JP2007251358A - Bone conduction speaker - Google Patents

Bone conduction speaker Download PDF

Info

Publication number
JP2007251358A
JP2007251358A JP2006069263A JP2006069263A JP2007251358A JP 2007251358 A JP2007251358 A JP 2007251358A JP 2006069263 A JP2006069263 A JP 2006069263A JP 2006069263 A JP2006069263 A JP 2006069263A JP 2007251358 A JP2007251358 A JP 2007251358A
Authority
JP
Japan
Prior art keywords
bone conduction
conduction speaker
rigid body
bending vibrator
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006069263A
Other languages
Japanese (ja)
Inventor
Mitsuo Tamura
光男 田村
Akiko Takashima
晶子 鷹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006069263A priority Critical patent/JP2007251358A/en
Publication of JP2007251358A publication Critical patent/JP2007251358A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight bone conduction speaker having a structure hard to be damaged by an external force in which the leakage of a sound is reduced. <P>SOLUTION: A piezoelectric bimorph is covered with an organic material to serve as a bending oscillator 11 to which a rigid body 12 is arranged through a bonding member 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は圧電振動子を利用した骨伝導受話装置に好適な骨伝導スピーカに関する。   The present invention relates to a bone conduction speaker suitable for a bone conduction receiver using a piezoelectric vibrator.

従来、骨伝導受話装置に使用される骨伝導スピーカには、主に、ダイナミックスピーカと同じ原理で、コイルを流れる電流とマグネットとの相互作用で発生する駆動力を機械振動に変える電磁式の骨伝導スピーカが使用されている。このような電磁式の骨伝導スピーカを用いた骨伝導受話装置は、特許文献1及び特許文献2に開示されている。   Conventionally, a bone conduction speaker used in a bone conduction receiver mainly includes an electromagnetic bone that uses the same principle as a dynamic speaker and changes a driving force generated by an interaction between a current flowing through a coil and a magnet to mechanical vibration. Conductive speakers are used. A bone conduction receiver using such an electromagnetic bone conduction speaker is disclosed in Patent Document 1 and Patent Document 2.

骨伝導受話装置は通常、身体に装着して使用するので、軽量であることは基本的な要求条件である。しかしながら、電磁式の骨伝導スピーカは、マグネット、ヨーク、巻線、振動鉄片等で構成されるため、骨伝導スピーカ全体が重くなってしまうという問題点があった。   Since bone conduction receivers are usually worn on the body and used, light weight is a basic requirement. However, since the electromagnetic bone conduction speaker is composed of a magnet, a yoke, a winding, a vibrating iron piece and the like, there is a problem that the whole bone conduction speaker becomes heavy.

そこで、発明者らは、前記問題点を解決すべく、圧電バイモルフと可撓性のある有機物材料とを複合化した新しい構成の骨伝導スピーカを提案している。この圧電バイモルフを利用した骨伝導スピーカは、音響特性面におけるいくつかの利点に加え、構造が薄い圧電セラミックと薄い金属などの弾性体のシム層とを貼り合わせてなる圧電バイモルフと有機物材料のみで構成されることにより、総重量が数グラムというきわめて軽量な骨伝導スピーカとなっている。この様な圧電式の骨伝導スピーカは、特許文献3に開示されている
Accordingly, the inventors have proposed a bone conduction speaker having a new configuration in which a piezoelectric bimorph and a flexible organic material are combined in order to solve the above problems. The bone conduction speaker using this piezoelectric bimorph has only some advantages in terms of acoustic characteristics, and only consists of a piezoelectric bimorph composed of a thin piezoelectric ceramic and an elastic shim layer such as a metal and an organic material. By being configured, the bone conduction speaker is extremely light with a total weight of several grams. Such a piezoelectric bone conduction speaker is disclosed in Patent Document 3.

特開2001−313989号公報JP 2001-313989 A 特開2002−199480号公報JP 2002-199480 A 特開2005−175985号公報JP 2005-175985 A

しかしながら、前記の圧電式の骨伝導スピーカは、その構成要素である圧電バイモルフが非常に薄い構造をしているため、外力により曲げ応力を受けた場合に圧電バイモルフが破損しやすいという問題点がある。この問題を回避するために、骨伝導スピーカ全体を筐体に入れて保護するという方法も考えられるが、この方法では、圧電バイモルフの発生する音響振動が筐体に伝搬して筐体から周囲に音声が放出される「音漏れ」という現象が発生し、新たな問題点となる。   However, the piezoelectric bone conduction speaker described above has a problem that the piezoelectric bimorph is easily damaged when subjected to bending stress by an external force because the piezoelectric bimorph that is a component of the piezoelectric bone conduction speaker has a very thin structure. . In order to avoid this problem, a method of protecting the entire bone conduction speaker by placing it in a housing is also conceivable. However, in this method, acoustic vibration generated by a piezoelectric bimorph propagates to the housing and travels from the housing to the surroundings. The phenomenon of “sound leakage” in which sound is emitted occurs and becomes a new problem.

従って、本発明は、上記従来技術の問題点を解決することを課題とする。具体的には、外力に対して破損しにくい、軽量で、音漏れの少ない圧電式の骨伝導スピーカを提供することを課題とする。   Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art. Specifically, it is an object of the present invention to provide a piezoelectric bone conduction speaker that is light in weight and has little sound leakage, which is not easily damaged by an external force.

本発明は前記課題を解決するために、以下の手段を採用した。即ち、本発明は、圧電バイモルフを有機物材料で覆い屈曲振動子とし、これに接合部材を介して剛体を配置する構造や、前記圧電バイモルフを筐体に収納し、圧電バイモルフと筐体との間隙に有機物材料を充填する構造、或いは、前記屈曲振動子を弾性材料で支持して筐体に収納する構造とすることを、その要旨とする。   The present invention employs the following means in order to solve the above problems. That is, the present invention is a structure in which a piezoelectric bimorph is covered with an organic material to form a bending vibrator, and a rigid body is disposed via a bonding member, and the piezoelectric bimorph is housed in a housing, and the gap between the piezoelectric bimorph and the housing is The gist of the invention is to have a structure in which an organic material is filled, or a structure in which the bending vibrator is supported by an elastic material and accommodated in a housing.

本発明によれば、電気音響信号を音響振動に変換する屈曲振動子が、接合部材を介して剛体に接合されてなる骨伝導スピーカであって、前記屈曲振動子は表裏面を有する板状を成し、前記剛体は平面を有し、前記剛体の平面と前記屈曲振動子の表裏面の少なくとも一方とが対向するように前記接合部材を介して接合されてなることを特徴とする骨伝導スピーカが得られる。   According to the present invention, the bending vibrator for converting an electroacoustic signal into acoustic vibration is a bone conduction speaker formed by joining a rigid body via a joining member, and the bending vibrator has a plate shape having front and back surfaces. The bone conduction speaker is characterized in that the rigid body has a flat surface and is joined via the joining member so that the flat surface of the rigid body and at least one of the front and back surfaces of the bending vibrator face each other. Is obtained.

本発明による骨伝導スピーカは、圧電セラミックス材料からなる圧電セラミックス板を利用し、電気音響信号に応じて音響振動が生じるようにした電気−機械変換機能を有するデバイスや、前記デバイスを有機物と複合させたデバイス等を屈曲振動子として使用する。本発明による骨伝導スピーカは、前記屈曲振動子と剛体とで構成する。剛体は平面を有し、この平面と屈曲振動子の表面が対向するように或いは平行となるように接合部材で部分的に接合するのが良い。接合部材は、硬質ゴムやウレタン樹脂、シリコーン樹脂などの柔軟性のある材料であれば良い。   The bone conduction speaker according to the present invention uses a piezoelectric ceramic plate made of a piezoelectric ceramic material, and has a device having an electro-mechanical conversion function in which an acoustic vibration is generated according to an electroacoustic signal, or a composite of the device with an organic substance. The device etc. used as a bending vibrator. The bone conduction speaker according to the present invention includes the bending vibrator and a rigid body. The rigid body has a flat surface, and it is preferable that the flat surface and the surface of the bending vibrator are partially bonded by a bonding member so as to face each other or to be parallel to each other. The joining member may be a flexible material such as hard rubber, urethane resin, or silicone resin.

前記剛体は金属や樹脂などの剛性を有する材料を使用し、柔軟性のある材料で構成された結合部材で屈曲振動子に部分的に連結されることで屈曲振動子の共振周波数に大きな影響を与えることなく、屈曲振動子の機械的強度不足を補強することができる。また、この剛体は屈曲振動子を他の部材へ支持する支持部材として機能させることも可能であり、例えばヘッドセット本体の保持機構に連結固定させることができる。   The rigid body uses a material having rigidity such as metal or resin, and is connected to the bending vibrator partially by a coupling member made of a flexible material, so that the resonance frequency of the bending vibrator is greatly affected. Without giving, the insufficient mechanical strength of the bending vibrator can be reinforced. The rigid body can also function as a support member that supports the bending vibrator to other members, and can be connected and fixed to a holding mechanism of the headset body, for example.

本発明によれば、前記屈曲振動子と前記剛体は矩形板状を成し、前記剛体の長手方向が前記屈曲振動子の長手方向に対して平行に接合されてなることを特徴とする骨伝導スピーカが得られる。   According to the present invention, the bending vibrator and the rigid body have a rectangular plate shape, and the longitudinal direction of the rigid body is joined in parallel to the longitudinal direction of the bending vibrator. A speaker is obtained.

また、本発明によれば、前記屈曲振動子は矩形板状を成し、前記剛体は柱状体を成し、前記剛体の長手方向が前記屈曲振動子の長手方向に対して平行に接合されてなることを特徴とする骨伝導スピーカが得られる。   According to the present invention, the bending vibrator has a rectangular plate shape, the rigid body has a columnar body, and the longitudinal direction of the rigid body is joined in parallel to the longitudinal direction of the bending vibrator. Thus, a bone conduction speaker can be obtained.

本発明による骨伝導スピーカは、小型、軽量にするためと、音響性能を満たすために、前記屈曲振動子と前記剛体は矩形板状とすることが好ましく、音響性能を向上させるために、前記剛体の配置は前記屈曲振動子に対して各々の長手方向が平行となるように配置するのが良い。剛体の形状は矩形板状のみならず柱状体にしても同様の効果が得られる。   In order to reduce the size and weight of the bone conduction speaker according to the present invention and satisfy the acoustic performance, it is preferable that the bending vibrator and the rigid body have a rectangular plate shape, and in order to improve the acoustic performance, the rigid body Is preferably arranged so that each longitudinal direction thereof is parallel to the bending vibrator. The same effect can be obtained if the rigid body is not only a rectangular plate but also a columnar body.

本発明によれば、前記剛体は板状部材からなり、前記板状部材を折り曲げた状態で接合されてなることを特徴とする骨伝導スピーカが得られる。   According to the present invention, it is possible to obtain a bone conduction speaker characterized in that the rigid body is formed of a plate-like member and is joined in a state where the plate-like member is bent.

剛体は、できるだけ軽量であることが望ましい。剛体は外力による曲げ作用に対して耐えられる構造で、且つ軽いことが要求されるが、剛体自身の持つ屈曲の共振周波数が音響周波数領域にあると屈曲振動子の発生する音響領域の振動に対して共鳴して音漏れが生じる。従って、剛体は軽量であることを維持しつつ大きな曲げ弾性係数を持ち共振周波数を可聴音響周波数域外に調整することが望ましい。そこで、本発明によれば、板状部材を板状部材の長手方向に対して折り目が平行となるように折り曲げることにより剛体に剛性を持たせ、薄くて軽い材料であっても強度が確保できる。なお、折り曲げる位置や形状は適宜設定すれば良い。   It is desirable that the rigid body be as light as possible. A rigid body must be able to withstand the bending action caused by external force and be light. However, if the bending resonance frequency of the rigid body itself is in the acoustic frequency region, the rigid body will resist the vibration in the acoustic region generated by the bending vibrator. Resonance and sound leakage occurs. Therefore, it is desirable to adjust the resonance frequency outside the audible acoustic frequency range while maintaining a lightweight rigid body and having a large flexural modulus. Therefore, according to the present invention, the rigid body is made rigid by bending the plate-like member so that the crease is parallel to the longitudinal direction of the plate-like member, and the strength can be secured even with a thin and light material. . In addition, what is necessary is just to set the position and shape to be bent suitably.

本発明によれば、前記剛体はHの字形状、又はTの字形状、又はコの字形状、又は凸形状、又は円弧形状のいずれかの断面形状を有することを特徴とする骨伝導スピーカが得られる。   According to the present invention, there is provided the bone conduction speaker, wherein the rigid body has a cross-sectional shape of any one of an H shape, a T shape, a U shape, a convex shape, or an arc shape. can get.

本発明による骨伝導スピーカは、屈曲振動子に平行に配置する剛体は柱体であり、その断面はHの字形状、又はTの字形状、又はコの字形状、又は凸形状、又は円弧形状であることが望ましい。また、剛体の重量を増やさずに曲げ弾性係数を大きくとる手段として、前記形状を樹脂などで成形しても良い。   In the bone conduction speaker according to the present invention, the rigid body arranged parallel to the bending vibrator is a columnar body, and the cross section thereof is H-shaped, T-shaped, U-shaped, convex, or arc-shaped. It is desirable that In addition, as a means for increasing the flexural modulus without increasing the weight of the rigid body, the shape may be molded with resin or the like.

本発明によれば、前記剛体は筐体を成し、前記屈曲振動子は前記筐体の内壁に対して間隙を設けて挿入配置され、前記間隙に前記接合部材が充填されてなることを特徴とする骨伝導スピーカが得られる。   According to the present invention, the rigid body forms a casing, the bending vibrator is inserted and arranged with a gap with respect to the inner wall of the casing, and the gap is filled with the joining member. A bone conduction speaker is obtained.

本発明による骨伝導スピーカは、筐体を成す剛体に屈曲振動子を収納配置する。その際、筐体の内壁に対して間隙が空くように筐体内に配置する。さらに接合部材として軟弾性材料を前記間隙に充填する。接合部材を間隙に充填することで、屈曲振動子と剛体である筐体とは接合される。この構造は、筐体が、内部の圧電バイモルフを外力から保護する。同時に屈曲振動子は軟弾性材料で支持されているために振動が拘束されず、その音響振動が筐体表面に伝わり、さらにその表面に骨伝導スピーカ装着者の顔の一部を接触させることで音声信号を骨伝導により聴取できる。   In the bone conduction speaker according to the present invention, the bending vibrator is housed and disposed in a rigid body constituting a housing. In that case, it arrange | positions in a housing | casing so that a clearance gap may be provided with respect to the inner wall of a housing | casing. Further, the gap is filled with a soft elastic material as a joining member. By filling the bonding member in the gap, the bending vibrator and the rigid casing are bonded. In this structure, the housing protects the internal piezoelectric bimorph from external force. At the same time, since the bending vibrator is supported by a soft elastic material, the vibration is not constrained, the acoustic vibration is transmitted to the surface of the housing, and a part of the bone conduction speaker wearer's face is brought into contact with the surface. Audio signals can be heard through bone conduction.

本発明によれば、前記筐体は、1以上の孔が形成されてなることを特徴とする骨伝導スピーカが得られる。   According to the present invention, it is possible to obtain a bone conduction speaker in which the housing is formed with one or more holes.

本発明による骨伝導スピーカは、前記筐体に多数の孔を形成する。孔を多数形成した構造の筐体は振動する実効面積が少なくなり、音響放射面の実効面積を減少されるので音漏れのしにくい圧電式の骨伝導スピーカが得られる。また、筐体に開けた孔は筐体を軽くする効果もある。   The bone conduction speaker according to the present invention forms a large number of holes in the housing. A housing having a structure with a large number of holes reduces the effective area of vibration, and the effective area of the acoustic radiation surface is reduced, so that a piezoelectric bone conduction speaker that hardly leaks sound can be obtained. Moreover, the hole opened in the housing has an effect of lightening the housing.

本発明によれば、前記屈曲振動子は、表面の少なくとも一部が露出してなることを特徴とする骨伝導スピーカが得られる。   According to the present invention, it is possible to obtain a bone conduction speaker in which at least a part of the surface of the bending vibrator is exposed.

本発明による骨伝導スピーカは、屈曲振動子の振動放射面を筐体から露出させてなる。筐体に収納する骨伝導スピーカを筐体の中に閉じこめても、スポンジのような柔らかい弾性体を介して音響振動が筐体に伝搬するために筐体表面は骨伝導スピーカとしての機能を有するが、最も効率的に音響振動を取り出す為には、屈曲振動子の振動放射面を筐体表面に露出させて、その露出部を骨伝導スピーカ装着者の顔の一部に接触させる構成にする。この構成は、筐体が屈曲振動子を保護する機能を維持しつつ、音響出力を最大に取り出すことができる構成である。   In the bone conduction speaker according to the present invention, the vibration radiation surface of the bending vibrator is exposed from the housing. Even if the bone conduction speaker housed in the housing is confined in the housing, the surface of the housing functions as a bone conduction speaker because acoustic vibration propagates to the housing via a soft elastic body such as a sponge. However, in order to extract acoustic vibrations most efficiently, the vibration radiation surface of the bending vibrator is exposed on the surface of the housing, and the exposed portion is in contact with a part of the face of the bone conduction speaker wearer. . In this configuration, the acoustic output can be extracted to the maximum while maintaining the function of the casing protecting the bending vibrator.

本発明によれば、前記筐体は、有底枠体からなることを特徴とする骨伝導スピーカが得られる。   According to the present invention, it is possible to obtain a bone conduction speaker in which the casing is formed of a bottomed frame.

本発明による骨伝導スピーカは、筐体の形状を有底枠体とすることで、圧電バイモルフを枠体内に収納した後、ウレタンゴムやシリコーンゴム等の接合部材を枠体に流し込み、硬化させることが出来るので、製造が容易な骨伝導スピーカが得られる。   In the bone conduction speaker according to the present invention, the shape of the housing is a bottomed frame, and after housing the piezoelectric bimorph in the frame, a joining member such as urethane rubber or silicone rubber is poured into the frame and cured. Therefore, a bone conduction speaker that is easy to manufacture can be obtained.

本発明によれば、前記屈曲振動子は、圧電バイモルフと有機物材料からなり、前記圧電バイモルフの表面全体が前記有機物材料で覆われてなるを特徴とする骨伝導スピーカが得られる。   According to the present invention, a bone conduction speaker is obtained in which the bending vibrator is made of a piezoelectric bimorph and an organic material, and the entire surface of the piezoelectric bimorph is covered with the organic material.

本発明による骨伝導スピーカは、圧電セラミックス材料からなる圧電セラミックス板を利用し、電気音響信号に応じた機械振動が生じるようにした電気−機械変換機能を有するデバイスのうち、特に2枚の圧電セラミックス板が金属板を挟む様に接合されてなる圧電バイモルフを使用するのが良い。圧電バイモルフには適宜配線を施し、表面全体をウレタンゴムやシリコーンゴムなどで覆い屈曲振動子とすることで、骨伝導スピーカ用の音響性能が良い電気−機械変換機能を有する音響振動発生素子が得られる。   The bone conduction speaker according to the present invention uses a piezoelectric ceramic plate made of a piezoelectric ceramic material, and particularly has two piezoelectric ceramics among devices having an electro-mechanical conversion function that generates mechanical vibrations in accordance with electroacoustic signals. It is preferable to use a piezoelectric bimorph in which the plates are joined so as to sandwich the metal plate. The piezoelectric bimorph is appropriately wired, and the entire surface is covered with urethane rubber, silicone rubber, or the like to form a bending vibrator, thereby obtaining an acoustic vibration generating element having an electro-mechanical conversion function with good acoustic performance for a bone conduction speaker. It is done.

本発明によれば、前記屈曲振動子は、圧電バイモルフ単体であることを特徴とする骨伝導スピーカが得られる。   According to the present invention, it is possible to obtain a bone conduction speaker in which the bending vibrator is a single piezoelectric bimorph.

本発明による骨伝導スピーカは、例えば金属材料で作られた一定の剛性を有する筐体の中で圧電バイモルフが柔軟な弾性体に埋没された構成にする。圧電バイモルフは、その屈曲振動による動きを周囲の弾性材料によって、ある程度阻止されるが、弾性材料の硬度や、埋没の深さを調整するとで、骨伝導スピーカに要求される振動出力が弾性体表面から得られる。従って、本発明による骨伝導スピーカは、内部の圧電バイモルフを外力から十分保護できる構造となる。   The bone conduction speaker according to the present invention has a configuration in which a piezoelectric bimorph is buried in a flexible elastic body in a case having a certain rigidity made of, for example, a metal material. Piezoelectric bimorph is blocked to some extent by the elastic material around it, but by adjusting the hardness of the elastic material and the depth of burial, the vibration output required for the bone conduction speaker can be reduced to the elastic surface. Obtained from. Therefore, the bone conduction speaker according to the present invention has a structure that can sufficiently protect the internal piezoelectric bimorph from external force.

本発明によれば、前記接合部材は弾性材料からなることを特徴とする骨伝導スピーカが得られる。接合部材に硬質ゴム、ウレタン樹脂やシリコーン樹脂などの弾性材料を使用することで、屈曲振動子の変位をあまり拘束せずに、共振周波数に対しても大きな影響を与えず、骨伝導スピーカとして十分な音響特性が得られ、且つ、筐体との安定した接合が得られる。   According to the present invention, there is obtained a bone conduction speaker characterized in that the joining member is made of an elastic material. By using an elastic material such as hard rubber, urethane resin, or silicone resin for the joining member, the displacement of the flexural vibrator is not constrained so much that it does not have a significant effect on the resonance frequency and is sufficient as a bone conduction speaker Acoustic characteristics can be obtained, and stable bonding with the housing can be obtained.

前記の如く、本発明によれば、外力に対して破損しにくい、軽量で音漏れの少ない圧電式の骨伝導スピーカの提供が可能となる。   As described above, according to the present invention, it is possible to provide a piezoelectric bone conduction speaker that is light and has little sound leakage, which is not easily damaged by an external force.

本発明による骨伝導スピーカは、圧電バイモルフを有機物材料で覆い屈曲振動子とし、これに接合部材を介して剛体を配置する構造や、前記圧電バイモルフを筐体に収納し、圧電バイモルフと筐体との間隙に接合部材を充填する構造、或いは、前記屈曲振動子を接合部材で支持して筐体に収納する構造とする。   A bone conduction speaker according to the present invention includes a piezoelectric bimorph covered with an organic material as a bending vibrator, a structure in which a rigid body is disposed via a bonding member, and the piezoelectric bimorph housed in a housing. The gap is filled with a bonding member, or the bending vibrator is supported by the bonding member and housed in a housing.

以下、具体的な例を挙げ、本発明による骨伝導スピーカについて図面を参照しながら詳細に説明する。   Hereinafter, a specific example is given and the bone conduction speaker by this invention is demonstrated in detail, referring drawings.

(実施例1)
図1は、実施例による骨伝導スピーカの斜視図である。本実施例による骨伝導スピーカ1は、矩形板状の屈曲振動子11の上面に剛体12を2つの接合部材13を介して配置し固定した。屈曲振動子11は、圧電バイモルフの全体を有機物材料で覆ったものである。NECトーキン株式会社製の圧電セラミックス(N10材)を使用した形状寸法が25mm×8mm×0.3mmの矩形板の表裏面に銀ペーストを印刷し、大気中で焼付けて電極を設けた後、室温で前記電極間に600Vの直流電圧を10分間印加して分極処理を行ない、圧電セラミックス板を製作し、次に、42アロイ材を使用した形状寸法が30mm×8mm×0.2mmのシム板の表裏面に前記圧電セラミックス板を分極方向が同じ方向となるようにして熱硬化型のエポキシ系接着剤を使用し、加圧しながら高温で接着することで圧電バイモルフとした。さらに前記圧電バイモルフに必要な配線を施した後、全表面に、有機物材料であるウレタンゴムで厚さが1mm以上の被覆をし、外形寸法が35mm×10mm×3mmの屈曲振動子11とした。
Example 1
FIG. 1 is a perspective view of a bone conduction speaker according to an embodiment. In the bone conduction speaker 1 according to this example, a rigid body 12 is disposed and fixed on the upper surface of a rectangular plate-shaped bending vibrator 11 via two joining members 13. The bending vibrator 11 is obtained by covering the entire piezoelectric bimorph with an organic material. After silver paste is printed on the front and back surfaces of a rectangular plate having a size of 25 mm × 8 mm × 0.3 mm using piezoelectric ceramics (N10 material) manufactured by NEC TOKIN Corporation, electrodes are provided by baking in the atmosphere, and then at room temperature. Then, a 600V DC voltage was applied between the electrodes for 10 minutes to perform polarization treatment to produce a piezoelectric ceramic plate. Next, a shim plate having a shape dimension of 30 mm × 8 mm × 0.2 mm using 42 alloy material was used. A piezoelectric bimorph was obtained by adhering the piezoelectric ceramic plates to the front and back surfaces using a thermosetting epoxy adhesive so that the polarization directions were the same, and bonding them at a high temperature while applying pressure. Further, after wiring necessary for the piezoelectric bimorph, the entire surface was covered with urethane rubber, which is an organic material, with a thickness of 1 mm or more to form a bending vibrator 11 having an outer dimension of 35 mm × 10 mm × 3 mm.

剛体12は、外形形状が35mm×10mm×1.5mmの矩形板とし、アルミニウム材を使用することで軽量化を図った。接合部材13は、弾性材料である硬質ゴムを使用し、外形寸法を10mm×5mm×1mmにし、10mm×5mmの表裏面を接合面にして屈曲振動子11と剛体12をゴム系の接着剤で接合した。屈曲振動子11と剛体12との接合は機械的には強固であるほど良いが剛体12が屈曲振動子11の振動を抑制しないようにする必要があり、本実施例では屈曲振動子11の両端より内側の二点で屈曲振動子11と剛体12を接合した。   The rigid body 12 was a rectangular plate having an outer shape of 35 mm × 10 mm × 1.5 mm, and the weight was reduced by using an aluminum material. The joining member 13 uses hard rubber, which is an elastic material, has an outer dimension of 10 mm × 5 mm × 1 mm, a front surface and a back surface of 10 mm × 5 mm, and the bending vibrator 11 and the rigid body 12 are made of a rubber adhesive. Joined. It is better that the bending vibrator 11 and the rigid body 12 are mechanically strong, but it is necessary that the rigid body 12 does not suppress the vibration of the bending vibrator 11. In this embodiment, both ends of the bending vibrator 11 are connected. The bending vibrator 11 and the rigid body 12 were joined at two points on the inner side.

本実施例による骨伝導スピーカを使用する場合は、屈曲振動子11を骨伝導スピーカ装着者の顔の一部に圧接させて用いる。剛体12は前記圧接する位置を決めるための支持器具やヘッドセット等に連結させる。本実施例による骨伝導スピーカは剛体12を配置したので、音響振動の発生源である屈曲振動子11に何らかの外力により曲げの力が加ったとしてもその力は剛体12が受けるので、機械的強度の弱い屈曲振動子は外力から保護される。   When the bone conduction speaker according to the present embodiment is used, the bending vibrator 11 is used while being pressed against a part of the face of the bone conduction speaker wearer. The rigid body 12 is connected to a support device, a headset or the like for determining the position to be pressed. In the bone conduction speaker according to the present embodiment, the rigid body 12 is disposed. Therefore, even if a bending force is applied to the bending vibrator 11 which is a generation source of the acoustic vibration by some external force, the rigid body 12 receives the force. A bending oscillator with low strength is protected from external force.

(実施例2)
図2は、実施例による骨伝導スピーカの斜視図である。本実施例では、実施例1で使用した剛体12に替えて、図2に図示する剛体14を使用した。剛体14は、形状寸法が35mm×14mm×0.7mmのアルミニウム板を使用し、図2に示すように、短手方向の両端部を2mm折り曲げて、短手方向の断面形状がコの字形状となる柱体に加工した。
(Example 2)
FIG. 2 is a perspective view of the bone conduction speaker according to the embodiment. In this embodiment, the rigid body 14 shown in FIG. 2 is used in place of the rigid body 12 used in the first embodiment. The rigid body 14 is made of an aluminum plate having a shape dimension of 35 mm × 14 mm × 0.7 mm, and as shown in FIG. 2, both ends in the short direction are bent 2 mm, and the cross-sectional shape in the short direction is a U shape. It was processed into a pillar body.

本実施例による骨伝導スピーカは、剛体14の屈曲に対する曲げ弾性係数が折り曲げた部分の存在により大きく上昇するので、使用したアルミニウム材の厚みを半分以下に減らしても外力による曲げに対して、屈曲振動子を保護する機能は失われないことが確認できた。また同時に共振周波数も低下する事がなく音漏れの問題もないことが確認できた。   In the bone conduction speaker according to the present embodiment, the bending elastic modulus with respect to the bending of the rigid body 14 greatly increases due to the presence of the bent portion. Therefore, even if the thickness of the aluminum material used is reduced to less than half, It was confirmed that the function of protecting the vibrator was not lost. At the same time, it was confirmed that the resonance frequency did not decrease and there was no problem of sound leakage.

(実施例3)
図3は、実施例による骨伝導スピーカの斜視図である。本実施例では、実施例1で使用した剛体12に替えて、図3に図示する剛体15を使用した。剛体15は、厚さが0.3mmのアルミニウム板を使用し、形状を図3に示すように、アルミニウム板を曲げ加工し、表面の中央を通り長手方向に対して平行に凸部16を有する形状にし、断面が凸形状の柱体にした。本実施例では、凸部16を設けることで剛体15の曲げ弾性係数を増大させることができ、軽量であるにもかかわらず実施例2と同様に屈曲振動子を外力から保護する事が可能で、且つ、屈曲モードの共振周波数が高く、音漏れが少ない骨伝導スピーカであることが確認できた。
(Example 3)
FIG. 3 is a perspective view of the bone conduction speaker according to the embodiment. In this embodiment, the rigid body 15 shown in FIG. 3 is used in place of the rigid body 12 used in the first embodiment. As the rigid body 15, an aluminum plate having a thickness of 0.3 mm is used, and as shown in FIG. 3, the aluminum plate is bent and passes through the center of the surface and has a convex portion 16 parallel to the longitudinal direction. The shape was made into a column with a convex cross section. In the present embodiment, the convex elastic member 16 can increase the flexural modulus of elasticity of the rigid body 15 by providing the convex portion 16, and it is possible to protect the bending vibrator from an external force in the same manner as in the second embodiment although it is lightweight. In addition, it was confirmed that the bone conduction speaker had a high bending mode resonance frequency and little sound leakage.

図4は、実施例による骨伝導スピーカの発生振動力の周波数特性を示すグラフである。図4に示すグラフは、横軸に周波数(Hz)を示し、縦軸に、実施例1乃至実施例3による骨伝導スピーカの発生振動力を0dB=1NとしてdBで示している。発生振動力は骨伝導スピーカの音響性能を示し、ブリュエル・ケアー社製の人工マストイド(型式4930)を用いて、頭部にある乳様突起(マストイド)に振動体を3Nの一定加重で押し当て、頭部内にある聴覚神経部で受ける振動力を内部に配置された力センサで捉え、モデル的に測定したものである。比較例Aとして剛体がない屈曲振動子のみの骨伝導スピーカの測定結果もグラフに示している。図4に示す結果から、実施例1乃至実施例3による骨伝導スピーカの発生振動力は剛体の影響を受けず、十分に実用できることが確認できた。   FIG. 4 is a graph showing the frequency characteristics of the generated vibration force of the bone conduction speaker according to the example. In the graph shown in FIG. 4, the horizontal axis indicates the frequency (Hz), and the vertical axis indicates the generated vibration force of the bone conduction speaker according to Examples 1 to 3 in dB with 0 dB = 1N. The generated vibration force indicates the acoustic performance of the bone conduction speaker. Using an artificial mastoid (model 4930) manufactured by Brüel & Kjær, the vibrating body is pressed against the mastoid (mastoid) on the head with a constant load of 3N. The vibrational force received by the auditory nerve part in the head is captured by a force sensor arranged inside and measured in a model manner. As a comparative example A, the measurement result of a bone conduction speaker having only a bending vibrator without a rigid body is also shown in the graph. From the results shown in FIG. 4, it was confirmed that the generated vibration force of the bone conduction speaker according to Examples 1 to 3 was not affected by the rigid body and could be sufficiently put into practical use.

図5は、実施例による骨伝導スピーカの音漏れの周波数特性を示すグラフである。図5のグラフは横軸に周波数(Hz)を示し、縦軸に、実施例1乃至実施例3による骨伝導スピーカの漏れ音圧をdBで示している。漏れ音圧は、無響室において、骨伝導スピーカを100Hzから10kHzまでの周波数で駆動した場合に屈曲振動子から20cm離れた位置で観測される音漏れを音圧で評価したものである。   FIG. 5 is a graph showing frequency characteristics of sound leakage of the bone conduction speaker according to the example. In the graph of FIG. 5, the horizontal axis represents frequency (Hz), and the vertical axis represents the sound leakage pressure of the bone conduction speaker according to Examples 1 to 3 in dB. The leaked sound pressure is obtained by evaluating the sound leak observed at a position 20 cm away from the bending vibrator when the bone conduction speaker is driven at a frequency from 100 Hz to 10 kHz in an anechoic chamber.

また、比較例Aとして剛体がない屈曲振動子のみの骨伝導スピーカと、比較例Bとして実施例1における剛体の厚さを0.5mmに薄くした骨伝導スピーカの測定結果もグラフに示している。図5のグラフからも判るように、単に剛体の厚さを薄くしただけの比較例Bは、剛体が共鳴してしまい、かえって音漏れが大きくなり、周波数が1〜5kHzの範囲で特に大きな音漏れが観測された。これに比べて実施例1乃至実施例3による骨伝導スピーカの漏れ音圧は十分に抑制されることが確認できた。   In addition, the graph also shows the measurement results of the bone conduction speaker having only the bending vibrator without the rigid body as the comparative example A and the bone conduction speaker in which the thickness of the rigid body in the example 1 is reduced to 0.5 mm as the comparative example B. . As can be seen from the graph of FIG. 5, in Comparative Example B, in which the thickness of the rigid body is simply reduced, the rigid body resonates, sound leakage increases, and particularly loud noise in the frequency range of 1 to 5 kHz. A leak was observed. Compared to this, it was confirmed that the leakage sound pressure of the bone conduction speaker according to Examples 1 to 3 was sufficiently suppressed.

前述の如く、本発明によれば、屈曲振動子に剛体を設けることにより、屈曲振動子が外力から保護されるので、機械的強度が向上し、音漏れも少ない軽量な骨伝導スピーカが得られた。尚、本発明において、重量を増やさずに剛体の曲げ弾性係数を大きくする手段としては、実施例2或いは実施例3の材質・形状に限定されるものではなく、剛体に使用する材料は樹脂をはじめとする軽くて堅い物質であれば良く、形状は断面形状の断面二次モーメントが増大する形状であれば同様の効果が期待できる。   As described above, according to the present invention, since the bending vibrator is protected from external force by providing the bending vibrator with a rigid body, a lightweight bone conduction speaker with improved mechanical strength and less sound leakage can be obtained. It was. In the present invention, the means for increasing the bending elastic modulus of the rigid body without increasing the weight is not limited to the material and shape of Example 2 or Example 3, and the material used for the rigid body is resin. Any light and stiff material can be used, and the same effect can be expected if the shape of the cross-sectional second moment increases.

(実施例4)
図6は、実施例による骨伝導スピーカの断面図である。図6は本実施例の基本構成を図示している。本実施例による骨伝導スピーカは、圧電バイモルフ21を筐体22に収納し、圧電バイモルフ21と筐体22の内壁との間隙に接合材料として弾性材料23を充填する構造とした。圧電バイモルフ21は実施例1で製作した圧電バイモルフと同じものを使用し、圧電バイモルフ21には必要な配線を施した(配線は図示しない)。筐体22には外形寸法が長さ33mm、幅12mm、高さ3mmで、肉厚が1mmのアルミニウム材からなる底面が長方形の有底枠体を使用し、圧電バイモルフ21を筐体22の中央部に配置し、弾性材料23としてウレタンゴムを圧電バイモルフ21と筐体22の内壁との間隙に流し込み充填し、硬化させて骨伝導スピーカにした。
Example 4
FIG. 6 is a cross-sectional view of a bone conduction speaker according to an embodiment. FIG. 6 illustrates the basic configuration of this embodiment. The bone conduction speaker according to the present embodiment has a structure in which the piezoelectric bimorph 21 is housed in the housing 22 and the gap between the piezoelectric bimorph 21 and the inner wall of the housing 22 is filled with an elastic material 23 as a bonding material. The piezoelectric bimorph 21 was the same as the piezoelectric bimorph manufactured in Example 1, and necessary wiring was applied to the piezoelectric bimorph 21 (wiring is not shown). The casing 22 uses a bottomed frame made of an aluminum material having an outer dimension of 33 mm in length, 12 mm in width, 3 mm in height, and 1 mm in thickness, and has a rectangular bottom, and the piezoelectric bimorph 21 is placed in the center of the casing 22. The urethane rubber was poured into the gap between the piezoelectric bimorph 21 and the inner wall of the housing 22 as an elastic material 23, and was cured to form a bone conduction speaker.

本実施例による骨伝導スピーカは、電気音響信号を付与すると骨伝導スピーカとして充分に機能することが確認できた。図7は、実施例による骨伝導スピーカの発生振動力の周波数特性を示すグラフである。図7のグラフは横軸に周波数(Hz)を示し、縦軸に、本実施例による骨伝導スピーカの発生振動力を0dB=1NとしてdBで示している。発生振動力は骨伝導スピーカの音響性能を示し、ブリュエル・ケアー社製の人工マストイド(型式4930)を用いて、頭部にある乳様突起(マストイド)に振動体を3Nの一定加重で押し当て、頭部内にある聴覚神経部で受ける振動力を内部に配置された力センサで捉え、モデル的に測定したものである。比較例Aとして筐体のない実施例1で製作した屈曲振動子のみの骨伝導スピーカの測定結果もグラフに示している。   It was confirmed that the bone conduction speaker according to the present example functions sufficiently as a bone conduction speaker when an electroacoustic signal is applied. FIG. 7 is a graph showing frequency characteristics of vibration force generated by the bone conduction speaker according to the example. In the graph of FIG. 7, the horizontal axis indicates the frequency (Hz), and the vertical axis indicates the generated vibration force of the bone conduction speaker according to the present embodiment in dB with 0 dB = 1N. The generated vibration force indicates the acoustic performance of the bone conduction speaker. Using an artificial mastoid (model 4930) manufactured by Brüel & Kjær, the vibrating body is pressed against the mastoid (mastoid) on the head with a constant load of 3N. The vibrational force received by the auditory nerve part in the head is captured by a force sensor arranged inside and measured in a model manner. As a comparative example A, the graph also shows the measurement result of the bone conduction speaker having only the bending vibrator manufactured in Example 1 having no housing.

図7のグラフから判るように、本実施例による骨伝導スピーカの発生振動力の周波数特性は、筐体による多少の拘束はあるものの実用するに十分な出力を得られることが確認できた。本実施例による骨伝導スピーカに電気音響信号として20Vrmsの信号を付与して駆動し、ウレタンゴムが露出している面を外耳周辺に押し当てることで、音声を明瞭に聴取することができた。また、音漏れについても実施例1乃至実施例3とほぼ同様の結果が得られた。   As can be seen from the graph of FIG. 7, it was confirmed that the frequency characteristics of the vibration force generated by the bone conduction speaker according to the present embodiment can obtain a sufficient output for practical use although there are some restrictions due to the housing. The bone conduction speaker according to this example was driven by applying a signal of 20 Vrms as an electroacoustic signal, and the surface on which the urethane rubber was exposed was pressed against the periphery of the outer ear, so that the sound could be heard clearly. Also, the sound leakage was almost the same as in Examples 1 to 3.

(実施例5)
図8は、実施例による骨伝導スピーカの透視斜視図である。本実施例による骨伝導スピーカの基本構成は図8に示すように、屈曲振動子33を筐体35に収納する構成にした。図9は、実施例による骨伝導スピーカの断面図である。図8に示した本実施例による骨伝導スピーカの長手方向の断面構造は、図9に示すように、圧電バイモルフ31を有機物材料32で覆い屈曲振動子33としたものを筐体35に収納し、屈曲振動子33と筐体35の内壁との隙間に接合部材として弾性材料34を介在させて筐体35内に屈曲振動子33を固定する構造とした。
(Example 5)
FIG. 8 is a perspective view of the bone conduction speaker according to the embodiment. As shown in FIG. 8, the basic configuration of the bone conduction speaker according to the present embodiment is configured such that the bending vibrator 33 is housed in the housing 35. FIG. 9 is a cross-sectional view of a bone conduction speaker according to an embodiment. As shown in FIG. 9, the longitudinal cross-sectional structure of the bone conduction speaker according to the present embodiment shown in FIG. 8 is obtained by covering a piezoelectric bimorph 31 with an organic material 32 and forming a bending vibrator 33 in a casing 35. In addition, the bending vibrator 33 is fixed in the housing 35 with an elastic material 34 interposed as a joining member in the gap between the bending vibrator 33 and the inner wall of the housing 35.

本実施例による骨伝導スピーカは、屈曲振動子33に実施例1で製作したものと同じ屈曲振動子を使用し、厚さ1mmのアルミニウムの板で構成された内寸法が、長さ37mm、幅12mm、高さ5mmの筐体35に屈曲振動子33を収納し、屈曲振動子33の周囲を弾性材料34であるウレタンフォームで支持して骨伝導スピーカとした。本実施例による骨伝導スピーカは、明瞭に音声を聴取できることが確認できた。また、高周波数帯域での音漏れは観測されなかった。   The bone conduction speaker according to the present embodiment uses the same bending vibrator as that manufactured in the first embodiment as the bending vibrator 33, and has an inner dimension of a length of 37 mm and a width of an aluminum plate having a thickness of 1 mm. A bending vibrator 33 was housed in a casing 35 having a height of 12 mm and a height of 5 mm, and the periphery of the bending vibrator 33 was supported by urethane foam, which is an elastic material 34, to form a bone conduction speaker. It was confirmed that the bone conduction speaker according to the present example can hear sound clearly. In addition, no sound leakage was observed in the high frequency band.

(実施例6)
図10は、実施例による骨伝導スピーカの透視斜視図である。本実施例による骨伝導スピーカは、実施例5で使用した筐体に替えて、厚さが1mmで1cm2の範囲に24個の直径0.8mmの孔46が開けられているアルミニウム板を使用して製作した実施例5と同じ寸法の筐体45を使用し、筐体45内部に屈曲振動子33を収納した。本実施例による骨伝導スピーカは多数の孔46が開いているアルミニウム板を筐体45に使用したので、実施例5に比べさらに軽量化ができた。また、骨伝導スピーカとして明瞭な音声を聴取できることも確認でき、高周波数帯域での音漏れも観測されなかった。
(Example 6)
FIG. 10 is a perspective view of the bone conduction speaker according to the embodiment. The bone conduction speaker according to the present embodiment uses an aluminum plate having 24 holes 0.8 mm in diameter in the range of 1 cm 2 and 1 cm 2 in place of the case used in the fifth embodiment. Then, the casing 45 having the same size as that of the manufactured Example 5 was used, and the bending vibrator 33 was accommodated in the casing 45. Since the bone conduction speaker according to the present embodiment uses an aluminum plate having a large number of holes 46 for the housing 45, the weight can be further reduced as compared with the fifth embodiment. It was also confirmed that clear sound could be heard as a bone conduction speaker, and no sound leakage was observed in the high frequency band.

(実施例7)
図11は、実施例による骨伝導スピーカの透視斜視図である。本実施例による骨伝導スピーカは、実施例6による骨伝導スピーカにおいて、筐体の上面を取り除き、図11に示すように、屈曲振動子33の表面が筐体55の上面に露出するような構造とした。本実施例による骨伝導スピーカは、実施例6に比べ、筐体55に上面が無いのでさらに軽量化ができた。また、骨伝導スピーカとして明瞭な音声を聴取できることも確認でき、高周波数帯域での音漏れも観測されなかった。
(Example 7)
FIG. 11 is a perspective view of the bone conduction speaker according to the embodiment. The bone conduction speaker according to the present embodiment is the same as the bone conduction speaker according to the sixth embodiment except that the upper surface of the housing is removed and the surface of the bending vibrator 33 is exposed on the upper surface of the housing 55 as shown in FIG. It was. Compared with Example 6, the bone conduction speaker according to this example can be further reduced in weight because the housing 55 has no upper surface. It was also confirmed that clear sound could be heard as a bone conduction speaker, and no sound leakage was observed in the high frequency band.

実施例5乃至実施例7による骨伝導スピーカの性能を評価するために、それぞれの発生振動力を測定した。図12は、実施例による骨伝導スピーカの発生振動力の周波数特性を示すグラフである。図12に示すグラフは、横軸に周波数(Hz)を示し、縦軸に、実施例5乃至実施例7による骨伝導スピーカの発生振動力を0dB=1NとしてdBで示している。発生振動力は骨伝導スピーカの音響性能を示し、ブリュエル・ケアー社製の人工マストイド(型式4930)を用いて、頭部にある乳様突起(マストイド)に振動体を3Nの一定加重で押し当て、頭部内にある聴覚神経部で受ける振動力を内部に配置された力センサで捉え、モデル的に測定したものである。比較例Aとして筐体がない屈曲振動子33のみの骨伝導スピーカの測定結果もグラフに示している。   In order to evaluate the performance of the bone conduction speaker according to Example 5 to Example 7, each generated vibration force was measured. FIG. 12 is a graph showing frequency characteristics of vibration force generated by the bone conduction speaker according to the example. In the graph shown in FIG. 12, the horizontal axis indicates the frequency (Hz), and the vertical axis indicates the generated vibration force of the bone conduction speaker according to Examples 5 to 7 in dB with 0 dB = 1N. The generated vibration force indicates the acoustic performance of the bone conduction speaker. Using an artificial mastoid (model 4930) manufactured by Brüel & Kjær, the vibrating body is pressed against the mastoid (mastoid) on the head with a constant load of 3N. The vibrational force received by the auditory nerve part in the head is captured by a force sensor arranged inside and measured in a model manner. As a comparative example A, the measurement result of the bone conduction speaker having only the bending vibrator 33 without the housing is also shown in the graph.

図12に示すグラフからも判るように、実施例5乃至実施例7による骨伝導スピーカの発生振動力の周波数特性は、筐体による多少の拘束はあるものの実用に供するに十分な出力を得られることが確認できた。実施例5乃至実施例7による骨伝導スピーカそれぞれに電気音響信号として20Vrmsの信号を付与して駆動し、装着者が外耳周辺に押し当てることで、音声を明瞭に聴取することができた。   As can be seen from the graph shown in FIG. 12, the frequency characteristics of the vibration force generated by the bone conduction speakers according to the fifth to seventh embodiments can provide a sufficient output for practical use although there are some restrictions due to the housing. I was able to confirm. Each of the bone conduction speakers according to Examples 5 to 7 was driven by applying a 20 Vrms signal as an electroacoustic signal, and the wearer pressed against the periphery of the outer ear, so that the sound could be heard clearly.

図13は、実施例による骨伝導スピーカの音漏れの周波数特性を示すグラフである。図13のグラフは横軸に周波数(Hz)を示し、縦軸に、実施例5と実施例6による骨伝導スピーカの漏れ音圧をdBで示している。漏れ音圧は、無響室において、骨伝導スピーカを100Hzから10KHzまでの周波数で駆動した場合に屈曲振動子から20cm離れた位置で観測される音漏れを音圧で評価したものである。図13のグラフからも判るように、実施例6による骨伝導スピーカは筐体に多数の孔が開いているアルミニウム板を使用したことにより、音漏れが大幅に減少することが確認できた。   FIG. 13 is a graph showing frequency characteristics of sound leakage of the bone conduction speaker according to the example. In the graph of FIG. 13, the horizontal axis represents frequency (Hz), and the vertical axis represents the sound leakage pressure of the bone conduction speaker according to Example 5 and Example 6 in dB. The leaked sound pressure is obtained by evaluating the sound leakage observed at a position 20 cm away from the bending vibrator when the bone conduction speaker is driven at a frequency of 100 Hz to 10 KHz in an anechoic chamber. As can be seen from the graph of FIG. 13, it was confirmed that the bone conduction speaker according to Example 6 uses an aluminum plate having a large number of holes in the housing, thereby greatly reducing sound leakage.

実施例6及び実施例7では筐体に多数の孔が開いているアルミニウム板を使用したが、筐体を網状や格子状を成す材料でも同様の効果が得られる。また、筐体に使用する材質も一定の強度が確保できれば、アルミニウム以外の金属や樹脂や木材等も使用できる。   In Example 6 and Example 7, an aluminum plate having a large number of holes in the housing was used. However, the same effect can be obtained even if the housing is made of a net-like or lattice-like material. Further, if the material used for the housing can secure a certain strength, metals other than aluminum, resin, wood, etc. can be used.

前述の如く、本発明によれば、外力に対して破損しにくい、軽量で音漏れの少ない圧電式の骨伝導スピーカの提供が可能となる。   As described above, according to the present invention, it is possible to provide a piezoelectric bone conduction speaker that is light and has little sound leakage, which is not easily damaged by an external force.

本発明による骨伝導スピーカは、音声信号を受信する受話装置として利用できるほか、オーディオ装置や携帯端末機器等の音声の受信に利用できる。   The bone conduction speaker according to the present invention can be used not only as a receiver for receiving an audio signal, but also for receiving audio from an audio device, a portable terminal device or the like.

実施例による骨伝導スピーカの斜視図。The perspective view of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの斜視図。The perspective view of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの斜視図。The perspective view of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの発生振動力の周波数特性を示すグラフ。The graph which shows the frequency characteristic of the generated vibration force of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの音漏れの周波数特性を示すグラフ。The graph which shows the frequency characteristic of the sound leakage of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの断面図。Sectional drawing of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの発生振動力の周波数特性を示すグラフ。The graph which shows the frequency characteristic of the generated vibration force of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの透視斜視図。The perspective perspective view of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの断面図。Sectional drawing of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの透視斜視図。The perspective perspective view of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの透視斜視図。The perspective perspective view of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの発生振動力の周波数特性を示すグラフ。The graph which shows the frequency characteristic of the generated vibration force of the bone conduction speaker by an Example. 実施例による骨伝導スピーカの音漏れの周波数特性を示すグラフ。The graph which shows the frequency characteristic of the sound leakage of the bone conduction speaker by an Example.

符号の説明Explanation of symbols

1 骨伝導スピーカ
11、33 屈曲振動子
12、14、15 剛体
13 接合部材
16 凸部
21、31 圧電バイモルフ
22、35、45、55 筐体
23、34 弾性材料
32 有機物材料
46、56 孔
DESCRIPTION OF SYMBOLS 1 Bone conduction speaker 11, 33 Bending vibrator | oscillator 12, 14, 15 Rigid body 13 Joining member 16 Convex part 21, 31 Piezoelectric bimorph 22, 35, 45, 55 Case 23, 34 Elastic material 32 Organic material 46, 56 Hole

Claims (12)

電気音響信号を音響振動に変換する屈曲振動子が、接合部材を介して剛体に接合されてなる骨伝導スピーカであって、前記屈曲振動子は表裏面を有する板状を成し、前記剛体は平面を有し、前記剛体の平面と前記屈曲振動子の表裏面の少なくとも一方とが対向するように前記接合部材を介して接合されてなることを特徴とする骨伝導スピーカ。   A bending conduction transducer for converting an electroacoustic signal into acoustic vibration is a bone conduction speaker formed by joining a rigid body via a joining member, wherein the bending vibrator has a plate shape having front and back surfaces, and the rigid body A bone conduction speaker having a flat surface, wherein the rigid flat surface and at least one of the front and back surfaces of the bending vibrator are opposed to each other via the bonding member. 前記屈曲振動子と前記剛体は矩形板状を成し、前記剛体の長手方向が前記屈曲振動子の長手方向に対して平行に接合されてなることを特徴とする請求項1に記載の骨伝導スピーカ。   2. The bone conduction according to claim 1, wherein the bending vibrator and the rigid body have a rectangular plate shape, and the longitudinal direction of the rigid body is joined in parallel to the longitudinal direction of the bending vibrator. Speaker. 前記屈曲振動子は矩形板状を成し、前記剛体は柱状体を成し、前記剛体の長手方向が前記屈曲振動子の長手方向に対して平行に接合されてなることを特徴とする請求項1に記載の骨伝導スピーカ。   The bending vibrator is formed in a rectangular plate shape, the rigid body is formed in a columnar body, and the longitudinal direction of the rigid body is joined in parallel to the longitudinal direction of the bending vibrator. 2. The bone conduction speaker according to 1. 前記剛体は板状部材からなり、前記板状部材を折り曲げた状態で接合されてなることを特徴とする請求項1または請求項3のいずれかに記載の骨伝導スピーカ。   The bone conduction speaker according to claim 1, wherein the rigid body is made of a plate-like member, and is joined in a state where the plate-like member is bent. 前記剛体はHの字形状、又はTの字形状、又はコの字形状、又は凸形状、又は円弧形状のいずれかの断面形状を有することを特徴とする請求項1または請求項3または請求項4のいずれか1項に記載の骨伝導スピーカ。   4. The rigid body has an H-shape, a T-shape, a U-shape, a convex shape, or an arc-shaped cross-section. The bone conduction speaker according to any one of 4. 前記剛体は筐体を成し、前記屈曲振動子は前記筐体の内壁に対して間隙を設けて挿入配置され、前記間隙に前記接合部材が充填されてなることを特徴とする請求項1に記載の骨伝導スピーカ。   2. The rigid body comprises a housing, the bending vibrator is inserted and disposed with a gap with respect to an inner wall of the housing, and the joining member is filled in the gap. The bone conduction speaker described. 前記筐体は、1以上の孔が形成されてなることを特徴とする請求項6に記載の骨伝導スピーカ。   The bone conduction speaker according to claim 6, wherein the housing is formed with one or more holes. 前記屈曲振動子は、表面の少なくとも一部が露出してなることを特徴とする請求項6又は請求項7のいずれかに記載の骨伝導スピーカ。   The bone conduction speaker according to claim 6, wherein at least a part of a surface of the bending vibrator is exposed. 前記筐体は、有底枠体からなることを特徴とする請求項6乃至請求項8のいずれかに記載の骨伝導スピーカ。   The bone conduction speaker according to any one of claims 6 to 8, wherein the casing is made of a bottomed frame. 前記屈曲振動子は、圧電バイモルフと有機物材料からなり、前記圧電バイモルフの表面全体が前記有機物材料で覆われてなることを特徴とする請求項1乃至請求項9のいずれか1項に記載の骨伝導スピーカ。   The bone according to any one of claims 1 to 9, wherein the bending vibrator is made of a piezoelectric bimorph and an organic material, and the entire surface of the piezoelectric bimorph is covered with the organic material. Conductive speaker. 前記屈曲振動子は、圧電バイモルフ単体であることを特徴とする請求項6乃至請求項9のいずれか1項に記載の骨伝導スピーカ。   The bone conduction speaker according to any one of claims 6 to 9, wherein the bending vibrator is a single piezoelectric bimorph. 前記接合部材は弾性材料からなることを特徴とする請求項1乃至請求項11のいずれか1項に記載の骨伝導スピーカ。   The bone conduction speaker according to any one of claims 1 to 11, wherein the joining member is made of an elastic material.
JP2006069263A 2006-03-14 2006-03-14 Bone conduction speaker Pending JP2007251358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069263A JP2007251358A (en) 2006-03-14 2006-03-14 Bone conduction speaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069263A JP2007251358A (en) 2006-03-14 2006-03-14 Bone conduction speaker

Publications (1)

Publication Number Publication Date
JP2007251358A true JP2007251358A (en) 2007-09-27

Family

ID=38595223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069263A Pending JP2007251358A (en) 2006-03-14 2006-03-14 Bone conduction speaker

Country Status (1)

Country Link
JP (1) JP2007251358A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106303861A (en) * 2014-01-06 2017-01-04 深圳市韶音科技有限公司 A kind of bone-conduction speaker that can suppress to leak sound
CN106792296A (en) * 2017-03-13 2017-05-31 深圳市吸铁石科技有限公司 A kind of resonance type transducer fixing device
US11197106B2 (en) 2014-01-06 2021-12-07 Shenzhen Voxtech Co., Ltd. Systems and methods for suppressing sound leakage
US11297446B2 (en) 2014-01-06 2022-04-05 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11304011B2 (en) 2014-01-06 2022-04-12 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11363392B2 (en) 2014-01-06 2022-06-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11368800B2 (en) 2014-01-06 2022-06-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11368801B2 (en) 2014-01-06 2022-06-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11375324B2 (en) 2014-01-06 2022-06-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11418895B2 (en) 2014-01-06 2022-08-16 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11425481B2 (en) 2019-04-30 2022-08-23 Shenzhen Shokz Co., Ltd. Open earphone
US11558698B2 (en) 2014-01-06 2023-01-17 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11570556B2 (en) 2014-01-06 2023-01-31 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11582563B2 (en) 2014-01-06 2023-02-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11582565B2 (en) 2014-01-06 2023-02-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11582564B2 (en) 2014-01-06 2023-02-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11589171B2 (en) 2014-01-06 2023-02-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11617045B2 (en) 2014-01-06 2023-03-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11622209B2 (en) 2014-01-06 2023-04-04 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11627419B2 (en) 2014-01-06 2023-04-11 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11706574B2 (en) 2014-01-06 2023-07-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11805375B2 (en) 2014-01-06 2023-10-31 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11832060B2 (en) 2014-01-06 2023-11-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11906817B2 (en) 2018-08-24 2024-02-20 Shenzhen Shokz Co., Ltd. Eyeglasses
US11950055B2 (en) 2014-01-06 2024-04-02 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11974097B2 (en) 2014-01-06 2024-04-30 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US12007625B2 (en) 2018-08-24 2024-06-11 Shenzhen Shokz Co., Ltd. Glasses

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574290A (en) * 1978-11-30 1980-06-04 Matsushita Electric Ind Co Ltd Skelton type receiver
JPH06224824A (en) * 1993-01-22 1994-08-12 Kokusai Electric Co Ltd Radio call receiver
JP2004080198A (en) * 2002-08-13 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> Electroacoustic transducer
JP2004165895A (en) * 2002-11-12 2004-06-10 Nippon Telegr & Teleph Corp <Ntt> Electroacoustic transducer
JP2005151183A (en) * 2003-11-14 2005-06-09 Toshiba Corp Bone conduction speaker, and pillow, chair or headphone using bone conduction speaker
JP2005196861A (en) * 2004-01-07 2005-07-21 Matsushita Electric Ind Co Ltd Optical disk drive
JP2005245580A (en) * 2004-03-02 2005-09-15 Azden Corp Voice communication device in magnetic resonance imaging apparatus
JP2005318087A (en) * 2004-04-27 2005-11-10 Nec Tokin Corp Headphone
JP2005328125A (en) * 2004-05-12 2005-11-24 Nec Tokin Corp Earphone
JP2006041843A (en) * 2004-07-26 2006-02-09 Toshiba Corp Bone conduction speaker system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574290A (en) * 1978-11-30 1980-06-04 Matsushita Electric Ind Co Ltd Skelton type receiver
JPH06224824A (en) * 1993-01-22 1994-08-12 Kokusai Electric Co Ltd Radio call receiver
JP2004080198A (en) * 2002-08-13 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> Electroacoustic transducer
JP2004165895A (en) * 2002-11-12 2004-06-10 Nippon Telegr & Teleph Corp <Ntt> Electroacoustic transducer
JP2005151183A (en) * 2003-11-14 2005-06-09 Toshiba Corp Bone conduction speaker, and pillow, chair or headphone using bone conduction speaker
JP2005196861A (en) * 2004-01-07 2005-07-21 Matsushita Electric Ind Co Ltd Optical disk drive
JP2005245580A (en) * 2004-03-02 2005-09-15 Azden Corp Voice communication device in magnetic resonance imaging apparatus
JP2005318087A (en) * 2004-04-27 2005-11-10 Nec Tokin Corp Headphone
JP2005328125A (en) * 2004-05-12 2005-11-24 Nec Tokin Corp Earphone
JP2006041843A (en) * 2004-07-26 2006-02-09 Toshiba Corp Bone conduction speaker system

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11582565B2 (en) 2014-01-06 2023-02-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
CN106470371B (en) * 2014-01-06 2018-02-27 深圳市韶音科技有限公司 A kind of bone-conduction speaker that can suppress to leak sound
CN106303861A (en) * 2014-01-06 2017-01-04 深圳市韶音科技有限公司 A kind of bone-conduction speaker that can suppress to leak sound
US12035108B2 (en) 2014-01-06 2024-07-09 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11582564B2 (en) 2014-01-06 2023-02-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
EP3606089A1 (en) * 2014-01-06 2020-02-05 Shenzhen Voxtech Co., Ltd Methods and systems for reducing sound leakage by a bone conduction speaker
US10848878B2 (en) 2014-01-06 2020-11-24 Shenzhen Voxtech Co., Ltd. Systems and methods for suppressing sound leakage
US11197106B2 (en) 2014-01-06 2021-12-07 Shenzhen Voxtech Co., Ltd. Systems and methods for suppressing sound leakage
US11297446B2 (en) 2014-01-06 2022-04-05 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11304011B2 (en) 2014-01-06 2022-04-12 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11363392B2 (en) 2014-01-06 2022-06-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11368800B2 (en) 2014-01-06 2022-06-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11368801B2 (en) 2014-01-06 2022-06-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11375324B2 (en) 2014-01-06 2022-06-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11418895B2 (en) 2014-01-06 2022-08-16 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11589171B2 (en) 2014-01-06 2023-02-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11463823B2 (en) 2014-01-06 2022-10-04 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11483666B2 (en) 2014-01-06 2022-10-25 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11533572B2 (en) 2014-01-06 2022-12-20 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11533571B2 (en) 2014-01-06 2022-12-20 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11546701B2 (en) 2014-01-06 2023-01-03 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11558698B2 (en) 2014-01-06 2023-01-17 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11570556B2 (en) 2014-01-06 2023-01-31 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11582563B2 (en) 2014-01-06 2023-02-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
EP3094103A4 (en) * 2014-01-06 2017-04-19 Shenzhen Voxtech Co., Ltd Method for suppressing sound leakage of bone conduction loudspeaker and bone conduction loudspeaker
CN106470371A (en) * 2014-01-06 2017-03-01 深圳市韶音科技有限公司 A kind of bone-conduction speaker that can suppress leakage sound
US12003922B2 (en) 2014-01-06 2024-06-04 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11617045B2 (en) 2014-01-06 2023-03-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11622211B2 (en) 2014-01-06 2023-04-04 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11622209B2 (en) 2014-01-06 2023-04-04 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11622212B2 (en) 2014-01-06 2023-04-04 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11627419B2 (en) 2014-01-06 2023-04-11 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11632637B2 (en) 2014-01-06 2023-04-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11632636B2 (en) 2014-01-06 2023-04-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11638105B2 (en) 2014-01-06 2023-04-25 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11991500B2 (en) 2014-01-06 2024-05-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11659341B2 (en) 2014-01-06 2023-05-23 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11706574B2 (en) 2014-01-06 2023-07-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11805375B2 (en) 2014-01-06 2023-10-31 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11832060B2 (en) 2014-01-06 2023-11-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11974097B2 (en) 2014-01-06 2024-04-30 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11917373B2 (en) 2014-01-06 2024-02-27 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11950055B2 (en) 2014-01-06 2024-04-02 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
CN106792296B (en) * 2017-03-13 2023-05-09 深圳市吸铁石科技有限公司 Resonance type transducer fixing device
CN106792296A (en) * 2017-03-13 2017-05-31 深圳市吸铁石科技有限公司 A kind of resonance type transducer fixing device
US11940670B2 (en) 2018-08-24 2024-03-26 Shenzhen Shokz Co., Ltd. Eyeglasses
US11906817B2 (en) 2018-08-24 2024-02-20 Shenzhen Shokz Co., Ltd. Eyeglasses
US12007625B2 (en) 2018-08-24 2024-06-11 Shenzhen Shokz Co., Ltd. Glasses
US12013596B2 (en) 2018-08-24 2024-06-18 Shenzhen Shokz Co., Ltd. Glasses
US11425481B2 (en) 2019-04-30 2022-08-23 Shenzhen Shokz Co., Ltd. Open earphone

Similar Documents

Publication Publication Date Title
JP2007251358A (en) Bone conduction speaker
KR100719195B1 (en) Acoustic vibration generating element
JP4511437B2 (en) Piezoelectric device for generating acoustic signals
JP4761459B2 (en) Piezoelectric vibration unit and piezoelectric speaker
JP4058462B2 (en) Audio transmission device and audio detection device
JP2007028469A (en) Acoustic vibration generating element, manufacturing method thereof, and acoustic vibration generating apparatus
WO2015146446A1 (en) Universal speaker
JP2009246954A (en) Earphone device
JP2007103989A (en) Receiver
JP2007104548A (en) Ear receiving device
KR102167455B1 (en) Mini bone conductive speaker
JP5939160B2 (en) Oscillator and electronic device
JP4219732B2 (en) Display terminal device with panel type speaker
JP2006005625A (en) Acoustic vibration generating device
JP2007036530A (en) Piezo-electric apparatus for generating acoustic signal
JP4237424B2 (en) Electroacoustic transducer
JP4701054B2 (en) Piezoelectric sounding body
JP2004080198A (en) Electroacoustic transducer
KR200404140Y1 (en) Piezo speaker
JP3909768B2 (en) Piezoelectric device for generating acoustic signals
JP2013078017A (en) Ultrasonic sounding body for parametric speaker
JP2007228610A (en) Acoustic vibration generating element
JP2021027506A (en) Electroacoustic conversion device
JP2006135924A (en) Piezoelectric sounding body and sounding apparatus using the same
JP2012142651A (en) Oscillation device and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Effective date: 20101020

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110406