constituting the optical system of each embodiment, when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given, in addition, the curvature radius of the surface, The refractive index and Abbe number of the medium are given according to conventional methods.

また、後記の構成パラメータ中にデータの記載されていない非球面に関する項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、基準面からの偏心量で表わす。   In addition, a term relating to an aspheric surface for which no data is described in the constituent parameters described later is zero. The refractive index and the Abbe number are shown for the d-line (wavelength 587.56 nm). The unit of length is mm. As described above, the eccentricity of each surface is expressed by the amount of eccentricity from the reference surface.

なお、非球面は、以下の定義式で与えられる回転対称非球面である。   The aspheric surface is a rotationally symmetric aspheric surface given by the following definition.

Z=(Y2 /R)/[1+{1−(1+k)Y2 /R2 1 /2
+aY4 +bY6 +cY8 +dY10+・・・
・・・(a)
ただし、Zを軸とし、Yを軸と垂直な方向にとる。ここで、Rは近軸曲率半径、kは円錐定数、a、b、c、d、…はそれぞれ4次、6次、8次、10次の非球面係数である。この定義式のZ軸が回転対称非球面の軸となる。
Z = (Y 2 / R) / [1+ {1- (1 + k) Y 2 / R 2} 1/2]
+ AY 4 + bY 6 + cY 8 + dY 10 +...
... (a)
However, Z is taken as an axis, and Y is taken in a direction perpendicular to the axis. Here, R is a paraxial radius of curvature, k is a conic constant, a, b, c, d,... Are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively. The Z axis of this defining formula is the axis of a rotationally symmetric aspherical surface.

また、拡張回転自由曲面は、以下の定義で与えられる回転対称面である。   The extended rotation free-form surface is a rotationally symmetric surface given by the following definition.

まず、図2に示すように、Y−Z座標面上で原点を通る下記の曲線(b)が定められる。   First, as shown in FIG. 2, the following curve (b) passing through the origin on the YZ coordinate plane is determined.

Z=(Y2 /RY)/[1+{1−(C1 +1)Y2 /RY2 1 /2
+C2 Y+C3 2 +C4 3 +C5 4 +C6 5 +C7 6
+・・・・+C2120+・・・・+Cn+1 n +・・・・
・・・(b)
次いで、この曲線(b)をX軸正方向を向いて左回りを正として角度θ(°)回転した曲線F(Y)が定められる。この曲線F(Y)もY−Z座標面上で原点を通る。
Z = (Y 2 / RY) / [1+ {1- (C 1 +1) Y 2 / RY 2} 1/2]
+ C 2 Y + C 3 Y 2 + C 4 Y 3 + C 5 Y 4 + C 6 Y 5 + C 7 Y 6
+ ··· + C 21 Y 20 + ··· + C n + 1 Y n + ····
... (b)
Next, a curve F (Y) obtained by rotating the curve (b) in the positive direction of the X-axis and turning it counterclockwise to be positive is determined. This curve F (Y) also passes through the origin on the YZ coordinate plane.

その曲線F(Y)をY正方向に距離R(負のときはY負方向)だけ平行移動し、その後にZ軸の周りでその平行移動した曲線を回転させてできる回転対称面を拡張回転自由曲面とする。   The curve F (Y) is translated in the Y positive direction by a distance R (Y negative direction if negative), and then the rotationally symmetric surface is rotated by rotating the translated curve around the Z axis. Let it be a free-form surface.

その結果、拡張回転自由曲面はY−Z面内で自由曲面(自由曲線)になり、X−Y面内で半径|R|の円になる。   As a result, the extended rotation free-form surface becomes a free-form surface (free-form curve) in the YZ plane and a circle with a radius | R | in the XY plane.

この定義からZ軸が拡張回転自由曲面の軸(回転対称軸)となる。   From this definition, the Z-axis becomes the axis of the extended rotation free-form surface (rotation symmetry axis).

ここで、RYはY−Z断面での球面項の曲率半径、C1 は円錐定数、C2 、C3 、C4 、C5 …はそれぞれ1次、2次、3次、4次…の非球面係数である。 Where RY is the radius of curvature of the spherical term in the YZ section, C 1 is the conic constant, C 2 , C 3 , C 4 , C 5 . Aspheric coefficient.

なお、Y軸に平行な軸を中心軸に持つ円錐面は拡張回転自由曲面の1つとして与えられ、RY=∞,C1 ,C2 ,C3 ,C4 ,C5 ,…=0とし、θ=(円錐面の傾き角)、R=(X−Z面内での底面の半径)として与えられる。 A conical surface having an axis parallel to the Y axis as a central axis is given as one of the extended rotation free-form surfaces, and RY = ∞, C 1 , C 2 , C 3 , C 4 , C 5 ,. , Θ = (conical surface inclination angle), R = (radius of bottom surface in XZ plane).

また、後記の構成パラメータ中にデータの記載されていない非球面に関する項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、基準面からの偏心量で表わす。   In addition, a term relating to an aspheric surface for which no data is described in the constituent parameters described later is zero. The refractive index and the Abbe number are shown for the d-line (wavelength 587.56 nm). The unit of length is mm. As described above, the eccentricity of each surface is expressed by the amount of eccentricity from the reference surface.

実施例1の光学系1の中心軸2に沿ってとった断面図を図3に示す。また、この実施例の光学系全体の側視光路の横収差図を図4、直視光路の横収差図を図5に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。なお、マイナスの画角は、水平方向画角については、Y軸正方向を向いて右回りの角度、垂直方向画角については、X軸正方向を向いて右回りの角度を意味する。以下、同じ。   A cross-sectional view taken along the central axis 2 of the optical system 1 of Example 1 is shown in FIG. Further, FIG. 4 shows a lateral aberration diagram of the side viewing optical path of the entire optical system of this embodiment, and FIG. 5 shows a lateral aberration diagram of the direct viewing optical path. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show. Note that a negative field angle means a clockwise angle in the Y-axis positive direction for the horizontal field angle, and a clockwise angle in the X-axis positive direction for the vertical field angle. same as below.

本実施例は、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面を、側視光路内で共通に使用することなくすべて異なる面で構成した例である。   In this embodiment, the transmission surface and the reflection surface of a transparent medium having a refractive index larger than 1 that is concentric with the central axis 2 of the optical system 1 are all different surfaces without being commonly used in the side-view optical path. This is an example.

光学系1は、中心軸2の周りで回転対称な前群Gfと、中心軸2の周りで回転対称な後群Gbと、前群Gfと後群Gbの間に中心軸2に同軸に配置された開口5とからなり、前群Gfは、第1群G1と第2群G2、後群Gbは、第3群G3と第4群G4と第5群G5からなる。   The optical system 1 is arranged coaxially on the central axis 2 between the front group Gf and the rear group Gb, and the front group Gf rotationally symmetric about the central axis 2, the rear group Gb rotationally symmetric about the central axis 2. The front group Gf includes the first group G1 and the second group G2, and the rear group Gb includes the third group G3, the fourth group G4, and the fifth group G5.

第1群G1は、像面5側に凹面を向けた平凹負レンズL1からなる。平凹負レンズL1は、曲率半径無限大の直視第1透過面11と、直視第1透過面11より像面5側に配置される直視第2透過面12をもつ。   The first group G1 includes a plano-concave negative lens L1 having a concave surface directed toward the image plane 5 side. The plano-concave negative lens L1 has a direct-view first transmission surface 11 having an infinite curvature radius and a direct-view second transmission surface 12 disposed on the image plane 5 side of the direct-view first transmission surface 11.

第2群G2は、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L2からなり、側視光路Aと、直視光路Bとを合成する光路合成光学系である。透明媒体L2は、側視物体面3に対向し、外側に配置され、中心軸2に平行なシリンドリカル状の側視第1透過面21と、透明媒体L2の内部に形成され、側視第1透過面21より中心軸2側に形成され、トーリック面からなり、負のパワーをもつ側視第1反射面22と、透明媒体L2の内部に形成され、側視第1反射面22より像面5と反対側に配置され、トーリック面からなり、正のパワーをもつ側視第2反射面23と、側視第2反射面23より像面5側に配置され、球面からなり、負のパワーをもつ側視第2透過面24をもつ。また、球面からなり、負のパワーをもつ直視第3透過面25と、直視第3透過面25より像面5側に配置され、球面からなり、負のパワーをもつ直視第4透過面26をもつ。なお、側視第2透過面24と直視第4透過面26は同一面である。   The second group G2 is made of a transparent medium L2 having a rotational symmetry around the central axis 2 and a refractive index larger than 1, and is an optical path combining optical system that combines the side-view optical path A and the direct-view optical path B. The transparent medium L2 is opposed to the side-viewing object surface 3 and is disposed on the outer side, and is formed inside the cylindrical side-view first transmission surface 21 parallel to the central axis 2 and the transparent medium L2. Formed on the side of the central axis 2 from the transmission surface 21 and made of a toric surface and having a negative power, the side-view first reflection surface 22 and the inside of the transparent medium L2, the image surface from the side-view first reflection surface 22 5 is disposed on the opposite side to 5, is composed of a toric surface, and has a second side reflecting surface 23 having a positive power, and is disposed closer to the image plane 5 than the second side reflecting surface 23 and is composed of a spherical surface and has a negative power It has the 2nd permeation | transmission surface 24 with side view. Further, a direct-view third transmission surface 25 made of a spherical surface and having negative power, and a direct-view fourth transmission surface 26 made of a spherical surface and having a negative power disposed on the image plane 5 side from the direct-view third transmission surface 25. Have. The side view second transmission surface 24 and the direct view fourth transmission surface 26 are the same surface.

第3群G3は、像面5側に凸面を向けた正メニスカスレンズL3からなり、共通第1透過面31と、共通第1透過面31より像面5側に配置される共通第2透過面32をもつ。   The third group G3 includes a positive meniscus lens L3 having a convex surface directed toward the image surface 5 side, and a common first transmission surface 31 and a common second transmission surface disposed closer to the image surface 5 than the common first transmission surface 31. 32.

第4群G4は、像面側に凹面を向けた負メニスカスレンズL4と両凸正レンズL5の接合レンズからなり、共通第3透過面41と、共通第3透過面41より像面5側に配置される接合面45と、接合面45より像面5側に配置される共通第4透過面51をもつ。   The fourth group G4 is composed of a cemented lens of a negative meniscus lens L4 and a biconvex positive lens L5 having a concave surface directed toward the image surface side, and a common third transmission surface 41 and a common third transmission surface 41 closer to the image surface 5 side. The joint surface 45 is disposed, and the common fourth transmission surface 51 is disposed closer to the image surface 5 than the joint surface 45.

第5群G5は、両凸正レンズL6と両凹負レンズL7の接合レンズからなり、共通第5透過面61と、共通第5透過面61より像面5側に配置される接合面67と、接合面67より像面5側に配置される共通第6透過面71をもつ。   The fifth group G5 includes a cemented lens of a biconvex positive lens L6 and a biconcave negative lens L7, a common fifth transmission surface 61, and a cemented surface 67 disposed on the image plane 5 side from the common fifth transmission surface 61. The common sixth transmission surface 71 is disposed closer to the image plane 5 than the bonding surface 67.

光学系1は、側視光路Aと、直視光路Bとを形成する。側視光路Aにおいては、光学系1側方の側視物体面3から入射する光束は、前群Gfのうち第2群G2と後群Gbを順に経て中心軸2に垂直な像面5の中心軸2から外れた外側に円環状に映像を形成する。また、直視光路Bにおいては、光学系1の中心軸2近傍の直視物体面4から入射する光束は、前群Gfと後群Gbを順に経て中心軸2に垂直な像面5の中心軸2近傍に円形に映像を形成する。   The optical system 1 forms a side viewing optical path A and a direct viewing optical path B. In the side viewing optical path A, the light beam incident from the side viewing object surface 3 on the side of the optical system 1 passes through the second group G2 and the rear group Gb in the front group Gf in order, and passes through the image plane 5 perpendicular to the central axis 2. An image is formed in an annular shape outside the center axis 2. In the direct-view optical path B, the light beam incident from the direct-view object surface 4 in the vicinity of the central axis 2 of the optical system 1 passes through the front group Gf and the rear group Gb in this order, and the central axis 2 of the image plane 5 perpendicular to the central axis 2. An image is formed in a circle in the vicinity.

側視光路Aとして光学系1の側方から入射する光束は、前群Gfの第2群G2の透明媒体L2内に側視第1透過面21を経て入り、中心軸2側の側視第1反射面22で像面5と反対側に反射され、側視第2反射面23で像面5側に反射され、側視第2透過面24を経て透明媒体L2から外に出る略Z字状の光路を有する。   The light beam incident from the side of the optical system 1 as the side-viewing optical path A enters the transparent medium L2 of the second group G2 of the front group Gf via the side-view first transmission surface 21, and is side-viewed on the central axis 2 side. A substantially Z-shape that is reflected by the first reflecting surface 22 to the opposite side of the image surface 5, reflected by the second-viewing second reflecting surface 23 to the image-surface 5 side, and exits from the transparent medium L 2 through the second-viewing second transmitting surface 24. Shaped optical path.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの第3群G3の正メニスカスレンズL3内に中心軸2を挟んで反対側で共通第1透過面31を経て入り、共通第2透過面32から外に出て、第4群G4の負メニスカスレンズL4と両凸正レンズL5の接合レンズ内に共通第3透過面41を経て入り、接合面45を経て、共通第4透過面42から外に出て、第5群G5の両凸正レンズL6と両凹負レンズL7の接合レンズ内に共通第5透過面61を経て入り、接合面67を経て、共通第6透過面71から外に出て、像面5の中心軸2から外れた半径方向の所定位置に結像する。   Thereafter, the central axis 2 is sandwiched between the front group Gf and the rear group Gb through the aperture 5 that is coaxially disposed on the central axis 2 and forms a stop, and is inserted into the positive meniscus lens L3 of the third group G3 of the rear group Gb. On the opposite side, it enters through the common first transmission surface 31, exits from the common second transmission surface 32, and is a common third transmission surface in the cemented lens of the negative meniscus lens L4 and the biconvex positive lens L5 of the fourth group G4. 41, through the cemented surface 45 and out of the common fourth transmissive surface 42, into the cemented lens of the biconvex positive lens L6 and the biconcave negative lens L7 of the fifth group G5. Through the joint surface 67, exits from the common sixth transmission surface 71, and forms an image at a predetermined radial position away from the central axis 2 of the image plane 5.

また、直視光路Bとして光学系1に入射する光束は、前群Gfの第1群G1の透明媒体L1内に直視第1透過面11を経て入り、直視第1透過面11より像面5側に配置された直視第2透過面12を経て透明媒体L1から外に出て、第2群G2の透明媒体L2内に直視第3透過面25を経て入り、直視第1透過面11より像面5側に配置された直視第4透過面26を経て透明媒体L2から外に出る。   Further, the light beam incident on the optical system 1 as the direct-view optical path B enters the transparent medium L1 of the first group G1 of the front group Gf through the direct-view first transmission surface 11 and is closer to the image plane 5 side than the direct-view first transmission surface 11. Through the direct-view second transmission surface 12, which exits from the transparent medium L 1, enters the transparent medium L 2 of the second group G 2 through the direct-view third transmission surface 25, and enters the image plane from the direct-view first transmission surface 11. It goes out of the transparent medium L2 through the direct-view fourth transmission surface 26 arranged on the side 5.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの第3群G3の正メニスカスレンズL3内に共通第1透過面31を経て入り、共通第2透過面32から外に出て、第4群G4の負メニスカスレンズL4と両凸正レンズL5の接合レンズ内に共通第3透過面41を経て入り、接合面45を経て、共通第4透過面42から外に出て、第5群G5の両凸正レンズL6と両凹負レンズL7の接合レンズ内に共通第5透過面61を経て入り、接合面67を経て、共通第6透過面71から外に出て、像面5の中心軸2上に結像する。   Thereafter, a common first transmission surface 31 is provided in the positive meniscus lens L3 of the third group G3 of the rear group Gb through an opening 5 that is disposed coaxially with the central axis 2 between the front group Gf and the rear group Gb and forms a stop. Through the common second transmission surface 32, enters the cemented lens of the negative meniscus lens L4 and the biconvex positive lens L5 of the fourth group G4 through the common third transmission surface 41, and enters the cemented surface 45. Then, the light exits from the common fourth transmission surface 42, enters the cemented lens of the biconvex positive lens L6 and the biconcave negative lens L7 of the fifth group G5 via the common fifth transmission surface 61, and passes through the cemented surface 67. Then, the light exits from the common sixth transmission surface 71 and forms an image on the central axis 2 of the image surface 5.

この実施例1の仕様は、
画角(側視) 60°〜120°
画角(直視) 0°〜60°
入射瞳径(側視) φ0.10mm
(直視) φ0.42mm
像の大きさ(側視) φ3.80〜φ4.96
(直視) φ2.88
実施例2の光学系1の中心軸2に沿ってとった断面図を図6に示す。また、この実施例の光学系全体の側視光路の横収差図を図7、直視光路の横収差図を図8に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。なお、マイナスの画角は、水平方向画角については、Y軸正方向を向いて右回りの角度、垂直方向画角については、X軸正方向を向いて右回りの角度を意味する。以下、同じ。
The specification of this Example 1 is
Angle of view (side view) 60 ° to 120 °
Angle of view (direct view) 0 ° -60 °
Entrance pupil diameter (side view) φ0.10mm
(Direct view) φ0.42mm
Image size (side view) φ3.80 to φ4.96
(Direct view) φ2.88
A sectional view taken along the central axis 2 of the optical system 1 of Example 2 is shown in FIG. Also, FIG. 7 shows a lateral aberration diagram of the side viewing optical path of the entire optical system of this example, and FIG. 8 shows a lateral aberration diagram of the direct viewing optical path. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show. Note that a negative field angle means a clockwise angle in the Y-axis positive direction for the horizontal field angle, and a clockwise angle in the X-axis positive direction for the vertical field angle. same as below.

本実施例は、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面のうち、側視光路Aの側視第1反射面22と側視第2透過面24、及び、側視光路Aの側視第2反射面23と直視光路Bの直視第3透過面25を同一位置同一形状で構成した例である。   In this embodiment, the side-view first reflection surface 22 and the side-view first reflection surface 22 of the side-view optical path A among the transmission surface and the reflection surface of the transparent medium having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are side-viewed. This is an example in which the second transmission surface 24, the side-view second reflection surface 23 of the side-view optical path A, and the direct-view third transmission surface 25 of the direct-view optical path B are configured in the same position and shape.

光学系1は、中心軸2の周りで回転対称な前群Gfと、中心軸2の周りで回転対称な後群Gbと、前群Gfと後群Gbの間に中心軸2に同軸に配置された開口5とからなり、前群Gfは、第1群G1と第2群G2、後群Gbは、第3群G3と第4群G4からなる。   The optical system 1 is arranged coaxially on the central axis 2 between the front group Gf and the rear group Gb, and the front group Gf rotationally symmetric about the central axis 2, the rear group Gb rotationally symmetric about the central axis 2. The front group Gf includes the first group G1 and the second group G2, and the rear group Gb includes the third group G3 and the fourth group G4.

第1群G1は、像面5側に凹面を向けた平凹負レンズL1からなる。平凹負レンズL1は、曲率半径無限大の直視第1透過面11と、直視第1透過面11より像面5側に配置される直視第2透過面12をもつ。   The first group G1 includes a plano-concave negative lens L1 having a concave surface directed toward the image plane 5 side. The plano-concave negative lens L1 has a direct-view first transmission surface 11 having an infinite curvature radius and a direct-view second transmission surface 12 disposed on the image plane 5 side of the direct-view first transmission surface 11.

第2群G2は、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L2からなり、側視光路Aと、直視光路Bとを合成する光路合成光学系である。透明媒体L2は、側視物体面3に対向し、外側に配置され、中心軸2に平行なシリンドリカル状の側視第1透過面21と、透明媒体L2の内部に形成され、側視第1透過面21より中心軸2側に形成され、非球面からなり、負のパワーをもつ側視第1反射面22と、透明媒体L2の内部に形成され、側視第1反射面22より像面5と反対側に配置され、球面からなり、正のパワーをもつ側視第2反射面23と、側視第2反射面23より像面5側に配置され、非球面からなり、負のパワーをもつ側視第2透過面24をもつ。また、球面からなり、負のパワーをもつ直視第3透過面25と、直視第3透過面25より像面5側に配置され、球面からなり、負のパワーをもつ直視第4透過面26をもつ。なお、側視第1反射面22と側視第2透過面24は同一面であり、側視第2反射面23と直視第3透過面25は同一面である。   The second group G2 is made of a transparent medium L2 having a rotational symmetry around the central axis 2 and a refractive index larger than 1, and is an optical path combining optical system that combines the side-view optical path A and the direct-view optical path B. The transparent medium L2 is opposed to the side-viewing object surface 3 and is disposed on the outer side, and is formed inside the cylindrical side-view first transmission surface 21 parallel to the central axis 2 and the transparent medium L2. Formed on the side of the central axis 2 from the transmission surface 21 and made of an aspherical surface, has a negative first power reflecting surface 22 having a negative power, and is formed inside the transparent medium L2, and is imaged from the first reflecting surface 22 in the side view. 5 is disposed on the opposite side to 5 and has a spherical surface, and has a positive side power second reflection surface 23, and is disposed on the image plane 5 side of the side view second reflection surface 23, and is aspheric and has a negative power. It has the 2nd permeation | transmission surface 24 with side view. Further, a direct-view third transmission surface 25 made of a spherical surface and having negative power, and a direct-view fourth transmission surface 26 made of a spherical surface and having a negative power disposed on the image plane 5 side from the direct-view third transmission surface 25. Have. The side-view first reflection surface 22 and the side-view second transmission surface 24 are the same surface, and the side-view second reflection surface 23 and the direct-view third transmission surface 25 are the same surface.

第3群G3は、像面5側に凸面を向けた正メニスカスレンズL3からなり、共通第1透過面31と、共通第1透過面31より像面5側に配置される共通第2透過面32をもつ。   The third group G3 includes a positive meniscus lens L3 having a convex surface directed toward the image surface 5 side, and a common first transmission surface 31 and a common second transmission surface disposed closer to the image surface 5 than the common first transmission surface 31. 32.

第4群G4は、像面側に凹面を向けた負メニスカスレンズL4と両凸正レンズL5の接合レンズからなり、共通第3透過面41と、共通第3透過面41より像面5側に配置される接合面45と、接合面45より像面5側に配置される共通第4透過面51をもつ。   The fourth group G4 is composed of a cemented lens of a negative meniscus lens L4 and a biconvex positive lens L5 having a concave surface directed toward the image surface side, and a common third transmission surface 41 and a common third transmission surface 41 closer to the image surface 5 side. The joint surface 45 is disposed, and the common fourth transmission surface 51 is disposed closer to the image surface 5 than the joint surface 45.

光学系1は、側視光路Aと、直視光路Bとを形成する。側視光路Aにおいては、光学系1側方の側視物体面3から入射する光束は、前群Gfのうち第2群G2と後群Gbを順に経て中心軸2に垂直な像面5の中心軸2から外れた外側に円環状に映像を形成する。また、直視光路Bにおいては、光学系1の中心軸2近傍の直視物体面4から入射する光束は、前群Gfと後群Gbを順に経て中心軸2に垂直な像面5の中心軸2近傍に円形に映像を形成する。   The optical system 1 forms a side viewing optical path A and a direct viewing optical path B. In the side viewing optical path A, the light beam incident from the side viewing object surface 3 on the side of the optical system 1 passes through the second group G2 and the rear group Gb in the front group Gf in order, and passes through the image plane 5 perpendicular to the central axis 2. An image is formed in an annular shape outside the center axis 2. In the direct-view optical path B, the light beam incident from the direct-view object surface 4 in the vicinity of the central axis 2 of the optical system 1 passes through the front group Gf and the rear group Gb in this order, and the central axis 2 of the image plane 5 perpendicular to the central axis 2. An image is formed in a circle in the vicinity.

側視光路Aとして光学系1の側方から入射する光束は、前群Gfの第2群G2の透明媒体L2内に側視第1透過面21を経て入り、中心軸2側の側視第1反射面22で像面5と反対側に反射され、側視第2反射面23で像面5側に反射され、側視第2透過面24を経て透明媒体L2から外に出る略Z字状の光路を有する。   The light beam incident from the side of the optical system 1 as the side-viewing optical path A enters the transparent medium L2 of the second group G2 of the front group Gf via the side-view first transmission surface 21, and is side-viewed on the central axis 2 side. A substantially Z-shape that is reflected by the first reflecting surface 22 to the opposite side of the image surface 5, reflected by the second-viewing second reflecting surface 23 to the image-surface 5 side, and exits from the transparent medium L 2 through the second-viewing second transmitting surface 24. Shaped optical path.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの第3群G3の正メニスカスレンズL3内に中心軸2を挟んで反対側で共通第1透過面31を経て入り、共通第2透過面32から外に出て、第4群G4の負メニスカスレンズL4内に共通第3透過面41を経て入り、接合面45を経て、両凸正レンズL5の共通第4透過面51から外に出て、像面5の中心軸2から外れた半径方向の所定位置に結像する。   Thereafter, the central axis 2 is sandwiched between the front group Gf and the rear group Gb through the aperture 5 that is coaxially disposed on the central axis 2 and forms a stop, and is inserted into the positive meniscus lens L3 of the third group G3 of the rear group Gb. Enters through the common first transmission surface 31 on the opposite side, exits from the common second transmission surface 32, enters the negative meniscus lens L4 of the fourth group G4 through the common third transmission surface 41, and enters the bonding surface 45. Then, the light exits from the common fourth transmission surface 51 of the biconvex positive lens L5 and forms an image at a predetermined position in the radial direction away from the central axis 2 of the image surface 5.

また、直視光路Bとして光学系1に入射する光束は、前群Gfの第1群G1の透明媒体L1内に直視第1透過面11を経て入り、直視第1透過面11より像面5側に配置された直視第2透過面12を経て透明媒体L1から外に出て、第2群G2の透明媒体L2内に直視第3透過面25を経て入り、直視第1透過面11より像面5側に配置された直視第4透過面26を経て透明媒体L2から外に出る。   Further, the light beam incident on the optical system 1 as the direct-view optical path B enters the transparent medium L1 of the first group G1 of the front group Gf through the direct-view first transmission surface 11 and is closer to the image plane 5 side than the direct-view first transmission surface 11. Through the direct-view second transmission surface 12, which exits from the transparent medium L 1, enters the transparent medium L 2 of the second group G 2 through the direct-view third transmission surface 25, and enters the image plane from the direct-view first transmission surface 11. It goes out of the transparent medium L2 through the direct-view fourth transmission surface 26 arranged on the side 5.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの第3群G3の正メニスカスレンズL3内に共通第1透過面31を経て入り、共通第2透過面32から外に出て、第4群G4の負メニスカスレンズL4内に共通第3透過面41を経て入り、接合面45を経て、両凸正レンズL5の共通第4透過面51から外に出て、像面5の中心軸2上に結像する。   Thereafter, a common first transmission surface 31 is provided in the positive meniscus lens L3 of the third group G3 of the rear group Gb through an opening 5 that is disposed coaxially with the central axis 2 between the front group Gf and the rear group Gb and forms a stop. Through the common second transmission surface 32, enters the negative meniscus lens L4 of the fourth group G4 through the common third transmission surface 41, passes through the cementing surface 45, and is common to the biconvex positive lens L5. The light exits from the fourth transmission surface 51 and forms an image on the central axis 2 of the image surface 5.

この実施例2の仕様は、
画角(側視) 60°〜120°
画角(直視) 0°〜60°
入射瞳径(側視) φ0.13mm
(直視) φ0.68mm
像の大きさ(側視) φ3.87〜φ4.90
(直視) φ2.83
実施例3の光学系1の中心軸2に沿ってとった断面図を図9に示す。また、この実施例の光学系全体の側視光路の横収差図を図10、直視光路の横収差図を図11に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。なお、マイナスの画角は、水平方向画角については、Y軸正方向を向いて右回りの角度、垂直方向画角については、X軸正方向を向いて右回りの角度を意味する。以下、同じ。
The specification of Example 2 is
Angle of view (side view) 60 ° to 120 °
Angle of view (direct view) 0 ° -60 °
Entrance pupil diameter (side view) φ0.13mm
(Direct view) φ0.68mm
Image size (side view) φ3.87 to φ4.90
(Direct view) φ2.83
A sectional view taken along the central axis 2 of the optical system 1 of Example 3 is shown in FIG. Further, FIG. 10 shows a lateral aberration diagram of the side viewing optical path of the entire optical system of this example, and FIG. 11 shows a lateral aberration diagram of the direct viewing optical path. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show. Note that a negative field angle means a clockwise angle in the Y-axis positive direction for the horizontal field angle, and a clockwise angle in the X-axis positive direction for the vertical field angle. same as below.

本実施例は、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面のうち、側視光路Aの側視第1反射面22と側視第2透過面24と直視光路Bの直視第4透過面26、及び、側視光路Aの側視第2反射面23と直視光路Bの直視第3透過面25を同一位置同一形状で構成した例である。   In this embodiment, the side-view first reflection surface 22 and the side-view first reflection surface 22 of the side-view optical path A among the transmission surface and the reflection surface of the transparent medium having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are side-viewed. The second transmission surface 24 and the direct-view fourth transmission surface 26 of the direct-view optical path B, and the side-view second reflection surface 23 of the side-view optical path A and the direct-view third transmission surface 25 of the direct-view optical path B are configured in the same position and shape. It is an example.

光学系1は、中心軸2の周りで回転対称な前群Gfと、中心軸2の周りで回転対称な後群Gbと、前群Gfと後群Gbの間に中心軸2に同軸に配置された開口5とからなり、前群Gfは、第1群G1と第2群G2、後群Gbは、第3群G3と第4群G4からなる。   The optical system 1 is arranged coaxially on the central axis 2 between the front group Gf and the rear group Gb, and the front group Gf rotationally symmetric about the central axis 2, the rear group Gb rotationally symmetric about the central axis 2. The front group Gf includes the first group G1 and the second group G2, and the rear group Gb includes the third group G3 and the fourth group G4.

第1群G1は、像面側に凹面を向けた負メニスカスレンズL1からなる。負メニスカスレンズL1は、直視第1透過面11と、直視第1透過面11より像面5側に配置される直視第2透過面12をもつ。   The first group G1 includes a negative meniscus lens L1 having a concave surface facing the image surface side. The negative meniscus lens L1 has a direct-view first transmission surface 11 and a direct-view second transmission surface 12 arranged on the image plane 5 side with respect to the direct-view first transmission surface 11.

第2群G2は、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L2と、両凹負レンズL3とからなり、側視光路Aと、直視光路Bとを合成する光路合成光学系である。   The second group G2 includes a transparent medium L2 having a refractive index greater than 1 and a biconcave negative lens L3 around the central axis 2, and a light path composition for combining the side view light path A and the direct view light path B. It is an optical system.

透明媒体L2は、側視物体面3に対向し、外側に配置され、中心軸2に平行なシリンドリカル状の側視第1透過面21と、透明媒体L2の内部に形成され、側視第1透過面21より中心軸2側に形成され、非球面からなり、負のパワーをもつ側視第1反射面22と、透明媒体L2の内部に形成され、側視第1反射面22より像面5と反対側に配置され、球面からなり、正のパワーをもつ側視第2反射面23と、側視第2反射面23より像面5側に配置され、非球面からなり、負のパワーをもつ側視第2透過面24をもつ。また、球面からなり、負のパワーをもつ直視第3透過面25と、直視第3透過面25より像面5側に配置され、球面からなり、負のパワーをもつ直視第4透過面26をもつ。なお、側視第1反射面22と側視第2透過面24は同一面である。   The transparent medium L2 is opposed to the side-viewing object surface 3 and is disposed on the outer side, and is formed inside the cylindrical side-view first transmission surface 21 parallel to the central axis 2 and the transparent medium L2. Formed on the side of the central axis 2 from the transmission surface 21 and made of an aspherical surface, has a negative first power reflecting surface 22 having a negative power, and is formed inside the transparent medium L2, and is imaged from the first reflecting surface 22 in the side view. 5 is disposed on the opposite side to 5 and has a spherical surface, and has a positive side power second reflection surface 23, and is disposed on the image plane 5 side of the side view second reflection surface 23, and is aspheric and has a negative power. It has the 2nd permeation | transmission surface 24 with side view. Further, a direct-view third transmission surface 25 made of a spherical surface and having negative power, and a direct-view fourth transmission surface 26 made of a spherical surface and having a negative power disposed on the image plane 5 side from the direct-view third transmission surface 25. Have. The side-view first reflection surface 22 and the side-view second transmission surface 24 are the same surface.

両凹負レンズL3は、球面からなり、負のパワーをもつ側視第3透過面31と負のパワーをもつ側視第4透過面32及び負のパワーをもつ直視第5透過面33と負のパワーをもつ直視第6透過面34をもつ。なお、側視第3透過面31と直視第5透過面33は、同一面であり、側視第4透過面32と直視第6透過面34は、同一面である。   The biconcave negative lens L3 is a spherical surface, and is negative with a side-view third transmission surface 31 having negative power, a side-view fourth transmission surface 32 having negative power, and a direct-view fifth transmission surface 33 having negative power. And a direct-view sixth transmission surface 34 having the following power. The side-view third transmission surface 31 and the direct-view fifth transmission surface 33 are the same surface, and the side-view fourth transmission surface 32 and the direct-view sixth transmission surface 34 are the same surface.

第3群G3は、像面5側に凸面を向けた負メニスカスレンズL4と像面5側に凸面を向けた正メニスカスレンズL5の接合レンズからなり、共通第1透過面41と、共通第1透過面41より像面5側に配置される接合面45と、接合面45より像面5側に配置される共通第2透過面51をもつ。   The third group G3 includes a cemented lens of a negative meniscus lens L4 having a convex surface facing the image surface 5 and a positive meniscus lens L5 having a convex surface facing the image surface 5, and has a common first transmission surface 41 and a common first lens. It has a joint surface 45 disposed on the image surface 5 side from the transmission surface 41 and a common second transmission surface 51 disposed on the image surface 5 side from the joint surface 45.

第4群G4は、像面側に凹面を向けた負メニスカスレンズL6と両凸正レンズL7の接合レンズからなり、共通第3透過面61と、共通第3透過面61より像面5側に配置される接合面67と、接合面67より像面5側に配置される共通第4透過面71をもつ。   The fourth group G4 includes a cemented lens of a negative meniscus lens L6 and a biconvex positive lens L7 having a concave surface directed toward the image plane side. The fourth third group G4 is closer to the image plane 5 side than the common third transmission plane 61 and the common third transmission plane 61. It has a joint surface 67 to be disposed and a common fourth transmission surface 71 disposed on the image surface 5 side from the joint surface 67.

光学系1は、側視光路Aと、直視光路Bとを形成する。側視光路Aにおいては、光学系1側方の側視物体面3から入射する光束は、前群Gfのうち第2群G2と後群Gbを順に経て中心軸2に垂直な像面5の中心軸2から外れた外側に円環状に映像を形成する。また、直視光路Bにおいては、光学系1の中心軸2近傍の直視物体面4から入射する光束は、前群Gfと後群Gbを順に経て中心軸2に垂直な像面5の中心軸2近傍に円形に映像を形成する。   The optical system 1 forms a side viewing optical path A and a direct viewing optical path B. In the side viewing optical path A, the light beam incident from the side viewing object surface 3 on the side of the optical system 1 passes through the second group G2 and the rear group Gb in the front group Gf in order, and passes through the image plane 5 perpendicular to the central axis 2. An image is formed in an annular shape outside the center axis 2. In the direct-view optical path B, the light beam incident from the direct-view object surface 4 in the vicinity of the central axis 2 of the optical system 1 passes through the front group Gf and the rear group Gb in this order, and the central axis 2 of the image plane 5 perpendicular to the central axis 2. An image is formed in a circle in the vicinity.

側視光路Aとして光学系1の側方から入射する光束は、前群Gfの第2群G2の透明媒体L2内に側視第1透過面21を経て入り、中心軸2側の側視第1反射面22で像面5と反対側に反射され、側視第2反射面23で像面5側に反射され、側視第2透過面24を経て透明媒体L2から外に出る略Z字状の光路を有する。そして、透明媒体L3内に側視第3透過面31から入り、側視第4透過面32を経て透明媒体L3から外に出る
その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの第3群G3の負メニスカスレンズL4と正メニスカスレンズL5の接合レンズ内に中心軸2を挟んで反対側で共通第1透過面41を経て入り、接合面45を経て、共通第2透過面51から外に出て、第4群G4の負メニスカスレンズL6と両凸正レンズL7の接合レンズ内に共通第3透過面61を経て入り、接合面67を経て、共通第4透過面71から外に出て、像面5の中心軸2から外れた半径方向の所定位置に結像する。
The light beam incident from the side of the optical system 1 as the side-viewing optical path A enters the transparent medium L2 of the second group G2 of the front group Gf via the side-view first transmission surface 21, and is side-viewed on the central axis 2 side. A substantially Z-shape that is reflected by the first reflecting surface 22 to the opposite side of the image surface 5, reflected by the second-viewing second reflecting surface 23 to the image-surface 5 side, and exits from the transparent medium L 2 through the second-viewing second transmitting surface 24. Shaped optical path. Then, it enters the transparent medium L3 from the third transmission surface 31 as viewed from the side, and exits from the transparent medium L3 via the fourth transmission surface 32 as viewed from the side. Thereafter, it is coaxial with the central axis 2 between the front group Gf and the rear group Gb. And a common first transmission surface 41 on the opposite side across the central axis 2 in the cemented lens of the negative meniscus lens L4 and the positive meniscus lens L5 of the third group G3 of the rear group Gb. Through the cemented surface 45 and out of the common second transmissive surface 51, and through the common third transmissive surface 61 in the cemented lens of the negative meniscus lens L6 and the biconvex positive lens L7 of the fourth group G4. Enters, passes through the joint surface 67, exits from the common fourth transmission surface 71, and forms an image at a predetermined radial position away from the central axis 2 of the image surface 5.

また、直視光路Bとして光学系1に入射する光束は、前群Gfの第1群G1の透明媒体L1内に直視第1透過面11を経て入り、直視第1透過面11より像面5側に配置された直視第2透過面12を経て透明媒体L1から外に出て、第2群G2の透明媒体L2内に直視第3透過面25を経て入り、直視第1透過面11より像面5側に配置された直視第4透過面26を経て透明媒体L2から外に出て、透明媒体L3内に直視第5透過面33を経て入り、直視第5透過面33より像面5側に配置された直視第6透過面34を経て透明媒体L3から外に出る。   Further, the light beam incident on the optical system 1 as the direct-view optical path B enters the transparent medium L1 of the first group G1 of the front group Gf through the direct-view first transmission surface 11 and is closer to the image plane 5 side than the direct-view first transmission surface 11. Through the direct-view second transmission surface 12, which exits from the transparent medium L 1, enters the transparent medium L 2 of the second group G 2 through the direct-view third transmission surface 25, and enters the image plane from the direct-view first transmission surface 11. Goes out of the transparent medium L2 through the direct-view fourth transmission surface 26 disposed on the side 5, enters the transparent medium L 3 through the direct-view fifth transmission surface 33, and is closer to the image plane 5 side than the direct-view fifth transmission surface 33. It goes out of the transparent medium L3 through the arranged direct view sixth transmission surface 34.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの第3群G3の負メニスカスレンズL4と正メニスカスレンズL5の接合レンズ内に共通第1透過面41を経て入り、接合面45を経て、共通第2透過面51から外に出て、第4群G4の負メニスカスレンズL6と両凸正レンズL7の接合レンズ内に共通第3透過面61を経て入り、接合面67を経て、共通第4透過面71から外に出て、像面5の中心軸2上に結像する。   After that, a cemented lens of the negative meniscus lens L4 and the positive meniscus lens L5 of the third group G3 of the rear group Gb passes through an aperture 5 that is arranged coaxially with the central axis 2 between the front group Gf and the rear group Gb and forms a stop. Enters through the common first transmission surface 41, passes through the cementing surface 45, exits from the common second transmission surface 51, and enters the cemented lens of the negative meniscus lens L6 and the biconvex positive lens L7 of the fourth group G4. The light enters through the common third transmission surface 61, passes through the joint surface 67, exits from the common fourth transmission surface 71, and forms an image on the central axis 2 of the image surface 5.

この実施例3の仕様は、
画角(側視) 60°〜120°
画角(直視) 0°〜60°
入射瞳径(側視) φ0.09mm
(直視) φ0.49mm
像の大きさ(側視) φ3.78〜φ4.94
(直視) φ2.96
実施例4の光学系1の中心軸2に沿ってとった断面図を図12に示す。また、この実施例の光学系全体の側視光路の横収差図を図13、直視光路の横収差図を図14に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。なお、マイナスの画角は、水平方向画角については、Y軸正方向を向いて右回りの角度、垂直方向画角については、X軸正方向を向いて右回りの角度を意味する。以下、同じ。
The specification of this Example 3 is
Angle of view (side view) 60 ° to 120 °
Angle of view (direct view) 0 ° -60 °
Entrance pupil diameter (side view) φ0.09mm
(Direct view) φ0.49mm
Image size (side view) φ3.78 to φ4.94
(Direct view) φ2.96
A sectional view taken along the central axis 2 of the optical system 1 of Example 4 is shown in FIG. Further, FIG. 13 shows a lateral aberration diagram of the side viewing optical path of the entire optical system of this example, and FIG. 14 shows a lateral aberration diagram of the direct viewing optical path. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show. Note that a negative field angle means a clockwise angle in the Y-axis positive direction for the horizontal field angle, and a clockwise angle in the X-axis positive direction for the vertical field angle. same as below.

本実施例は、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面のうち、側視光路Aの側視第1反射面22と側視第2透過面24と直視光路Bの直視第4透過面26、及び、側視光路Aの側視第2反射面23と直視光路Bの直視第3透過面25を同一位置同一形状で構成した例である。   In this embodiment, the side-view first reflection surface 22 and the side-view first reflection surface 22 of the side-view optical path A among the transmission surface and the reflection surface of the transparent medium having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are side-viewed. The second transmission surface 24 and the direct-view fourth transmission surface 26 of the direct-view optical path B, and the side-view second reflection surface 23 of the side-view optical path A and the direct-view third transmission surface 25 of the direct-view optical path B are configured in the same position and shape. It is an example.

光学系1は、中心軸2の周りで回転対称な前群Gfと、中心軸2の周りで回転対称な後群Gbと、前群Gfと後群Gbの間に中心軸2に同軸に配置された開口5とからなり、前群Gfは、第1群G1と第2群G2、後群Gbは、第3群G3と第4群G4からなる。   The optical system 1 is arranged coaxially on the central axis 2 between the front group Gf and the rear group Gb, and the front group Gf rotationally symmetric about the central axis 2, the rear group Gb rotationally symmetric about the central axis 2. The front group Gf includes the first group G1 and the second group G2, and the rear group Gb includes the third group G3 and the fourth group G4.

第1群G1は、像面側に凹面を向けた負メニスカスレンズL1と像面5側に凸面を向けた負メニスカスレンズL2とからなる。負メニスカスレンズL1は、直視第1透過面11と、直視第1透過面11より像面5側に配置される直視第2透過面12をもつ。負メニスカスレンズL2は、直視第3透過面21と、直視第3透過面21より像面5側に配置される直視第4透過面22をもつ。   The first group G1 includes a negative meniscus lens L1 having a concave surface on the image surface side and a negative meniscus lens L2 having a convex surface on the image surface 5 side. The negative meniscus lens L1 has a direct-view first transmission surface 11 and a direct-view second transmission surface 12 arranged on the image plane 5 side with respect to the direct-view first transmission surface 11. The negative meniscus lens L <b> 2 has a direct-view third transmission surface 21 and a direct-view fourth transmission surface 22 disposed on the image plane 5 side with respect to the direct-view third transmission surface 21.

第2群G2は、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L3と、両凹負レンズL4とからなり、側視光路Aと、直視光路Bとを合成する光路合成光学系である。   The second group G2 includes a transparent medium L3 having a rotationally symmetric refractive index greater than 1 around the central axis 2 and a biconcave negative lens L4, and combines the optical path A for side viewing and the optical path B for direct viewing. It is an optical system.

透明媒体L3は、側視物体面3に対向し、外側に配置され、中心軸2に平行なシリンドリカル状の側視第1透過面31と、透明媒体L3の内部に形成され、側視第1透過面31より中心軸2側に形成され、非球面からなり、負のパワーをもつ側視第1反射面32と、透明媒体L3の内部に形成され、側視第1反射面32より像面5と反対側に配置され、球面からなり、正のパワーをもつ側視第2反射面33と、側視第2反射面33より像面5側に配置され、非球面からなり、負のパワーをもつ側視第2透過面34をもつ。また、球面からなり、負のパワーをもつ直視第5透過面35と、直視第5透過面35より像面5側に配置され、球面からなり、負のパワーをもつ直視第6透過面36をもつ。なお、側視第1反射面32と側視第2透過面34と直視第6透過面36は同一面であり、側視第2反射面33と直視第5透過面35は同一面である。   The transparent medium L3 is opposed to the side-viewing object surface 3 and is disposed outside and is formed inside the cylindrical side-view first transmission surface 31 parallel to the central axis 2 and the transparent medium L3. Formed on the side of the central axis 2 from the transmission surface 31 and made of an aspherical surface, has a negative first power reflecting surface 32 having a negative power, and is formed inside the transparent medium L3. 5 is arranged on the opposite side to 5 and is formed of a spherical surface and has a positive side power second reflection surface 33, and is disposed on the image surface 5 side of the side view second reflection surface 33 and is formed of an aspheric surface and has a negative power. The side transmission second transmission surface 34 having Further, a direct-view fifth transmission surface 35 made of a spherical surface and having a negative power, and a direct-view sixth transmission surface 36 made of a spherical surface and having a negative power are arranged on the image plane 5 side of the direct-view fifth transmission surface 35. Have. The side-view first reflection surface 32, the side-view second transmission surface 34, and the direct-view sixth transmission surface 36 are the same surface, and the side-view second reflection surface 33 and the direct-view fifth transmission surface 35 are the same surface.

両凹負レンズL4は、球面からなり、負のパワーをもつ側視第3透過面41と負のパワーをもつ側視第4透過面42及び負のパワーをもつ直視第5透過面43と負のパワーをもつ直視第6透過面44をもつ。なお、側視第3透過面41と直視第5透過面43は、同一面であり、側視第4透過面42と直視第6透過面44は、同一面である。   The biconcave negative lens L4 is formed of a spherical surface, is negative with a side-view third transmission surface 41 with negative power, a side-view fourth transmission surface 42 with negative power, and a direct-view fifth transmission surface 43 with negative power. And a direct-view sixth transmission surface 44 having the following power. The side-view third transmission surface 41 and the direct-view fifth transmission surface 43 are the same surface, and the side-view fourth transmission surface 42 and the direct-view sixth transmission surface 44 are the same surface.

第3群G3は、両凹負レンズL5と両凸正レンズL6の接合レンズからなり、共通第1透過面51と、共通第1透過面51より像面5側に配置される接合面56と、接合面56より像面5側に配置される共通第2透過面61をもつ。   The third group G3 includes a cemented lens of a biconcave negative lens L5 and a biconvex positive lens L6, a common first transmission surface 51, and a cemented surface 56 disposed on the image plane 5 side from the common first transmission surface 51. The common second transmission surface 61 is disposed on the image plane 5 side with respect to the bonding surface 56.

第4群G4は、像面側に凹面を向けた負メニスカスレンズL7と両凸正レンズL8の接合レンズからなり、共通第3透過面71と、共通第3透過面71より像面5側に配置される接合面78と、接合面78より像面5側に配置される共通第4透過面81をもつ。   The fourth group G4 includes a cemented lens of a negative meniscus lens L7 and a biconvex positive lens L8 having a concave surface directed toward the image surface side. The fourth group G4 has a common third transmission surface 71 and a common third transmission surface 71 closer to the image surface 5 side. It has a joint surface 78 to be disposed and a common fourth transmission surface 81 disposed on the image surface 5 side with respect to the joint surface 78.

光学系1は、側視光路Aと、直視光路Bとを形成する。側視光路Aにおいては、光学系1側方の側視物体面3から入射する光束は、前群Gfのうち第2群G2と後群Gbを順に経て中心軸2に垂直な像面5の中心軸2から外れた外側に円環状に映像を形成する。また、直視光路Bにおいては、光学系1の中心軸2近傍の直視物体面4から入射する光束は、前群Gfと後群Gbを順に経て中心軸2に垂直な像面5の中心軸2近傍に円形に映像を形成する。   The optical system 1 forms a side viewing optical path A and a direct viewing optical path B. In the side viewing optical path A, the light beam incident from the side viewing object surface 3 on the side of the optical system 1 passes through the second group G2 and the rear group Gb in the front group Gf in order, and passes through the image plane 5 perpendicular to the central axis 2. An image is formed in an annular shape outside the center axis 2. In the direct-view optical path B, the light beam incident from the direct-view object surface 4 in the vicinity of the central axis 2 of the optical system 1 passes through the front group Gf and the rear group Gb in this order, and the central axis 2 of the image plane 5 perpendicular to the central axis 2. An image is formed in a circle in the vicinity.

側視光路Aとして光学系1の側方から入射する光束は、前群Gfの第2群G2の透明媒体L3内に側視第1透過面31を経て入り、中心軸2側の側視第1反射面32で像面5と反対側に反射され、側視第2反射面33で像面5側に反射され、側視第2透過面34を経て透明媒体L2から外に出る略Z字状の光路を有する。そして、透明媒体L4内に側視第3透過面41から入り、側視第4透過面42を経て透明媒体L3から外に出る
その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの第3群G3の両凹負レンズL5と両凸正レンズL6の接合レンズ内に中心軸2を挟んで反対側で共通第1透過面51を経て入り、接合面56を経て、共通第2透過面61から外に出て、第4群G4の負メニスカスレンズL7と両凸正レンズL8の接合レンズ内に共通第3透過面71を経て入り、接合面78を経て、共通第4透過面81から外に出て、像面5の中心軸2から外れた半径方向の所定位置に結像する。
A light beam incident from the side of the optical system 1 as the side-view optical path A enters the transparent medium L3 of the second group G2 of the front group Gf via the side-view first transmission surface 31, and is side-viewed on the central axis 2 side. A substantially Z-shape that is reflected from the first reflecting surface 32 to the opposite side of the image surface 5, reflected from the second viewing surface 33 by the side view to the image surface 5 side, and exits from the transparent medium L <b> 2 through the second viewing surface 34. Shaped optical path. Then, the light enters the transparent medium L4 from the third transmission surface 41 in the side view, and exits from the transparent medium L3 through the fourth transmission surface 42 in the side view. Thereafter, it is coaxial with the central axis 2 between the front group Gf and the rear group Gb. And a common first transmission on the opposite side with the central axis 2 in the cemented lens of the biconvex negative lens L5 and the biconvex positive lens L6 of the third group G3 of the rear group Gb. It enters through the surface 51, passes through the cemented surface 56, exits from the common second transmissive surface 61, and is a common third transmissive surface 71 in the cemented lens of the negative meniscus lens L7 and the biconvex positive lens L8 of the fourth group G4. Through the joint surface 78, exits from the common fourth transmission surface 81, and forms an image at a predetermined radial position away from the central axis 2 of the image surface 5.

また、直視光路Bとして光学系1に入射する光束は、前群Gfの第1群G1の透明媒体L1内に直視第1透過面11を経て入り、直視第1透過面11より像面5側に配置された直視第2透過面12を経て透明媒体L1から外に出て、第2群G2の透明媒体L2内に直視第3透過面25を経て入り、直視第1透過面11より像面5側に配置された直視第4透過面26を経て透明媒体L2から外に出て、透明媒体L3内に直視第5透過面33を経て入り、直視第5透過面33より像面5側に配置された直視第6透過面34を経て透明媒体L3から外に出て、透明媒体L4内に直視第7透過面43を経て入り、直視第7透過面43より像面5側に配置された直視第8透過面44を経て透明媒体L4から外に出る。   Further, the light beam incident on the optical system 1 as the direct-view optical path B enters the transparent medium L1 of the first group G1 of the front group Gf through the direct-view first transmission surface 11 and is closer to the image plane 5 side than the direct-view first transmission surface 11. Through the direct-view second transmission surface 12, which exits from the transparent medium L 1, enters the transparent medium L 2 of the second group G 2 through the direct-view third transmission surface 25, and enters the image plane from the direct-view first transmission surface 11. Goes out of the transparent medium L2 through the direct-view fourth transmission surface 26 disposed on the side 5, enters the transparent medium L 3 through the direct-view fifth transmission surface 33, and is closer to the image plane 5 side than the direct-view fifth transmission surface 33. It goes out of the transparent medium L3 through the arranged direct-view sixth transmission surface 34, enters the transparent medium L4 through the direct-view seventh transmission surface 43, and is arranged on the image plane 5 side from the direct-view seventh transmission surface 43. It goes out of the transparent medium L4 through the direct-view eighth transmission surface 44.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの第3群G3の両凹負レンズL5と両凸正レンズL6の接合レンズ内に共通第1透過面51を経て入り、接合面56を経て、共通第2透過面61から外に出て、第4群G4の負メニスカスレンズL7と両凸正レンズL8の接合レンズ内に共通第3透過面71を経て入り、接合面78を経て、共通第4透過面81から外に出て、像面5の中心軸2上に結像する。   After that, through the opening 5 which is coaxially arranged on the central axis 2 between the front group Gf and the rear group Gb and forms a diaphragm, the biconcave negative lens L5 and the biconvex positive lens L6 of the third group G3 of the rear group Gb The cemented lens enters the cemented lens through the common first transmitting surface 51, exits from the common second transmitting surface 61 through the cemented surface 56, and is a cemented lens of the negative meniscus lens L7 and the biconvex positive lens L8 of the fourth group G4. It enters through the common third transmission surface 71, passes through the joint surface 78, exits from the common fourth transmission surface 81, and forms an image on the central axis 2 of the image plane 5.

この実施例4の仕様は、
画角(側視) 60°〜120°
画角(直視) 0°〜60°
入射瞳径(側視) φ0.11mm
(直視) φ0.46mm
像の大きさ(側視) φ3.77〜φ4.94
(直視) φ2.97
実施例5の光学系1の中心軸2に沿ってとった断面図を図15に示す。また、この実施例の光学系全体の側視光路の横収差図を図16、直視光路の横収差図を図17に示す。この横収差図において、中央に示された角度は、(水平方向画角、垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。なお、マイナスの画角は、水平方向画角については、Y軸正方向を向いて右回りの角度、垂直方向画角については、X軸正方向を向いて右回りの角度を意味する。以下、同じ。
The specification of this Example 4 is
Angle of view (side view) 60 ° to 120 °
Angle of view (direct view) 0 ° -60 °
Entrance pupil diameter (side view) φ0.11mm
(Direct view) φ0.46mm
Image size (side view) φ3.77 to φ4.94
(Direct view) φ2.97
A sectional view taken along the central axis 2 of the optical system 1 of Example 5 is shown in FIG. Further, FIG. 16 shows a lateral aberration diagram of the side viewing optical path of the entire optical system of this example, and FIG. 17 shows a lateral aberration diagram of the direct viewing optical path. In this lateral aberration diagram, the angle shown at the center indicates (horizontal field angle, vertical field angle), and the lateral aberrations in the Y direction (meridional direction) and X direction (sagittal direction) at that field angle. Show. Note that a negative field angle means a clockwise angle in the Y-axis positive direction for the horizontal field angle, and a clockwise angle in the X-axis positive direction for the vertical field angle. same as below.

本実施例は、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面のうち、側視光路Aの側視第1反射面22と側視第2透過面24と直視光路Bの直視第4透過面26、及び、側視光路Aの側視第2反射面23と直視光路Bの直視第3透過面25を同一位置同一形状で構成し、既存の光学系の先端に取り付けるアタッチメント光学系として構成した例である。図中、矢印は理想レンズを示している。   In this embodiment, the side-view first reflection surface 22 and the side-view first reflection surface 22 of the side-view optical path A among the transmission surface and the reflection surface of the transparent medium having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are side-viewed. The second transmission surface 24 and the direct-view fourth transmission surface 26 of the direct-view optical path B, and the side-view second reflection surface 23 of the side-view optical path A and the direct-view third transmission surface 25 of the direct-view optical path B are configured in the same position and shape. It is the example comprised as an attachment optical system attached to the front-end | tip of the existing optical system. In the figure, an arrow indicates an ideal lens.

光学系1は、中心軸2の周りで回転対称な前群Gfと、理想レンズからなる後群Gbと、前群Gfと後群Gbの間に中心軸2に同軸に配置された開口5とからなり、前群Gfは、第1群G1と第2群G2、後群Gbは、理想レンズL0からなる。   The optical system 1 includes a front group Gf that is rotationally symmetric about a central axis 2, a rear group Gb that includes an ideal lens, and an aperture 5 that is coaxially disposed on the central axis 2 between the front group Gf and the rear group Gb. The front group Gf includes a first group G1 and a second group G2, and the rear group Gb includes an ideal lens L0.

第1群G1は、物体面側に凸面を向けた負メニスカスレンズL1からなり、直視第1透過面11と、直視第1透過面11より像面5側に配置され、負のパワーをもつ直視第2透過面12をもつ。   The first group G1 includes a negative meniscus lens L1 having a convex surface directed toward the object plane side. The first group G1 is disposed on the image plane 5 side of the direct-view first transmission surface 11 and the direct-view first transmission surface 11, and has direct power having negative power. A second transmission surface 12 is provided.

第2群G2は、中心軸2の周りで回転対称な屈折率が1より大きい透明媒体L2と、像面5側に凸面を向けた負メニスカスレンズL3とからなり、側視光路Aと、直視光路Bとを合成する光路合成光学系である。   The second group G2 includes a transparent medium L2 having a rotational symmetry about the central axis 2 and a refractive index larger than 1, and a negative meniscus lens L3 having a convex surface directed toward the image plane 5 side. This is an optical path synthesis optical system that synthesizes the optical path B.

透明媒体L2は、側視物体面3に対向し、外側に配置され、中心軸2に平行なシリンドリカル状の側視第1透過面21と、透明媒体L2の内部に形成され、側視第1透過面21より中心軸2側に形成され、非球面からなり、負のパワーをもつ側視第1反射面22と、透明媒体L2の内部に形成され、側視第1反射面22より像面5と反対側に配置され、非球面からなり、正のパワーをもつ側視第2反射面23と、側視第2反射面23より像面5側に配置され、非球面からなり、負のパワーをもつ側視第2透過面24をもつ。また、非球面からなり、負のパワーをもつ直視第3透過面25と、直視第3透過面25より像面5側に配置され、非球面からなり、負のパワーをもつ直視第4透過面26をもつ。なお、側視第1反射面22と側視第2透過面24と直視第4透過面26は同一面であり、側視第2反射面23と直視第3透過面25は同一面である。   The transparent medium L2 is opposed to the side-viewing object surface 3 and is disposed on the outer side, and is formed inside the cylindrical side-view first transmission surface 21 parallel to the central axis 2 and the transparent medium L2. Formed on the side of the central axis 2 from the transmission surface 21 and made of an aspherical surface, has a negative first power reflecting surface 22 having a negative power, and is formed inside the transparent medium L2, and is imaged from the first reflecting surface 22 in the side view. 5 is arranged on the opposite side to 5 and is made of an aspherical surface, and has a second-side reflecting surface 23 having a positive power, and is arranged closer to the image plane 5 than the second-side reflecting surface 23 is made of an aspherical surface. A side-transmitting second transmission surface 24 having power is provided. Further, a direct-view third transmission surface 25 made of an aspheric surface and having negative power, and a direct-view fourth transmission surface arranged on the image plane 5 side of the direct-view third transmission surface 25 and made of an aspheric surface and having negative power. 26. The side-view first reflection surface 22, the side-view second transmission surface 24, and the direct-view fourth transmission surface 26 are the same surface, and the side-view second reflection surface 23 and the direct-view third transmission surface 25 are the same surface.

負メニスカスレンズL3は、側視第3透過面31と側視第4透過面32及び直視第5透過面33と直視第6透過面34をもつ。なお、側視第3透過面31と直視第5透過面33は、同一面であり、側視第4透過面32と直視第6透過面34は、同一面である。   The negative meniscus lens L3 includes a side-view third transmission surface 31, a side-view fourth transmission surface 32, a direct-view fifth transmission surface 33, and a direct-view sixth transmission surface 34. The side-view third transmission surface 31 and the direct-view fifth transmission surface 33 are the same surface, and the side-view fourth transmission surface 32 and the direct-view sixth transmission surface 34 are the same surface.

後群Gbは、理想レンズL0である。   The rear group Gb is an ideal lens L0.

光学系1は、側視光路Aと、直視光路Bとを形成する。側視光路Aにおいては、光学系1側方の側視物体面3から入射する光束は、前群Gfのうち第2群G2と後群Gbを順に経て中心軸2に垂直な像面5の中心軸2から外れた外側に円環状に映像を形成する。また、直視光路Bにおいては、光学系1の中心軸2近傍の直視物体面4から入射する光束は、前群Gfと後群Gbを順に経て中心軸2に垂直な像面5の中心軸2近傍に円形に映像を形成する。   The optical system 1 forms a side viewing optical path A and a direct viewing optical path B. In the side viewing optical path A, the light beam incident from the side viewing object surface 3 on the side of the optical system 1 passes through the second group G2 and the rear group Gb in the front group Gf in order, and passes through the image plane 5 perpendicular to the central axis 2. An image is formed in an annular shape outside the center axis 2. In the direct-view optical path B, the light beam incident from the direct-view object surface 4 in the vicinity of the central axis 2 of the optical system 1 passes through the front group Gf and the rear group Gb in this order, and the central axis 2 of the image plane 5 perpendicular to the central axis 2. An image is formed in a circle in the vicinity.

側視光路Aとして光学系1の側方から入射する光束は、前群Gfの第2群G2の透明媒体L2内に側視第1透過面21を経て入り、中心軸2側の側視第1反射面22で像面5と反対側に反射され、側視第2反射面23で像面5側に反射され、側視第2透過面24を経て透明媒体L2から外に出る略Z字状の光路を有する。そして、透明媒体L3内に側視第3透過面31から入り、側視第4透過面32を経て透明媒体L3から外に出る
その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの理想レンズL0を経て、像面5の中心軸2から外れた半径方向の所定位置に結像する。
The light beam incident from the side of the optical system 1 as the side-viewing optical path A enters the transparent medium L2 of the second group G2 of the front group Gf via the side-view first transmission surface 21, and is side-viewed on the central axis 2 side. A substantially Z-shape that is reflected by the first reflecting surface 22 to the opposite side of the image surface 5, reflected by the second-viewing second reflecting surface 23 to the image-surface 5 side, and exits from the transparent medium L 2 through the second-viewing second transmitting surface 24. Shaped optical path. Then, it enters the transparent medium L3 from the third transmission surface 31 as viewed from the side, and exits from the transparent medium L3 via the fourth transmission surface 32 as viewed from the side. Thereafter, it is coaxial with the central axis 2 between the front group Gf and the rear group Gb. The image is formed at a predetermined position in the radial direction away from the central axis 2 of the image plane 5 through the ideal lens L0 of the rear group Gb through the aperture 5 that is disposed in the aperture and forms the stop.

また、直視光路Bとして光学系1に入射する光束は、前群Gfの第1群G1の透明媒体L1内に直視第1透過面11を経て入り、直視第1透過面11より像面5側に配置された直視第2透過面12を経て透明媒体L1から外に出て、第2群G2の透明媒体L2内に直視第3透過面25を経て入り、直視第1透過面11より像面5側に配置された直視第4透過面26を経て透明媒体L2から外に出て、透明媒体L3内に直視第5透過面33を経て入り、直視第5透過面33より像面5側に配置された直視第6透過面34を経て透明媒体L3から外に出る。   Further, the light beam incident on the optical system 1 as the direct-view optical path B enters the transparent medium L1 of the first group G1 of the front group Gf through the direct-view first transmission surface 11 and is closer to the image plane 5 side than the direct-view first transmission surface 11. Through the direct-view second transmission surface 12, which exits from the transparent medium L 1, enters the transparent medium L 2 of the second group G 2 through the direct-view third transmission surface 25, and enters the image plane from the direct-view first transmission surface 11. Goes out of the transparent medium L2 through the direct-view fourth transmission surface 26 disposed on the side 5, enters the transparent medium L 3 through the direct-view fifth transmission surface 33, and is closer to the image plane 5 side than the direct-view fifth transmission surface 33. It goes out of the transparent medium L3 through the arranged direct view sixth transmission surface 34.

その後、前群Gfと後群Gbの間に中心軸2に同軸に配置され絞りを構成する開口5を経て、後群Gbの理想レンズL0を経て、像面5の中心軸2上に結像する。   Thereafter, an image is formed on the central axis 2 of the image plane 5 through an aperture 5 which is disposed coaxially with the central axis 2 between the front group Gf and the rear group Gb and forms a stop, and through the ideal lens L0 of the rear group Gb. To do.

この実施例5の仕様は、
画角(側視) 60°〜120°
画角(直視) 0°〜60°
入射瞳径(側視) φ0.08mm
(直視) φ0.37mm
像の大きさ(側視) φ3.74〜φ4.99
(直視) φ2.86
以下に、上記実施例1〜5の構成パラメータを示す。なお、以下の表中の“ASS”は非球面、“ERFS”は拡張回転自由曲面を、“RE”は反射面を示す。
The specification of this Example 5 is
Angle of view (side view) 60 ° to 120 °
Angle of view (direct view) 0 ° -60 °
Entrance pupil diameter (side view) φ0.08mm
(Direct view) φ0.37mm
Image size (side view) φ3.74 to φ4.99
(Direct view) φ2.86
The configuration parameters of Examples 1 to 5 are shown below. In the table below, “ASS” indicates an aspherical surface, “ERFS” indicates an extended rotation free-form surface, and “RE” indicates a reflecting surface.

実施例1
側視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞ 偏心(1)
1 ERFS[1] 偏心(2) 1.8348 42.7
2 ERFS[2](RE) 偏心(3) 1.8348 42.7
3 ERFS[3](RE) 偏心(4) 1.8348 42.7
4 ERFS[4] 偏心(5)
5 ∞(絞り) 0.20 偏心(6)
6 -0.89 0.80 1.7440 44.8
7 -1.26 0.10
8 6.06 0.50 1.7502 33.2
9 3.02 1.60 1.5174 67.3
10 -3.73 0.10
11 3.78 2.20 1.4875 70.4
12 -2.99 0.50 1.7508 32.4
13 56.93 5.13
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
像 面 ∞
ERFS[1]
RY
θ 90.00
-3.00
ERFS[2]
RY 2.56
θ 31.22
-2.33
ERFS[3]
RY 4.88
θ 2.88
-1.71
ERFS[4]
RY 1.75
θ 40.71
R -1.14
偏心(1)
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心[2]
X 0.00 Y 0.00 Z -0.03
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z -0.04
α 0.00 β 0.00 γ 0.00
偏心[4]
X 0.00 Y 0.00 Z -1.22
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z -0.38
α 0.00 β 0.00 γ 0.00
偏心[6]
X 0.00 Y 0.00 Z 1.77
α 0.00 β 0.00 γ 0.00
直視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞ 0.60 1.5163 64.1
2 1.50 1.76
3 ERFS[5] 偏心(7) 1.8348 42.7
4 ERFS[4] 偏心(5)
5 ∞(絞り) 0.20 偏心(6)
6 -0.89 0.80 1.7440 44.8
7 -1.26 0.10
8 6.06 0.50 1.7502 33.2
9 3.02 1.60 1.5174 67.3
10 -3.73 0.10
11 3.78 2.20 1.4875 70.4
12 -2.99 0.50 1.7508 32.4
13 56.93 5.13
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
像 面 ∞
ERFS[5]
RY 5.00
θ 5.04
R -0.44
ERFS[4]
RY 1.75
θ 40.71
R -1.14
偏心(7)
X 0.00 Y 0.00 Z -1.33
α 0.00 β 0.00 γ 0.00
偏心(5)
X 0.00 Y 0.00 Z -0.38
α 0.00 β 0.00 γ 0.00
偏心(6)
X 0.00 Y 0.00 Z 1.77
α 0.00 β 0.00 γ 0.00 。
Example 1
Side-viewing optical path number of curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞ Eccentricity (1)
1 ERFS [1] Eccentricity (2) 1.8348 42.7
2 ERFS [2] (RE) Eccentricity (3) 1.8348 42.7
3 ERFS [3] (RE) Eccentricity (4) 1.8348 42.7
4 ERFS [4] Eccentricity (5)
5 ∞ (diaphragm) 0.20 Eccentricity (6)
6 -0.89 0.80 1.7440 44.8
7 -1.26 0.10
8 6.06 0.50 1.7502 33.2
9 3.02 1.60 1.5174 67.3
10 -3.73 0.10
11 3.78 2.20 1.4875 70.4
12 -2.99 0.50 1.7508 32.4
13 56.93 5.13
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
Image plane ∞
ERFS [1]
RY
θ 90.00
R -3.00
ERFS [2]
RY 2.56
θ 31.22
R -2.33
ERFS [3]
RY 4.88
θ 2.88
R -1.71
ERFS [4]
RY 1.75
θ 40.71
R -1.14
Eccentricity (1)
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
Eccentric [2]
X 0.00 Y 0.00 Z -0.03
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z -0.04
α 0.00 β 0.00 γ 0.00
Eccentric [4]
X 0.00 Y 0.00 Z -1.22
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z -0.38
α 0.00 β 0.00 γ 0.00
Eccentric [6]
X 0.00 Y 0.00 Z 1.77
α 0.00 β 0.00 γ 0.00
Direct-view optical path number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ 0.60 1.5163 64.1
2 1.50 1.76
3 ERFS [5] Eccentricity (7) 1.8348 42.7
4 ERFS [4] Eccentricity (5)
5 ∞ (diaphragm) 0.20 Eccentricity (6)
6 -0.89 0.80 1.7440 44.8
7 -1.26 0.10
8 6.06 0.50 1.7502 33.2
9 3.02 1.60 1.5174 67.3
10 -3.73 0.10
11 3.78 2.20 1.4875 70.4
12 -2.99 0.50 1.7508 32.4
13 56.93 5.13
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
Image plane ∞
ERFS [5]
RY 5.00
θ 5.04
R -0.44
ERFS [4]
RY 1.75
θ 40.71
R -1.14
Eccentricity (7)
X 0.00 Y 0.00 Z -1.33
α 0.00 β 0.00 γ 0.00
Eccentricity (5)
X 0.00 Y 0.00 Z -0.38
α 0.00 β 0.00 γ 0.00
Eccentricity (6)
X 0.00 Y 0.00 Z 1.77
α 0.00 β 0.00 γ 0.00.

実施例2
側視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
側視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞ 偏心(1)
1 ERFS[1] 偏心(2) 1.8348 42.7
2 ASS[1](RE) 偏心(3) 1.8348 42.7
3 11.26(RE) 偏心(4) 1.8348 42.7
4 ASS[1] 偏心(3)
5 ∞(絞り) 0.10 偏心(5)
6 -1.59 2.00 1.7292 54.7
7 -2.02 0.10
8 4.80 1.00 1.8467 23.8
9 2.52 2.50 1.7440 44.8
10 -12.02 3.62
11 ∞ 0.40 1.5163 64.1
12 ∞ 0.10
像 面 ∞ 0.00
ERFS[1]
RY
θ 90.00
-3.00
ASS[1]
R 3.25
k -7.5002e-1
偏心(1)
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心[2]
X 0.00 Y 0.00 Z -0.03
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z -0.91
α 0.00 β 0.00 γ 0.00
偏心[4]
X 0.00 Y 0.00 Z -1.73
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z 0.55
α 0.00 β 0.00 γ 0.00
直視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞ 0.80 1.7292 54.7
2 4.61 3.57
3 11.26 偏心(4) 1.8348 42.7
4 3.25 偏心(3)
5 ∞(絞り) 0.10 偏心(5)
6 -1.59 2.00 1.7292 54.7
7 -2.02 0.10
8 4.80 1.00 1.8467 23.8
9 2.52 2.50 1.7440 44.8
10 -12.02 3.62
11 ∞ 0.40 1.5163 64.1
12 ∞ 0.10
像 面 ∞ 0.00
偏心[4]
X 0.00 Y 0.00 Z -1.73
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z -0.91
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z 0.55
α 0.00 β 0.00 γ 0.00 。
Example 2
Side-viewing optical path surface number of curvature radius Surface spacing Eccentric refractive index Abbe number Side-viewing optical path surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞ Eccentricity (1)
1 ERFS [1] Eccentricity (2) 1.8348 42.7
2 ASS [1] (RE) Eccentricity (3) 1.8348 42.7
3 11.26 (RE) Eccentricity (4) 1.8348 42.7
4 ASS [1] Eccentricity (3)
5 ∞ (aperture) 0.10 Eccentricity (5)
6 -1.59 2.00 1.7292 54.7
7 -2.02 0.10
8 4.80 1.00 1.8467 23.8
9 2.52 2.50 1.7440 44.8
10 -12.02 3.62
11 ∞ 0.40 1.5163 64.1
12 ∞ 0.10
Image plane ∞ 0.00
ERFS [1]
RY
θ 90.00
R -3.00
ASS [1]
R 3.25
k -7.5002e-1
Eccentricity (1)
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
Eccentric [2]
X 0.00 Y 0.00 Z -0.03
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z -0.91
α 0.00 β 0.00 γ 0.00
Eccentric [4]
X 0.00 Y 0.00 Z -1.73
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z 0.55
α 0.00 β 0.00 γ 0.00
Direct-view optical path number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ 0.80 1.7292 54.7
2 4.61 3.57
3 11.26 Eccentricity (4) 1.8348 42.7
4 3.25 Eccentricity (3)
5 ∞ (aperture) 0.10 Eccentricity (5)
6 -1.59 2.00 1.7292 54.7
7 -2.02 0.10
8 4.80 1.00 1.8467 23.8
9 2.52 2.50 1.7440 44.8
10 -12.02 3.62
11 ∞ 0.40 1.5163 64.1
12 ∞ 0.10
Image plane ∞ 0.00
Eccentric [4]
X 0.00 Y 0.00 Z -1.73
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z -0.91
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z 0.55
α 0.00 β 0.00 γ 0.00.

実施例3
側視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞ 偏心(1)
1 ERFS[1] 偏心(2) 1.5163 64.1
2 ASS[1](RE) 偏心(3) 1.5163 64.1
3 15.47(RE) 偏心(4) 1.5163 64.1
4 ASS[1] 偏心(3)
5 -8.96 0.55 偏心(5) 1.4875 70.4
6 0.88 0.50
7 ∞(絞り) 0.50
8 -3.52 0.50 1.7552 27.6
9 -25.30 1.50 1.7440 44.8
10 -2.04 0.10
11 9.45 1.00 1.8467 23.8
12 2.95 2.50 1.6204 60.3
13 -5.81 8.41
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
像 面 ∞
ERFS[1]
RY
θ 90.00
-3.00
ASS[1]
R 4.01
k -3.0163e-1
偏心(1)
X 0.00 Y -5.00 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心[2]
X 0.00 Y 0.00 Z -0.03
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z -0.78
α 0.00 β 0.00 γ 0.00
偏心[4]
X 0.00 Y 0.00 Z -1.37
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z 0.16
α 0.00 β 0.00 γ 0.00
直視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 8.69 0.80 1.5163 64.1
2 1.65 2.86
3 15.47 偏心(4) 1.8348 42.7
4 4.01 偏心(3)
5 -8.96 0.55 偏心(5) 1.4875 70.4
6 0.88 0.50
7 ∞(絞り) 0.50
8 -3.52 0.50 1.7552 27.6
9 -25.30 1.50 1.7440 44.8
10 -2.04 0.10
11 9.45 1.00 1.8467 23.8
12 2.95 2.50 1.6204 60.3
13 -5.81 8.41
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
像 面 ∞
偏心[4]
X 0.00 Y 0.00 Z -1.37
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z -0.78
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z 0.16
α 0.00 β 0.00 γ 0.00 。
Example 3
Side-viewing optical path number of curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞ Eccentricity (1)
1 ERFS [1] Eccentricity (2) 1.5163 64.1
2 ASS [1] (RE) Eccentricity (3) 1.5163 64.1
3 15.47 (RE) Eccentricity (4) 1.5163 64.1
4 ASS [1] Eccentricity (3)
5 -8.96 0.55 Eccentricity (5) 1.4875 70.4
6 0.88 0.50
7 ∞ (Aperture) 0.50
8 -3.52 0.50 1.7552 27.6
9 -25.30 1.50 1.7440 44.8
10 -2.04 0.10
11 9.45 1.00 1.8467 23.8
12 2.95 2.50 1.6204 60.3
13 -5.81 8.41
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
Image plane ∞
ERFS [1]
RY
θ 90.00
R -3.00
ASS [1]
R 4.01
k -3.0163e-1
Eccentricity (1)
X 0.00 Y -5.00 Z 0.00
α 90.00 β 0.00 γ 0.00
Eccentric [2]
X 0.00 Y 0.00 Z -0.03
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z -0.78
α 0.00 β 0.00 γ 0.00
Eccentric [4]
X 0.00 Y 0.00 Z -1.37
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z 0.16
α 0.00 β 0.00 γ 0.00
Direct-view optical path number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 8.69 0.80 1.5163 64.1
2 1.65 2.86
3 15.47 Eccentricity (4) 1.8348 42.7
4 4.01 Eccentricity (3)
5 -8.96 0.55 Eccentricity (5) 1.4875 70.4
6 0.88 0.50
7 ∞ (Aperture) 0.50
8 -3.52 0.50 1.7552 27.6
9 -25.30 1.50 1.7440 44.8
10 -2.04 0.10
11 9.45 1.00 1.8467 23.8
12 2.95 2.50 1.6204 60.3
13 -5.81 8.41
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
Image plane ∞
Eccentric [4]
X 0.00 Y 0.00 Z -1.37
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z -0.78
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z 0.16
α 0.00 β 0.00 γ 0.00.

実施例4
側視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞ 偏心(1)
1 ERFS[1] 偏心(2) 1.5163 64.1
2 ASS[1](RE) 偏心(3) 1.5163 64.1
3 14.19(RE) 偏心(4) 1.5163 64.1
4 ASS[1] 偏心(3)
5 -3.01 0.55 偏心(5) 1.4875 70.4
6 1.10 0.50
7 ∞(絞り) 0.50
8 -4.75 0.50 1.7209 29.1
9 43.27 1.50 1.7440 44.8
10 -2.26 0.10
11 16.57 1.00 1.8467 23.8
12 3.66 2.50 1.6204 60.3
13 -4.87 9.25
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
像 面 ∞
ERFS[1]
RY
θ 90.00
-4.00
ASS[1]
R 4.40
k -7.3106e-1
偏心(1)
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心[2]
X 0.00 Y 0.00 Z -0.02
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z -1.12
α 0.00 β 0.00 γ 0.00
偏心[4]
X 0.00 Y 0.00 Z -2.28
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z 0.06
α 0.00 β 0.00 γ 0.00
直視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 9.42 0.80 1.5163 64.1
2 2.13 2.35
3 -4.29 0.80 1.5163 64.1
4 -3.86 2.38
5 14.19 0.00 偏心(5) 1.8348 42.7
6 ASS[1] 0.00 偏心(4)
7 -3.01 0.55 偏心(6) 1.4875 70.4
8 1.10 0.50
9 ∞(絞り) 0.50
10 -4.75 0.50 1.7209 29.1
11 43.27 1.50 1.7440 44.8
12 -2.26 0.10
13 16.57 1.00 1.8467 23.8
14 3.66 2.50 1.6204 60.3
15 -4.87 9.25
16 ∞ 0.40 1.5163 64.1
17 ∞ 0.10
像 面 ∞
ASS[1]
R 4.40
k -7.3106e-1
偏心[4]
X 0.00 Y 0.00 Z -2.28
α 0.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z -1.12
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z 0.06
α 0.00 β 0.00 γ 0.00 。
Example 4
Side-viewing optical path number of curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞ Eccentricity (1)
1 ERFS [1] Eccentricity (2) 1.5163 64.1
2 ASS [1] (RE) Eccentricity (3) 1.5163 64.1
3 14.19 (RE) Eccentricity (4) 1.5163 64.1
4 ASS [1] Eccentricity (3)
5 -3.01 0.55 Eccentricity (5) 1.4875 70.4
6 1.10 0.50
7 ∞ (Aperture) 0.50
8 -4.75 0.50 1.7209 29.1
9 43.27 1.50 1.7440 44.8
10 -2.26 0.10
11 16.57 1.00 1.8467 23.8
12 3.66 2.50 1.6204 60.3
13 -4.87 9.25
14 ∞ 0.40 1.5163 64.1
15 ∞ 0.10
Image plane ∞
ERFS [1]
RY
θ 90.00
R -4.00
ASS [1]
R 4.40
k -7.3106e-1
Eccentricity (1)
X 0.00 Y 0.00 Z 0.00
α 90.00 β 0.00 γ 0.00
Eccentric [2]
X 0.00 Y 0.00 Z -0.02
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z -1.12
α 0.00 β 0.00 γ 0.00
Eccentric [4]
X 0.00 Y 0.00 Z -2.28
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z 0.06
α 0.00 β 0.00 γ 0.00
Direct-view optical path number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 9.42 0.80 1.5163 64.1
2 2.13 2.35
3 -4.29 0.80 1.5163 64.1
4 -3.86 2.38
5 14.19 0.00 Eccentricity (5) 1.8348 42.7
6 ASS [1] 0.00 Eccentricity (4)
7 -3.01 0.55 Eccentricity (6) 1.4875 70.4
8 1.10 0.50
9 ∞ (Aperture) 0.50
10 -4.75 0.50 1.7209 29.1
11 43.27 1.50 1.7440 44.8
12 -2.26 0.10
13 16.57 1.00 1.8467 23.8
14 3.66 2.50 1.6204 60.3
15 -4.87 9.25
16 ∞ 0.40 1.5163 64.1
17 ∞ 0.10
Image plane ∞
ASS [1]
R 4.40
k -7.3106e-1
Eccentric [4]
X 0.00 Y 0.00 Z -2.28
α 0.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z -1.12
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z 0.06
α 0.00 β 0.00 γ 0.00.

実施例5
側視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞ 偏心(1)
1 ERFS[1] 偏心(2) 1.5163 64.1
2 ASS[1](RE) 偏心(3) 1.5163 64.1
3 ASS[2](RE) 偏心(4) 1.5163 64.1
4 ASS[1] 偏心(3)
5 -3.66 0.55 偏心(5) 1.7440 44.8
6 -2.96 0.50
7 ∞(絞り) 3.00
8 理想レンズ 3.58
像 面 ∞
ERFS[1]
RY
θ 90.00
-4.00
ASS[1]
R 5.11
k 1.3753e+0
ASS[2]
R 13.09
k 0.0000
偏心[1]
X 0.00 Y -5.00 Z 0.00
α 90.00 β 0.00 γ 0.00
偏心[2]
X 0.00 Y -4.00 Z -0.04
α 90.00 β 0.00 γ 0.00
偏心[3]
X 0.00 Y 0.00 Z -0.87
α 0.00 β 0.00 γ 0.00
偏心[4]
X 0.00 Y 0.00 Z -1.64
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z 1.17
α 0.00 β 0.00 γ 0.00
直視光路
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 205.85 0.80 1.5163 64.1
2 2.32 2.30
3 ASS[2](RE) 偏心(4) 1.5163 64.1
4 ASS[1] 偏心(3)
5 -3.66 0.55 偏心(5) 1.7440 44.8
6 -2.96 0.50
7 ∞(絞り) 3.00
8 理想レンズ 3.58
像 面 ∞
ASS[1]
R 5.11
k 1.3753e+0
ASS[2]
R 13.09
k 0.0000
偏心[3]
X 0.00 Y 0.00 Z -0.87
α 0.00 β 0.00 γ 0.00
偏心[5]
X 0.00 Y 0.00 Z 1.17
α 0.00 β 0.00 γ 0.00 。
Example 5
Side-viewing optical path number of curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞ Eccentricity (1)
1 ERFS [1] Eccentricity (2) 1.5163 64.1
2 ASS [1] (RE) Eccentricity (3) 1.5163 64.1
3 ASS [2] (RE) Eccentricity (4) 1.5163 64.1
4 ASS [1] Eccentricity (3)
5 -3.66 0.55 Eccentricity (5) 1.7440 44.8
6 -2.96 0.50
7 ∞ (Aperture) 3.00
8 Ideal lens 3.58
Image plane ∞
ERFS [1]
RY
θ 90.00
R -4.00
ASS [1]
R 5.11
k 1.3753e + 0
ASS [2]
R 13.09
k 0.0000
Eccentric [1]
X 0.00 Y -5.00 Z 0.00
α 90.00 β 0.00 γ 0.00
Eccentric [2]
X 0.00 Y -4.00 Z -0.04
α 90.00 β 0.00 γ 0.00
Eccentric [3]
X 0.00 Y 0.00 Z -0.87
α 0.00 β 0.00 γ 0.00
Eccentric [4]
X 0.00 Y 0.00 Z -1.64
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z 1.17
α 0.00 β 0.00 γ 0.00
Direct-view optical path number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 205.85 0.80 1.5163 64.1
2 2.32 2.30
3 ASS [2] (RE) Eccentricity (4) 1.5163 64.1
4 ASS [1] Eccentricity (3)
5 -3.66 0.55 Eccentricity (5) 1.7440 44.8
6 -2.96 0.50
7 ∞ (Aperture) 3.00
8 Ideal lens 3.58
Image plane ∞
ASS [1]
R 5.11
k 1.3753e + 0
ASS [2]
R 13.09
k 0.0000
Eccentric [3]
X 0.00 Y 0.00 Z -0.87
α 0.00 β 0.00 γ 0.00
Eccentric [5]
X 0.00 Y 0.00 Z 1.17
α 0.00 β 0.00 γ 0.00.

また、光学素子の外形をD、反射光路の像の外形をDrとすると、次のようになる。   Further, when the outer shape of the optical element is D and the outer shape of the image of the reflected light path is Dr, the following is obtained.

実施例1 実施例2 実施例3 実施例4 実施例5
D 6.00 6.00 6.00 8.00 8.00
Dr 4.96 4.90 4.94 4.94 4.99
D/Dr 1.21 1.22 1.21 1.62 1.60 。
Example 1 Example 2 Example 3 Example 4 Example 5
D 6.00 6.00 6.00 8.00 8.00
Dr 4.96 4.90 4.94 4.94 4.99
D / Dr 1.21 1.22 1.21 1.62 1.60.

以上の実施例では、光学系1の中心軸2に同心に回転対称な屈折率が1より大きい透明媒体の透過面及び反射面を、拡張回転自由曲面で設計されている例であるが、拡張回転自由曲面が回転対称面と直交し、高次項を使用していない場合、球面と等価な構成となる。   In the above embodiment, the transmission surface and the reflection surface of a transparent medium having a refractive index larger than 1 concentric with the central axis 2 of the optical system 1 are designed as extended rotation free-form surfaces. When the rotational free-form surface is orthogonal to the rotationally symmetric surface and does not use a higher-order term, the configuration is equivalent to a spherical surface.

また、前群10の反射面、屈折面をそれぞれ任意形状の線分を回転対称軸1の周りで回転することにより形成され回転対称軸1上に面頂を有さない拡張回転自由曲面で設計しているが、それぞれ任意の曲面に置き換えてもよい。   In addition, the reflecting surface and the refracting surface of the front group 10 are each designed with an extended rotation free-form surface formed by rotating a line segment of an arbitrary shape around the rotational symmetry axis 1 and having no surface top on the rotational symmetry axis 1. However, each may be replaced with an arbitrary curved surface.

また、本発明の光学系は、回転対称面を形成する任意形状の線分を定義する式に奇数次項を含むものを用いることにより、偏心により発生する像面5の傾きや、絞りの逆投影時の瞳収差を補正している。   In addition, the optical system of the present invention uses an equation that includes an odd-order term in an expression that defines a line segment of an arbitrary shape that forms a rotationally symmetric surface, so that the inclination of the image plane 5 caused by decentering or back projection of the stop The pupil aberration is corrected.

また、本発明の前群10を構成する中心軸2の周りで回転対称な透明媒体はそのまま用いることにより、360°全方位の画角を有する画像を撮影したり投影できるが、その透明媒体を中心軸2を含む断面で切断して2分の1、3分の1、3分の2等にすることにより、中心軸2の周りの画角が180°、120°、240°等の画像を撮影したり投影するようにしてもよい。   Further, by using the transparent medium rotationally symmetric around the central axis 2 constituting the front group 10 of the present invention as it is, it is possible to shoot or project an image having an angle of view of 360 ° in all directions. By cutting the cross section including the central axis 2 to make it half, one third, two thirds, etc., the angle of view around the central axis 2 is 180 °, 120 °, 240 °, etc. May be taken or projected.

以上、本発明の光学系を中心軸(回転対称軸)1を垂直方向に向けて天頂を含む360°全方位(全周)の画角の画像を得る撮像あるいは観察光学系として説明してきたが、本発明は撮影光学系、観察光学系に限定されず、光路を逆にとって天頂を含む360°全方位(全周)の画角に画像を投影する投影光学系として用いることもできる。また、内視鏡は管内観察装置の全周観察光学系として用いることもできる。   The optical system of the present invention has been described above as an imaging or observation optical system that obtains an image having 360 ° omnidirectional (all circumference) angles of view including the zenith with the central axis (rotation symmetry axis) 1 in the vertical direction. The present invention is not limited to the photographing optical system and the observation optical system, but can also be used as a projection optical system that projects an image on a 360 ° omnidirectional (all circumference) angle of view including the zenith with the optical path reversed. The endoscope can also be used as an all-round observation optical system of an in-tube observation apparatus.

図18は、本実施例の画像と撮像素子の配置例を示す。図18(a)は、画面比が16:9の撮像素子を使用した例である。上下方向の画像は使用しない場合、側視光路Aの画像A1の左右の位置に撮像素子50の大きさを合致させると好ましい。図18(b)は、画面比が4:3の撮像素子50を使用し、直視光路Bでの画像B1に撮像素子50の大きさを合致させた例であり、図18(a)と同様に上下方向の映像は使用しない場合を示す。図18(c)は、画面比が4:3の撮像素子50を使用し、側視光路Aでの画像A1に撮像素子50の大きさを合致させた例である。このように、配置をすると、側視光路Aの画像A1と直視光路Bの画像B1の両方をすべて撮像することができる。   FIG. 18 shows an arrangement example of the image and the image sensor of the present embodiment. FIG. 18A shows an example in which an image sensor with a screen ratio of 16: 9 is used. When an image in the vertical direction is not used, it is preferable to match the size of the image sensor 50 with the left and right positions of the image A1 in the side viewing optical path A. FIG. 18B is an example in which the image sensor 50 having a screen ratio of 4: 3 is used, and the size of the image sensor 50 is matched with the image B1 in the direct-view optical path B, and is the same as FIG. Shows the case where the image in the vertical direction is not used. FIG. 18C shows an example in which the image sensor 50 having a screen ratio of 4: 3 is used, and the size of the image sensor 50 is matched with the image A1 in the side viewing optical path A. Thus, when arranged, both the image A1 of the side viewing optical path A and the image B1 of the direct viewing optical path B can be captured.

以下に、本発明の光学系1の適用例として、撮影光学系101又は投影光学系102の使用例を説明する。図19は、内視鏡先端の撮影光学系として本発明による撮影光学系101を用いた例を示すための図であり、図19(a)は、硬性内視鏡110の先端101に本発明による撮影光学系を取り付けて360°全方位の画像を撮像観察する例である。図19(b)にその先端の概略の構成を示す。本発明によるパノラマ撮影光学系101の前群Gfの入射面21の周囲には円周方向にスリット状に伸びる開口106を有するケーシング等からなるフレア絞り107が配置され、フレア光が入射するのを防止している。また、図19(c)は、軟性電子内視鏡113の先端に本発明によるパノラマ撮影光学系101を同様に取り付けて、表示装置114に撮影された画像を、画像処理を施して歪みを補正して表示するようにした例である。   Hereinafter, as an application example of the optical system 1 of the present invention, a usage example of the photographing optical system 101 or the projection optical system 102 will be described. FIG. 19 is a diagram for illustrating an example in which the photographing optical system 101 according to the present invention is used as the photographing optical system at the distal end of the endoscope. FIG. 19A illustrates the present invention at the distal end 101 of the rigid endoscope 110. This is an example of imaging and observing 360 ° omnidirectional images by attaching the photographing optical system. FIG. 19B shows a schematic configuration of the tip. Around the entrance surface 21 of the front group Gf of the panoramic imaging optical system 101 according to the present invention, a flare stop 107 including a casing having an opening 106 extending in a slit shape in the circumferential direction is arranged so that flare light is incident thereon. It is preventing. FIG. 19C shows a panoramic imaging optical system 101 according to the present invention attached to the tip of the soft electronic endoscope 113 in the same manner, and the image captured on the display device 114 is subjected to image processing to correct distortion. This is an example of displaying.

図20は、カプセル内視鏡120に本発明による撮影光学系101を取り付けて360°全方位の画像を撮像観察する例である。本発明による撮影光学系101の側視光路Aにおける前群Gf第2群の側視第1透過面21の周囲には円周方向にスリット状に伸びる開口106、及び、直視光路Bにおける前群Gfの第1群の直視第1透過面11の前方に円形状の開口106、を有するケーシング等にフレア絞り107が形成され、フレア光が入射するのを防止している。   FIG. 20 shows an example in which the photographing optical system 101 according to the present invention is attached to the capsule endoscope 120 and images of 360 ° omnidirectional images are taken and observed. The aperture 106 extending in a slit shape in the circumferential direction around the side-view first transmission surface 21 of the front group Gf second group in the side-view optical path A of the photographing optical system 101 according to the present invention, and the front group in the direct-view optical path B A flare stop 107 is formed in a casing or the like having a circular opening 106 in front of the first-view first transmitting surface 11 of the first group of Gf to prevent the flare light from entering.

図19及び図20に示すように、内視鏡に撮影光学系101を用いることにより、撮影光学系101の後方の画像を撮像観察することができ、従来と異なる角度から様々な部位を撮像観察することができる。   As shown in FIGS. 19 and 20, by using the photographing optical system 101 for an endoscope, an image behind the photographing optical system 101 can be picked up and observed, and various parts are picked up and observed from angles different from the conventional ones. can do.

図21(a)は、自動車130の前方に撮影光学系として本発明による撮影光学系101を取り付けて、車内の表示装置に各撮影光学系101を経て撮影された画像を、画像処理を施して歪みを補正して同時に表示するようにした例を示す図であり、図21(b)は、自動車130の各コーナやヘッド部のポールの頂部に撮影光学系として本発明による撮影光学系101を複数取り付けて、車内の表示装置に各撮影光学系101を経て撮影された画像を、画像処理を施して歪みを補正して同時に表示するようにした例を示す図である。この場合、図18(a)に示したように、側視光路Aの画像A1の左右の位置に撮像素子50の大きさを合致させると、左右の画像が広く撮像でき、好ましい。   FIG. 21 (a) shows an image obtained by attaching a photographic optical system 101 according to the present invention as a photographic optical system in front of an automobile 130, and performing image processing on an image photographed through each photographic optical system 101 on a display device in a vehicle. FIG. 21B is a diagram showing an example in which distortion is corrected and simultaneously displayed, and FIG. 21B shows a photographing optical system 101 according to the present invention as a photographing optical system at each corner of the automobile 130 or the top of the pole of the head portion. It is a figure which shows the example which attached the plurality and displayed the image image | photographed through each imaging | photography optical system 101 on the display apparatus in a vehicle, performing image processing and correct | amending distortion simultaneously. In this case, as shown in FIG. 18A, it is preferable to match the size of the image sensor 50 to the left and right positions of the image A1 in the side viewing optical path A, because the left and right images can be captured widely.

また、図22は、投影装置140の投影光学系として本発明による投影光学系102を用い、その像面5に配置した表示素子にパノラマ画像を表示し、投影光学系102を通して360°全方位に配置したスクリーン141に360°全方位画像を投影表示する例である。   Further, FIG. 22 uses the projection optical system 102 according to the present invention as the projection optical system of the projection device 140, displays a panoramic image on a display element arranged on the image plane 5, and 360 ° in all directions through the projection optical system 102. This is an example in which a 360 ° omnidirectional image is projected and displayed on the arranged screen 141.

さらに、図23は、建物150の外部に本発明による撮影光学系101を用いた撮影装置151を取り付け、屋内に本発明による撮影光学系101を用いた投影装置151を配置し、撮影装置151で撮像された映像を電線152を介して投影装置140に送るように接続している。このような配置において、屋外の360°全方位の被写体Oを、撮影光学系101を経て撮影装置151で撮影し、その映像信号を電線152を介して投影装置140に送り、像面に配置した表示素子にその映像を表示して、投影光学系102を通して屋内の壁面等に被写体Oの映像O'を投影表示するようにしている例である。   Further, FIG. 23 shows that the photographing apparatus 151 using the photographing optical system 101 according to the present invention is attached to the outside of the building 150, and the projection apparatus 151 using the photographing optical system 101 according to the present invention is disposed indoors. It connects so that the imaged image may be sent to the projection device 140 via the electric wire 152. In such an arrangement, a 360 ° omnidirectional outdoor subject O is photographed by the photographing device 151 via the photographing optical system 101, and the video signal is sent to the projection device 140 via the electric wire 152 and disposed on the image plane. In this example, the image is displayed on the display element, and the image O ′ of the subject O is projected and displayed on an indoor wall surface or the like through the projection optical system 102.

本発明の光学系の座標系を説明するための図である。It is a figure for demonstrating the coordinate system of the optical system of this invention. 拡張回転自由曲面の原理を示す図である。It is a figure which shows the principle of an extended rotation free-form surface. 本発明の実施例1の光学系の中心軸に沿ってとった断面図である。It is sectional drawing taken along the central axis of the optical system of Example 1 of this invention. 実施例1の側視光路における光学系全体の横収差図を示す図である。FIG. 3 is a diagram illustrating lateral aberrations of the entire optical system in a side view optical path according to the first exemplary embodiment. 実施例1の直視光路における光学系全体の横収差図を示す図である。FIG. 3 is a diagram illustrating lateral aberrations of the entire optical system in a direct-view optical path according to Example 1. 本発明の実施例2の光学系の中心軸に沿ってとった断面図である。It is sectional drawing taken along the central axis of the optical system of Example 2 of this invention. 実施例2の側視光路における光学系全体の横収差図を示す図である。6 is a lateral aberration diagram of the whole optical system in a side viewing optical path according to Example 2. FIG. 実施例2の直視光路における光学系全体の横収差図を示す図である。6 is a lateral aberration diagram of the entire optical system in a direct-view optical path according to Example 2. FIG. 本発明の実施例3の光学系の中心軸に沿ってとった断面図である。It is sectional drawing taken along the central axis of the optical system of Example 3 of this invention. 実施例3の側視光路における光学系全体の横収差図を示す図である。10 is a lateral aberration diagram of the whole optical system in a side viewing optical path according to Example 3. FIG. 実施例3の直視光路における光学系全体の横収差図を示す図である。FIG. 10 is a transverse aberration diagram for the whole optical system in the direct-view optical path according to Example 3. 本発明の実施例4の光学系の中心軸に沿ってとった断面図である。It is sectional drawing taken along the central axis of the optical system of Example 4 of this invention. 実施例4の側視光路における光学系全体の横収差図を示す図である。FIG. 10 is a lateral aberration diagram of the whole optical system in the side viewing optical path according to Example 4. 実施例4の直視光路における光学系全体の横収差図を示す図である。FIG. 10 is a transverse aberration diagram for the whole optical system in the direct-view optical path according to Example 4. 本発明の実施例5の光学系の中心軸に沿ってとった断面図である。It is sectional drawing taken along the central axis of the optical system of Example 5 of this invention. 実施例5の側視光路における光学系全体の横収差図を示す図である。FIG. 10 is a transverse aberration diagram for the whole optical system in the side viewing optical path according to Example 5. 実施例5の直視光路における光学系全体の横収差図を示す図である。10 is a transverse aberration diagram for the whole optical system in the direct-view optical path according to Example 5. FIG. 本発明の光学系の画像と撮像素子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the image of the optical system of this invention, and an image pick-up element. 本発明の光学系を内視鏡先端の撮影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as an imaging | photography optical system of the endoscope front-end | tip. 本発明の光学系をカプセル内視鏡の撮影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as the imaging | photography optical system of a capsule endoscope. 本発明の光学系を自動車の撮影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as the imaging | photography optical system of a motor vehicle. 本発明の光学系を投影装置の投影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as a projection optical system of a projection apparatus. 本発明の光学系を屋外の被写体を撮影する撮影光学系として用いた例を示す図である。It is a figure which shows the example which used the optical system of this invention as an imaging | photography optical system which image | photographs a to-be-photographed object.

符号の説明Explanation of symbols

1…光学系中心軸
2…中心軸
3…側視物体面
4…直視物体面
5…像面
DESCRIPTION OF SYMBOLS 1 ... Optical system central axis 2 ... Central axis 3 ... Side view object surface 4 ... Direct view object surface 5 ... Image surface

Claims (18)

中心軸の周りで回転対称な屈折率が1より大きい透明媒体からなり、
前記透明媒体は、第1透過面と、前記第1透過面より中心軸側に配置された第1反射面と、前記第1反射面より像面と反対側に配置された第2反射面と、前記第2反射面より像面側に配置された第2透過面と、第3透過面と、前記第3透過面より像面側に配置された第4透過面と、を有し、
前記透明媒体に入射する光束は、側視光路と直視光路とを有し、順光線追跡の順に、
前記側視光路は、前記第1透過面を経て前記透明媒体内に入り、前記第1反射面で像面と反対側に反射され、前記第2反射面で像面側に反射され、前記第2透過面を経て前記透明媒体から像面側に外へ出る略Z字状の光路を構成し、
前記直視光路は、前記第3透過面を経て前記透明媒体内に入り、前記第4透過面を経て前記透明媒体から像面側に外へ出る光路を構成し、
前記直視光路中及び前記側視光路中で中間像を形成しない
ことを特徴とする光学素子。
Consisting of a transparent medium having a refractive index rotationally symmetric around the central axis greater than 1.
The transparent medium includes a first transmission surface, a first reflection surface disposed closer to a central axis than the first transmission surface, and a second reflection surface disposed on the opposite side of the image surface from the first reflection surface. , and a second transmitting surface located on an image plane side of the second reflecting surface, a third transmissive surface and a fourth transmissive surface arranged from the image plane side and the third transmissive surface, the,
The light beam incident on the transparent medium has a side viewing optical path and a direct viewing optical path, and in the order of forward ray tracing,
The side viewing optical path enters the transparent medium through the first transmission surface, is reflected by the first reflection surface to the side opposite to the image surface, is reflected by the second reflection surface to the image surface side, and Constituting a substantially Z-shaped optical path going out from the transparent medium to the image plane side through two transmission surfaces;
The direct-view optical path constitutes an optical path that enters the transparent medium through the third transmission surface and exits from the transparent medium to the image plane side through the fourth transmission surface ;
An optical element that does not form an intermediate image in the direct-view optical path and the side-view optical path .
前記側視光路は、前記中心軸に対して片側のみで構成されることを特徴とする請求項1に記載の光学素子。   The optical element according to claim 1, wherein the side viewing optical path is configured only on one side with respect to the central axis. 前記中心軸近傍に前記第2透過面を配置し、その周辺部に前記第1反射面及び前記第2反射面を配置し、最外周部に前記第1透過面を配置したことを特徴とする請求項1又は請求項2に記載の光学素子。   The second transmission surface is disposed in the vicinity of the central axis, the first reflection surface and the second reflection surface are disposed in the periphery thereof, and the first transmission surface is disposed in the outermost peripheral portion. The optical element according to claim 1. 前記第1反射面は、前記第2透過面と同一位置、同一形状の面であることを特徴とする請求項1乃至請求項3のいずれかに記載の光学素子。   4. The optical element according to claim 1, wherein the first reflection surface is a surface having the same position and the same shape as the second transmission surface. 5. 前記第1反射面は、前記第4透過面と同一位置、同一形状の面であることを特徴とする請求項1乃至請求項4のいずれかに記載の光学素子。   5. The optical element according to claim 1, wherein the first reflection surface is a surface having the same position and the same shape as the fourth transmission surface. 前記第2反射面は、前記第3透過面と同一位置、同一形状の面であることを特徴とする請求項1乃至請求項5のいずれかに記載の光学素子。   6. The optical element according to claim 1, wherein the second reflecting surface is a surface having the same position and the same shape as the third transmitting surface. 前記第1反射面及び前記第2反射面は、全反射作用を有することを特徴とする請求項1乃至請求項6のいずれかに記載の光学素子。   The optical element according to claim 1, wherein the first reflection surface and the second reflection surface have a total reflection function. 前記第1透過面は、円柱又は円錐状の面であることを特徴とする請求項1乃至請求項7のいずれかに記載の光学素子。   The optical element according to claim 1, wherein the first transmission surface is a cylindrical or conical surface. 前記第1反射面と前記第2反射面のうち少なくとも1面は、対称面を持たない任意形状の線分を中心軸の周りで回転させて形成される拡張回転自由曲面で構成されていることを特徴とする請求項1乃至請求項8のいずれかに記載の光学素子。   At least one of the first reflecting surface and the second reflecting surface is formed of an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment having no symmetry plane around the central axis. The optical element according to any one of claims 1 to 8, wherein: 前記透明媒体の有する面のうち少なくとも1面は、奇数次項を含む任意形状の線分を中心軸の周りで回転させて形状される拡張回転自由曲面で構成されていることを特徴とする請求項1乃至請求項9のいずれかに記載の光学素子。   The at least one surface among the surfaces of the transparent medium is configured by an extended rotation free-form surface formed by rotating an arbitrary-shaped line segment including an odd-numbered term around a central axis. The optical element according to claim 1. 前群と、前記前群より像面側に配置された後群と、前記前群と前記後群の間に配置された開口とを備え、前記光学素子は、前記前群に配置され、前記直視光路は、前記中心軸近傍の物点を撮像又は投影し、前記側視光路は、前記中心軸周辺の物点を撮像又は投影することを特徴とする請求項1乃至請求項10のいずれかに記載の光学素子を備えた光学系。   A front group, a rear group disposed closer to the image plane than the front group, and an aperture disposed between the front group and the rear group, and the optical element is disposed in the front group, 11. The direct-view optical path images or projects an object point near the central axis, and the side-view optical path images or projects an object point around the central axis. An optical system comprising the optical element described in 1. 前記側視光路と前記直視光路は、前記光学素子の一部を共有使用し、前記直視光路の円形状の映像と、その外周の前記側視光路の円環状の映像を同一平面内に形成することを特徴とする請求項11に記載の光学系。   The side-view optical path and the direct-view optical path share a part of the optical element to form a circular image of the direct-view optical path and an annular image of the side-view optical path on the outer periphery thereof in the same plane. The optical system according to claim 11. 前記第2反射面は、前記開口側に凹面を向けて配置されることを特徴とする請求項11又は請求項12のいずれかに記載の光学系。   The optical system according to claim 11, wherein the second reflecting surface is disposed with a concave surface facing the opening side. 前記第1反射面は、前記開口側に凹面を向けて配置されることを特徴とする請求項11乃至請求項13のいずれかに記載の光学系。   The optical system according to claim 11, wherein the first reflecting surface is disposed with a concave surface facing the opening. 前記光学素子の外形をDとするとき
D<10mm
なる条件を満足することを特徴とする請求項11乃至請求項14のいずれかに記載の光学系。
When the outer shape of the optical element is D ,
D <10mm
Optical system according to any one of claims 11 to 14, characterized by satisfying the following condition.
前記側視光路の像の外形をDrとするとき、
D/Dr<2
なる条件を満足することを特徴とする請求項11乃至請求項15のいずれかに記載の光学系。
When the outer shape of the image of the side viewing optical path is Dr,
D / Dr <2
Optical system according to any one of claims 11 to 15, characterized by satisfying the following condition.
前記第1反射面は負のパワーを有し、前記第2反射面は正のパワーを有することを特徴とする請求項1乃至請求項16のいずれかに記載の光学系。The optical system according to claim 1, wherein the first reflecting surface has a negative power, and the second reflecting surface has a positive power. 請求項11乃至請求項17のいずれかに記載の光学系を用いた内視鏡。   An endoscope using the optical system according to any one of claims 11 to 17.
JP2007155159A 2007-06-12 2007-06-12 Optical element, optical system including the same, and endoscope using the same Expired - Fee Related JP5030676B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007155159A JP5030676B2 (en) 2007-06-12 2007-06-12 Optical element, optical system including the same, and endoscope using the same
EP08765557A EP2163933A4 (en) 2007-06-12 2008-06-06 Optical element, optical system, and endoscope using same
CN201210282519.4A CN102798903B (en) 2007-06-12 2008-06-06 Optical element, optical system, and endoscope using same
CN200880019707.XA CN101681013B (en) 2007-06-12 2008-06-06 Optical element, optical system, and endoscope using same
PCT/JP2008/060816 WO2008153114A1 (en) 2007-06-12 2008-06-06 Optical element, optical system, and endoscope using same
US12/653,257 US7929219B2 (en) 2007-06-12 2009-12-09 Optical element, optical system and endoscope using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155159A JP5030676B2 (en) 2007-06-12 2007-06-12 Optical element, optical system including the same, and endoscope using the same

Publications (2)

Publication Number Publication Date
JP2008309861A JP2008309861A (en) 2008-12-25
JP5030676B2 true JP5030676B2 (en) 2012-09-19

Family

ID=40237547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007155159A Expired - Fee Related JP5030676B2 (en) 2007-06-12 2007-06-12 Optical element, optical system including the same, and endoscope using the same

Country Status (1)

Country Link
JP (1) JP5030676B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525790B2 (en) * 2009-09-30 2014-06-18 オリンパス株式会社 Optical system
JP4850315B2 (en) 2009-11-06 2012-01-11 オリンパスメディカルシステムズ株式会社 Endoscope apparatus and endoscope
JP5586369B2 (en) * 2010-08-09 2014-09-10 オリンパス株式会社 Imaging optical system for endoscope and endoscope provided with the same
EP2570072B1 (en) 2011-03-31 2014-07-30 Olympus Medical Systems Corp. Method for assembling endoscopic imaging unit and endoscope
CN105814471B (en) 2014-07-23 2019-04-02 奥林巴斯株式会社 Wide-angle optics and endoscope
WO2016204091A1 (en) * 2015-06-16 2016-12-22 オリンパス株式会社 Wide-angle optical system
WO2018211678A1 (en) * 2017-05-19 2018-11-22 オリンパス株式会社 Optical imaging system, optical unit, and endoscope
CN112180577B (en) * 2020-09-25 2021-07-27 中国科学院西安光学精密机械研究所 Visible light-short wave infrared-medium wave infrared-long wave infrared four-waveband optical system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373642B1 (en) * 1996-06-24 2002-04-16 Be Here Corporation Panoramic imaging arrangement
WO2005110186A2 (en) * 2004-05-14 2005-11-24 G.I. View Ltd. Omnidirectional and forward-looking imaging device
JP4508775B2 (en) * 2004-08-18 2010-07-21 オリンパス株式会社 Panorama attachment optics
JP4489553B2 (en) * 2004-10-12 2010-06-23 オリンパス株式会社 Optical system
JP4493466B2 (en) * 2004-10-27 2010-06-30 オリンパス株式会社 Optical system
JP4648690B2 (en) * 2004-11-30 2011-03-09 オリンパス株式会社 Optical system
JP2006209041A (en) * 2005-01-25 2006-08-10 Shoji Hoshi Panorama lens

Also Published As

Publication number Publication date
JP2008309861A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5025354B2 (en) Optical element, optical system including the same, and endoscope using the same
WO2008153114A1 (en) Optical element, optical system, and endoscope using same
JP5030675B2 (en) Optical system and endoscope using the same
JP5074114B2 (en) Optical element, optical system including the same, and endoscope using the same
JP4780713B2 (en) Optical system
JP4884085B2 (en) Optical system
JP4728034B2 (en) Rotationally asymmetric optical system
CN101688970B (en) Optical system and endoscope equipped with same
JP5030676B2 (en) Optical element, optical system including the same, and endoscope using the same
JP2008152073A (en) Optical system
JP2008309860A (en) Optical system and endoscope using the same
JP5508694B2 (en) Optical system and endoscope using the same
JP6000823B2 (en) Optical element, optical system, stereoscopic imaging apparatus, and endoscope
JP5025355B2 (en) Optical element, optical system including the same, and endoscope using the same
JP4508775B2 (en) Panorama attachment optics
JP5031631B2 (en) Optical system and endoscope using the same
JP2009080410A (en) Optical system and endoscope using the same
JP4873927B2 (en) Optical system
JP2009080412A (en) Optical system and endoscope using the same
JP4493466B2 (en) Optical system
JP2009139480A (en) Optical system and endoscope using the same
JP4451271B2 (en) Optical system
JP2009080411A (en) Optical system and endoscope using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R151 Written notification of patent or utility model registration

Ref document number: 5030676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees