JP5030146B2 - Piezoelectric device for generating acoustic signals - Google Patents

Piezoelectric device for generating acoustic signals Download PDF

Info

Publication number
JP5030146B2
JP5030146B2 JP2007033369A JP2007033369A JP5030146B2 JP 5030146 B2 JP5030146 B2 JP 5030146B2 JP 2007033369 A JP2007033369 A JP 2007033369A JP 2007033369 A JP2007033369 A JP 2007033369A JP 5030146 B2 JP5030146 B2 JP 5030146B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
displacement
vibration
vibration output
base member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007033369A
Other languages
Japanese (ja)
Other versions
JP2008199359A (en
Inventor
光寿 吉田
祐二 新渡戸
英幸 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007033369A priority Critical patent/JP5030146B2/en
Publication of JP2008199359A publication Critical patent/JP2008199359A/en
Application granted granted Critical
Publication of JP5030146B2 publication Critical patent/JP5030146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Description

本発明は音響振動を空中に発するスピーカや直接耳にあてて聴取するヘッドホン、あるいは、音響振動を頭骨に伝搬させそれを聴覚神経で聴取する骨伝導スピーカ等に用いられる音響信号発生用圧電装置に関し、特に、装置の落下衝撃などの大きな衝撃力に対して圧電素子を破壊から保護する構造の音響信号発生用圧電装置に関する。   The present invention relates to a piezoelectric device for generating an acoustic signal used for a speaker that emits acoustic vibration in the air, a headphone that directly listens to the ear, or a bone conduction speaker that propagates acoustic vibration to the skull and listens to it with an auditory nerve. More particularly, the present invention relates to a piezoelectric device for generating an acoustic signal having a structure for protecting a piezoelectric element from destruction against a large impact force such as a drop impact of the device.

従来、圧電素子を用いた音響信号発生用圧電装置としては、圧電ユニモルフ素子や圧電バイモルフ素子が主に使われていたが、単に空気振動を発生する装置としてではなく、より大きな振動エネルギーを発生し音響振動を人体に伝播して、その振動を聴覚神経で聴取させる骨伝導スピーカにも使用できる装置が、老齢人口の拡大、音声情報機器の利用者の高齢化とあいまって、普及拡大しつつある。この骨伝導スピーカに、より効率よく利用できる装置として、積層型圧電素子と機械的な拡大機構を組み合わせて大きな振幅と振動力を得る装置が提案されている。   Conventionally, piezoelectric unimorph elements and piezoelectric bimorph elements have been mainly used as piezoelectric devices for generating acoustic signals using piezoelectric elements, but they are not simply devices that generate air vibration, but generate larger vibration energy. A device that can be used for a bone conduction speaker that propagates acoustic vibrations to the human body and listens to the vibrations with auditory nerves is becoming more popular due to the expansion of the elderly population and the aging of audio information equipment. . As a device that can be used more efficiently for this bone conduction speaker, a device that obtains a large amplitude and vibration force by combining a laminated piezoelectric element and a mechanical enlargement mechanism has been proposed.

一般の音響スピーカとの違いから来る骨伝導スピーカの必須の形態は、音響振動を人体に伝播させるための振動出力部を装置の外側面に突出した形で露出させなければならないことである。このため、組み込まれた装置に物が衝突、あるいは装置自らの落下による床との衝突などの強い衝撃が加わった時、振動出力部もこの衝撃を受けることは避けられないという技術上対処しなければならない重要な課題がある。   The essential form of a bone conduction speaker that comes from a difference from a general acoustic speaker is that a vibration output section for propagating acoustic vibration to the human body must be exposed in a protruding manner on the outer surface of the device. For this reason, when a strong impact such as an object colliding with the built-in device or a collision with the floor due to the falling of the device itself is applied, the vibration output part is unavoidably subject to this impact. There are important issues that must be addressed.

振動出力部に衝撃力が加わった場合、これを振動させるための構造に当然大きな力が作用することになり、振動駆動素子であるところの圧電素子にも大きな力(衝撃力)が掛かることになる。一例として通話機器を人体頭部の高さから硬い床上に自然落下させた場合、装置内部構造物には、およそ1000G(重力加速度の1000倍)の衝撃が加わる例があり、同様の使われ方の機器では機器構造の違いを考慮しても、これより大幅に低いことはない。通常製品梱包状態で輸送時に装置に加わる衝撃、あるいは固定設置機器などに加わる衝撃と比較すると数倍から10倍以上のものになる。   When an impact force is applied to the vibration output section, naturally a large force acts on the structure for vibrating it, and a large force (impact force) is also applied to the piezoelectric element that is the vibration drive element. Become. As an example, when a call device is naturally dropped from the height of a human head onto a hard floor, there is an example in which an impact of about 1000 G (1000 times gravitational acceleration) is applied to the internal structure of the device. Even if the difference in the device structure is taken into consideration, it is not much lower than this. Compared with the impact applied to the device during transportation in the normal product packaging state, or the impact applied to the fixed installation equipment, etc., it is several to 10 times or more.

一方、振動の駆動を行う圧電素子と被駆動物との接触部は、一般的には強固な固定を行い、通常動作時の駆動素子の移動や振動によるびびり音の発生、また摩擦による磨耗損傷を防ぎ、且つ確実な駆動力の伝達を実現している。   On the other hand, the contact part between the piezoelectric element that drives vibration and the driven object is generally firmly fixed, and the vibration of the drive element during normal operation, chatter noise due to vibration, and wear damage due to friction Is achieved, and a reliable transmission of driving force is realized.

ところで、本装置には低電圧で大きな変位を得られる積層型の圧電素子が使用されるが、この種の圧電素子は硬くて脆く、積層方向の圧縮力には強い特性を持っているが、積層方向の引張力には弱いのが一般的な特性である。したがって、積層方向に細長い柱状の積層型圧電素子の場合、単純な圧縮には強いが、曲げや引張力およびねじり力には弱い。そこで、構造的にこれらの力が働きにくい構造を採る必要がある。   By the way, this device uses a laminated piezoelectric element that can obtain a large displacement at a low voltage, but this kind of piezoelectric element is hard and brittle, and has a strong characteristic to compressive force in the laminating direction. It is a general characteristic that the tensile force in the stacking direction is weak. Therefore, in the case of a columnar stacked piezoelectric element elongated in the stacking direction, it is strong against simple compression but weak against bending, tensile force and torsional force. Therefore, it is necessary to adopt a structure in which these forces are difficult to work structurally.

開示されている積層型圧電素子の取り付け方法としては、(1)特許文献1に見られるような、完全な平行面をなす固定部構造体と可動部構造体に直接密着接合し、平行移動の変位動作を行うもの、(2)特許文献2に見られるような、圧電素子の端面を、完全に平行なブロックに固定し(接着が示唆されている)、更には側面を弾性体の板状部材で補強した例、(3)特許文献3に見られるような、圧電素子の上下端は、固定側、可動側共に当接のみで、可動側は微小な角の回動動作であるが、固定側と可動側の圧電素子の接触面の平行を調整で出して、且つ、圧電素子に大きな予圧を掛けた状態で保持している構造のもの、などがある。   As a method of attaching the laminated piezoelectric element disclosed, (1) as shown in Patent Document 1, the fixed part structure and the movable part structure forming a completely parallel surface are directly and closely joined to each other, (2) As shown in Patent Document 2, the end face of the piezoelectric element is fixed to a completely parallel block (adhesion is suggested), and the side face is an elastic plate. Examples of reinforcement with members, (3) The upper and lower ends of the piezoelectric element, as seen in Patent Document 3, are only abutting on both the fixed side and the movable side, and the movable side is a rotation operation of a minute angle. There is a structure in which the parallel contact surfaces of the piezoelectric element on the fixed side and the movable side are adjusted and held in a state where a large preload is applied to the piezoelectric element.

(1)特許文献1に記載されたような密着接合の支持構造の場合は、可動側が微小角度であっても回動動作する構造のため、駆動伝達系に大きな衝撃力が作用した場合には引張力が働くだけではなく、曲げ力が働くため、積層型の圧電素子が層間剥離する形態の破損が起きる危険性が大である。   (1) In the case of a close-bonded support structure as described in Patent Document 1, the structure moves even when the movable side is at a minute angle, so when a large impact force is applied to the drive transmission system. Since not only the tensile force works but also the bending force works, there is a great risk that the laminated piezoelectric element will be delaminated.

(2)特許文献2に記載されたような支持構造においては、付加している側面の補強材(弾性板)を破損しないような強度や剛性にすることで、大きな衝撃力が加わった場合にも破損する危険性を低減しているが、補強材を付加する構造的な複雑さでコストアップを招いている。   (2) In the support structure as described in Patent Document 2, when a large impact force is applied by making the strength and rigidity not to damage the reinforcing material (elastic plate) on the added side surface. Although the risk of breakage is reduced, the structural complexity of adding a reinforcing material increases the cost.

(3)特許文献3に記載された支持構造は、駆動形態が微小な回動動作である変位拡大機構の例である。この例の圧電素子の支持構造であるところの、支持面の平行を出し予圧で挟み込むだけの支持では、この例のように使用周波数が100Hz程度であるならば圧電素子の位置ズレが発生しないであろうが、音声信号を扱う場合には少なくとも3kHz、音楽信号を扱う場合には少なくとも10kHzの駆動周波数になるので、駆動による位置ズレが発生する。また大きな衝撃力が加わった場合には、駆動機構の部品の持つ質量による慣性力で予圧が無くなり、挟み込みの状態が解ける瞬間が発生し、圧電素子が所要位置から外れる危険もある。また、完全な平行を出す調整機構も必要になる。仮に平行でないとすると位置ズレになる成分の力が働くので、高周波駆動の場合に位置ズレを起こし易くなる。   (3) The support structure described in Patent Document 3 is an example of a displacement magnifying mechanism whose driving form is a minute rotation operation. In the support structure of the piezoelectric element in this example, in the case where the support surface is simply parallel and sandwiched by the preload, if the operating frequency is about 100 Hz as in this example, the positional displacement of the piezoelectric element does not occur. However, since a driving frequency is at least 3 kHz when an audio signal is handled and at least 10 kHz when a music signal is handled, a positional deviation due to driving occurs. In addition, when a large impact force is applied, the preload is lost due to the inertial force due to the mass of the components of the drive mechanism, and there is a danger that the pinching state will be released and the piezoelectric element will be disengaged from the required position. In addition, an adjustment mechanism that makes perfect parallelism is also necessary. If it is not parallel, the force of the component that causes the positional deviation works, so that the positional deviation is likely to occur in the case of high frequency driving.

更には、圧電素子と機械的な変位拡大機構を組み合わせた構成は、振動を効率よく拡大することと、外部より加わった衝撃力により圧電素子に加わる衝撃力を小さくすることは概して相反する構造になる。仮に、外的な衝撃力により圧電素子に加わる力や変位を小さくしようとすると、変位拡大機構の剛性を上げたり、拡大率を下げたりする方向になり、反して変位力を減じたり、変位量を減じ、効率が低下して圧電素子の持つ特性である、変位量は小さいが変位しようとする発生力は大きいという特性を充分に生かした構成にはならなくなる。   Furthermore, the configuration that combines a piezoelectric element and a mechanical displacement expansion mechanism has a structure in which it is generally contradictory to efficiently expand vibration and to reduce the impact force applied to the piezoelectric element by the impact force applied from the outside. Become. If an attempt is made to reduce the force or displacement applied to the piezoelectric element by an external impact force, the displacement enlargement mechanism will be increased in rigidity or the enlargement rate will be reduced, while the displacement force will be reduced or the displacement amount will be reduced. Therefore, the efficiency is lowered and the piezoelectric element has a characteristic that the displacement amount is small but the generated force to be displaced is large.

このような変位拡大機構の中で使用される圧電素子の支持構造の特性を、図1の斜視図および図2の正面図による原理構造図により具体的に説明する。1は積層型の圧電素子、2は概略コの字形をした変位拡大機構で、2aが変位拡大機構のベース部材で比較的剛性が高く質量が大きい構造特性を持ち、2bが変位拡大機構の振動出力部材で比較的剛性が高く質量が少ない構造特性を持ち、2cが変位拡大機構の弾性部材で変形弾性特性を持っている。   The characteristics of the support structure of the piezoelectric element used in such a displacement magnifying mechanism will be specifically described with reference to the principle structure diagram shown in the perspective view of FIG. 1 and the front view of FIG. 1 is a multilayer piezoelectric element, 2 is a generally U-shaped displacement magnifying mechanism, 2a is a base member of the displacement magnifying mechanism, has relatively high rigidity and large structural characteristics, and 2b is vibration of the displacement magnifying mechanism. The output member has structural characteristics that are relatively high in rigidity and low in mass, and 2c is an elastic member of a displacement magnifying mechanism and has deformation elastic characteristics.

積層型の圧電素子1の下端部1aと上端部1bはそれぞれ変位拡大機構2と結合している。一般的には剛性の高い接着剤で相互に接合されていて、動作中の位置ズレを防ぎ、駆動力の確実な伝達を実現している。使用する接着剤は圧電素子1の基本構成材である圧電セラミックと同等程度の剛性を有したものが最も良いとされている。   The lower end 1 a and the upper end 1 b of the multilayer piezoelectric element 1 are coupled to the displacement enlarging mechanism 2, respectively. In general, they are bonded to each other with a highly rigid adhesive to prevent misalignment during operation and to ensure transmission of driving force. It is said that the adhesive used has the best rigidity equivalent to that of the piezoelectric ceramic that is the basic constituent material of the piezoelectric element 1.

この構造において、振動出力部材2bは装置外部に露出する部材と直結しているため、図示のA方向の外力やB,C方向の外力が加わり易い。A方向の外力が加わった場合には、圧電素子1には積層方向の圧縮力が加わるが、BやC方向の外力が加わった場合には、圧電素子1の先端方向を横に押す、即ち圧電素子1に曲げ力が作用し、圧電素子1の下端部1aと上端部1bは接着固定されているので、変位拡大機構2の材質よりも硬く弾性係数の高い圧電素子1はその変形させようとする力の大半を受けることになる。その結果、外力が大きい時には大きな曲げ力により、積層型の圧電素子1は層間剥離をする破損を発生し、機能しなくなる危険性が高い。   In this structure, since the vibration output member 2b is directly connected to a member exposed to the outside of the apparatus, an external force in the A direction and an external force in the B and C directions are easily applied. When an external force in the A direction is applied, a compressive force in the stacking direction is applied to the piezoelectric element 1, but when an external force in the B or C direction is applied, the tip direction of the piezoelectric element 1 is pushed sideways. Since a bending force acts on the piezoelectric element 1 and the lower end 1a and the upper end 1b of the piezoelectric element 1 are bonded and fixed, the piezoelectric element 1 that is harder than the material of the displacement magnifying mechanism 2 and has a higher elastic coefficient will be deformed. Will receive most of the power. As a result, when the external force is large, the laminated piezoelectric element 1 is damaged due to delamination due to a large bending force, and there is a high risk that it will not function.

特開平5−151580号公報JP-A-5-151580 特開平5−96755号公報Japanese Patent Application Laid-Open No. 5-96755 特開2003−224745号公報JP 2003-224745 A

従来技術は、弾性出力部には図1のBやC方向の衝撃力が作用し難いように周辺構造で対処している。たとえば、振動出力部が露出する部分の周囲と装置の外装部材との隙間を大きくし、且つ、突出方向の段差を少なくする。更には、落下衝撃時など音響信号発生用圧電装置全体の質量が持つ慣性で外装部材に激突し難いように、振動伝達を低減させるための支持のクッション材をその目的に反して硬くするなどの工夫を凝らし、本来性能の劣化(隙間の拡大による見栄えの劣化、あるいは振動の伝達による漏れ音の増加など)と衝撃力に対する耐力とのバランスをとって許容範囲に収める工夫をしている。   In the prior art, the elastic output portion is dealt with by the peripheral structure so that the impact force in the B and C directions in FIG. For example, the gap between the periphery of the portion where the vibration output unit is exposed and the exterior member of the apparatus is increased, and the step in the protruding direction is reduced. Furthermore, the support cushioning material for reducing vibration transmission is hardened against its purpose so that it does not collide with the exterior member due to the inertia of the entire mass of the piezoelectric device for generating acoustic signals, such as during a drop impact. Ingenuity has been devised to balance the deterioration of the original performance (deterioration of appearance due to widening of the gap or increase of leakage sound due to vibration transmission) and the resistance to impact force within the allowable range.

音響信号発生用圧電装置がよく使用される骨伝導スピーカでは、気導音発生のスピーカとの違い、あるいは長所をより顕著なものにするために、気導音に変わる漏れ音の低減、外観などの向上、装置への使い勝手の向上が望まれている。このためには音響信号発生用圧電装置そのものを外部衝撃に対して、より強い構造にする必要がある。   Bone conduction speakers, which often use piezoelectric devices for generating acoustic signals, are different from speakers that generate air conduction sound, or in order to make the advantages more prominent, reduce leakage sound that changes to air conduction sound, appearance, etc. The improvement of usability and the usability to the device is desired. For this purpose, the acoustic signal generating piezoelectric device itself needs to have a stronger structure against external impacts.

即ち、本発明の課題は、大きな振幅出力および変位力を確保しながら耐衝撃性に優れる音響信号発生用圧電装置を提供することにある。   That is, an object of the present invention is to provide an acoustic signal generating piezoelectric device that is excellent in impact resistance while ensuring a large amplitude output and displacement force.

本発明では、図1におけるBやC方向の外力や変形に対して、変位拡大機構の剛性を上げることをせず、外力による変位が圧電素子に作用し難くして、外力をそのまま受け止めず、圧電素子以外の部分に分散させる構造を採用する。   In the present invention, the external force and deformation in the directions B and C in FIG. 1 are not increased, the displacement due to the external force is less likely to act on the piezoelectric element, and the external force is not received as it is. A structure that is dispersed in a portion other than the piezoelectric element is adopted.

即ち、本発明の音響信号発生用圧電装置は、電気信号を機械振動に変換する圧電素子と、前記圧電素子が発生した機械振動の変位を拡大する変位拡大機構と、前記変位拡大機構が拡大した機械振動の変位を音響振動として伝達する音響振動部とを有する音響信号発生用圧電装置であって、前記変位拡大機構が、板状のベース部材と、板状で前記ベース部材と対向し、2つの長辺に前記ベース部材がある方向に曲げて互いに対向する立ち曲げが設けられた振動出力部材と、前記ベース部材と前記振動出力部材の一端部が結合された弾性部材とからなり、前記ベース部材と前記振動出力部材とは前記弾性部材より高い剛性を有し前記ベース部材と前記振動出力部材の他端部から、前記圧電素子、及び錘部材が順に挿入され、前記ベース部材には前記錘部材が高剛性で結合され、前記弾性部材のある側の前記振動出力部材の一端部と前記振動出力部材の中央部との間に前記圧電素子が配され、且つ、前記圧電素子を圧電変位方向と同方向に圧縮するように、前記振動出力部材と前記ベース部材とで予圧を付与する手段を設け、前記圧電変位方向と略直角方向における前記圧電素子位置を不変にする位置規制手段を付加する構成にて前記圧電素子の一端は、前記ベース部材もしくは前記振動出力部材に固定され、前記位置規制手段を付加した固定側とは反対側における前記圧電素子の他端は、前記振動出力部材もしくは前記ベース部材に接着結合することなく圧接していることを特徴とする That is, in the piezoelectric device for generating an acoustic signal according to the present invention, the piezoelectric element that converts an electrical signal into mechanical vibration, the displacement expansion mechanism that expands the displacement of the mechanical vibration generated by the piezoelectric element, and the displacement expansion mechanism are expanded. An acoustic signal generating piezoelectric device having an acoustic vibration part for transmitting mechanical vibration displacement as acoustic vibration, wherein the displacement enlarging mechanism is plate-shaped and opposed to the base member in a plate shape. one of the consists of a vibration output member that upright bent is provided to face each other by bending in a direction where there is the base member in the long side, and an elastic member having one end coupled to the base member and the vibration output member, said base the said vibration output member and the member has a high rigidity than the elastic member, from the other end of the base member and the vibration output member, the piezoelectric element, and the weight member is inserted in sequence, to said base member Serial weight member is coupled with high stiffness, the piezoelectric element is arranged between the central portion of the end portion and the vibration output member of the vibration output member of a side of the elastic member, and the piezoelectric said piezoelectric element to compress the displacement in the same direction, means for applying a preload between the base member and the vibration output member provided, position regulating means for unchanged the position of the piezoelectric element in the piezoelectric displacement direction substantially perpendicular one end of the piezoelectric element at the addition of structure, fixed to said base member or said vibration output member, the other end of the piezoelectric element on the opposite side to the fixed side with the addition of the position regulating means, the vibration output characterized in that in pressure contact without adhesive bonding to the member or the base member.

前記圧電素子の前記位置規制手段が設けられた固定側端部では、前記圧電素子と前記固定する側の部材とを、ショアD硬度が30以上70以下の接着剤を介して結合するとよい。 And in the fixed side end portion to the position regulating means is provided with a piezoelectric element, and a side member for the fixed and the piezoelectric element, may Shore D hardness is bonded through 30 or more 70 or less of the adhesive.

前記圧電素子の一端の圧接面と、前記圧電素子の一端に圧接する前記振動出力部材もしくは前記ベース部材の圧接面との少なくとも一方には相互の接触摩擦係数を低減させる表面処理が施されるとよい。 Wherein one end pressing surface of the piezoelectric element, when the surface treatment for reducing the contact friction coefficient of each other in at least one of the pressing surface of the vibration output member or said base member is pressed against the one end of the piezoelectric element is performed Good.

前記圧電素子の一端の圧接面と、前記圧電素子の一端に圧接する前記振動出力部材もしくは前記ベース部材の圧接面との間には、摩擦低減材を介在させるとよい。 Wherein one end pressing surface of the piezoelectric element, between the pressing surface of the vibration output member or said base member is pressed against one end of the piezoelectric element, the friction reducing material may be interposed.

前記変位拡大機構は金属板材のプレス成形にて成形され、前記振動出力部材と前記弾性部材の境界部である曲げ部は平板を曲げるのみではなく、剛性を高める加工が施され、前記錘部材が前記ベース部材と結合する部分および前記錘部材が前記ベース部材と前記弾性部材との境界部の近傍に外側から結合する部分には、ショアD硬度で80以上の硬度を持つ接着剤を用い結合部の剛性を高め、前記変位拡大機構全体の共振周波数を高めるとよい。 The displacement enlarging mechanism is formed by press forming of a metal plate material, and a bending portion which is a boundary portion between the vibration output member and the elastic member is not only bent on a flat plate but also processed to increase rigidity, and the weight member is wherein the portion of section and the weight member for coupling the base member is attached from the outside to the vicinity of the boundary between the elastic member and the base member, the coupling portion using an adhesive agent having 80 or more hardness in Shore D hardness It is preferable to increase the rigidity of the displacement enlargement mechanism and increase the overall resonance frequency of the displacement enlarging mechanism.

本発明によれば、変位拡大機構により大きな振幅出力および変位力を確保しつつ、組み込まれた装置に加わる落下や衝突による大きな衝撃に対しても、積層型圧電素子が積層間剥離をすることで破損する危険度が少ない音響信号発生用圧電装置を提供することができる。またその方法は従来に比較し特別コストアップになる付加部品、付加作業工程もなく、各部品も一般の量産製造方法で作製できる構造部品の構成で実現している。また、装置外観としても特に外観形状で付加的な変更対処をする必要もなく、使い勝手も劣化させない。   According to the present invention, while the large amplitude output and the displacement force are ensured by the displacement enlarging mechanism, the multilayer piezoelectric element peels between the layers even when a large impact is caused by a drop or a collision applied to the incorporated device. It is possible to provide a piezoelectric device for generating an acoustic signal with a low risk of breakage. In addition, the method is realized by the structure of a structural part that can be manufactured by a general mass production method without any additional parts and additional work steps that are specially expensive compared to the conventional method. Moreover, there is no need to deal with additional changes in the appearance of the apparatus, and the usability is not deteriorated.

図3から図6に本発明の一実施の形態を示し、詳細を説明する。図3は本発明を適用した音響信号発生用圧電装置の全体斜視図、図4はその分解斜視図、図5は振動出力部のパッドと装置に支持するための防振支持シートとを取り除いた状態の音響信号発生用圧電装置の平面図、図6は図5に示したX−Xの断面を示した図であり、骨伝導用スピーカとして動作する形態を示している。   An embodiment of the present invention is shown in FIGS. 3 to 6 and will be described in detail. 3 is an overall perspective view of the piezoelectric device for generating an acoustic signal to which the present invention is applied, FIG. 4 is an exploded perspective view of the piezoelectric device, and FIG. 5 is a vibration output unit pad and an anti-vibration support sheet for supporting the device. 6 is a plan view of the piezoelectric device for generating an acoustic signal in a state, and FIG. 6 is a view showing a cross section taken along the line XX shown in FIG.

まず、構造を説明する。図4、図6のように、積層型圧電素子10は圧電材と電極を長手方向に積層した構造であり、電圧の印加により長手方向に伸長する特性を有する。変位拡大レバー11は金属板をプレス成形で製作した略コの字形の全体形状をなし、そのベース部11aの両側部は板圧の約2倍の高さの立ち曲げが成形されていて、その剛性を大きくしている。また予圧を付与する予圧ねじ12をねじ込むねじ穴とベース錘13をねじ取り付けする穴が設けられている。変位拡大機構としての変位拡大レバー11の上側の振動出力部11bの両側部は板厚の1.5倍から2.5倍の高さの立ち曲げが設けられていて、その剛性を上げている。ベース部11aと振動出力部11bの片端部を繋ぐ弾性部11cは両側部には立ち曲げはなく、比較的容易に板厚方向に変形し易いように構成されている。ただし、弾性部11cと振動出力部11bとの境界部である曲げ部の付近には立ち曲げを設け、曲げ部の剛性を高めてもよい。   First, the structure will be described. As shown in FIGS. 4 and 6, the multilayer piezoelectric element 10 has a structure in which a piezoelectric material and an electrode are laminated in the longitudinal direction, and has a characteristic of extending in the longitudinal direction when a voltage is applied. The displacement enlarging lever 11 has a substantially U-shaped overall shape made by press-molding a metal plate, and both side portions of the base portion 11a are formed with standing bends that are twice as high as the plate pressure. The rigidity is increased. A screw hole for screwing a preload screw 12 for applying preload and a hole for screwing the base weight 13 are provided. Both side portions of the vibration output portion 11b on the upper side of the displacement magnifying lever 11 as the displacement magnifying mechanism are provided with standing bends having a height of 1.5 to 2.5 times the plate thickness to increase its rigidity. . The elastic portion 11c that connects one end of the base portion 11a and the vibration output portion 11b is not bent at both sides, and is configured to be relatively easily deformed in the thickness direction. However, a standing bend may be provided in the vicinity of the bent portion, which is a boundary portion between the elastic portion 11c and the vibration output portion 11b, to increase the rigidity of the bent portion.

変位拡大レバー11のベース部11aには錘固定ねじ14によりベース錘13が取り付けられており、このベース錘13の外周にはプラスチック成形品のコイルボビン16が結合され、更にはコイルボビン16の溝部にはコイル21が巻かれている。このコイル21は直径約80μmのエナメル線が約1000ターン巻かれて構成されたものであり、Tコイル対応の補聴器に信号を送るために用いるが、ベース錘13と共に錘部材として機能する。また、ベース錘13の上部には共振を緩和するための減衰シート18を配置する。結果、ベース部11aにはベース錘13とコイルボビン16とコイル21の質量が、剛性の高い状態で結合されている。したがってベース部11aとベース錘13、コイルボビン16、コイル21、そして錘固定ねじ14と予圧ねじ12の質量が総合されて、ベース部分として振動出力部11bより10倍程度大きい質量を持ったものとなっている。   A base weight 13 is attached to the base portion 11 a of the displacement magnifying lever 11 by a weight fixing screw 14, and a coil bobbin 16 of a plastic molded product is coupled to the outer periphery of the base weight 13. A coil 21 is wound. The coil 21 is formed by winding an enamel wire having a diameter of about 80 μm for about 1000 turns, and is used to send a signal to a hearing aid compatible with the T coil, but functions as a weight member together with the base weight 13. In addition, an attenuation sheet 18 for relaxing resonance is disposed on the base weight 13. As a result, the mass of the base weight 13, the coil bobbin 16, and the coil 21 is coupled to the base portion 11a in a highly rigid state. Therefore, the masses of the base part 11a, the base weight 13, the coil bobbin 16, the coil 21, the weight fixing screw 14 and the preload screw 12 are combined, and the base part has a mass about 10 times larger than that of the vibration output part 11b. ing.

積層型圧電素子10は変位拡大レバー11のコの字形の内側空間に配されていて、積層型圧電素子10の上側端面は振動出力部材11bの内側の面(下面)に当接している。この積層型圧電素子の振動出力側接触部Eには、摩擦係数を減ずる目的で固体潤滑材の薄い膜が形成されている。積層型圧電素子10の下側端部は積層型圧電素子10に圧縮方向の予圧を与える予圧ねじ12の先端の端面が当接している。   The multilayer piezoelectric element 10 is disposed in a U-shaped inner space of the displacement magnifying lever 11, and the upper end surface of the multilayer piezoelectric element 10 is in contact with the inner surface (lower surface) of the vibration output member 11b. A thin film of solid lubricant is formed on the vibration output side contact portion E of the multilayer piezoelectric element for the purpose of reducing the friction coefficient. The lower end of the multilayer piezoelectric element 10 is in contact with the end face of the tip of the preload screw 12 that applies a preload in the compression direction to the multilayer piezoelectric element 10.

予圧ねじ12はベース部材11aのねじ穴にねじ込み支持されている。更には、積層型圧電素子10の下端部周辺は位置決め板15で積層型圧電素子10が回転したり移動したりしないように囲まれており、位置決め板15は変位拡大レバー11の下部曲げ位置に形成された角穴とベース錘13の段部でベース部11aの内側の面に固定されている。また、積層型圧電素子10と予圧ねじ12との接触面である積層型圧電素子のベース側接触部Dは、予圧ねじ12と積層型圧電素子10の端面接触部にミクロにできる空間とその周囲を接着剤で接合する形で埋められていて、この接着剤はショアD硬度が60の1液型のエポキシ系接着剤である。また、この接着剤はベース部11aと位置決め板15の接触部、および予圧ねじ12とベース部11aとの接触部にも介在していて、これらを相互に接着している。ところで、この接着剤のショアD硬度は30以上70以下の範囲で選択可能であり、30未満では固定力が充分でなく、70を超えると、外部から衝撃力が加えられたとき、積層型圧電素子10に過大な力が加わり、好ましくない。   The preload screw 12 is screwed and supported in the screw hole of the base member 11a. Furthermore, the periphery of the lower end portion of the multilayer piezoelectric element 10 is surrounded by a positioning plate 15 so that the multilayer piezoelectric element 10 does not rotate or move, and the positioning plate 15 is positioned at the lower bending position of the displacement enlarging lever 11. The formed square hole and the stepped portion of the base weight 13 are fixed to the inner surface of the base portion 11a. The base-side contact portion D of the multilayer piezoelectric element, which is the contact surface between the multilayer piezoelectric element 10 and the preload screw 12, is a space that can be made microscopically at the end surface contact portion of the preload screw 12 and the multilayer piezoelectric element 10 and its surroundings. The adhesive is a one-pack type epoxy adhesive having a Shore D hardness of 60. The adhesive is also present at the contact portion between the base portion 11a and the positioning plate 15 and the contact portion between the preload screw 12 and the base portion 11a, and these are bonded to each other. By the way, the Shore D hardness of this adhesive can be selected in the range of 30 or more and 70 or less. If it is less than 30, the fixing force is not sufficient, and if it exceeds 70, when an impact force is applied from the outside, the laminated piezoelectric An excessive force is applied to the element 10, which is not preferable.

図4のように、音響振動部として、振動出力部11bの外側の面には、プラスチック成形品のパッド17が接着取り付けされていて、人体に当接し振動を伝える部分を形成している。また、コイルボビン16には特殊ゴムシートから打ち抜き加工された下側の防振支持シート19と上側の防振支持シート20が嵌合していて、防振支持シート19,20の外周と、防振支持シート19の下側面と防振支持シート20の上側面とが装置全体を収める装置外観部材(図示なし)でガイドされ、骨伝導スピーカを装置に弾性的に支持している。   As shown in FIG. 4, a pad 17 of a plastic molded product is attached to the outer surface of the vibration output portion 11b as an acoustic vibration portion, and a portion that contacts the human body and transmits vibration is formed. The coil bobbin 16 is fitted with a lower anti-vibration support sheet 19 and an upper anti-vibration support sheet 20 punched from a special rubber sheet. The lower surface of the support sheet 19 and the upper surface of the vibration-proof support sheet 20 are guided by a device appearance member (not shown) that houses the entire device, and elastically supports the bone conduction speaker on the device.

また、図4、図5、図6のように、変位拡大レバー11の振動出力部11bと弾性部11cとの境界部になる直角曲げ部には、所謂、角打ち11dを施し曲げ部の剛性向上を行っている。また、変位拡大レバー11のベース部11aと弾性部11cの境界部分である下部曲げ部と、コイルボビン16との間の空間部分に弾性部11cの面に接触する位置までコイルボビン16の内側側面より張り出したストッパーリブ16aを設け、その下部には略角柱形状のコーナー空間Fを形成し、ここをショアD硬度で80以上の剛性の高い接着剤で埋め込むことで、変位拡大レバー11とコイルボビン16との所要部を接着している。なお、コーナー空間Fは図6の断面の向こう側および手前側にあるので、その形状は図6には示されていない。また、このとき用いる接着剤の硬化後のショアD硬度が90の場合には、高剛性の構造体を形成するのに特に有効であることを確認できた。   Also, as shown in FIGS. 4, 5, and 6, a so-called square bevel 11d is applied to a right-angled bending portion that becomes a boundary portion between the vibration output portion 11b and the elastic portion 11c of the displacement magnifying lever 11, and the rigidity of the bending portion is increased. Improvements are being made. In addition, the space between the lower bent portion, which is the boundary portion between the base portion 11a of the displacement enlarging lever 11 and the elastic portion 11c, and the coil bobbin 16, protrudes from the inner side surface of the coil bobbin 16 to a position where it contacts the surface of the elastic portion 11c. The stopper rib 16a is provided, and a substantially prismatic corner space F is formed below the stopper rib 16a. By embedding the corner space F with a highly rigid adhesive having a Shore D hardness of 80 or more, the displacement expanding lever 11 and the coil bobbin 16 are The required part is adhered. In addition, since the corner space F exists in the other side and near side of the cross section of FIG. 6, the shape is not shown in FIG. Moreover, when the Shore D hardness after hardening of the adhesive agent used at this time is 90, it has confirmed that it was especially effective in forming a highly rigid structure.

組立工程を説明する。まず変位拡大レバー11の振動出力側接触部Eの面に摩擦低減材である固体潤滑材を塗布し、その後、変位拡大レバー11の内側空間の所要位置に、積層型圧電素子10の下端部に位置決め板15を挿入した形で治具にて仮位置決めしておく。このとき、振動出力側接触部Eで圧接される変位拡大レバー11の圧接面と積層型圧電素子10の端部の圧接面には、表面改質層の形成などによる接触摩擦係数を低減させる表面処理を施しておくと、更によい。   The assembly process will be described. First, a solid lubricant, which is a friction reducing material, is applied to the surface of the vibration output side contact portion E of the displacement magnifying lever 11, and then, at a required position in the inner space of the displacement magnifying lever 11, at the lower end of the multilayer piezoelectric element 10. Temporary positioning is performed with a jig in the form in which the positioning plate 15 is inserted. At this time, on the pressure contact surface of the displacement magnifying lever 11 and the pressure contact surface of the end of the multilayer piezoelectric element 10 that are pressure-contacted by the vibration output side contact portion E, a surface that reduces a contact friction coefficient due to formation of a surface modification layer or the like It is even better if it is processed.

次に予圧ねじ12用のねじ穴に接着剤を注入し、その後予圧ねじ12をねじ込む。予圧ねじ12のねじ込みはレバー11bの先端部の変位寸法を見ながら、変位拡大レバー11の弾性変形の反力が必要な予圧力になる様あらかじめ計測された分押し込む。その後、仮位置決めの治具を外し、ベース錘13を錘固定ねじ14で取り付けた後、ベース錘13の外周に接着剤を塗布し、コイル21がコイルボビン16に巻かれた組立品を所要位置に挿入する。次にコーナー空間Fに接着剤を充填し、更にはパッド17と変位拡大レバー11の振動出力部11bの上面所要部に接着剤を塗布して取り付けて、最後に接着剤硬化のために加熱する。この加熱は加熱可能な温度条件などにより、接着の工程ごとに分割して実施する、あるいはいくつかの接着工程分をまとめて実施してもよい。   Next, an adhesive is injected into the screw hole for the preload screw 12, and then the preload screw 12 is screwed. The preload screw 12 is screwed in by a pre-measured amount so that the reaction force of the elastic deformation of the displacement expanding lever 11 becomes a necessary preload while observing the displacement dimension of the tip of the lever 11b. Thereafter, the temporary positioning jig is removed, the base weight 13 is attached with the weight fixing screw 14, an adhesive is applied to the outer periphery of the base weight 13, and the assembly in which the coil 21 is wound around the coil bobbin 16 is brought to a required position. insert. Next, the corner space F is filled with an adhesive, and further, the adhesive is applied and attached to the pad 17 and the upper surface required portion of the vibration output portion 11b of the displacement magnifying lever 11, and finally heated for curing the adhesive. . This heating may be performed separately for each bonding process depending on the heatable temperature conditions, or several bonding processes may be performed collectively.

次に機能動作を説明する。積層型圧電素子に電圧が印加されると、印加電圧に即した積層型圧電素子の長さに伸縮が発生する。この伸縮により振動出力部11bはベース部11aに対して相対的にコの字形の先端側が開く微小な回転変位が行われる。回転変位のため積層型圧電素子の伸縮量よりも大きな変位が振動出力部11bの先端方向に発生する。即ち、弾性部11c側の振動出力部11bの一端部と、この振動出力部11bの中央部との間に積層型圧電素子10の上端を配した結果、積層型圧電素子の変位が拡大された動作になる。こうして、積層型圧電素子10に音響信号電圧が印加されたときに、圧電素子の変位より拡大された音響信号に即した振動変位が発生する。   Next, the functional operation will be described. When a voltage is applied to the multilayer piezoelectric element, expansion and contraction occurs in the length of the multilayer piezoelectric element corresponding to the applied voltage. Due to this expansion and contraction, the vibration output part 11b is subjected to a minute rotational displacement that opens the U-shaped tip side relative to the base part 11a. Due to the rotational displacement, a displacement larger than the expansion / contraction amount of the multilayer piezoelectric element is generated in the direction of the tip of the vibration output unit 11b. That is, as a result of arranging the upper end of the multilayer piezoelectric element 10 between one end of the vibration output part 11b on the elastic part 11c side and the central part of the vibration output part 11b, the displacement of the multilayer piezoelectric element is expanded. It becomes operation. Thus, when an acoustic signal voltage is applied to the multilayer piezoelectric element 10, a vibration displacement is generated in accordance with an acoustic signal that is enlarged by the displacement of the piezoelectric element.

ベース部11aを含むベース側は振動出力部11bより10倍ほど大きな質量を持っていて、その形状効果分も含め大きな慣性モーメントを有している。したがって、このときの振動出力部11bの絶対変位は、絶対量でベース側よりも充分に大きいものになる。逆に、ベース部11aの絶対変位は振動出力部11bより充分小さい。更には、本骨伝導スピーカは防振支持シート19,20の防振効果により更に振動の伝導を低減できるので、骨伝導スピーカを組み込んだ装置の構造体が振動して目的外の空気振動を発生する、所謂、漏れ音の発生を効果的に抑えることができる。もちろん逆に振動出力部11bの振動変位は大きく得られ目的の骨伝導振動を効率よく得ることができる。   The base side including the base portion 11a has a mass about ten times larger than that of the vibration output portion 11b, and has a large moment of inertia including the shape effect. Accordingly, the absolute displacement of the vibration output portion 11b at this time is sufficiently larger than the base side in absolute amount. Conversely, the absolute displacement of the base portion 11a is sufficiently smaller than the vibration output portion 11b. Furthermore, since the bone conduction speaker can further reduce the conduction of vibrations due to the vibration-proofing effect of the vibration-proofing support sheets 19 and 20, the structure of the device incorporating the bone-conduction speaker vibrates and generates undesired air vibrations. Thus, it is possible to effectively suppress the occurrence of so-called leakage sound. Of course, on the contrary, the vibration displacement of the vibration output portion 11b can be obtained greatly, and the desired bone conduction vibration can be obtained efficiently.

さて、本骨伝導スピーカが組み込まれた装置に落下あるいは他の物体との衝突による大きな衝撃力が加わった場合の動作について説明する。たとえばパッド17に図1に示すA方向の衝撃力が直接加わった場合、大雑把に動作説明をすると、変位拡大レバー11の弾性ひずみと積層型圧電素子の圧縮方向の弾性ひずみと、骨伝導スピーカ各部の慣性質量の変位と、下側の防振支持シート19の変形によるエネルギー吸収効果で、その衝撃力を受けることになる。この場合、積層型圧電素子10には、一般に硬くて脆い特性であるが唯一の強い特性に対応する圧縮力が働き、この時には問題は少ない。その後の動作として各部が弾性ひずみで吸収したエネルギーが放出される反対方向の動きが生ずる。この場合、変位拡大レバー11はコの字が開く方向の変形動作をし、積層型圧電素子10の両端が接着されている場合、積層型圧電素子10には引張り方向の力が作用するので、引張りには弱い積層型圧電素子では積層間の剥離を起こす危険性が高い。しかし、本発明の構造の場合には、積層型圧電素子10の片端面(上端面)は単に変位拡大レバー11とは圧接あるいは当接しているだけなので、振動出力部11bの面が離れるだけで他の部品の反発の慣性力による引張り力は作用しない。その後、また逆の反発現象の動作をしながらこの衝撃による振動動作は急速に減衰していく。結果としては、積層型圧電素子10には大きな圧縮力のみが作用し、引張力は働かず、圧縮力には強い積層型圧電素子10が破損する危険性は少ない。   Now, an operation when a large impact force is applied to the apparatus incorporating the bone conduction speaker when it is dropped or collides with another object will be described. For example, when the impact force in the direction A shown in FIG. 1 is directly applied to the pad 17, the operation is roughly described. The elastic strain of the displacement expanding lever 11, the elastic strain in the compression direction of the laminated piezoelectric element, and each part of the bone conduction speaker The impact force is received by the energy absorption effect due to the displacement of the inertia mass and the deformation of the vibration-proof support sheet 19 on the lower side. In this case, the laminated piezoelectric element 10 generally has a hard and brittle characteristic, but a compressive force corresponding to the only strong characteristic acts, and there are few problems at this time. As the subsequent operation, the movement in the opposite direction occurs in which the energy absorbed by the elastic strain of each part is released. In this case, the displacement magnifying lever 11 performs a deformation operation in a direction in which the U-shape opens, and when both ends of the multilayer piezoelectric element 10 are bonded, a force in the tensile direction acts on the multilayer piezoelectric element 10. In a laminated piezoelectric element that is weak against tension, there is a high risk of peeling between the laminated layers. However, in the case of the structure of the present invention, the one end surface (upper end surface) of the multilayer piezoelectric element 10 is merely in pressure contact with or in contact with the displacement enlarging lever 11, so that only the surface of the vibration output portion 11b is separated. The tensile force due to the repulsive inertial force of other parts does not work. Thereafter, the vibration operation due to the impact is rapidly attenuated while performing the operation of the opposite repulsion phenomenon. As a result, only a large compressive force acts on the multilayer piezoelectric element 10, no tensile force acts, and there is little risk of damage to the multilayer piezoelectric element 10 which is strong against the compressive force.

次に図1に示すBやC方向の衝撃力が作用する場合の動作を説明する。まず、どのような状況でそのような衝撃力が働くかは、次のようになる。本骨伝導スピーカが組み込まれた装置にBあるいはC方向の衝撃力が加わった場合、骨伝導スピーカ全体は各部の慣性力と剛性の関係で相互に変形しながら装置に対して相対的に移動する。ここで防振支持シート19と防振支持シート20はその機能上一般のゴムより柔らかいショアD硬度で30から70(一般ゴムが80以上)なので衝撃エネルギーを吸収しながらも大きく変形し、装置外装にパッド17が衝突する現象になる。この場合、大きな慣性質量を持ったベース部の慣性エネルギーにより、ベース部11aと振動出力部11bには相対的にBやC方向、あるいは複合的に変位させる力が働く。   Next, the operation when the impact force in the B or C direction shown in FIG. 1 acts will be described. First, under what circumstances such impact force works is as follows. When an impact force in the B or C direction is applied to the device incorporating this bone conduction speaker, the entire bone conduction speaker moves relative to the device while deforming each other due to the inertial force and rigidity of each part. . Here, the anti-vibration support sheet 19 and the anti-vibration support sheet 20 have a Shore D hardness of 30 to 70 (general rubber is 80 or more), which is softer than ordinary rubber. This causes the pad 17 to collide. In this case, due to the inertia energy of the base portion having a large inertial mass, a force that relatively displaces in the B or C direction or in combination acts on the base portion 11a and the vibration output portion 11b.

このような力が作用する場合に、積層型圧電素子10の上下端が変位拡大レバー11に接着されていると、接着剤の剛性強度にもよるが、積層型圧電素子10には曲げとねじりの変形力が加わり、剛性が高い積層型圧電素子10がその力の大半を受けることになり、結果、積層間が剥離する形態の破壊をする危険度が高く、装置での実態では破損するものが出ている。   When such a force is applied, if the upper and lower ends of the multilayer piezoelectric element 10 are bonded to the displacement magnifying lever 11, the multilayer piezoelectric element 10 is bent and twisted depending on the rigidity strength of the adhesive. The deformable force is applied to the laminated piezoelectric element 10 having high rigidity, and most of the force is received. As a result, there is a high risk of breaking the form in which the laminated layers are separated, and the actual condition in the apparatus is damaged. Is out.

しかし、本発明の実施の形態では、積層型圧電素子10の一端は変位拡大レバー11に圧接あるいは当接しているのみで、接着結合はしていないので、変位による作用力が、予圧による摩擦抵抗力を超えるとスリップする現象を起こし、結果積層型圧電素子10に作用する曲げや、ねじりの力は軽減する。更には圧接面(当接面)に摩擦係数を下げる潤滑材が介在している場合は、その力は大きく低下する。したがって接着している場合より、積層型圧電素子10が破損する危険度は大幅に低下する。   However, in the embodiment of the present invention, one end of the multilayer piezoelectric element 10 is only in pressure contact with or in contact with the displacement expanding lever 11 and is not adhesively bonded. When the force is exceeded, a slip phenomenon occurs, and as a result, bending and twisting forces acting on the multilayer piezoelectric element 10 are reduced. Furthermore, when a lubricant that lowers the coefficient of friction is present on the pressure contact surface (contact surface), the force is greatly reduced. Therefore, the risk of damaging the multilayer piezoelectric element 10 is greatly reduced as compared with the case of bonding.

実際にはA方向やB,C方向の衝撃力が複合して発生する場合が出てくる。この場合、A方向の衝撃による力で積層型圧電素子10の上の振動出力側接触部Eには予圧以上の面圧が発生し、その面の摩擦係数が下げられていても大きな抵抗力が生じ、B,C方向の衝撃力による力と総合されて、積層型圧電素子10には、前記のように、より大きな曲げやねじりの力が作用することになる。しかし、積層型圧電素子10の下部と変位拡大レバー11のベース部11aとは比較的柔らかな接着剤(ショアDの硬度で約60の一液性エポキシ系接着剤)で接合されている柔軟な支持のため、積層型圧電素子10の全体が傾くか、あるいは捩れる移動が加わることになり、上部の変位の全てが積層型圧電素子10の曲げ力や捩じり力となって加わらないようになる。積層型圧電素子10が受けなくなった力は変位拡大レバー11など強度の高い他の部材が受けることになる。このため、積層型圧電素子10が破損する危険度は下がる。   In actuality, there are cases where the impact force in the A direction, B, and C directions is generated in combination. In this case, a surface pressure greater than the preload is generated at the vibration output side contact portion E on the laminated piezoelectric element 10 by the force due to the impact in the A direction, and a large resistance force is maintained even if the friction coefficient of the surface is lowered. As a result, a larger bending or twisting force acts on the multilayer piezoelectric element 10 as described above, combined with the force caused by the impact force in the B and C directions. However, the lower part of the multilayer piezoelectric element 10 and the base part 11a of the displacement magnifying lever 11 are joined by a relatively soft adhesive (a one-component epoxy adhesive having a Shore D hardness of about 60). Because of the support, the entire laminated piezoelectric element 10 is tilted or twisted, and all the upper displacement is prevented from being applied as bending force or torsional force of the laminated piezoelectric element 10. become. The force that the multilayer piezoelectric element 10 no longer receives is received by another member having high strength such as the displacement magnifying lever 11. For this reason, the risk of damage to the multilayer piezoelectric element 10 is reduced.

(1)積層型圧電素子10の上下の端部が変位拡大レバー11に剛性の高い接着剤で接着固定されているものと、(2)片端は圧接もしくは当接しているだけで、もう一端は比較的柔らかな接着剤を介して固定されているものとを振動構造体として比較してみる。積層型圧電素子10の上下の端部の固定条件が違うこと以外の条件は全く同一であるすると、積層型圧電素子10に正弦波電圧を印加してその共振周波数を比較すると後者の場合のほうが共振周波数は低くなる。   (1) The upper and lower ends of the laminated piezoelectric element 10 are bonded and fixed to the displacement magnifying lever 11 with a highly rigid adhesive, and (2) one end is merely in pressure contact or contact, and the other end is Compared with a structure fixed through a relatively soft adhesive as a vibrating structure. If the conditions other than the fixing conditions of the upper and lower ends of the multilayer piezoelectric element 10 are completely the same, a sinusoidal voltage is applied to the multilayer piezoelectric element 10 and the resonance frequency is compared. The resonance frequency is lowered.

この共振周波数が3kHz以下に、特に2.5kHz以下になると、音声周波数の主帯域に共振点があることになり、印加電圧による振幅特性が共振点近辺以上で大きく歪むことになり好ましくない。本発明の音響信号発生用圧電装置による骨伝導スピーカの場合、生産性も考慮して鉄板をプレス作業で加工した変位拡大レバー11を使用しているため、積層型圧電素子10の上下端を変位拡大レバー11に剛性の高い接着剤で固定した場合、共振周波数が2.9kHz前後であったものが、他の条件形状をそのままで積層型圧電素子10の上下の固定方法を、圧接(当接)と比較的柔らかな接着固定にすると、2.4kHzから2.7kHzの範囲になる。   If this resonance frequency is 3 kHz or less, particularly 2.5 kHz or less, there is a resonance point in the main band of the audio frequency, and the amplitude characteristic due to the applied voltage is greatly distorted near the resonance point. In the case of the bone conduction speaker using the acoustic signal generating piezoelectric device according to the present invention, the displacement enlarging lever 11 formed by pressing an iron plate is used in consideration of productivity, so that the upper and lower ends of the laminated piezoelectric element 10 are displaced. When fixed to the magnifying lever 11 with a highly rigid adhesive, the resonance frequency is around 2.9 kHz. ) And relatively soft adhesive fixation, the range is 2.4 kHz to 2.7 kHz.

これは音声周波数帯域の特性を大きく歪ませることになり、たとえ駆動回路の特性を調整しても音質の劣化につながるので好ましくない。そこで、本実施の形態では構造体全体の剛性を上げて3kHz以上の共振周波数を持つ振動体にするために、変位拡大レバー11の振動出力部11bと弾性部11cの境界になる曲げ部にプレス作業で容易にできる角打ち11dを付加し、且つ、ばね特性の大半を占めている弾性部11cの長さを短くし、ばねとしての定数を向上し、共振周波数が上がるように、図6のコーナー空間Fに剛性の高い接着剤を追加し、変位拡大レバーの所要の振動変位に対する剛性を向上した。これにより共振周波数は2.9から3.1kHzの間なるように改善された。   This greatly distorts the characteristics of the audio frequency band, and even if the characteristics of the drive circuit are adjusted, the sound quality is deteriorated, which is not preferable. Therefore, in the present embodiment, in order to increase the rigidity of the entire structure and make a vibration body having a resonance frequency of 3 kHz or more, the bending portion that is the boundary between the vibration output portion 11b and the elastic portion 11c of the displacement magnifying lever 11 is pressed. As shown in FIG. 6, the corner 11d that can be easily worked is added, the length of the elastic portion 11c occupying most of the spring characteristics is shortened, the constant as a spring is improved, and the resonance frequency is increased. A highly rigid adhesive was added to the corner space F to improve the rigidity of the displacement expansion lever against the required vibration displacement. As a result, the resonance frequency was improved to be between 2.9 and 3.1 kHz.

上記実施の形態では、積層型圧電素子10の上端を変位拡大レバーの振動出力部11bに圧接し、積層型圧電素子10の下端を変位拡大レバーのベース部11aに固定する構成にしたが、積層型圧電素子10の一端を変位拡大レバーの振動出力部11bに固定し、積層型圧電素子10の他端を変位拡大レバーのベース部11aに圧接する構成にすることもできる。   In the above embodiment, the upper end of the multilayer piezoelectric element 10 is pressed against the vibration output portion 11b of the displacement magnifying lever, and the lower end of the multilayer piezoelectric element 10 is fixed to the base portion 11a of the displacement magnifying lever. One end of the piezoelectric element 10 may be fixed to the vibration output portion 11b of the displacement magnifying lever, and the other end of the stacked piezoelectric element 10 may be pressed against the base portion 11a of the displacement magnifying lever.

原理構造を示す斜視図。The perspective view which shows a principle structure. 原理構造を示す正面図。The front view which shows a principle structure. 本発明の実施の形態での音響信号発生用圧電装置の外観を示す斜視図。The perspective view which shows the external appearance of the piezoelectric device for acoustic signal generation in embodiment of this invention. 本発明の実施の形態での音響信号発生用圧電装置の分解斜視図。The disassembled perspective view of the piezoelectric device for acoustic signal generation in embodiment of this invention. 本発明の実施の形態でのパッド部を除いた音響信号発生用圧電装置の平面図。The top view of the piezoelectric device for acoustic signal generation | occurrence | production except the pad part in embodiment of this invention. 図5のX−X面の断面図。Sectional drawing of the XX plane of FIG.

符号の説明Explanation of symbols

1 圧電素子
1a 下端部
1b 上端部
2 変位拡大機構
2a ベース部材
2b 振動出力部材
2c 弾性部材
10 積層型圧電素子
11 変位拡大レバー
12 予圧ねじ
13 ベース錘
14 錘固定ねじ
15 位置決め板
16 コイルボビン
17 パッド
18 減衰シート
19,20 防振支持シート
21 コイル
11a ベース部
11b 振動出力部
11c 弾性部
11d 角打ち
16a ストッパーリブ
D ベース側接触部
E 振動出力側接触部
F コーナー空間
DESCRIPTION OF SYMBOLS 1 Piezoelectric element 1a Lower end part 1b Upper end part 2 Displacement expansion mechanism 2a Base member 2b Vibration output member 2c Elastic member 10 Multilayer piezoelectric element 11 Displacement expansion lever 12 Preload screw 13 Base weight 14 Weight fixing screw 15 Positioning plate 16 Coil bobbin 17 Pad 18 Damping sheet
19, 20 Anti-vibration support sheet 21 Coil 11a Base part 11b Vibration output part 11c Elastic part 11d Square striker 16a Stopper rib D Base side contact part E Vibration output side contact part F Corner space

Claims (5)

電気信号を機械振動に変換する圧電素子と、前記圧電素子が発生した機械振動の変位を拡大する変位拡大機構と、前記変位拡大機構が拡大した機械振動の変位を音響振動として伝達する音響振動部とを有する音響信号発生用圧電装置であって、
前記変位拡大機構が、板状のベース部材と、板状で前記ベース部材と対向し、2つの長辺に前記ベース部材がある方向に曲げて互いに対向する立ち曲げが設けられた振動出力部材と、前記ベース部材と前記振動出力部材の一端部が結合された弾性部材とからなり、
前記ベース部材と前記振動出力部材とは前記弾性部材より高い剛性を有し
前記ベース部材と前記振動出力部材の他端部から、前記圧電素子、及び錘部材が順に挿入され、
前記ベース部材には前記錘部材が高剛性で結合され、
前記弾性部材のある側の前記振動出力部材の一端部と前記振動出力部材の中央部との間に前記圧電素子が配され
且つ、前記圧電素子を圧電変位方向と同方向に圧縮するように、前記振動出力部材と前記ベース部材とで予圧を付与する手段を設け、
前記圧電変位方向と略直角方向における前記圧電素子位置を不変にする位置規制手段を付加する構成にて前記圧電素子の一端は、前記ベース部材もしくは前記振動出力部材に固定され
前記位置規制手段を付加した固定側とは反対側における前記圧電素子の他端は、前記振動出力部材もしくは前記ベース部材に接着結合することなく圧接していることを特徴とする音響信号発生用圧電装置。
A piezoelectric element that converts electrical signals into mechanical vibration, a displacement expansion mechanism that expands the displacement of the mechanical vibration generated by the piezoelectric element, and an acoustic vibration unit that transmits the displacement of the mechanical vibration expanded by the displacement expansion mechanism as acoustic vibration A piezoelectric device for generating an acoustic signal comprising:
The displacement enlarging mechanism includes a plate-like base member , a vibration output member that is plate-like and opposed to the base member, and has two long sides that are bent in the direction in which the base member is located and opposed to each other. The base member and an elastic member to which one end of the vibration output member is coupled ,
Said base member and said vibration output member having a higher rigidity than the elastic member,
From the other end of the base member and the vibration output member, the piezoelectric element and the weight member are sequentially inserted,
The weight member is coupled with a high rigidity to said base member,
The piezoelectric element is arranged between the central portion of the end portion and the vibration output member of the vibration output member of a side of the elastic member,
And, wherein the piezoelectric element so as to compress the piezoelectric displacement in the same direction, a means for applying a preload between the base member and the vibration output member,
One end of the piezoelectric element at adapted to be added to the position regulating means for unchanged the position of the piezoelectric element in the piezoelectric displacement direction substantially perpendicular direction is fixed to the base member or the vibration output member,
The other end of the piezoelectric element on the opposite side to the position restricting stationary added with means for generating an acoustic signal piezoelectric, characterized in that in pressure contact without adhesive bonding to the vibration output member or said base member apparatus.
前記圧電素子の前記位置規制手段が設けられた固定側端部では、前記圧電素子と前記固定する側の部材とを、ショアD硬度が30以上70以下の接着剤を介して結合したことを特徴とする、請求項1記載の音響信号発生用圧電装置。 And in the fixed side end portion to the position regulating means is provided in the piezoelectric element, wherein a side of the member to the fixed and the piezoelectric element was bonded Shore D hardness through 30 or more 70 or less of the adhesive The acoustic signal generating piezoelectric device according to claim 1. 前記圧電素子の一端の圧接面と、前記圧電素子の一端に圧接する前記振動出力部材もしくは前記ベース部材の圧接面との少なくとも一方には相互の接触摩擦係数を低減させる表面処理が施されたことを特徴とする、請求項1または2記載の音響信号発生用圧電装置。 Pressure contact surface of one of said piezoelectric element, a surface treatment for reducing the contact friction coefficient of each other in at least one of the pressing surface of the vibration output member or said base member is pressed against one end of the piezoelectric element is subjected The piezoelectric device for generating an acoustic signal according to claim 1, wherein: 前記圧電素子の一端の圧接面と、前記圧電素子の一端に圧接する前記振動出力部材もしくは前記ベース部材の圧接面との間には、摩擦低減材を介在させたことを特徴とする請求項1〜3のいずれか1項に記載の音響信号発生用圧電装置。 Pressure contact surface of one of said piezoelectric elements, said between pressing surface of the vibration output member or said base member is pressed against the one end of the piezoelectric element according to claim 1, characterized in that interposed friction reducing material The acoustic signal generating piezoelectric device according to any one of to 3. 前記変位拡大機構は金属板材のプレス成形にて成形され、
前記振動出力部材と前記弾性部材の境界部である曲げ部は平板を曲げるのみではなく、剛性を高める加工が施され、
前記錘部材が前記ベース部材と結合する部分および前記錘部材が前記ベース部材と前記弾性部材との境界部の近傍に外側から結合する部分には、ショアD硬度で80以上の硬度を持つ接着剤を用い結合部の剛性を高め、前記変位拡大機構全体の共振周波数を高めたことを特徴とする、請求項1〜4のいずれか1項に記載の音響信号発生用圧電装置。
The displacement enlarging mechanism is formed by press molding of a metal plate material,
The bending part which is a boundary part between the vibration output member and the elastic member is not only bent on a flat plate, but also processed to increase rigidity,
The part portion and said weight member, wherein the weight member is coupled to the base member is coupled from the outside to the vicinity of the boundary between the elastic member and the base member, an adhesive having a 80 hardness of at least Shore D hardness 5. The acoustic signal generating piezoelectric device according to claim 1, wherein the rigidity of the coupling portion is increased by using the first and second components to increase the overall resonance frequency of the displacement magnifying mechanism.
JP2007033369A 2007-02-14 2007-02-14 Piezoelectric device for generating acoustic signals Expired - Fee Related JP5030146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033369A JP5030146B2 (en) 2007-02-14 2007-02-14 Piezoelectric device for generating acoustic signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033369A JP5030146B2 (en) 2007-02-14 2007-02-14 Piezoelectric device for generating acoustic signals

Publications (2)

Publication Number Publication Date
JP2008199359A JP2008199359A (en) 2008-08-28
JP5030146B2 true JP5030146B2 (en) 2012-09-19

Family

ID=39757909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033369A Expired - Fee Related JP5030146B2 (en) 2007-02-14 2007-02-14 Piezoelectric device for generating acoustic signals

Country Status (1)

Country Link
JP (1) JP5030146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019615B2 (en) * 2008-02-29 2012-09-05 Necトーキン株式会社 Vibration generator
JP5239816B2 (en) * 2008-12-16 2013-07-17 ソニー株式会社 Sound generator
CN110323964B (en) * 2019-07-02 2024-07-12 西安工程大学 Piezoelectric ceramic displacement amplifying device based on lever principle and driving method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018980A (en) * 1983-07-12 1985-01-31 Nec Corp Piezoelectric actuator
JP2592854B2 (en) * 1987-09-11 1997-03-19 明星電気株式会社 Bone conduction microphone
JP2965763B2 (en) * 1991-10-09 1999-10-18 富士通株式会社 Holding structure of piezoelectric actuator
JPH05151580A (en) * 1991-11-27 1993-06-18 Nec Home Electron Ltd Structure for supporting optical head
JP4889156B2 (en) * 2001-03-29 2012-03-07 京セラ株式会社 Actuator and injection device
JP2003224745A (en) * 2002-01-31 2003-08-08 Fuminori Suzuki Pixel shift camera
JP4175535B2 (en) * 2002-04-23 2008-11-05 テイカ株式会社 Multilayer piezoelectric vibrator and manufacturing method thereof
WO2004043617A1 (en) * 2002-11-12 2004-05-27 Seiko Epson Corporation Piezoelectric vibrator, production method therefor, and equipment provided with this piezoelectric vibrator
JP2005151292A (en) * 2003-11-18 2005-06-09 Tdk Corp Bone conduction speaker and glasses employing the same
JP2006129156A (en) * 2004-10-29 2006-05-18 Victor Co Of Japan Ltd Electroacoustic transducer
JP2006186615A (en) * 2004-12-27 2006-07-13 Star Micronics Co Ltd Electric oscillation transducer
JP2006229648A (en) * 2005-02-18 2006-08-31 Nec Tokin Corp Piezoelectric bimorph element for generating sound vibration
JP4515348B2 (en) * 2005-07-26 2010-07-28 Necトーキン株式会社 Piezoelectric device for generating acoustic signals

Also Published As

Publication number Publication date
JP2008199359A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US8107646B2 (en) Acoustic vibration generating element
US9137608B2 (en) Actuator, piezoelectric actuator, electronic device, and method for attenuating vibration and converting vibration direction
JP4784398B2 (en) Acoustic exciter and speaker using the same
JP4511437B2 (en) Piezoelectric device for generating acoustic signals
KR101569231B1 (en) Piezo Vibration module
JP4771475B2 (en) Bone conduction speaker
JP4594190B2 (en) Bone conduction speaker
US20150319533A1 (en) Acoustic transducers
JP2007251358A (en) Bone conduction speaker
US8633632B2 (en) Vibration actuator and method for manufacturing the same
JP4662072B2 (en) Piezoelectric acoustic element, acoustic device, and portable terminal device
JP4810646B2 (en) Vibration suppression device
JP5030146B2 (en) Piezoelectric device for generating acoustic signals
JP4931073B2 (en) Piezoelectric device for generating acoustic signals
JP4701054B2 (en) Piezoelectric sounding body
KR102439741B1 (en) Reinforced actuators for distributed mode speakers
WO2019130862A1 (en) Power generation device
JP5680487B2 (en) Acoustic device and vibration transmission method thereof
JP5185782B2 (en) Vibration noise adjustment method for microphone unit
KR101663237B1 (en) Vibrator
JP3909768B2 (en) Piezoelectric device for generating acoustic signals
JP5943506B2 (en) Vibration power generator
JP2002336780A (en) Vibration actuator
JP6423148B2 (en) Piezoelectric vibration transmission element
JP2010239375A (en) Speaker device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees