JP5030013B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5030013B2
JP5030013B2 JP2007073384A JP2007073384A JP5030013B2 JP 5030013 B2 JP5030013 B2 JP 5030013B2 JP 2007073384 A JP2007073384 A JP 2007073384A JP 2007073384 A JP2007073384 A JP 2007073384A JP 5030013 B2 JP5030013 B2 JP 5030013B2
Authority
JP
Japan
Prior art keywords
fuel cell
scavenging
impedance
time
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007073384A
Other languages
English (en)
Other versions
JP2008235027A (ja
Inventor
健一郎 笹本
朋範 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007073384A priority Critical patent/JP5030013B2/ja
Publication of JP2008235027A publication Critical patent/JP2008235027A/ja
Application granted granted Critical
Publication of JP5030013B2 publication Critical patent/JP5030013B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は運転停止時に燃料電池内部を掃気する燃料電池システムに関する。
燃料電池スタックは、燃料ガス及び酸化ガスを膜−電極接合体に供給することにより電気化学反応を起こし、化学エネルギーを電気エネルギーに変換するためのエネルギー変換システムである。なかでも、固体高分子膜を電解質として用いる固体高分子電解質型燃料電池スタックは、低コストでコンパクト化が容易であり、しかも高い出力密度を有することから、車載電源としての用途が期待されている。
燃料電池のガス流路内部には、反応ガスの電気化学反応で生じた生成水や反応ガスを加湿するための加湿水などが残留しており、この残留水を放置したまま発電を停止すると、低温環境下では、残留水が凍結してしまい、膜−電極接合体への反応ガスの拡散が妨げられ、低温始動性が低下する。このような問題点に鑑み、特開2002−246053号公報には、運転停止時に燃料電池スタック内部に掃気ガスを供給することにより、水分を除去し、燃料電池スタックの交流インピーダンスを計測することにより、電解質膜の乾燥度合いを判断する手法が提案されている。
特開2002−246053号公報
しかし、掃気を開始する時点で測定した燃料電池スタックの交流インピーダンスと、掃気を開始してから所定時間経過後に測定した燃料電池スタックの交流インピーダンスとに基づいて掃気実施時間を推定する機能を有する燃料電池システムでは、後者の交流インピーダンスが前者の交流インピーダンスよりも小さい場合には、掃気実施時間を正確に推定することができず、掃気処理を終了するタイミングが不確定となる。このような問題は、掃気を開始する時点で測定した交流インピーダンスの値が正確なものでない場合にも生じ得る。
そこで、本発明は、上記の問題点を解決し、掃気実施時間を正確に推定できない場合のフェールセーフ処理を実施することのできる燃料電池システムを提案することを課題とする。
上記の課題を解決するため、本発明に係わる燃料電池システムは、燃料電池と、掃気開始時点で燃料電池の交流インピーダンスを測定するとともに、掃気開始時点から所定時間経過した時点で燃料電池の交流インピーダンスを測定する交流インピーダンス測定部と、掃気開始時点で測定した交流インピーダンス、掃気開始時点から所定時間経過した時点で測定した交流インピーダンス、及び所定時間に基づいて掃気実施時間を推定する掃気実施時間推定部と、掃気開始時点から所定時間経過した時点で測定した交流インピーダンスが掃気開始時点で測定した交流インピーダンスより小さい場合に、掃気処理を強制終了する異常処理部と、を備える。
掃気処理により燃料電池内部の乾燥度合いが進行する程、燃料電池の交流インピーダンスは高くなるので、掃気開始時点から所定時間経過した時点で測定した交流インピーダンスが掃気開始時点で測定した交流インピーダンスより小さいということは、何らかの異常が生じているものと判定できる。このような場合には、掃気実施時間を正確に推定できないので、掃気処理を強制的に終了するのが好ましい。
また、異常処理部は、掃気開始時点で測定した交流インピーダンスの値が正確な値でない場合には、掃気実施時間を正確に推定できないので、掃気処理を強制終了するのが好ましい。
また、異常処理部は、燃料ガス供給系に残留する燃料ガスの圧力が所定値未満のときには、交流インピーダンス測定のために燃料電池を発電させると、燃料電池が損傷を受ける虞があるので、掃気処理を強制終了するのが好ましい。
本発明に係わる燃料電池システムは、蓄電装置と、蓄電装置に蓄電されている直流電力を交流電力に変換して、交流インピーダンス測定用の交流信号を燃料電池に印加する電力変換手段とを更に備える。異常処理部は、蓄電装置の充電量が所定値未満のときには、蓄電装置の損傷を回避するため、掃気処理を強制終了するのが好ましい。
本発明によれば、掃気実施時間を正確に推定できない場合のフェールセーフ処理を実施することのできる燃料電池システムを提供できる。
以下、各図を参照しながら本発明に係わる実施形態について説明する。
図1は本実施形態に係わる燃料電池システム10のシステム構成を示す。
燃料電池システム10は、燃料電池車両に搭載される車載電源システムとして機能するものであり、反応ガス(燃料ガス、酸化ガス)の供給を受けて発電する燃料電池スタック20と、酸化ガスとしての空気を燃料電池スタック20に供給するための酸化ガス供給系30と、燃料ガスとしての水素ガスを燃料電池スタック20に供給するための燃料ガス供給系40と、電力の充放電を制御するための電力系50と、燃料電池スタック20を冷却するための冷却系60と、システム全体を制御する制御ユニット(ECU)90とを備えている。
燃料電池スタック20は、複数のセルを直列に積層してなる固体高分子電解質型セルスタックである。燃料電池スタック20では、アノード極において(1)式の酸化反応が生じ、カソード極において(2)式の還元反応が生じる。燃料電池スタック20全体としては(3)式の起電反応が生じる。
2 → 2H++2e- …(1)
(1/2)O2+2H++2e- → H2O …(2)
2+(1/2)O2 → H2O …(3)
燃料電池スタック20には、燃料電池スタック20の出力電圧を検出するための電圧センサ71、及び発電電流を検出するための電流センサ72が取り付けられている。
酸化ガス供給系30は、燃料電池スタック20のカソード極に供給される酸化ガスが流れる酸化ガス通路34と、燃料電池スタック20から排出される酸化オフガスが流れる酸化オフガス通路36とを有している。酸化ガス通路34には、フィルタ31を介して大気中から酸化ガスを取り込むエアコンプレッサ32と、燃料電池スタック20のカソード極へ供給される酸化ガスを加湿するための加湿器33と、酸化ガス供給量を調整するための絞り弁35が設けられている。酸化オフガス通路36には、酸化ガス供給圧を調整するための背圧調整弁37と、酸化ガス(ドライガス)と酸化オフガス(ウェットガス)との間で水分交換するための加湿器33とが設けられている。
燃料ガス供給系40は、燃料ガス供給源41と、燃料ガス供給源41から燃料電池スタック20のアノード極に供給される燃料ガスが流れる燃料ガス通路45と、燃料電池スタック20から排出される燃料オフガスを燃料ガス通路45に帰還させるための循環通路46と、循環通路46内の燃料オフガスを燃料ガス通路43に圧送する循環ポンプ47と、循環通路47に分岐接続される排気排水通路48とを有している。循環通路46には、燃料ガス供給系40の配管内の燃料ガス圧力を検出するための圧力センサ75が設けられている。
燃料ガス供給源41は、例えば、高圧水素タンクや水素吸蔵合金などで構成され、高圧(例えば、35MPa乃至70MPa)の水素ガスを貯留する。遮断弁42を開くと、燃料ガス供給源41から燃料ガス通路45に燃料ガスが流出する。燃料ガスは、レギュレータ43やインジェクタ44により、例えば、200kPa程度まで減圧されて、燃料電池スタック20に供給される。
尚、燃料ガス供給源41は、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、この改質器で生成した改質ガスを高圧状態にして蓄圧する高圧ガスタンクとから構成してもよい。
レギュレータ43は、その上流側圧力(一次圧)を、予め設定した二次圧に調圧する装置であり、例えば、一次圧を減圧する機械式の減圧弁などで構成される。機械式の減圧弁は、背圧室と調圧室とがダイアフラムを隔てて形成された筺体を有し、背圧室内の背圧により調圧室内で一次圧を所定の圧力に減圧して二次圧とする構成を有する。
インジェクタ44は、弁体を電磁駆動力で直接的に所定の駆動周期で駆動して弁座から離隔させることによりガス流量やガス圧を調整することが可能な電磁駆動式の開閉弁である。インジェクタ44は、燃料ガス等の気体燃料を噴射する噴射孔を有する弁座を備えるとともに、その気体燃料を噴射孔まで供給案内するノズルボディと、このノズルボディに対して軸線方向(気体流れ方向)に移動可能に収容保持され噴射孔を開閉する弁体とを備えている。
排気排水通路48には、排気排水弁49が配設されている。排気排水弁49は、制御ユニット90からの指令によって作動することにより、循環通路46内の不純物を含む燃料オフガスと水分とを外部に排出する。排気排水弁49の開弁により、循環通路46内の燃料オフガス中の不純物の濃度が下がり、循環系内を循環する燃料オフガス中の水素濃度を上げることができる。
排気排水弁49を介して排出される燃料オフガスは、酸化オフガス通路34を流れる酸化オフガスと混合され、希釈器(図示せず)によって希釈される。循環ポンプ47は、循環系内の燃料オフガスをモータ駆動により燃料電池スタック20に循環供給する。
電力系50は、DC/DCコンバータ51、バッテリ52、トラクションインバータ53、トラクションモータ54、及び補機類55を備えている。DC/DCコンバータ51は、バッテリ52から供給される直流電圧を昇圧してトラクションインバータ53に出力する機能と、燃料電池スタック20が発電した直流電力、又は回生制動によりトラクションモータ54が回収した回生電力を降圧してバッテリ52に充電する機能とを有する電力変換手段である。DC/DCコンバータ51のこれらの機能により、バッテリ52の充放電が制御される。また、DC/DCコンバータ51による電圧変換制御により、燃料電池スタック20の運転ポイント(出力電圧、出力電流)が制御される。
バッテリ52は、余剰電力の貯蔵源、回生制動時の回生エネルギー貯蔵源、燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして機能する。バッテリ52としては、例えば、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池、リチウム二次電池等の二次電池が好適である。バッテリ52には、バッテリ52の充電状態(State of charge)を検出するためのSOCセンサ73が取り付けられている。
トラクションインバータ53は、例えば、パルス幅変調方式で駆動されるPWMインバータであり、制御ユニット90からの制御指令に従って、燃料電池スタック20又はバッテリ52から出力される直流電圧を三相交流電圧に変換して、トラクションモータ54の回転トルクを制御する。トラクションモータ54は、例えば、三相交流モータであり、燃料電池車両の動力源を構成する。
補機類55は、燃料電池システム10内の各部に配置されている各モータ(例えば、ポンプ類などの動力源)や、これらのモータを駆動するためのインバータ類、更には各種の車載補機類(例えば、エアコンプレッサ、インジェクタ、冷却水循環ポンプ、ラジエータなど)を総称するものである。
冷却系60は、燃料電池スタック20内部を循環する冷媒を流すための冷媒通路61、62,63,64、冷媒を圧送するための循環ポンプ65、冷媒と外気との間で熱交換するためのラジエータ66、冷媒の循環経路を切り替えるための三方弁67、及び冷媒温度を検出するための温度センサ74を備えている。暖機運転が完了した後の通常運転時には燃料電池スタック20から流出する冷媒が冷媒通路61,64を流れてラジエータ66にて冷却された後、冷媒通路63を流れて再び燃料電池スタック20に流れ込むように三方弁67が開閉制御される。一方、システム起動直後における暖機運転時には、燃料電池スタック20から流出する冷媒が冷媒通路61,62,63を流れて再び燃料電池スタック20に流れ込むように三方弁67が開閉制御される。
制御ユニット90は、CPU、ROM、RAM、及び入出力インタフェース等を備えるコンピュータシステムであり、燃料電池システム10の各部(酸化ガス供給系30、燃料ガス供給系40、電力系50、及び冷却系60)を制御するための制御手段として機能する。例えば、制御ユニット90は、イグニッションスイッチから出力される起動信号IGを受信すると、燃料電池システム10の運転を開始し、アクセルセンサから出力されるアクセル開度信号ACCや、車速センサから出力される車速信号VCなどを基にシステム全体の要求電力を求める。
システム全体の要求電力は、車両走行電力と補機電力との合計値である。補機電力には車載補機類(加湿器、エアコンプレッサ、水素ポンプ、及び冷却水循環ポンプ等)で消費される電力、車両走行に必要な装置(変速機、車輪制御装置、操舵装置、及び懸架装置等)で消費される電力、乗員空間内に配設される装置(空調装置、照明器具、及びオーディオ等)で消費される電力などが含まれる。
そして、制御ユニット90は、燃料電池スタック20とバッテリ52とのそれぞれの出力電力の配分を決定し、発電指令値を演算するとともに、燃料電池スタック20の発電量が目標電力に一致するように、酸化ガス供給系30及び燃料ガス供給系40を制御する。更に制御ユニット90は、DC/DCコンバータ51を制御して、燃料電池スタック20の出力電圧を調整することにより、燃料電池スタック20の運転ポイント(出力電圧、出力電流)を制御する。制御ユニット90は、アクセル開度に応じた目標車速が得られるように、例えば、スイッチング指令として、U相、V相、及びW相の各交流電圧指令値をトラクションインバータ53に出力し、トラクションモータ54の出力トルク、及び回転数を制御する。
図2は燃料電池スタック20を構成するセル21の分解斜視図である。
セル21は、電解質膜22と、アノード極23と、カソード極24と、セパレータ26,27とから構成されている。アノード極23及びカソード極24は、電解質膜22を両側から挟んでサンドイッチ構造を成す拡散電極である。ガス不透過の導電性部材から構成されるセパレータ26,27は、このサンドイッチ構造をさらに両側から挟みつつ、アノード極23及びカソード極24との間にそれぞれ燃料ガス及び酸化ガスの流路を形成する。セパレータ26には、断面凹状のリブ26aが形成されている。リブ26aにアノード極23が当接することで、リブ26aの開口部は閉塞され、燃料ガス流路が形成される。セパレータ27には、断面凹状のリブ27aが形成されている。リブ27aにカソード極24が当接することで、リブ27aの開口部は閉塞され、酸化ガス流路が形成される。
アノード極23は、白金系の金属触媒(Pt,Pt−Fe,Pt−Cr,Pt−Ni,Pt−Ruなど)を担持するカーボン粉末を主成分とし、電解質膜22に接する触媒層23aと、触媒層23aの表面に形成され、通気性と電子導電性とを併せ持つガス拡散層23bとを有する。同様に、カソード極24は、触媒層24aとガス拡散層24bとを有する。より詳細には、触媒層23a,24aは、白金、又は白金と他の金属からなる合金を担持したカーボン粉を適当な有機溶媒に分散させ、電解質溶液を適量添加してペースト化し、電解質膜22上にスクリーン印刷したものである。ガス拡散層23b、24bは、炭素繊維から成る糸で織成したカーボンクロス、カーボンペーパー、又はカーボンフェルトにより形成されている。電解質膜22は、固体高分子材料、例えば、フッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を発揮する。電解質膜22、アノード極23、及びカソード極24によって膜−電極アッセンブリ25が形成される。
図3はセル21の電気的な特性を示す等価回路図である。
セル21の等価回路は、R2とCとの並列接続回路にR1が直列接続する回路構成を有している。ここで、R1は電解質膜22の電気抵抗に相当し、R2は活性化過電圧と拡散過電圧とを抵抗換算したものに相当している。Cはアノード電極23と電解質膜22との界面、及びカソード電極24と電解質膜22との界面に形成される電気二重層容量を示している。この等価回路に所定の周波数を有する正弦波電流を印加した場合、電流の変化に対して電圧の応答が遅れる。
図4は燃料電池スタック20の交流インピーダンスを複素平面上に表示したグラフである。横軸は交流インピーダンスの実数部を示し、縦軸は交流インピーダンスの虚数部を示している。ωは正弦波電流の角周波数である。
図3に示す等価回路に高周波から低周波までの正弦波信号を印加すると、図4に示すようなグラフが得られる。正弦波信号の周波数が無限に大きい場合(ω=∞)の交流インピーダンスは、R1となる。正弦波信号の周波数が非常に小さい場合(ω=0)の交流インピーダンスは、R1+R2となる。高周波から低周波の間で正弦波信号の周波数を変化させたときに得られる交流インピーダンスは、図4に示すような半円を描く。
このように、交流インピーダンス法を用いることで、燃料電池スタック20の等価回路におけるR1とR2を分離して計測することが可能となる。R1が予め定められた所定値より大きくなり、燃料電池スタック20の出力が低下している場合には、電解質膜22が乾燥して抵抗過電圧が大きくなり、導電率が低下していることが出力低下の原因と判断できる。R2が予め定められた所定値より大きくなり、燃料電池スタック20の出力が低下している場合には、電極表面に水が過剰に存在し、拡散過電圧が大きくなっていることが原因であると判断できる。
図5は掃気処理に係わる制御ユニット90の機能ブロックを示す。
制御ユニット90は、電圧指令部91、交流インピーダンス測定部92、測定メモリ93、掃気実施時間推定部94、及び異常処理部95を備える。
制御ユニット90による燃料電池スタック20の交流インピーダンス計測は、以下の手順により実施される。
(1)電圧指令部91は、所定の直流電圧に正弦波信号を重畳した電圧指令値を生成し、かかる電圧指令値をDC/DCコンバータ51に出力する。
(2)DC/DCコンバータ51は、電圧指令値に基づいて動作し、バッテリ52に蓄電されている直流電力を交流電力に変換して、燃料電池スタック20に正弦波信号を印加する。
(3)交流インピーダンス測定部92は、電圧センサ71によって検出される応答電圧と、電流センサ72によって検出される応答電流とを所定のサンプリングレートでサンプリングし、高速フーリエ変換処理(FFT処理)を行い、応答電圧と応答電流とをそれぞれ実成分と虚成分とに分割し、FFT処理した応答電圧をFFT処理した応答電流で除して交流インピーダンスの実成分と虚成分とを算出し、複素平面上での原点からの距離rと位相角θとを算出する。燃料電池スタック20に印加される正弦波信号の周波数を連続的に変化させながら応答電圧と応答電流を計測することで、燃料電池スタック20の交流インピーダンスを算出することができる。
尚、燃料電池スタック20を流れる電流は化学反応による電荷の移動を伴うため、交流信号の振幅を増大させると、供給ガス量に対する反応量(ガス利用率)が変動することになる。ガス利用率の変動があると、交流インピーダンスの測定に誤差が生じる虞があるので、交流インピーダンス測定の際に燃料電池スタック20に印加する信号の交流成分は、直流成分の数%程度が好ましい。
交流インピーダンス測定部92は、上記のようにして測定した交流インピーダンスの値を測定メモリ93に格納する。掃気実施時間推定部94は、測定メモリ93に格納されている交流インピーダンスの値に基づいて掃気実施時間を推定する。異常処理部95は、測定メモリ93に格納されている交流インピーダンスの値に基づいて異常処理(掃気処理を強制終了する処理)を実施する。
次に、図6乃至図7を参照しながら掃気実施時間を推定する方法について説明する。
図6は交流インピーダンスの時間変化を示すグラフである。横軸は時間を示し、縦軸は燃料電池スタック20の交流インピーダンスの値を示している。時刻t1は、イグニッションスイッチがオフになるタイミングを示している。時刻t0〜時刻t1では、燃料電池システム10は、発電状態にあり、交流インピーダンス測定部92は、燃料電池スタック20の交流インピーダンスを一定周期間隔で演算し、交流インピーダンスの値を測定メモリ93に格納する。このとき、測定メモリ93に格納される交流インピーダンスの値は、最新の値に逐次更新される。
時刻t1でイグニッションスイッチがオフになり、制御ユニット90に運転停止が指令されると、制御ユニット90は、時刻t1の時点で計測した交流インピーダンスの値Z1を測定メモリ93に格納し、掃気処理の実施を開始する。掃気処理は、掃気手段としてのエアコンプレッサ33を駆動し、燃料電池スタック20内部のガスチャンネルに掃気ガスとしての加圧エアを流すことにより、ガスチャンネル内部の湿潤状態を適度に調整するための処理である。ガスチャンネルに水分が多量に残存すると、次回の起動時の始動性が低下するだけでなく、低温環境下では、水分凍結により配管や弁などが破損する虞がある。一方、燃料電池スタック20内部の水分が不足気味であると、電解質膜22の伝導性が低下するので、発電効率の低下を引き起こす。このため掃気処理では、燃料電池スタック20内部が最適な湿潤状態となるときの交流インピーダンスを目標交流インピーダンスとして予め設定しておき、燃料電池スタック20の交流インピーダンスが目標交流インピーダンスに一致するための掃気実施時間を推定している。
掃気処理を開始してから時間T1が経過した時刻t2において、制御ユニット90は、燃料電池スタック20の交流インピーダンスZ2を計測し、測定メモリ93に格納されている最新の交流インピーダンスの値をZ1からZ2に更新する。時間T1としては、掃気実施時間の推定精度を向上させる観点から、できるだけ燃料電池スタック20内部の含水量が低下しているものと見込まれる時期が好ましい。かかる観点から、燃料電池スタック20の温度変化速度を検出し、その温度変化速度が所定の閾値を下回るまでの時間を時間T1としてもよく、或いは予め一定時間を時間T1としてもよい。掃気実施時間推定部94は、図7に示すように補完関数200を用いて、時刻t1の時点で計測した交流インピーダンスZ1、及び時刻t2の時点で計測した交流インピーダンスZ2に基づいて、交流インピーダンスが目標交流インピーダンスZ3に一致するために必要な掃気実施時間T2を推定する。
補完関数200は、図7に示すグラフにおいて、少なくとも二つの測定座標、例えば、(t1,Z1)及び(t2,Z2)に基づいて目標座標(t3,Z3)を推定するための関数であり、予め実験等によって求められている。補完関数200として、例えば、二次関数が好適である。二次関数の例として、例えば、tを時間、Zを交流インピーダンス、a及びZ0を正の定数として、Z=at2+Z0を挙げることができる。この二次関数に二つの測定座標を代入すると、定数a及びZ0の値が定まる。Z=Z3となるときのtの解が掃気完了時刻t3である。掃気実施時間T2=掃気完了時刻t3−掃気開始時刻t1より掃気実施時間T2を算出できる。
ここで、補完関数200により掃気実施時間T2を算出するためには、次の二つの条件が成立する必要がある。
測定座標(t1,Z1)及び(t2,Z2)を正確に測定できること。 …(1)
Z2>Z1であること。 …(2)
例えば、図8に示すように、時刻t2において測定した交流インピーダンスの値Z2が時刻t1において測定した交流インピーダンスの値Z1より小さい場合には、条件(2)を満たさないので、掃気実施時間T2を推定することができない。その理由は、燃料電池スタック20は、乾燥する程、交流インピーダンスの値が単調増加するので、補完関数200は、下に凸の二次関数となり、Z2<Z1となることは論理的にあり得ないためである。このような場合には、掃気実施時間T2を推定できないので、異常処理部95は、掃気処理を強制終了する。
また例えば、図9に示すように、交流インピーダンスの値が更新されない期間が所定時間T3以上継続したまま時刻t1を経過したときは、時刻t1での正確なZ1を測定できないので、条件(1)を満たさない。このような場合には、掃気実施時間T2を推定できないので、異常処理部95は、掃気処理を強制終了する。また、ノイズ等の影響により交流インピーダンスを正確に測定できない場合にも、掃気実施時間T2を誤推定することによる燃料電池スタック20の過乾燥を防止するため、掃気処理を強制終了するのが好ましい。
ところで、燃料電池スタック20の交流インピーダンスを測定するには、DC/DCコンバータ51を駆動して、バッテリ52に蓄電されている直流電力を交流電力に変換し、交流インピーダンス測定用の正弦波信号を燃料電池スタック20に印加する必要があるので、バッテリ52のSOCはある程度残存している必要がある。更に、燃料電池スタック20の交流インピーダンスを測定するには、燃料電池スタック20を一時的に発電させてその発電電流及び発電電圧を検出する必要があるので、燃料ガス通路45及び循環通路46には、ある程度の燃料ガスが残存していなければならない。
かかる事情に鑑み異常処理部95は、時刻t2において交流インピーダンスを測定するときに、圧力センサ75のセンサ出力値を読み取り、燃料ガス供給系40の配管内の燃料ガス圧力が所定値未満のときには、燃料ガス不足であると判定し、交流インピーダンスの測定を実施せずに直ちに掃気処理を中止するのが好ましい。燃料ガス不足のときに発電を実施すると、燃料電池スタック20が損傷する虞があるためである。同様に異常処理部95は、時刻t2において交流インピーダンスを測定するときに、SOCセンサ73のセンサ出力値を読み取り、SOCが所定値未満のときには、バッテリ52の充電不足であると判定し、交流インピーダンスの測定を実施せずに直ちに掃気処理を中止するのが好ましい。バッテリ52が充電不足のときにバッテリ52から電力を取り出すと、バッテリ52が損傷する虞があるためである。
尚、燃料ガス不足か否かを判定するための基準として、燃料ガス圧力の他に、燃料ガス状態(濃度など)を用いてもよい。
本実施形態によれば、掃気実施時間を正確に推定できない異常が発生した場合や、交流インピーダンスを測定できない状態に陥ったときには、フェールセーフ処理として、掃気処理を強制的に終了することで、燃料電池スタック20の過乾燥を回避するとともに、燃料電池システム10の損傷等を回避できる。
本実施形態に係わる燃料電池システムの構成図である。 セルの分解斜視図である。 セルの電気的特性を示す等価回路図である。 燃料電池スタックの交流インピーダンスを複素平面上に表示したグラフである。 掃気処理に係わる制御ユニットの機能ブロック図である。 交流インピーダンスの時間変化を示す説明図である。 交流インピーダンスと掃気実施時間との関係を示す説明図である。 交流インピーダンスの時間変化を示す説明図である。 交流インピーダンスの時間変化を示す説明図である。
符号の説明
10…燃料電池システム 20…燃料電池スタック 90…制御ユニット 91…電圧指令部 92…交流インピーダンス測定部 93…測定メモリ 94…掃気時間推定部 95…異常処理部

Claims (4)

  1. 燃料電池と、
    掃気開始時点で前記燃料電池の交流インピーダンスを測定するとともに、前記掃気開始時点から所定時間経過した時点で前記燃料電池の交流インピーダンスを測定する交流インピーダンス測定部と、
    前記掃気開始時点で測定した交流インピーダンス、前記掃気開始時点から所定時間経過した時点で測定した交流インピーダンス、及び前記所定時間に基づいて掃気実施時間を推定する掃気実施時間推定部と、
    前記掃気開始時点から所定時間経過した時点で測定した交流インピーダンスが前記掃気開始時点で測定した交流インピーダンスより小さい場合に、掃気処理を強制終了する異常処理部と、
    を備える燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記異常処理部は、掃気開始時点で測定した交流インピーダンスの値が正確な値でない場合に、掃気処理を強制終了する、燃料電池システム。
  3. 請求項1に記載の燃料電池システムであって、
    前記異常処理部は、燃料ガス供給系に残留する燃料ガスの圧力が所定値未満のときに、掃気処理を強制終了する、燃料電池システム。
  4. 請求項1に記載の燃料電池システムであって、
    蓄電装置と、
    前記蓄電装置に蓄電されている直流電力を交流電力に変換して、交流インピーダンス測定用の交流信号を前記燃料電池に印加する電力変換手段と、
    を更に備え、
    前記異常処理部は、前記蓄電装置の充電量が所定値未満のときに、掃気処理を強制終了する、燃料電池システム。
JP2007073384A 2007-03-20 2007-03-20 燃料電池システム Expired - Fee Related JP5030013B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073384A JP5030013B2 (ja) 2007-03-20 2007-03-20 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073384A JP5030013B2 (ja) 2007-03-20 2007-03-20 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2008235027A JP2008235027A (ja) 2008-10-02
JP5030013B2 true JP5030013B2 (ja) 2012-09-19

Family

ID=39907594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073384A Expired - Fee Related JP5030013B2 (ja) 2007-03-20 2007-03-20 燃料電池システム

Country Status (1)

Country Link
JP (1) JP5030013B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060706A1 (ja) * 2007-11-08 2009-05-14 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
JP4353299B2 (ja) 2007-12-14 2009-10-28 トヨタ自動車株式会社 電池学習システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509168B2 (ja) * 1994-02-23 2004-03-22 トヨタ自動車株式会社 燃料電池システム
JP4940640B2 (ja) * 2005-11-30 2012-05-30 株式会社デンソー 燃料電池システム
JP4935088B2 (ja) * 2006-01-27 2012-05-23 トヨタ自動車株式会社 燃料電池システム
CN101467295B (zh) * 2006-07-14 2012-04-04 丰田自动车株式会社 燃料电池系统

Also Published As

Publication number Publication date
JP2008235027A (ja) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4894608B2 (ja) 燃料電池システム
JP4868240B2 (ja) 燃料電池システム
JP4868239B2 (ja) 燃料電池システム
JP4591721B2 (ja) 燃料電池システム
JP4329043B2 (ja) 燃料電池システム
JP4492824B2 (ja) 燃料電池システム
US9853311B2 (en) Fuel cell system and fuel cell powered vehicle
JP4696643B2 (ja) 燃料電池システム、その制御方法及びそれを搭載した車両
JP5146639B2 (ja) 燃料電池システム
WO2013164873A1 (ja) 燃料電池システム
JP2008147139A (ja) 燃料電池システム
JP2013258038A (ja) 燃料電池システム及びその制御方法
JP5030013B2 (ja) 燃料電池システム
JP5083600B2 (ja) 燃料電池システム
JP4947362B2 (ja) 燃料電池システム
JP5057086B2 (ja) ポンプ駆動制御装置
JP4810872B2 (ja) 燃料電池システム
JP5773278B2 (ja) 燃料電池システム及びその制御方法
JP5229523B2 (ja) 燃料電池システム
JP6295575B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 5030013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees