JP5028930B2 - Focus detection apparatus and imaging apparatus - Google Patents

Focus detection apparatus and imaging apparatus Download PDF

Info

Publication number
JP5028930B2
JP5028930B2 JP2006264144A JP2006264144A JP5028930B2 JP 5028930 B2 JP5028930 B2 JP 5028930B2 JP 2006264144 A JP2006264144 A JP 2006264144A JP 2006264144 A JP2006264144 A JP 2006264144A JP 5028930 B2 JP5028930 B2 JP 5028930B2
Authority
JP
Japan
Prior art keywords
pair
focus detection
image
regions
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006264144A
Other languages
Japanese (ja)
Other versions
JP2008083456A (en
Inventor
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006264144A priority Critical patent/JP5028930B2/en
Publication of JP2008083456A publication Critical patent/JP2008083456A/en
Application granted granted Critical
Publication of JP5028930B2 publication Critical patent/JP5028930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Description

本発明は焦点検出装置および撮像装置に関する。   The present invention relates to a focus detection apparatus and an imaging apparatus.

マイクロレンズとその背後に配置された一対の受光部とからなる焦点検出画素を備えた撮像素子を光学系の予定焦点面に配置し、瞳分割位相差検出方式で光学系の焦点調節状態を検出する焦点検出装置が知られている(例えば、特許文献1参照)。   An image sensor equipped with a focus detection pixel consisting of a microlens and a pair of light-receiving units located behind it is placed on the planned focal plane of the optical system, and the focus adjustment state of the optical system is detected by the pupil division phase difference detection method. A focus detection apparatus is known (for example, see Patent Document 1).

この出願の発明に関連する先行技術文献としては次のものがある。
特開2005−148091号公報
Prior art documents related to the invention of this application include the following.
JP 2005-148091 A

上述した一実施の形態では、光学系の射出窓情報、焦点検出位置情報、光電変換部の受光強度分布に基づいてケラレによる一対の領域を通る焦点検出光束の重心を演算し、重心間隔に基づいてデフォーカス量を算出している。
しかしながら、このような方法で重心間隔の精度を高めようとすると、光学系の膨大なデータと複雑な演算処理が必要になり、構成の異なる種々の光学系に対応するのは困難である。
In the above-described embodiment, the center of gravity of the focus detection light beam passing through the pair of regions due to vignetting is calculated based on the exit window information of the optical system, the focus detection position information, and the received light intensity distribution of the photoelectric conversion unit, and based on the center of gravity interval. To calculate the defocus amount.
However, when trying to increase the accuracy of the center-of-gravity distance by such a method, enormous data of the optical system and complicated arithmetic processing are required, and it is difficult to cope with various optical systems having different configurations.

請求項1の発明による焦点検出装置は、光学系の射出瞳の第1の対の領域をそれぞれ通過する第1の対の光束によって形成される第1の対の像と、前記光学系の射出瞳の第2の対の領域をそれぞれ通過する第2の対の光束によって形成される第2の対の像とをそれぞれ受光し、前記第1の対の像及び第2の対の像にそれぞれ対応する第1の対の像信号及び第2の対の像信号を出力する第1の受光手段と、前記第1の対の像信号に基づき第1の像ズレ量と前記第2の対の像信号に基づき第2の像ズレ量とをそれぞれ検出する第1の像ズレ量検出手段と、前記第2の対の領域の重心間隔と前記第1の像ズレ量と前記第2の像ズレ量とに基づき、前記第1の対の領域の重心間隔を算出する第1の重心間隔算出手段と、前記第1の重心間隔算出手段によって算出された前記重心間隔と前記第1の像ズレ量とに基づき、デフォーカス量を算出するデフォーカス量算出手段と、を備え、前記第1の対の領域の重心間隔は、前記第2の対の領域の重心間隔よりも大きいことを特徴とする。
請求項7の発明による焦点検出装置は、光学系の射出瞳の一対の領域を通る一対の光束によって形成される一対の像を受光し、前記一対の像に対応する一対の像信号を出力する受光手段と、前記光学系の絞り開口を少なくとも第1の開口径と前記第1の開口径よりも小さい第2の開口径とに制御する絞り制御手段と、前記絞り制御手段によって前記絞り開口が前記第1の開口径に制御された時の前記一対の像信号に基づき第1の像ズレ量を検出し、前記絞り制御手段によって前記絞り開口が前記第2の開口径に制御された時の前記一対の像信号に基づき第2の像ズレ量を検出する像ズレ量検出手段と、前記絞り開口が前記第2の開口径に制御された時の前記一対の領域の重心間隔と前記第1の像ズレ量と前記第2の像ズレ量とに基づき、前記絞り開口が前記第1の開口径に制御された時の前記一対の領域の重心間隔を算出する重心間隔算出手段と、前記重心間隔算出手段によって算出された前記重心間隔と前記第1の像ズレ量とに基づき、デフォーカス量を算出するデフォーカス量算出手段と、を備えることを特徴とする。
請求項8の発明による焦点検出装置は、光学系の撮影画面内に、撮影画面中心から所定距離だけ離れた位置に前記撮影画面中心から放射方向に延びた第1の焦点検出エリアと前記第1の焦点検出エリアに直交するように延びた第2の焦点検出エリアとを有する焦点検出装置であって、前記第1の焦点検出エリアに対応する方向に配列され、前記光学系の射出瞳の第1の対の領域をそれぞれ通過する第1の対の光束によって形成される第1の対の像をそれぞれ受光し、前記第1の対の像に対応する第1の対の像信号を出力する第1の焦点検出画素列と、前記第2の焦点検出エリアに対応する方向に配列され、前記光学系の射出瞳の第2の対の領域をそれぞれ通過する第2の対の光束によって形成される第2の対の像をそれぞれ受光し、前記第2の対の像に対応する第2の対の像信号を出力する第2の焦点検出画素列とを有する第1の受光手段と、前記第1の対の像信号に基づき第1の像ズレ量と前記第2の対の像信号に基づき第2の像ズレ量とをそれぞれ検出する第1の像ズレ量検出手段と、前記第2の対の領域の重心間隔と前記第1の像ズレ量と前記第2の像ズレ量とに基づき、前記第1の対の領域の重心間隔を算出する第1の重心間隔算出手段と、前記第1の重心間隔算出手段によって算出された前記重心間隔と前記第2の像ズレ量とに基づき、デフォーカス量を算出するデフォーカス量算出手段と、を備えることを特徴とする。
According to a first aspect of the present invention, there is provided a focus detection apparatus including a first pair of images formed by a first pair of light beams respectively passing through a first pair of regions of an exit pupil of an optical system, and an exit of the optical system. A second pair of images formed by a second pair of luminous fluxes respectively passing through the second pair of pupil regions, respectively, and receiving the first pair of images and the second pair of images, respectively. A first light receiving means for outputting a corresponding first pair of image signals and a second pair of image signals, a first image shift amount and a second pair of image signals based on the first pair of image signals; A first image displacement amount detecting means for detecting a second image displacement amount based on the image signal; a center-of-gravity interval between the second pair of regions; the first image displacement amount; and the second image displacement amount. A first center-of-gravity interval calculation unit that calculates a center-of-gravity interval of the first pair of regions based on the amount; and Defocus amount calculation means for calculating a defocus amount based on the calculated centroid interval and the first image shift amount, and the centroid interval between the first pair of regions It is characterized by being larger than the distance between the centers of gravity of the two pairs of regions.
A focus detection apparatus according to a seventh aspect of the invention receives a pair of images formed by a pair of light beams passing through a pair of regions of an exit pupil of an optical system, and outputs a pair of image signals corresponding to the pair of images. A light receiving means; a diaphragm control means for controlling the diaphragm aperture of the optical system to at least a first aperture diameter and a second aperture diameter smaller than the first aperture diameter; and A first image shift amount is detected based on the pair of image signals when the first aperture diameter is controlled, and when the aperture opening is controlled to the second aperture diameter by the aperture control means. An image shift amount detecting means for detecting a second image shift amount based on the pair of image signals, a center-of-gravity distance between the pair of regions when the stop aperture is controlled to the second aperture diameter, and the first Based on the image shift amount of the second image shift amount and the second image shift amount. A center-of-gravity interval calculating unit that calculates a center-of-gravity interval between the pair of regions when the aperture is controlled to the first aperture diameter; and the center-of-gravity interval calculated by the center-of-gravity interval calculating unit and the first image shift. And a defocus amount calculating means for calculating a defocus amount based on the amount.
According to an eighth aspect of the present invention, there is provided a focus detection apparatus including a first focus detection area extending in a radial direction from the center of the photographing screen at a position separated from the center of the photographing screen by a predetermined distance within the photographing screen of the optical system. A focus detection device having a second focus detection area extending perpendicular to the focus detection area of the optical system, arranged in a direction corresponding to the first focus detection area, Each of the first pair of images formed by the first pair of light fluxes passing through each of the pair of regions is received, and a first pair of image signals corresponding to the first pair of images is output. A first focus detection pixel array and a second pair of light fluxes arranged in a direction corresponding to the second focus detection area and respectively passing through a second pair of regions of the exit pupil of the optical system. Receiving a second pair of images respectively, A first light receiving means having a second focus detection pixel column for outputting a second pair of image signals corresponding to the pair of images, and a first image shift amount based on the first pair of image signals; A first image displacement amount detecting means for detecting a second image displacement amount based on the second pair of image signals, a center-of-gravity interval between the second pair of regions, and the first image displacement amount; Based on the second image shift amount, a first centroid interval calculating unit that calculates a centroid interval between the first pair of regions, the centroid interval calculated by the first centroid interval calculating unit, and the Defocus amount calculation means for calculating a defocus amount based on the second image shift amount.

本発明によれば、光学系の膨大なデータと複雑な演算処理を必要とせず、像ズレ量をデフォーカス量に変換するための変換係数を簡単な演算で正確に求めることができる上に、構成の異なる種々の光学系にも容易に対応できる。   According to the present invention, it is possible to accurately obtain a conversion coefficient for converting an image shift amount into a defocus amount with a simple calculation without requiring enormous data and complicated calculation processing of the optical system. It is possible to easily cope with various optical systems having different configurations.

本願発明の一実施の形態による撮像装置をデジタルスチルカメラに適用した例を説明する。図1は一実施の形態の構成を示す。一実施の形態のデジタルスチルカメラ201は交換レンズ202とカメラボディ203から構成され、交換レンズ202はマウント部204によりカメラボディ203に装着される。   An example in which the imaging apparatus according to an embodiment of the present invention is applied to a digital still camera will be described. FIG. 1 shows the configuration of an embodiment. A digital still camera 201 according to an embodiment includes an interchangeable lens 202 and a camera body 203, and the interchangeable lens 202 is attached to the camera body 203 by a mount unit 204.

交換レンズ202はレンズ駆動制御装置206、ズーミング用レンズ208、レンズ209、フォーカシング用レンズ210、絞り211などを備えている。レンズ駆動制御装置206は、マイクロコンピューターとメモリなどの周辺部品から成り、フォーカシング用レンズ210と絞り211の駆動制御、絞り211、ズーミング用レンズ208およびフォーカシング用レンズ210の状態検出、後述するボディ駆動制御装置214に対するレンズ情報の送信とカメラ情報の受信などを行う。   The interchangeable lens 202 includes a lens drive control device 206, a zooming lens 208, a lens 209, a focusing lens 210, a diaphragm 211, and the like. The lens drive control device 206 includes peripheral components such as a microcomputer and a memory. The lens drive control device 206 controls driving of the focusing lens 210 and the aperture 211, detects the state of the aperture 211, the zooming lens 208 and the focusing lens 210, and body drive control described later. Transmission of lens information to the device 214 and reception of camera information are performed.

カメラボディ203は撮像素子212、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212には後述する画素が二次元状に配列されており、交換レンズ202の予定結像面に配置されて交換レンズ202により結像される被写体像を撮像する。なお、詳細を後述するが撮像素子212の所定の焦点検出位置には焦点検出用画素が配列される。   The camera body 203 includes an imaging element 212, a body drive control device 214, a liquid crystal display element drive circuit 215, a liquid crystal display element 216, an eyepiece lens 217, a memory card 219, and the like. Pixels, which will be described later, are arranged in a two-dimensional manner on the imaging element 212, and are arranged on the planned imaging plane of the interchangeable lens 202 to capture a subject image formed by the interchangeable lens 202. Although details will be described later, focus detection pixels are arranged at predetermined focus detection positions of the image sensor 212.

ボディ駆動制御装置214はマイクロコンピューターとメモリなどの周辺部品から構成され、撮像素子212からの画像信号の読み出し、画像信号の補正、交換レンズ202の焦点調節状態の検出、レンズ駆動制御装置206からのレンズ情報の受信とカメラ情報(デフォーカス量)の送信、ディジタルスチルカメラ全体の動作制御などを行う。ボディ駆動制御装置214とレンズ駆動制御装置206は、マウント部204の電気接点部213を介して通信を行い、各種情報の授受を行う。   The body drive control device 214 includes a microcomputer and peripheral components such as a memory. The body drive control device 214 reads the image signal from the image sensor 212, corrects the image signal, detects the focus adjustment state of the interchangeable lens 202, and outputs from the lens drive control device 206. It receives lens information, transmits camera information (defocus amount), and controls the operation of the entire digital still camera. The body drive control device 214 and the lens drive control device 206 communicate via the electrical contact portion 213 of the mount portion 204 to exchange various information.

液晶表示素子駆動回路215は、電子ビューファインダー(EVF:電気的ビューファインダー)の液晶表示素子216を駆動する。撮影者は接眼レンズ217を介して液晶表示素子216に表示された像を観察することができる。メモリカード219はカメラボディ203に脱着可能であり、画像信号を格納記憶する可搬記憶媒体である。   The liquid crystal display element driving circuit 215 drives a liquid crystal display element 216 of an electronic viewfinder (EVF: electric viewfinder). The photographer can observe an image displayed on the liquid crystal display element 216 via the eyepiece lens 217. The memory card 219 is removable from the camera body 203 and is a portable storage medium that stores and stores image signals.

交換レンズ202を通過して撮像素子212上に形成された被写体像は、撮像素子212により光電変換され、その出力はボディ駆動制御装置214へ送られる。ボディ駆動制御装置214は、撮像素子212上の焦点検出画素の出力データに基づいて所定の焦点検出位置におけるデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は、撮像素子212の出力に基づいて生成した画像信号をメモリカード219に格納するとともに、画像信号を液晶表示素子駆動回路215へ送り、液晶表示素子216に画像を表示させる。   The subject image formed on the image sensor 212 through the interchangeable lens 202 is photoelectrically converted by the image sensor 212 and the output is sent to the body drive controller 214. The body drive control device 214 calculates a defocus amount at a predetermined focus detection position based on the output data of the focus detection pixels on the image sensor 212, and sends this defocus amount to the lens drive control device 206. The body drive control device 214 stores an image signal generated based on the output of the image sensor 212 in the memory card 219 and sends the image signal to the liquid crystal display element drive circuit 215 to display an image on the liquid crystal display element 216. Let

カメラボディ203には不図示の操作部材(シャッターボタン、焦点検出位置の設定部材など)が設けられており、これらの操作部材からの操作状態信号をボディ駆動制御装置214が検出し、検出結果に応じた動作(撮像動作、焦点検出位置の設定動作、画像処理動作)の制御を行う。   The camera body 203 is provided with operation members (not shown) (shutter buttons, focus detection position setting members, etc.), and the body drive control device 214 detects operation state signals from these operation members. The corresponding operations (imaging operation, focus detection position setting operation, image processing operation) are controlled.

レンズ駆動制御装置206はレンズ情報をフォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じて変更する。具体的には、レンズ駆動制御装置206は、レンズ208、210の位置と絞り211の絞り位置をモニターし、モニター情報に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからモニター情報に応じたレンズ情報を選択する。レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、このレンズ駆動量に基づいてフォーカシングレンズ210を不図示のモーター等の駆動源により合焦点へと駆動する。   The lens drive control device 206 changes the lens information according to the focusing state, zooming state, aperture setting state, aperture opening F value, and the like. Specifically, the lens drive control device 206 monitors the positions of the lenses 208 and 210 and the diaphragm position of the diaphragm 211, calculates lens information according to the monitor information, or monitors from a lookup table prepared in advance. Select lens information according to the information. The lens drive control device 206 calculates a lens drive amount based on the received defocus amount, and drives the focusing lens 210 to a focal point by a drive source such as a motor (not shown) based on the lens drive amount.

図2は撮像画面上の焦点検出位置、すなわち後述する焦点検出画素列が焦点検出の際に撮影画面上で被写体像をサンプリングする領域(焦点検出エリア)を示す。撮像画面100上の中央を挟んだ水平方向の左右に、焦点検出エリア101、102が配置される。長方形で示した焦点検出エリア101、102の長手方向に焦点検出画素が直線的に配列される。2つの焦点検出エリア101、102は、画面中央を中心とした所定半径の円周103上に位置される。   FIG. 2 shows a focus detection position on the imaging screen, that is, a region (focus detection area) where a subject image is sampled on the shooting screen when a focus detection pixel row described later performs focus detection. Focus detection areas 101 and 102 are arranged on the left and right in the horizontal direction across the center on the imaging screen 100. Focus detection pixels are linearly arranged in the longitudinal direction of the focus detection areas 101 and 102 indicated by rectangles. The two focus detection areas 101 and 102 are located on a circumference 103 having a predetermined radius centered on the center of the screen.

図3は撮像素子212の詳細な構成を示す正面図であり、撮像素子212上のひとつの焦点検出エリア近傍を拡大した図である。撮像素子212は、撮像画素310、第1焦点検出画素311および第2焦点検出画素312から構成される。撮像画素310は、図4に示すようにマイクロレンズ10、光電変換部11、不図示の色フィルタから構成される。色フィルタは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの分光感度は図7に示すものとなっている。各色フィルタを備えた撮像画素310がベイヤー配列されている。   FIG. 3 is a front view showing a detailed configuration of the image sensor 212, and is an enlarged view of the vicinity of one focus detection area on the image sensor 212. The imaging element 212 includes an imaging pixel 310, a first focus detection pixel 311, and a second focus detection pixel 312. As shown in FIG. 4, the imaging pixel 310 includes a microlens 10, a photoelectric conversion unit 11, and a color filter (not shown). There are three types of color filters, red (R), green (G), and blue (B), and the respective spectral sensitivities are as shown in FIG. An imaging pixel 310 having each color filter is arranged in a Bayer array.

第1焦点検出画素311は、図5に示すようにマイクロレンズ10、一対の光電変換部12,13から構成される。また、第2焦点検出画素312は、図6に示すようにマイクロレンズ10、一対の光電変換部14,15から構成される。第1焦点検出画素311と第2焦点検出画素312には光量をかせぐために色フィルタを設けておらず、その分光特性は光電変換を行うフォトダイオードの分光感度、赤外カットフィルタ(不図示)の分光特性を総合した分光特性(図8参照)となる。この分光特性は図7に示す緑画素、赤画素、青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素、青画素の感度の光波長領域を包括している。   The first focus detection pixel 311 includes a microlens 10 and a pair of photoelectric conversion units 12 and 13 as shown in FIG. The second focus detection pixel 312 includes a microlens 10 and a pair of photoelectric conversion units 14 and 15 as shown in FIG. The first focus detection pixel 311 and the second focus detection pixel 312 are not provided with a color filter in order to increase the amount of light, and the spectral characteristics thereof are the spectral sensitivity of a photodiode that performs photoelectric conversion, and the infrared cut filter (not shown). Spectral characteristics (see FIG. 8) are obtained by combining the spectral characteristics. This spectral characteristic is a spectral characteristic obtained by adding the spectral characteristics of the green pixel, the red pixel, and the blue pixel shown in FIG. 7, and the light wavelength region of the sensitivity is the light wavelength region of the sensitivity of the green pixel, the red pixel, and the blue pixel. It is comprehensive.

撮像画素310の光電変換部11は、マイクロレンズ10により、明るい交換レンズの射出瞳(例えばF1.0)を通過する光束をすべて受光するような形状に設計される。一方、第1焦点検出画素311の一対の光電変換部12、13は、マイクロレンズ10により、交換レンズの特定の射出瞳(例えばF2.8)を通過する光束をすべて受光するような形状に設計される。また、第2焦点検出画素312の一対の光電変換部14、15は、マイクロレンズ10により、第1焦点検出画素311の一対の光電変換部12、13より光電変換部の並び方向で暗いF値(F8)を通過する光束を受光するような形状に設計される。   The photoelectric conversion unit 11 of the imaging pixel 310 is designed in such a shape that the microlens 10 receives all the light beams that pass through the exit pupil (for example, F1.0) of a bright interchangeable lens. On the other hand, the pair of photoelectric conversion units 12 and 13 of the first focus detection pixel 311 are designed so that the microlens 10 receives all the light beams passing through a specific exit pupil (for example, F2.8) of the interchangeable lens. Is done. The pair of photoelectric conversion units 14 and 15 of the second focus detection pixel 312 is darker in the arrangement direction of the photoelectric conversion units than the pair of photoelectric conversion units 12 and 13 of the first focus detection pixel 311 by the microlens 10. The shape is designed so as to receive the light beam passing through (F8).

図3に示すように、二次元状に配置された撮像画素310にはRGBのベイヤー配列の色フィルタが備えられる。第1焦点検出画素311と第2焦点検出画素312は、撮像画素310のBとGが配置されるべき行に直線的にギャップなしで密に配置されている。第1焦点検出画素311と第2焦点検出画素312を撮像画素310のBとGが配置されるべき行に配置することによって、後述する画素補間により第1焦点検出画素311と第2焦点検出画素312の位置の画素信号を補正する場合に、多少誤差が生じても人間の眼には目立たなくすることができる。この理由は、人間の目には青より赤のほうが敏感であることと、緑画素の密度が青画素と赤画素より高いので、緑画素の1画素の欠陥に対する寄与が小さいためである。第1焦点検出画素311の配列と第2焦点検出画素312の配列は、焦点検出エリアの中央に平行して配列される。   As shown in FIG. 3, the imaging pixels 310 arranged in a two-dimensional manner are provided with color filters of RGB Bayer arrangement. The first focus detection pixels 311 and the second focus detection pixels 312 are densely arranged linearly without gaps in the rows where the B and G of the imaging pixels 310 are to be arranged. By disposing the first focus detection pixel 311 and the second focus detection pixel 312 in the row where B and G of the imaging pixel 310 are to be disposed, the first focus detection pixel 311 and the second focus detection pixel are performed by pixel interpolation described later. When the pixel signal at the position 312 is corrected, even if there is some error, it can be made inconspicuous to the human eye. This is because red is more sensitive to human eyes than blue, and the density of green pixels is higher than that of blue and red pixels, so the contribution of a green pixel to a single pixel defect is small. The first focus detection pixel 311 and the second focus detection pixel 312 are arranged in parallel to the center of the focus detection area.

図9は撮像画素310の断面を示す。撮像画素310において、撮像用の光電変換部11の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部11が前方に投影される。光電変換部11は半導体回路基板29上に形成される。不図示の色フィルタはマイクロレンズ10と光電変換部11の中間に配置される。   FIG. 9 shows a cross section of the imaging pixel 310. In the imaging pixel 310, the microlens 10 is disposed in front of the photoelectric conversion unit 11 for imaging, and the photoelectric conversion unit 11 is projected forward by the microlens 10. The photoelectric conversion unit 11 is formed on the semiconductor circuit substrate 29. A color filter (not shown) is disposed between the microlens 10 and the photoelectric conversion unit 11.

図10は第1焦点検出画素311および第2焦点検出画素312の断面を示す。第1焦点検出画素311(第2焦点検出画素312)において、焦点検出用の光電変換部12、13(14、15)の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部12、13(14、15)が前方に投影される。光電変換部12、13(14、15)は半導体回路基板29上に形成される。また、不図示のフィルタはマイクロレンズ10と光電変換部12、13(14、15)の中間に配置される。   FIG. 10 shows a cross section of the first focus detection pixel 311 and the second focus detection pixel 312. In the first focus detection pixel 311 (second focus detection pixel 312), the microlens 10 is disposed in front of the focus detection photoelectric conversion units 12 and 13 (14, 15), and the microlens 10 causes the photoelectric conversion unit 12, 13 (14, 15) is projected forward. The photoelectric conversion units 12 and 13 (14 and 15) are formed on the semiconductor circuit substrate 29. A filter (not shown) is disposed between the microlens 10 and the photoelectric conversion units 12 and 13 (14 and 15).

次に、図11によりマイクロレンズを用いた瞳分割方式による焦点検出方法について説明する。図11において、90は、交換レンズの予定結像面に配置されたマイクロレンズの前方dの距離に設定された射出瞳である。ここで、距離dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部の間の距離などに応じて決まる距離であって、以下では測距瞳距離と呼ぶ。なお、この測距瞳距離dは、交換レンズ群の射出瞳面の平均的な位置あるいはその近傍の位置に合わせるように設定される。   Next, a focus detection method based on a pupil division method using a microlens will be described with reference to FIG. In FIG. 11, reference numeral 90 denotes an exit pupil set at a distance d in front of the microlens arranged on the planned imaging plane of the interchangeable lens. Here, the distance d is a distance determined according to the curvature and refractive index of the microlens, the distance between the microlens and the photoelectric conversion unit, and is hereinafter referred to as a distance measuring pupil distance. The distance measuring pupil distance d is set so as to match the average position of the exit pupil plane of the interchangeable lens group or a position in the vicinity thereof.

91は交換レンズの光軸、50、60はマイクロレンズ、52と53および62と63は焦点検出画素の対の光電変換部、72,73、82,83は焦点検出光束である。また、92はマイクロレンズ50、60により投影された光電変換部52,62の領域(測距瞳と呼ぶ)、93はマイクロレンズ50、60により投影された光電変換部53,63の領域(測距瞳)である。   Reference numeral 91 denotes an optical axis of the interchangeable lens, 50 and 60 are microlenses, 52 and 53 and 62 and 63 are photoelectric conversion units of a pair of focus detection pixels, and 72, 73, 82, and 83 are focus detection light beams. Reference numeral 92 denotes an area of the photoelectric conversion units 52 and 62 projected by the microlenses 50 and 60 (referred to as a distance measuring pupil), and 93 denotes an area of the photoelectric conversion units 53 and 63 projected by the microlenses 50 and 60 (measurement). Distance pupil).

なお、図11では、光軸91上にある焦点検出画素(マイクロレンズ50と一対の光電変換部52、53からなる)と、隣接する焦点検出画素(マイクロレンズ60と一対の光電変換部62、63からなる)を模式的に例示するが、その他の焦点検出用画素においても、一対の光電変換部はそれぞれ一対の測距瞳から各マイクロレンズに到来する光束を受光する。なお、焦点検出画素の配列方向は一対の測距瞳の並び方向と一致させる。   In FIG. 11, a focus detection pixel (consisting of a microlens 50 and a pair of photoelectric conversion units 52 and 53) on the optical axis 91 and an adjacent focus detection pixel (a microlens 60 and a pair of photoelectric conversion units 62, 63). In other focus detection pixels as well, the pair of photoelectric conversion units receive light beams that arrive at the microlenses from the pair of distance measuring pupils. The arrangement direction of the focus detection pixels is made to coincide with the arrangement direction of the pair of distance measuring pupils.

マイクロレンズ50、60は光学系の予定結像面近傍に配置されており、光軸91上に配置されたマイクロレンズ50により、その背後に配置された一対の光電変換部52、53の形状がマイクロレンズ50、60から投影距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳92,93を形成する。また、光軸91から離間して配置されたマイクロレンズ60により、その背後に配置された一対の光電変換部62、63の形状が投影距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳92,93を形成する。すなわち、投影距離d0にある射出瞳90上で各焦点検出画素の光電変換部の投影形状(測距瞳92,93)が一致するように、各画素の投影方向が決定されている。   The microlenses 50 and 60 are disposed in the vicinity of the planned imaging plane of the optical system, and the shape of the pair of photoelectric conversion units 52 and 53 disposed behind the microlens 50 disposed on the optical axis 91 is formed. Projection is performed on an exit pupil 90 separated from the microlenses 50 and 60 by a projection distance d, and the projection shape forms distance measurement pupils 92 and 93. Further, the microlens 60 disposed away from the optical axis 91 projects the shape of the pair of photoelectric conversion units 62 and 63 disposed behind the microlens 60 onto the exit pupil 90 separated by the projection distance d. The shape forms distance measuring pupils 92 and 93. That is, the projection direction of each pixel is determined so that the projection shape (ranging pupils 92 and 93) of the photoelectric conversion unit of each focus detection pixel matches on the exit pupil 90 at the projection distance d0.

光電変換部52は測距瞳92を通過し、マイクロレンズ50に向う焦点検出光束72によりマイクロレンズ50上に形成される像の強度に対応した信号を出力する。光電変換部53は測距瞳93を通過し、マイクロレンズ50に向う焦点検出光束73によりマイクロレンズ50上に形成される像の強度に対応した信号を出力する。光電変換部62は測距瞳92を通過し、マイクロレンズ60に向う焦点検出光束82によりマイクロレンズ60上に形成される像の強度に対応した信号を出力する。光電変換部63は測距瞳93を通過し、マイクロレンズ60に向う焦点検出光束83によりマイクロレンズ60上に形成される像の強度に対応した信号を出力する。   The photoelectric conversion unit 52 passes through the distance measuring pupil 92 and outputs a signal corresponding to the intensity of the image formed on the microlens 50 by the focus detection light beam 72 directed to the microlens 50. The photoelectric conversion unit 53 passes through the distance measuring pupil 93 and outputs a signal corresponding to the intensity of the image formed on the microlens 50 by the focus detection light beam 73 directed to the microlens 50. The photoelectric conversion unit 62 outputs a signal corresponding to the intensity of the image formed on the microlens 60 by the focus detection light beam 82 passing through the distance measuring pupil 92 and directed to the microlens 60. The photoelectric conversion unit 63 outputs a signal corresponding to the intensity of the image formed on the microlens 60 by the focus detection light beam 83 passing through the distance measuring pupil 93 and directed to the microlens 60.

このような焦点検出用画素を直線状に多数配置し、各画素の一対の光電変換部の出力を測距瞳92および測距瞳93に対応した出力グループにまとめることによって、測距瞳92と測距瞳93を各々通過する焦点検出光束が焦点検出画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理および位相差検出処理)を施すことによって、いわゆる瞳分割位相差検出方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を行うことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。   A large number of such focus detection pixels are arranged in a straight line, and the output of the pair of photoelectric conversion units of each pixel is collected into an output group corresponding to the distance measurement pupil 92 and the distance measurement pupil 93, thereby Information on the intensity distribution of the pair of images formed on the focus detection pixel array by the focus detection light fluxes that pass through the distance measuring pupil 93 is obtained. By applying image shift detection calculation processing (correlation calculation processing and phase difference detection processing) to be described later to this information, the image shift amounts of a pair of images are detected by a so-called pupil division phase difference detection method. Further, by performing a conversion operation according to the center-of-gravity interval of the pair of distance measuring pupils on the image shift amount, the current imaging plane with respect to the planned imaging plane (the focal point corresponding to the position of the microlens array on the planned imaging plane) The deviation (defocus amount) of the imaging plane at the detection position is calculated.

なお、上記説明では測距瞳が絞り開口によって制限されていない状態として説明を行ったが、実際は測距瞳が絞り開口やそのほかの開口制限要素(レンズ外形、フードなど)によって制限された形状、大きさになる。   In the above description, the distance measurement pupil is described as being not limited by the aperture opening, but in reality, the distance detection pupil is limited by the aperture opening and other aperture limiting elements (lens outer shape, hood, etc.) It becomes size.

図12および図13は、射出瞳面における光電変換部の投影関係を示す正面図である。図12において、第1焦点検出画素311(図5参照)から一対の光電変換部12、13をマイクロレンズにより射出瞳面90に投影した測距瞳922,933の外接円は、結像面から見た場合に所定の開口F値(測距瞳F値という。ここではF2.8)となる。破線で示す領域901は、絞り値F2.8よりも開口径が大きな絞り値、例えばF2に対応した領域を示し、測距瞳922,933を内部に包含する。   12 and 13 are front views showing the projection relationship of the photoelectric conversion unit on the exit pupil plane. In FIG. 12, the circumscribed circle of the distance measuring pupils 922 and 933 obtained by projecting the pair of photoelectric conversion units 12 and 13 from the first focus detection pixel 311 (see FIG. 5) onto the exit pupil plane 90 by the microlens is from the imaging plane. When viewed, a predetermined aperture F value (referred to as a distance measuring pupil F value, here F2.8) is obtained. A region 901 indicated by a broken line indicates a region corresponding to an aperture value having an aperture diameter larger than the aperture value F2.8, for example, F2, and includes the distance measuring pupils 922 and 933 therein.

測距瞳922、933の並び方向(図では水平方向)において、測距瞳922、933を通過する光束(焦点検出光束)の重心952,953の間隔G1は、測距瞳922、933を通過する光束(焦点検出光束)によって予定焦点面に形成される一対の像の像ズレ量(光軸と垂直な面内のズレ量)を光軸方向のズレ量(デフォーカス量)に変換する際の変換パラメータとなる。交換レンズの絞り値が測距瞳F値2.8より大きくなると、一対の焦点検出光束の重心間隔G1が変化する。また、焦点検出エリアの位置が画面周辺にある場合には、絞り以外の開口制限要素によって焦点検出光束が制限され、一対の焦点検出光束の重心間隔G1が変化する。   The distance G1 between the centroids 952 and 953 of the light beams (focus detection light beams) passing through the distance measuring pupils 922 and 933 in the direction in which the distance measuring pupils 922 and 933 are aligned (horizontal direction in the figure) passes through the distance measuring pupils 922 and 933. When the amount of image misalignment (the amount of misalignment in the plane perpendicular to the optical axis) of a pair of images formed on the intended focal plane by the light beam (focus detection beam) is converted into the amount of misalignment in the optical axis direction (defocus amount) Conversion parameters. When the aperture value of the interchangeable lens becomes larger than the distance measuring pupil F value 2.8, the center-of-gravity distance G1 of the pair of focus detection light beams changes. Further, when the position of the focus detection area is in the periphery of the screen, the focus detection light beam is limited by an aperture limiting element other than the stop, and the center-of-gravity interval G1 of the pair of focus detection light beams changes.

一方、図13において、第2焦点検出画素312(図6参照)から一対の光電変換部14、15をマイクロレンズ10により射出瞳面90に投影した測距瞳924,935の外接円は、結像面から見た場合に所定の開口F値となる。この開口F値は、測距瞳の並び方向の測距瞳の幅に対応し、以下では測距瞳F値という。この一実施の形態ではF8とする。破線で示す領域901は、絞り値F2.8よりも開口径が大きな絞り値、例えばF2に対応した領域を示し、測距瞳924,935を内部に包含する。   On the other hand, in FIG. 13, the circumscribed circles of the distance measuring pupils 924 and 935 obtained by projecting the pair of photoelectric conversion units 14 and 15 from the second focus detection pixel 312 (see FIG. 6) onto the exit pupil plane 90 by the microlens 10 are connected. A predetermined aperture F value is obtained when viewed from the image plane. This aperture F value corresponds to the width of the distance measuring pupil in the direction in which the distance measuring pupils are arranged, and is hereinafter referred to as the distance measuring pupil F value. In this embodiment, it is F8. A region 901 indicated by a broken line indicates a region corresponding to an aperture value having an aperture diameter larger than the aperture value F2.8, for example, F2, and includes the distance measuring pupils 924 and 935 therein.

測距瞳924,935の並び方向(図では水平方向)において、測距瞳924、935を通過する光束(焦点検出光束)の重心952,953の間隔G2は、測距瞳924、935を通過する光束(焦点検出光束)によって予定焦点面に形成される一対の像の像ズレ量(光軸と垂直な面内のズレ量)を光軸方向のズレ量(デフォーカス量)に変換する際の変換パラメータとなる。交換レンズの絞り値が測距瞳F値8より小さい場合には、一対の焦点検出光束の重心間隔G2は一定である。また、測距瞳F値が大きいので、焦点検出エリアの位置が画面周辺にある場合でも絞り以外の開口制限要素によって焦点検出光束が制限されず、一対の焦点検出光束の重心間隔G2が変化しない。   The distance G2 between the centroids 952 and 953 of the light beams (focus detection light beams) passing through the distance measurement pupils 924 and 935 in the direction in which the distance measurement pupils 924 and 935 are arranged (horizontal direction in the figure) passes through the distance measurement pupils 924 and 935. When the amount of image misalignment (the amount of misalignment in the plane perpendicular to the optical axis) of a pair of images formed on the intended focal plane by the light beam (focus detection beam) is converted into the amount of misalignment in the optical axis direction (defocus amount) Conversion parameters. When the aperture value of the interchangeable lens is smaller than the distance measuring pupil F value 8, the center-of-gravity interval G2 between the pair of focus detection light beams is constant. Further, since the distance measurement pupil F value is large, even when the position of the focus detection area is in the periphery of the screen, the focus detection light beam is not limited by the aperture limiting element other than the diaphragm, and the center-of-gravity interval G2 of the pair of focus detection light beams does not change. .

図14は、画面周辺の焦点検出位置における焦点検出画素の像信号の強度分布(光量)を縦軸、焦点検出画素の位置を横軸にとって示したものである。焦点検出光束にケラレが生じていない場合には、一対の像データ400,401は、図14(a)に示すように、同一の像データ波形が単に横にシフトしたものとなっている。焦点検出光束にケラレが発生すると、測距瞳を通る焦点検出光束の量が焦点検出位置および焦点検出位置内での位置偏差によって変化し、一対の像データ402,403は図14(b)のようになり、同一のデータを相対的にシフトしたものにはならない。   FIG. 14 shows the intensity distribution (light quantity) of the image signal of the focus detection pixel at the focus detection position around the screen on the vertical axis and the position of the focus detection pixel on the horizontal axis. When vignetting does not occur in the focus detection light beam, the pair of image data 400 and 401 are obtained by simply shifting the same image data waveform horizontally as shown in FIG. When the vignetting occurs in the focus detection light beam, the amount of the focus detection light beam passing through the distance measuring pupil changes depending on the focus detection position and the position deviation within the focus detection position, and the pair of image data 402 and 403 is shown in FIG. Thus, the same data is not relatively shifted.

図15は、図1に示すデジタルスチルカメラ(撮像装置)の動作を示すフローチャートである。ボディ駆動制御部214は、ステップ100でカメラの電源が投入されるとステップ110以下の動作を繰り返し実行する。ステップ110において、不図示の測光装置によって測光した被写界輝度に応じて自動的に決定された撮影絞り値、あるいは不図示の操作部材によってユーザーが手動で設定した撮影絞り値に応じた絞り制御情報をレンズ駆動制御装置206へ送り、絞り開口径を撮影絞り値に設定する。さらに、この絞り開口径にて撮像画素のデータを間引き読み出しし、電子ビューファインダーに表示させる。   FIG. 15 is a flowchart showing the operation of the digital still camera (imaging device) shown in FIG. When the camera is turned on in step 100, the body drive control unit 214 repeatedly executes the operations in and after step 110. In step 110, aperture control according to a shooting aperture value automatically determined according to the field luminance measured by a photometry device (not shown) or manually set by a user using an operation member (not shown). Information is sent to the lens drive controller 206, and the aperture diameter is set to the photographing aperture value. Further, the image pickup pixel data is read out with this aperture diameter, and displayed on the electronic viewfinder.

ステップ120では、絞り開口径が撮影絞り値に設定された状態で、選択された焦点検出エリアに対応する焦点検出画素列からデータを読み出す。なお、焦点検出エリアはユーザーが不図示の選択部材を操作して選択する。ステップ130で、焦点検出画素列から読み出した一対の像データに基づいて後述する像ズレ検出演算処理(相関演算処理)を行い、像ズレ量を演算し、さらにデフォーカス量を算出する。ステップ140で合焦近傍か否か、つまり算出されたデフォーカス量の絶対値が所定値以内か否かを判別する。   In step 120, data is read from the focus detection pixel array corresponding to the selected focus detection area in a state where the aperture diameter is set to the photographing aperture value. The focus detection area is selected by the user by operating a selection member (not shown). In step 130, an image shift detection calculation process (correlation calculation process), which will be described later, is performed based on a pair of image data read from the focus detection pixel array, an image shift amount is calculated, and a defocus amount is further calculated. In step 140, it is determined whether or not the focus is close, that is, whether or not the calculated absolute value of the defocus amount is within a predetermined value.

合焦近傍でないと判別された場合はステップ150へ進み、デフォーカス量をレンズ駆動制御装置206へ送信し、交換レンズ202のフォーカシングレンズ210を合焦位置に駆動させ、ステップ110へ戻って上記動作を繰り返す。なお、焦点検出不能な場合もこのステップに分岐し、レンズ駆動制御装置206にスキャン駆動命令を送信し、交換レンズ202のフォーカシングレンズ210を無限から至近までの間でスキャン駆動させ、ステップ110へ戻って上記動作を繰り返す。   If it is determined that it is not near the focus, the process proceeds to step 150, the defocus amount is transmitted to the lens drive control device 206, the focusing lens 210 of the interchangeable lens 202 is driven to the focus position, and the process returns to step 110 to perform the above operation. repeat. Even when focus detection is impossible, the process branches to this step, a scan drive command is transmitted to the lens drive control device 206, and the focusing lens 210 of the interchangeable lens 202 is driven to scan from infinity to the closest position, and the process returns to step 110. Repeat the above operation.

一方、合焦近傍であると判別された場合はステップ160へ進み、不図示のレリーズボタンの操作によりシャッターレリーズがなされたか否かを判別し、なされていないと判別された場合はステップ110へ戻って上記動作を繰り返す。一方、シャッターレリーズがなされたと判定された場合はステップ170へ進み、レンズ駆動制御装置206へ絞り制御情報を送信し、交換レンズ202の絞り値を撮影絞り値にする。絞り制御が終了した時点で撮像素子212に撮像動作を行わせ、撮像素子212の撮像画素301およびすべての焦点検出画素311、312から画像データを読み出す。   On the other hand, if it is determined that the focus is close, the process proceeds to step 160, where it is determined whether a shutter release has been performed by operating a release button (not shown), and if it is determined that the shutter release has not been performed, the process returns to step 110. Repeat the above operation. On the other hand, if it is determined that the shutter release has been performed, the process proceeds to step 170, where aperture control information is transmitted to the lens drive control unit 206, and the aperture value of the interchangeable lens 202 is set to the photographing aperture value. When the aperture control is completed, the image sensor 212 performs an imaging operation, and image data is read from the image pickup pixel 301 and all the focus detection pixels 311 and 312 of the image pickup element 212.

ステップ180において、焦点検出画素列の各画素位置の画素データを焦点検出画素のデータおよび周囲の撮像画素のデータに基づいて補間する。続くステップ190では、撮像画素のデータおよび補間されたデータからなる画像データをメモリーカード219に保存し、ステップ110へ戻って上記動作を繰り返す。   In step 180, the pixel data at each pixel position in the focus detection pixel array is interpolated based on the focus detection pixel data and the surrounding imaging pixel data. In the subsequent step 190, image data composed of the imaged pixel data and the interpolated data is stored in the memory card 219, and the process returns to step 110 to repeat the above operation.

図16は、図15のステップ130における像ズレ量演算処理の詳細を示すフローチャートである。ステップ200において、焦点検出エリア101における第1焦点検出画素列のデータおよび第2焦点検出画素列のデータ、焦点検出エリア102における第1焦点検出画素列のデータおよび第2焦点検出画素列のデータに対し、それぞれ焦点検出演算処理(相関演算処理)を行い、焦点検出エリア101の第1焦点検出画素列のデータに対応した像ズレ量x11、焦点検出エリア101の第2焦点検出画素列のデータに対応した像ズレ量x12、焦点検出エリア102の第1焦点検出画素列のデータに対応した像ズレ量x21、焦点検出エリア101の第2焦点検出画素列のデータに対応した像ズレ量x22を算出する。   FIG. 16 is a flowchart showing details of the image shift amount calculation processing in step 130 of FIG. In step 200, the data of the first focus detection pixel row and the data of the second focus detection pixel row in the focus detection area 101, the data of the first focus detection pixel row and the data of the second focus detection pixel row in the focus detection area 102 are displayed. On the other hand, focus detection calculation processing (correlation calculation processing) is performed, and the image shift amount x11 corresponding to the data of the first focus detection pixel row in the focus detection area 101 and the data of the second focus detection pixel row in the focus detection area 101 are respectively obtained. The corresponding image shift amount x12, the image shift amount x21 corresponding to the data of the first focus detection pixel row in the focus detection area 102, and the image shift amount x22 corresponding to the data of the second focus detection pixel row in the focus detection area 101 are calculated. To do.

ここで、焦点検出演算処理(相関演算処理)について説明する。図17は、図16のステップ200における焦点検出演算処理の詳細を示すフローチャートである。ステップ300で焦点検出演算処理(相関演算処理)を開始し、ステップ310において、焦点検出画素列から出力される一対のデータ列(α1〜αM、β1〜β:Mはデータ数)に対し(1)式に示す高周波カットフィルタ処理を施し、第1データ列、第2データ列(A1〜AN、B1〜BN)を生成する。この高周波数カットフィルター処理により、データ列から相関処理に悪影響を及ぼすノイズ成分や高周波成分を除去することができる。なお、演算時間の短縮を図る場合や、すでに大きくデフォーカスしていて高周波成分が少ないことがわかっている場合には、ステップ310の処理を省略することもできる。
An=αn+2・αn+1+αn+2,
Bn=βn+2・βn+1+βn+2 ・・・(1)
(1)式において、n=1〜Nである。
Here, focus detection calculation processing (correlation calculation processing) will be described. FIG. 17 is a flowchart showing details of the focus detection calculation process in step 200 of FIG. In step 300, focus detection calculation processing (correlation calculation processing) is started. In step 310, (1 to α1 for a pair of data sequences (α1 to αM, β1 to β: M is the number of data) output from the focus detection pixel sequence. ) To generate a first data string and a second data string (A1 to AN, B1 to BN). By this high frequency cut filter processing, noise components and high frequency components that adversely affect the correlation processing can be removed from the data string. Note that the processing in step 310 can be omitted when the calculation time is to be shortened or when it is already known that there is a small amount of high-frequency components since the focus has been greatly defocused.
An = αn + 2, αn + 1 + αn + 2,
Bn = βn + 2 · βn + 1 + βn + 2 (1)
In the formula (1), n = 1 to N.

ステップ320では、データ列An、Bnに対し(2)式に示す相関演算を行い、相関量C(k)を演算する。
C(k)=Σ|An・Bn+1+k−Bn+k・An+1| ・・・(2)
(2)式において、Σ演算はnについて累積される。また、nのとる範囲はずらし量kに応じてAn、An+1、Bn+k、Bn+1+kのデータが存在する範囲に限定される。ずらし量kは整数であり、データ列のデータ間隔を単位とした相対的シフト量である。(2)式の相関演算により、2つのデータ列間にゲイン差がある場合(図14(b)参照)においても正確に像ズレ検出が可能になる。
In step 320, the correlation calculation shown in the equation (2) is performed on the data strings An and Bn, and the correlation amount C (k) is calculated.
C (k) = Σ | An · Bn + 1 + k−Bn + k · An + 1 | (2)
In equation (2), Σ operations are accumulated for n. Further, the range taken by n is limited to a range in which data of An, An + 1, Bn + k, and Bn + 1 + k exist according to the shift amount k. The shift amount k is an integer and is a relative shift amount with the data interval of the data string as a unit. The correlation calculation of equation (2) enables accurate image shift detection even when there is a gain difference between the two data strings (see FIG. 14B).

ステップ330において、上記(2)式の演算結果は、図18(a)に示すように、一対のデータの相関が高いシフト量(図18(a)ではk=kj=2)において相関量C(k)が極小(小さいほど相関度が高い)になる。(3)式〜(6)式に示す3点内挿の手法を用いて連続的な相関量に対する極小値C(k)を与えるシフト量xを求める。
x=kj+D/SLOP ・・・(3),
C(k)= C(kj)−|D| ・・・(4),
D={C(kj-1)−C(kj+1)}/2 ・・・(5),
SLOP=MAX{C(kj+1)−C(kj)),C(kj-1)−C(kj)} ・・・(6)
In step 330, the calculation result of the above equation (2) is obtained as shown in FIG. 18A when the correlation amount C is obtained when the pair of data has a high correlation amount (k = kj = 2 in FIG. 18A). (k) becomes the minimum (the smaller the value, the higher the degree of correlation). The shift amount x that gives the minimum value C (k) with respect to the continuous correlation amount is obtained using the three-point interpolation method shown in the equations (3) to (6).
x = kj + D / SLOP (3),
C (k) = C (kj) − | D | (4),
D = {C (kj-1) -C (kj + 1)} / 2 (5),
SLOP = MAX {C (kj + 1) -C (kj)), C (kj-1) -C (kj)} (6)

(3)式で算出されたずらし量xの信頼性があるかどうかは、以下のようにして判定される。図18(b)に示すように、一対のデータの相関度が低い場合は、内挿された相関量の極小値C(x)の値が大きくなる。したがって、C(x)が所定の閾値以上の場合は算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいは、C(x)をデータのコントラストで規格化するために、コントラストに比例した値となるSLOPでC(x)を除した値が所定値以上の場合は、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいはまた、コントラストに比例した値となるSLOPが所定値以下の場合は、被写体が低コントラストであり、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。   Whether or not the shift amount x calculated by the equation (3) is reliable is determined as follows. As shown in FIG. 18B, when the degree of correlation between a pair of data is low, the value of the minimal value C (x) of the interpolated correlation amount is large. Accordingly, when C (x) is equal to or greater than a predetermined threshold value, it is determined that the calculated shift amount has low reliability, and the calculated shift amount x is canceled. Alternatively, in order to normalize C (x) with the contrast of data, when the value obtained by dividing C (x) by SLOP that is proportional to the contrast is equal to or greater than a predetermined value, the reliability of the calculated shift amount Is determined to be low, and the calculated shift amount x is canceled. Alternatively, when SLOP that is a value proportional to the contrast is equal to or less than a predetermined value, it is determined that the subject has low contrast and the reliability of the calculated shift amount is low, and the calculated shift amount x is canceled.

図18(c)に示すように、一対のデータの相関度が低く、シフト範囲kmin〜kmaxの間で相関量C(k)の落ち込みがない場合は、極小値C(x)を求めることができず、このような場合は焦点検出不能と判定する。図17のステップ340で焦点検出演算処理(相関演算処理)を終了しリターンする。   As shown in FIG. 18C, when the correlation between the pair of data is low and there is no drop in the correlation amount C (k) between the shift ranges kmin to kmax, the minimum value C (x) is obtained. In such a case, it is determined that the focus cannot be detected. In step 340 of FIG. 17, the focus detection calculation process (correlation calculation process) is terminated and the process returns.

なお、ステップ320において次の(7)式または(8)式に示す相関演算を行い、相関量C(k)を演算してもよい。
C(k)=Σ|An/An+1−Bn+k/Bn+1+k| ・・・(7)
(7)式において、Σ演算はnについて累積される。また、nのとる範囲はずらし量kに応じてAn、An+1、Bn+k、Bn+1+kのデータが存在する範囲に限定される。
C(k)=Σ|An−Bn+k| ・・・(8)
(8)式において、Σ演算はnについて累積される。また、nのとる範囲はずらし量kに応じてAn、Bn+kのデータが存在する範囲に限定される。
Note that the correlation amount C (k) may be calculated in step 320 by performing the correlation calculation shown in the following equation (7) or (8).
C (k) = Σ | An / An + 1−Bn + k / Bn + 1 + k | (7)
In equation (7), the Σ operation is accumulated for n. Further, the range taken by n is limited to a range in which data of An, An + 1, Bn + k, and Bn + 1 + k exist according to the shift amount k.
C (k) = Σ | An−Bn + k | (8)
In the equation (8), the Σ operation is accumulated for n. Further, the range taken by n is limited to a range in which data of An and Bn + k exist according to the shift amount k.

ふたたび図16へ戻って説明を続ける。ステップ210において、4つの像ズレ量x11、x12、x21、x22に基づいて、図12に示す第1焦点検出画素に対応した測距瞳922,933の重心間隔G1を補正し、補正重心間隔G1’とする。   Returning to FIG. 16 again, the description will be continued. In step 210, based on the four image shift amounts x11, x12, x21, x22, the center of gravity G1 of the distance measuring pupils 922, 933 corresponding to the first focus detection pixels shown in FIG. 'And.

ここで、測距瞳の重心間隔、像ズレ量、デフォーカス量の関係を説明する。図19および図20は、射出瞳面における一対の光電変換部投影関係を示す正面図である。図12および図13において、第1焦点検出画素311(図5参照)に対応する測距瞳922、933、および第2焦点検出画素312(図6参照)に対応する測距瞳924、935は、交換レンズの絞り開口に対応する領域901によりけられていない状態であった。図19および図20では、第1焦点検出画素311(図5参照)に対応する測距瞳922、933、および第2焦点検出画素312(図6参照)に対応する測距瞳924、935が、絞りF値が大きな交換レンズの絞り開口に対応する領域902によりけられた状態を示している。   Here, the relationship among the center-of-gravity interval of the distance measurement pupil, the image shift amount, and the defocus amount will be described. 19 and 20 are front views showing a pair of photoelectric conversion unit projection relationships on the exit pupil plane. In FIG. 12 and FIG. 13, distance measurement pupils 922 and 933 corresponding to the first focus detection pixel 311 (see FIG. 5) and distance measurement pupils 924 and 935 corresponding to the second focus detection pixel 312 (see FIG. 6) are shown. The area 901 corresponding to the aperture opening of the interchangeable lens was not removed. 19 and 20, distance measuring pupils 922 and 933 corresponding to the first focus detection pixel 311 (see FIG. 5) and distance measurement pupils 924 and 935 corresponding to the second focus detection pixel 312 (see FIG. 6) are provided. In addition, a state in which the aperture is set by a region 902 corresponding to the aperture opening of the interchangeable lens having a large aperture F value is illustrated.

図19において、測距瞳922,933の外接円より領域902が小さくなっており(領域902の大きさに対応する絞り値が第1焦点検出画素の測距瞳F値より大きい)、領域902によって制限された測距瞳922,933を通過する光束(焦点検出光束)の重心962,963の間隔はG1’となる。   In FIG. 19, the area 902 is smaller than the circumscribed circle of the distance measurement pupils 922 and 933 (the aperture value corresponding to the size of the area 902 is larger than the distance detection pupil F value of the first focus detection pixel), and the area 902 The distance between the centroids 962 and 963 of the light beam (focus detection light beam) passing through the distance measuring pupils 922 and 933 limited by is G1 ′.

図20において、領域902によって制限された測距瞳924,935を通過する光束(焦点検出光束)の重心954,955の間隔G2は、領域902の大きさに対応する絞り値が第2焦点検出画素の測距瞳F値より小さな場合には測距瞳924,935がけられていない場合と比べて変化しない。   In FIG. 20, the distance G2 between the centroids 954 and 955 of the light beam (focus detection light beam) passing through the distance measuring pupils 924 and 935 limited by the region 902 has an aperture value corresponding to the size of the region 902 as the second focus detection. When the distance measurement pupil F value of the pixel is smaller, there is no change compared to the case where the distance measurement pupils 924 and 935 are not provided.

図21は画面周辺における測距瞳のケラレを説明する図である。図19および図20では、単純に射出瞳面90における絞り開口径が小さくなったことによって測距瞳にケラレが生じた場合であるが、絞り開口径が小さくなる以外にも測距瞳にケラレが生じる場合がある。図21に示すように、焦点検出エリアの位置が予定焦点面P0に設定された画面周辺のSにある場合、射出瞳面90にある絞り開口径によって測距瞳92,93にケラレが生じていないが、射出瞳面90より遠方にある面99に存在する開口制限要素98によって測距瞳92にケラレが生じる。   FIG. 21 is a diagram for explaining vignetting of the distance measuring pupil around the screen. FIGS. 19 and 20 show a case where vignetting occurs in the distance measuring pupil simply because the aperture diameter of the exit pupil plane 90 is reduced. However, in addition to the aperture diameter becoming smaller, vignetting occurs in the distance measuring pupil. May occur. As shown in FIG. 21, when the position of the focus detection area is in S around the screen set to the planned focal plane P0, vignetting occurs in the distance measuring pupils 92 and 93 due to the aperture diameter of the exit pupil plane 90. Although there is no vignetting, the distance measuring pupil 92 is vignetted by the aperture limiting element 98 existing on the surface 99 farther from the exit pupil surface 90.

図22および図23は、図21に示す状態における射出瞳面の投影関係を示す正面図である。図22および図23においては、図12および図13に示す状態に開口制限要素98に対応した領域903を付け加えた状態を示している。図22において、測距瞳922が領域903によりけられており、領域903によって制限された測距瞳922を通過する光束(焦点検出光束)の重心972は、けられていない場合の重心952より中心によっている。一方、測距瞳933は領域903によりけられず、測距瞳922を通過する光束(焦点検出光束)の重心953の位置は変化しない。したがって、測距瞳重心972と953の間隔はケラレが生じていない場合の重心間隔G1より狭い重心間隔G1’となる。   22 and 23 are front views showing the projection relationship of the exit pupil plane in the state shown in FIG. 22 and 23 show a state in which a region 903 corresponding to the opening restricting element 98 is added to the state shown in FIGS. 12 and 13. In FIG. 22, the distance measuring pupil 922 is positioned by the area 903, and the center of gravity 972 of the light beam (focus detection light beam) passing through the distance measuring pupil 922 restricted by the area 903 is greater than the center of gravity 952 when not being positioned. It depends on the center. On the other hand, the distance measuring pupil 933 is not displaced by the region 903, and the position of the center of gravity 953 of the light beam (focus detection light beam) passing through the distance measuring pupil 922 does not change. Therefore, the distance between the distance measurement pupil centroids 972 and 953 is a centroid distance G1 'narrower than the centroid distance G1 when no vignetting occurs.

図23において、測距瞳F値が大きいため領域903によって測距瞳924,935にはケラレが生じない。したがって、測距瞳924,935を通過する光束(焦点検出光束)の重心954,955の間隔G2は変化しない。   In FIG. 23, since the distance measurement pupil F value is large, the area 903 causes no vignetting in the distance measurement pupils 924 and 935. Accordingly, the distance G2 between the centroids 954 and 955 of the light beam (focus detection light beam) passing through the distance measuring pupils 924 and 935 does not change.

図24は測距瞳重心間隔と像ズレ量の関係を示す図である。予定焦点面P0の前方にある射出瞳面90において、測距瞳重心間隔G1’である一対の焦点検出光束が、予定焦点面P0の前方d0にある面P3に合焦している場合、予定焦点面P0における像ズレ量はx1となる。一方、射出瞳面90において、測距瞳重心間隔G2である一対の焦点検出光束が、予定焦点面P0の前方d0にある面P3に合焦している場合、予定焦点面P0における像ズレ量はx2となる。   FIG. 24 is a diagram showing a relationship between the distance measurement pupil center of gravity interval and the image shift amount. In the exit pupil plane 90 in front of the planned focal plane P0, when the pair of focus detection light fluxes having the distance measurement center of gravity G1 ′ is focused on the plane P3 in front of the planned focal plane P0 d0, The amount of image shift at the focal plane P0 is x1. On the other hand, in the exit pupil plane 90, when the pair of focus detection light fluxes that are the distance measurement pupil center-of-gravity interval G2 is focused on the plane P3 that is in front d0 of the planned focal plane P0, the image shift amount on the planned focal plane P0. Becomes x2.

図25は像ズレ量からデフォーカス量への変換を説明するための図である。図において、402,403は測距瞳の重心、P0は予定焦点面、P1は予定焦点面P0を基準として射出瞳面90と反対方向に離れた面、P2は予定焦点面P0を基準として射出瞳面90方向に寄った面である。面P1が合焦面であった場合は、測距瞳の重心402,403を通る光線の予定焦点面でのズレ量はxP1となる。なお、ズレ量は、重心403を通る光線の位置を基準として紙面の上方向を+とする。面P2が合焦面であった場合は、測距瞳の重心402,403を通る光線の予定焦点面でのズレ量はxP2となる。   FIG. 25 is a diagram for explaining conversion from an image shift amount to a defocus amount. In the figure, 402 and 403 are the center of gravity of the distance measuring pupil, P0 is the planned focal plane, P1 is a plane away from the exit pupil plane 90 with respect to the planned focal plane P0, and P2 is exited with the planned focal plane P0 as the reference. It is a surface close to the pupil plane 90 direction. When the plane P1 is the in-focus plane, the amount of deviation of the ray passing through the center of gravity 402, 403 of the distance measuring pupil at the planned focal plane is xP1. Note that the amount of misalignment is defined as + in the upward direction on the paper with reference to the position of the light beam passing through the center of gravity 403. When the plane P2 is the in-focus plane, the amount of deviation of the ray passing through the center of gravity 402, 403 of the distance measuring pupil at the planned focal plane is xP2.

面P1,P2の予定焦点面P0に対するデフォーカス量はdP1、dP2となる。ここでは、デフォーカス量は予定焦点面P0を基準として射出瞳面90方向を+とする。一般に、像ズレ量x、重心間隔G、測距瞳距離dとすると、デフォーカス量Dは次式で求められる。
D=x・d/(G+x) ・・・(9)
Defocus amounts of the planes P1 and P2 with respect to the planned focal plane P0 are dP1 and dP2. Here, the defocus amount is + in the direction of the exit pupil plane 90 with reference to the planned focal plane P0. In general, assuming that the image shift amount x, the center-of-gravity distance G, and the distance measurement pupil distance d, the defocus amount D is obtained by the following equation.
D = x · d / (G + x) (9)

ふたたび図16に戻り、ステップ210の説明を続ける。重心間隔G2については設計値あるいは測定値により予め定めて記憶されている。ケラレが発生した場合の重心間隔G1’については、交換レンズの種類やフォーカシング状態、ズーミング状態、フードの有無などの条件によって複雑に変化するため、測定値や設計値を記憶しておいあたり、計算で求めることは実用的には不可能である。そこで、4つの像ズレ量x11、x12、x21、x22および重心間隔G2より演算により求める。   Returning again to FIG. 16, the description of step 210 will be continued. The center-of-gravity distance G2 is stored in advance by design values or measured values. The center-of-gravity distance G1 'when vignetting occurs changes in a complex manner depending on conditions such as the type of interchangeable lens, the focusing state, the zooming state, and the presence or absence of a hood. It is impossible in practice to find it. Therefore, the four image shift amounts x11, x12, x21, x22 and the center-of-gravity interval G2 are obtained by calculation.

図24に示すように、同一の焦点検出エリアにおいては2つの像ズレ量x11、x12およびx21、x22は、同一のデフォーカス量(焦点検出エリア101のデフォーカス量D1、焦点検出エリア102のデフォーカス量D2)となるはずである。また、2つの焦点検出エリアの位置は画面上で光軸を中心とした同心円上にあるので、2つの焦点検出エリアにおける焦点検出光束のケラレも同一の状態で発生する。   As shown in FIG. 24, in the same focus detection area, the two image shift amounts x11, x12 and x21, x22 are the same defocus amount (defocus amount D1 of the focus detection area 101, defocus amount of the focus detection area 102). The focus amount D2) should be obtained. Further, since the positions of the two focus detection areas are on concentric circles with the optical axis as the center on the screen, the vignetting of the focus detection light beams in the two focus detection areas also occurs in the same state.

(9)式により、像ズレ量x11、x12およびx21、x22からデフォーカス量D1、D2を求めると以下の式になる。
D1=x11・d/(G1’+x11)=x12・d/(G2+x12) ・・(10)
D2=x21・d/(G1’+x21)=x22・d/(G2+x22) ・・(11)
(10)式、(11)式を変形して重心間隔G1’を求める。ここでは、便宜的に(10)式から求めた重心間隔G1’をG11’とし、(11)式から求めた重心間隔G1’をG12’とする。
G11’=(G2+x12)・x11/x12−x11 ・・・(12)
G12’=(G2+x22)・x21/x22−x21 ・・・(13)
When the defocus amounts D1 and D2 are obtained from the image shift amounts x11 and x12 and x21 and x22 by the equation (9), the following equation is obtained.
D1 = x11 · d / (G1 ′ + x11) = x12 · d / (G2 + x12) (10)
D2 = x21 · d / (G1 ′ + x21) = x22 · d / (G2 + x22) (11)
The center-of-gravity interval G1 ′ is obtained by modifying Expressions (10) and (11). Here, for the sake of convenience, the center-of-gravity interval G1 ′ obtained from the equation (10) is G11 ′, and the center-of-gravity interval G1 ′ obtained from the equation (11) is G12 ′.
G11 ′ = (G2 + x12) · x11 / x12−x11 (12)
G12 ′ = (G2 + x22) · x21 / x22−x21 (13)

(12)式および(13)式で求めた重心間隔を平均するとともに、前回の焦点検出の際求めた重心間隔G10’と加重加算平均して今回の重心間隔G1’を求める。
G1’=k1・(G11’+G12’)/2+k2・G10’,
k1+k2=1 ・・・(14)
なお、初回の焦点検出の場合は前回の重心間隔がないので、G10’としてケラレがない場合の重心間隔G1を使用したり、G1’として(G11’+G12’)/2を採用する。また、どちらかの焦点検出エリアにおいて一方または両方の像ズレ量が検出できなかった場合には、(G11’+G12’)/2の代わりにG11’あるいはG12’を採用する。さらに、両方の焦点検出エリアにおいて一方または両方の像ズレ量が検出できなかった場合には、G1’としてG10’を採用する。係数k1の値と係数k2の値の比に応じて平均化作用の強弱をコントロールすることができる。
The center-of-gravity interval obtained by the equations (12) and (13) is averaged, and the center-of-gravity interval G1 ′ obtained at the previous focus detection is weighted and averaged to obtain the current center-of-gravity interval G1 ′.
G1 ′ = k1 · (G11 ′ + G12 ′) / 2 + k2 · G10 ′,
k1 + k2 = 1 (14)
In the case of the first focus detection, there is no previous center-of-gravity interval, so the center-of-gravity interval G1 when there is no vignetting is used as G10 ′, or (G11 ′ + G12 ′) / 2 is used as G1 ′. If one or both image shift amounts cannot be detected in either focus detection area, G11 ′ or G12 ′ is adopted instead of (G11 ′ + G12 ′) / 2. Further, when one or both image shift amounts cannot be detected in both focus detection areas, G10 ′ is adopted as G1 ′. The strength of the averaging action can be controlled according to the ratio between the value of the coefficient k1 and the value of the coefficient k2.

ステップ220において、(14)式で求めた補正重心間隔G1’に基づいて、選択された焦点検出エリアのデフォーカス量DEFを算出する。焦点検出エリア101が選択されている場合は、
DEF=x11・d/(G1’+x11) ・・・(15)
焦点検出エリア102が選択されている場合は、
DEF=x21・d/(G1’+x21) ・・・(16)
ステップ230でリターンする。
In step 220, the defocus amount DEF of the selected focus detection area is calculated based on the corrected center-of-gravity interval G1 ′ obtained by the equation (14). When the focus detection area 101 is selected,
DEF = x11 · d / (G1 ′ + x11) (15)
When the focus detection area 102 is selected,
DEF = x21 · d / (G1 ′ + x21) (16)
In step 230, the process returns.

なお、(12)式および(13)式において、像ズレ量x11、x12、x21、x22が重心間隔G1’、G2に比較して小さい場合には、以下の簡略式を使用することができる。
G11’=G2・x11/x12 ・・・(17)
G12’=G2・x21/x22 ・・・(18)
In the equations (12) and (13), when the image shift amounts x11, x12, x21, and x22 are smaller than the center-of-gravity intervals G1 ′ and G2, the following simplified equations can be used.
G11 ′ = G2 · x11 / x12 (17)
G12 ′ = G2 · x21 / x22 (18)

以上説明したように、重心間隔が変化した測距瞳を通過する一対の焦点検出光束により形成される一対の像の像ズレ量と、重心間隔が変化しない測距瞳を通過する一対の焦点検出光束により形成される一対の像の像ズレ量との比に基づいて、変化した重心間隔を求める。   As described above, an image shift amount of a pair of images formed by a pair of focus detection light fluxes passing through a distance measuring pupil whose center-of-gravity interval has changed and a pair of focus detections passing through a distance-measuring pupil whose center-of-gravity interval does not change. The changed center-of-gravity interval is obtained based on the ratio of the image displacement amount of the pair of images formed by the light flux.

《発明の一実施の形態の変形例》
この変形例では、瞳分割はマイクロレンズとその背後配置された受光部によって行われる。1つのマイクロレンズには1つの受光部が備えられる。図5、図6に示す焦点検出画素は1画素に一対の光電変換部を備えているが、1画素に一対の受光部の内の一方のみを備えるようにしても焦点検出を行うことができる。例えば図5、図6に示す焦点検出画素の代わりに、図26(a)、(b)に示す焦点検出画素313,314を交互に、また図27(a)、(b)に示す焦点検出画素315,316を交互に配列することによって、図5、図6に示す焦点検出画素と同様にして焦点検出が可能となる。
<< Modification of Embodiment of Invention >>
In this modification, pupil division is performed by a microlens and a light receiving unit disposed behind the microlens. One microlens is provided with one light receiving unit. Although the focus detection pixels shown in FIGS. 5 and 6 include a pair of photoelectric conversion units in one pixel, focus detection can be performed even if only one of the pair of light receiving units is included in one pixel. . For example, instead of the focus detection pixels shown in FIGS. 5 and 6, focus detection pixels 313 and 314 shown in FIGS. 26A and 26B are alternately arranged, and focus detection shown in FIGS. 27A and 27B is performed. By alternately arranging the pixels 315 and 316, focus detection can be performed in the same manner as the focus detection pixels shown in FIGS.

図26(a)に示す焦点検出画素313は、図5に示す光電変換部13に対応したひとつの光電変換部16を備え、図26(b)に示す焦点検出画素314は、図5に示す光電変換部12に対応したひとつの光電変換部17を備える。また、図27(a)に示す焦点検出画素315は、図6に示す光電変換部15に対応したひとつの光電変換部18を備え、図27(b)に示す焦点検出画素316は、図6に示す光電変換部14に対応したひとつの光電変換部19を備える。   The focus detection pixel 313 illustrated in FIG. 26A includes one photoelectric conversion unit 16 corresponding to the photoelectric conversion unit 13 illustrated in FIG. 5, and the focus detection pixel 314 illustrated in FIG. 26B is illustrated in FIG. One photoelectric conversion unit 17 corresponding to the photoelectric conversion unit 12 is provided. Further, the focus detection pixel 315 illustrated in FIG. 27A includes one photoelectric conversion unit 18 corresponding to the photoelectric conversion unit 15 illustrated in FIG. 6, and the focus detection pixel 316 illustrated in FIG. One photoelectric conversion unit 19 corresponding to the photoelectric conversion unit 14 shown in FIG.

図28は、第1焦点検出画素として図26に示す焦点検出画素313、314を採用し、第2焦点検出画素として図27に示す焦点検出画素315、316を採用して配置した撮像素子212Aを示す。図28において、焦点検出画素313,314および焦点検出画素315,316による像の検出ピッチは1画素おきとなる。このような構成の撮像素子212Aでは、1画素に一対の光電変換部を詰め込む場合に比較して、撮像素子の構成がシンプルになり、製造が容易となり、コスト低減が図れる。   In FIG. 28, an imaging element 212 </ b> A in which the focus detection pixels 313 and 314 shown in FIG. 26 are adopted as the first focus detection pixels and the focus detection pixels 315 and 316 shown in FIG. 27 are adopted as the second focus detection pixels is arranged. Show. In FIG. 28, the detection pitch of the image by the focus detection pixels 313 and 314 and the focus detection pixels 315 and 316 is every other pixel. In the imaging device 212A having such a configuration, the configuration of the imaging device is simplified, manufacturing is easy, and cost can be reduced as compared with a case where a pair of photoelectric conversion units is packed in one pixel.

《発明の第1の実施の形態の変形例》
この変形例では、瞳分割を再結像型瞳分割方式によって行う。図29は再結像型瞳分割方式の構成を示す。焦点検出エリアの配置は図2に示す配置と同じであり、1つの焦点検出エリアに対し異なる測距瞳を備えた2つの再結像型瞳分割方式の構成が適用される。再結像光学系は、開口部370、470を有する視野マスク371、コンデンサーレンズ372、2対の絞り開口部373,374、473,474を有する絞りマスク375、2対の再結像レンズ376,377、476,477からなり、イメージセンサ379は2対の受光部380,381、480,481からなる。視野マスク371は撮影光学系の予定焦点面またはその近傍に配置される。開口部370、470が図2の片方の焦点検出エリアの位置に配置される。
<< Modification of the First Embodiment of the Invention >>
In this modification, pupil division is performed by a re-imaging type pupil division method. FIG. 29 shows the configuration of the re-imaging type pupil division method. The arrangement of the focus detection areas is the same as that shown in FIG. 2, and two re-imaging type pupil division scheme configurations having different ranging pupils for one focus detection area are applied. The re-imaging optical system includes a field mask 371 having apertures 370 and 470, a condenser lens 372, a diaphragm mask 375 having two pairs of aperture openings 373, 374, 473, and 474, and two pairs of re-imaging lenses 376. 377, 476, 477, and the image sensor 379 includes two pairs of light receiving portions 380, 381, 480, 481. The field mask 371 is disposed at or near the planned focal plane of the photographing optical system. The openings 370 and 470 are arranged at the position of one focus detection area in FIG.

コンデンサレンズ372は、視野マスク開口部370に対応した部分と、視野マスク開口部470に対応した部分からなり、1対の絞り開口部373,374は、コンデンサーレンズ372により撮影光学系の射出瞳近傍の面90の光軸に対して対称な1対の領域331、332に投影されており、1対の絞り開口部473,474は、コンデンサーレンズ372により撮影光学系の射出瞳近傍の面90の光軸に対して対称な1対の領域341、342に投影されている。一対の領域331,332および一対の領域341、342は、測距瞳を形成している。測距瞳341,342の並び方向の幅(測距瞳F値)は、測距瞳331,332の並び方向の幅(測距瞳F値)よりも小さく設定されており、マイクロレンズ型の瞳分割方式の測距瞳の関係(図12、図13)と同じ関係になっている。   The condenser lens 372 includes a portion corresponding to the field mask opening 370 and a portion corresponding to the field mask opening 470, and the pair of aperture openings 373 and 374 are near the exit pupil of the photographing optical system by the condenser lens 372. Are projected onto a pair of regions 331 and 332 that are symmetrical with respect to the optical axis of the surface 90, and the pair of aperture openings 473 and 474 are formed on the surface 90 near the exit pupil of the photographing optical system by the condenser lens 372. The light is projected onto a pair of regions 341 and 342 that are symmetrical with respect to the optical axis. The pair of regions 331 and 332 and the pair of regions 341 and 342 form a distance measuring pupil. The width in the alignment direction of the ranging pupils 341 and 342 (ranging pupil F value) is set smaller than the width in the alignment direction of the ranging pupils 331 and 332 (ranging pupil F value). This is the same relationship as that of the pupil division type distance measuring pupil (FIGS. 12 and 13).

1対の領域331、332を通る光束は、視野マスク371の開口370付近でまず一次像を形成する。視野マスク371の開口部370に形成された一次像は、コンデンサーレンズ372、1対の絞り開口部373,374を通り、1対の再結像レンズ376,377によりイメージセンサ379の受光部380,381上に1対の二次像として再結像される。また、1対の領域341、342を通る光束は、視野マスク371の開口470付近でまず一次像を形成する。視野マスク371の開口部470に形成された一次像は、コンデンサーレンズ372、1対の絞り開口部473,474を通り、1対の再結像レンズ476,477によりイメージセンサ379の受光部480,481上に1対の二次像として再結像される。   The light beams passing through the pair of regions 331 and 332 first form a primary image in the vicinity of the opening 370 of the field mask 371. The primary image formed in the opening 370 of the field mask 371 passes through the condenser lens 372 and the pair of aperture openings 373 and 374, and the light receiving portions 380 and 380 of the image sensor 379 by the pair of re-imaging lenses 376 and 377. Re-imaged as a pair of secondary images on 381. A light beam passing through the pair of regions 341 and 342 first forms a primary image near the opening 470 of the field mask 371. The primary image formed in the opening 470 of the field mask 371 passes through the condenser lens 372, the pair of aperture openings 473, 474, and the light receiving portions 480, 480 of the image sensor 379 by the pair of re-imaging lenses 476, 477. Re-imaged as a pair of secondary images on 481.

これらの2対の二次像の光強度分布は、受光部380,381、480,481により電気的な画像データに変換される。画像データに対し像ズレ演算処理を施すことによって、一方の焦点検出エリアに対し2つの像ズレ量が算出される。上記と同じ構成がもう一方の焦点検出エリアに対応して配置されている。以上のような構成において、2箇所の焦点検出エリアに対し、測距瞳F値の異なる像ズレ量をそれぞれ検出されることになる。この4つの像ズレ量に対し(12)式〜(16)式を適用することが可能になる。   The light intensity distributions of these two pairs of secondary images are converted into electrical image data by the light receiving units 380, 381, 480, 481. By performing image shift calculation processing on the image data, two image shift amounts are calculated for one focus detection area. The same configuration as described above is arranged corresponding to the other focus detection area. In the configuration as described above, image shift amounts having different distance measurement pupil F values are detected for the two focus detection areas. Expressions (12) to (16) can be applied to these four image shift amounts.

図29においては、開口部370と開口部470を近接させた構成をとっているが、射出瞳面から予定焦点面の間でハーフミラーなどにより光路を分割し、それぞれの光路に開口部370を有した焦点検出光学系と開口部470を有した焦点検出光学系を配置することによって、焦点検出位置を完全に一致させることもできる。   In FIG. 29, the opening 370 and the opening 470 are arranged close to each other, but the optical path is divided by a half mirror or the like between the exit pupil plane and the planned focal plane, and the opening 370 is provided in each optical path. By disposing the focus detection optical system having the focus detection optical system having the opening 470, the focus detection positions can be completely matched.

《発明の第2の実施の形態》
この第2の実施の形態では、ケラレによって生ずる測距瞳の重心間隔の変化を、測距瞳の並び方向が直交する測距瞳を通る焦点検出光束に基づいて求められた2つの像ズレ量の比によって求める。なお、瞳分割はマイクロレンズとその背後配置された一対の受光部によって行われる。撮像装置の構成は図1と同一である。
<< Second Embodiment of the Invention >>
In the second embodiment, the change in the center-of-gravity distance between the distance measurement pupils caused by the vignetting is calculated based on the two image shift amounts obtained based on the focus detection light flux passing through the distance measurement pupil in which the alignment direction of the distance measurement pupils is orthogonal. Obtained by the ratio of Note that pupil division is performed by a microlens and a pair of light receiving units arranged behind the microlens. The configuration of the imaging apparatus is the same as in FIG.

図30は、撮像画面上における焦点検出位置、すなわち後述する焦点検出画素列が焦点検出の際に画面上で像をサンプリングする領域(焦点検出エリア、焦点検出位置)の例を示す。画面100上の中央105を挟んだ水平方向の左右に焦点検出エリア103、104が配置される。焦点検出エリア103は、像ズレ方向が水平方向、すなわち測距瞳の並び方向が画面中心105から放射方向の焦点検出エリア103aと、像ズレ検出方向が垂直方向、すなわち測距瞳の並び方向が画面中心105に対して円周方向の焦点検出エリア103bとからなる。焦点検出エリア104は、像ズレ方向が水平方向、すなわち測距瞳の並び方向が画面中心105から放射方向の焦点検出エリア104aと、像ズレ検出方向が垂直方向、すなわち測距瞳の並び方向が画面中心105に対して円周方向の焦点検出エリア104bとからなる。2つの焦点検出エリア103、104は、画面中央105を中心とした所定半径の円周103上に位置する。   FIG. 30 shows an example of a focus detection position on the imaging screen, that is, an area (focus detection area, focus detection position) in which an image is sampled on the screen when a focus detection pixel column described later performs focus detection. Focus detection areas 103 and 104 are arranged on the left and right in the horizontal direction across the center 105 on the screen 100. In the focus detection area 103, the image shift direction is the horizontal direction, that is, the focus detection area 103a in which the alignment direction of the distance measurement pupils is the radial direction from the screen center 105, and the image shift detection direction is the vertical direction, that is, the alignment direction of the distance measurement pupils. It consists of a focus detection area 103b in the circumferential direction with respect to the screen center 105. In the focus detection area 104, the image shift direction is the horizontal direction, that is, the focus detection area 104a in which the alignment direction of the distance measurement pupils is the radial direction from the screen center 105, and the image shift detection direction is the vertical direction, that is, the alignment direction of the distance measurement pupils. It consists of a focus detection area 104b in the circumferential direction with respect to the screen center 105. The two focus detection areas 103 and 104 are located on a circumference 103 having a predetermined radius with the screen center 105 as the center.

図31は、変形例の撮像素子212Bの詳細な構成を示す正面図であり、撮像素子上のひとつの焦点検出エリア近傍を拡大した図である。撮像素子212Bは撮像画素310、像ズレ方向が水平方向、すなわち測距瞳の並び方向が画面中心105から放射方向の焦点検出エリアに対応した焦点検出画素321、像ズレ検出方向が垂直方向、すなわち測距瞳の並び方向が画面中心105に対して円周方向の焦点検出エリアに対応した焦点検出画素322から構成される。焦点検出画素321,322の基本的な構造および瞳分割の原理は、上述した第1実施形態で説明した焦点検出画素311と同一である。焦点検出画素321は水平方向に1画素おきに配置される。また、焦点検出画素322は垂直方向に1画素おきに配置される。   FIG. 31 is a front view showing a detailed configuration of the image sensor 212B according to a modification, and is an enlarged view of the vicinity of one focus detection area on the image sensor. The image pickup element 212B has an image pickup pixel 310, the image shift direction is the horizontal direction, that is, the focus detection pixels 321 corresponding to the focus detection area in the radial direction from the screen center 105, and the image shift detection direction is the vertical direction. The focus detection pixels 322 correspond to the focus detection areas in which the distance measurement pupils are arranged in the circumferential direction with respect to the screen center 105. The basic structure of the focus detection pixels 321 and 322 and the principle of pupil division are the same as those of the focus detection pixel 311 described in the first embodiment. The focus detection pixels 321 are arranged every other pixel in the horizontal direction. The focus detection pixels 322 are arranged every other pixel in the vertical direction.

図32および図33は、射出瞳面における一対の光電変換部の投影関係を示す正面図である。図32において、焦点検出画素321から一対の光電変換部をマイクロレンズにより射出瞳面90に投影した測距瞳922,933の外接円は、結像面から見た場合に所定の開口F値(測距瞳F値と呼ぶ。ここではF2.8)となる。破線で示す領域901は、絞り値F2.8よりも開口径が大きな絞り値(例えばF2)に対応した領域を示し、測距瞳922,933を内部に包含する。測距瞳922,933の並び方向(図では水平方向)における測距瞳922、933を通過する光束(焦点検出光束)の重心952,953の間隔はG1となる。   32 and 33 are front views showing the projection relationship between a pair of photoelectric conversion units on the exit pupil plane. In FIG. 32, the circumscribed circle of the distance measuring pupils 922 and 933 obtained by projecting a pair of photoelectric conversion units from the focus detection pixel 321 onto the exit pupil plane 90 by the microlens is a predetermined aperture F value (when viewed from the imaging plane). This is called a distance measuring pupil F value, here F2.8). A region 901 indicated by a broken line indicates a region corresponding to an aperture value (for example, F2) having an aperture diameter larger than the aperture value F2.8, and includes the distance measuring pupils 922 and 933 therein. The distance between the centers of gravity 952 and 953 of the light beams (focus detection light beams) passing through the distance measurement pupils 922 and 933 in the direction in which the distance measurement pupils 922 and 933 are aligned (horizontal direction in the figure) is G1.

図33において、焦点検出画素322から一対の光電変換部をマイクロレンズにより射出瞳面90に投影した測距瞳822,833の外接円は、結像面から見た場合に所定の開口F値(測距瞳F値と呼ぶ。ここではF2.8)となる。破線で示す領域901は、絞り値F2.8よりも開口径が大きな絞り値(例えばF2)に対応した領域を示し、測距瞳922,933を内部に包含する。測距瞳822,823の並び方向(図では垂直方向)における測距瞳822、833を通過する光束(焦点検出光束)の重心852,853の間隔はG2(=G1)となる。   In FIG. 33, the circumscribed circle of the distance measuring pupils 822 and 833 obtained by projecting the pair of photoelectric conversion units from the focus detection pixel 322 onto the exit pupil plane 90 by the microlens is a predetermined aperture F value ( This is called a distance measuring pupil F value, here F2.8). A region 901 indicated by a broken line indicates a region corresponding to an aperture value (for example, F2) having an aperture diameter larger than the aperture value F2.8, and includes the distance measuring pupils 922 and 933 therein. The distance between the centroids 852 and 853 of the light beams (focus detection light beams) passing through the distance measurement pupils 822 and 833 in the direction in which the distance measurement pupils 822 and 823 are aligned (vertical direction in the figure) is G2 (= G1).

図34および図35は、図21の状態における射出瞳面の投影関係を示す正面図である。図34および図35において、図32および図33の状態に開口制限要素98に対応した領域903を付け加えた状態を示している。図34において、測距瞳922が領域903によりけられており、領域903によって制限された測距瞳922を通過する光束(焦点検出光束)の重心972はけられていない場合の重心952より中心によっている。一方、測距瞳933は領域903によりけられず、測距瞳922を通過する光束(焦点検出光束)の重心953の位置は変化しない。したがって、測距瞳重心972と953の間隔は、ケラレが生じていない場合の重心間隔G1より狭い重心間隔G1’となる。   34 and 35 are front views showing the projection relationship of the exit pupil plane in the state of FIG. 34 and 35 show a state in which a region 903 corresponding to the opening restricting element 98 is added to the states of FIGS. 32 and 33. In FIG. 34, the distance measuring pupil 922 is located by the area 903, and the center of gravity 972 of the light beam (focus detection light flux) passing through the distance measuring pupil 922 restricted by the area 903 is centered from the center of gravity 952 when not being located. It depends on. On the other hand, the distance measuring pupil 933 is not displaced by the region 903, and the position of the center of gravity 953 of the light beam (focus detection light beam) passing through the distance measuring pupil 922 does not change. Accordingly, the distance between the distance measurement pupil centroids 972 and 953 is a centroid distance G1 'that is narrower than the centroid distance G1 when no vignetting occurs.

図35において、ケラレが測距瞳822,823に対称的に発生しているので、領域903によって測距瞳822,823の重心位置852,853は変化せず、したがって測距瞳822,823を通過する光束(焦点検出光束)の重心954,955の間隔G2は変化しない。   In FIG. 35, since vignetting occurs symmetrically in the distance measurement pupils 822 and 823, the center of gravity positions 852 and 853 of the distance measurement pupils 822 and 823 are not changed by the region 903. The interval G2 between the centroids 954 and 955 of the passing light beam (focus detection light beam) does not change.

以上の構成により、図30に示した2つの焦点検出エリア103,104のそれぞれに対して、ケラレにより測距瞳重心間隔が変化する焦点検出系の像ズレ量と、ケラレにより測距瞳重心間隔が変化しない焦点検出系の像ズレ量とが求められる。この4つの像ズレ量に対して(12)式〜(16)式を適用することにより、重心間隔の変化を補正したデータによりデフォーカス量検出が可能になる。   With the above configuration, for each of the two focus detection areas 103 and 104 shown in FIG. 30, the image shift amount of the focus detection system in which the distance measurement center of gravity changes due to vignetting, and the distance measurement center of gravity center due to vignetting. And the image shift amount of the focus detection system in which does not change. By applying the formulas (12) to (16) to these four image shift amounts, it is possible to detect the defocus amount based on the data in which the change in the center of gravity interval is corrected.

第2実施形態においては、同一の焦点検出エリアにおいて直交する2方向において像ズレ検出が可能になるというメリットがある。   In the second embodiment, there is an advantage that image shift detection is possible in two directions orthogonal to each other in the same focus detection area.

《発明の第2の実施の形態の変形例》
この変形例では、瞳分割がマイクロレンズとその背後配置された受光部によって行われる。1つのマイクロレンズには1つの受光部が備えられる。図26に示した焦点検出画素を図31の焦点検出画素の配列に適用することによって、同様にして重心間隔の変化を補正したデータによりデフォーカス量検出が可能になる。
<< Modification of Second Embodiment of Invention >>
In this modification, pupil division is performed by a microlens and a light receiving unit disposed behind the microlens. One microlens is provided with one light receiving unit. By applying the focus detection pixels shown in FIG. 26 to the array of focus detection pixels in FIG. 31, it is possible to detect the defocus amount using data in which the change in the center-of-gravity interval is similarly corrected.

《発明の第2の実施の形態の他の変形例》
この変形例では、瞳分割が再結像型瞳分割方式によって行われる。図36は再結像型瞳分割方式の構成を示す。焦点検出エリアの配置は図2に示す配置と同じであるが、1つの焦点検出エリアに対し測距瞳の並び方向が異なる測距瞳を備えた2つの再結像型瞳分割方式の構成が適用される。再結像光学系は開口部370、570を有する視野マスク371、コンデンサーレンズ372、2対の絞り開口部373,374、573,574を有する絞りマスク375、2対の再結像レンズ376,377、576,577からなり、イメージセンサ379は2対の受光部380,381、580,581からなる。視野マスク371は撮影光学系の予定焦点面またはその近傍に配置される。
<< Another Modification of the Second Embodiment of the Invention >>
In this modification, pupil division is performed by a re-imaging type pupil division method. FIG. 36 shows the configuration of the re-imaging type pupil division method. The arrangement of the focus detection areas is the same as the arrangement shown in FIG. 2, but there are two re-imaging type pupil division schemes having distance measurement pupils with different alignment directions of the distance measurement pupils for one focus detection area. Applied. The re-imaging optical system includes a field mask 371 having apertures 370 and 570, a condenser lens 372, a diaphragm mask 375 having two pairs of aperture openings 373, 374, and 573, 574, and two pairs of re-imaging lenses 376 and 377. , 576, 577, and the image sensor 379 includes two pairs of light receiving portions 380, 381, 580, 581. The field mask 371 is disposed at or near the planned focal plane of the photographing optical system.

開口部370、570が図2に示す片方の焦点検出エリアの位置に配置されており、開口部370は図30の焦点検出領域103a(または104a)、開口部570は図30に示す焦点検出領域103b(または104b)に対応している。1対の絞り開口部373,374は、コンデンサーレンズ372により撮影光学系の射出瞳近傍の面90の光軸に対して対称な1対の領域331、332に投影されており、1対の絞り開口部573,574は、コンデンサーレンズ372により撮影光学系の射出瞳近傍の面90の光軸に対して対称な1対の領域351、352に投影されている。一対の領域331,332および一対の領域351、352は測距瞳を形成している。測距瞳331,332の並び方向と測距瞳331,332の並び方向は直交しており、図32および図33に示した測距瞳の関係と同じ関係になっている。   The openings 370 and 570 are arranged at the position of one focus detection area shown in FIG. 2, the opening 370 is the focus detection area 103a (or 104a) in FIG. 30, and the opening 570 is the focus detection area shown in FIG. 103b (or 104b). The pair of aperture openings 373 and 374 are projected by the condenser lens 372 onto a pair of regions 331 and 332 that are symmetrical with respect to the optical axis of the surface 90 in the vicinity of the exit pupil of the photographing optical system. The openings 573 and 574 are projected by the condenser lens 372 onto a pair of regions 351 and 352 that are symmetrical with respect to the optical axis of the surface 90 in the vicinity of the exit pupil of the photographing optical system. The pair of areas 331 and 332 and the pair of areas 351 and 352 form a distance measuring pupil. The alignment direction of the distance measurement pupils 331 and 332 and the alignment direction of the distance measurement pupils 331 and 332 are orthogonal to each other, and have the same relationship as the relationship between the distance measurement pupils shown in FIGS.

1対の領域331、332を通る光束は、視野マスク371の開口370付近でまず一次像を形成する。視野マスク371の開口部370に形成された一次像は、コンデンサーレンズ372、1対の絞り開口部373,374を通り、1対の再結像レンズ376,377によりイメージセンサ379の受光部380,381上に1対の二次像として再結像される。1対の領域351、352を通る光束は、視野マスク371の開口570付近でまず一次像を形成する。視野マスク371の開口部570に形成された一次像は、コンデンサーレンズ372、1対の絞り開口部573,574を通り、1対の再結像レンズ576,577によりイメージセンサ379の受光部580,581上に1対の二次像として再結像される。これらの2対の二次像の光強度分布は、受光部380,381、580,581により電気的な画像データに変換される。画像データに対し像ズレ演算処理を施すことによって、一方の焦点検出エリアに対し2つの像ズレ量が算出される。上記と同じ構成がもう一方の焦点検出エリアに対応して配置されている。   The light beams passing through the pair of regions 331 and 332 first form a primary image in the vicinity of the opening 370 of the field mask 371. The primary image formed in the opening 370 of the field mask 371 passes through the condenser lens 372 and the pair of aperture openings 373 and 374, and the light receiving portions 380 and 380 of the image sensor 379 by the pair of re-imaging lenses 376 and 377. Re-imaged as a pair of secondary images on 381. A light beam passing through the pair of regions 351 and 352 first forms a primary image near the opening 570 of the field mask 371. The primary image formed in the opening 570 of the field mask 371 passes through the condenser lens 372, the pair of aperture openings 573, 574, and the light receiving portions 580 of the image sensor 379 by the pair of re-imaging lenses 576, 577. Re-imaged as a pair of secondary images on 581. The light intensity distributions of these two pairs of secondary images are converted into electrical image data by the light receiving units 380, 381, 580, 581. By performing image shift calculation processing on the image data, two image shift amounts are calculated for one focus detection area. The same configuration as described above is arranged corresponding to the other focus detection area.

以上のような構成において、2箇所の焦点検出エリアに対し、ケラレにより測距瞳重心間隔が変化する焦点検出系の像ズレ量と、ケラレにより測距瞳重心間隔が変化しない焦点検出系の像ズレ量とが求められる。この4つの像ズレ量に対し(12)式〜(16)式を適用することによって、重心間隔の変化を補正したデータによりデフォーカス量検出が可能になる。   In the configuration as described above, the image shift amount of the focus detection system in which the distance measurement center of gravity center changes due to vignetting and the image of the focus detection system in which the distance measurement center of gravity center does not change due to vignetting for two focus detection areas. The amount of deviation is required. By applying the formulas (12) to (16) to these four image shift amounts, it is possible to detect the defocus amount using data in which the change in the center of gravity interval is corrected.

《発明の第3の実施の形態》
撮影光学系の絞りを変化させて測距瞳F値が変化した測距瞳を通る焦点検出光束に基づいて求められた2つの像ズレ量の比により、ケラレによって生ずる測距瞳の重心間隔の変化を求めるようにした第3の実施の形態を説明する。この実施の形態では、瞳分割がマイクロレンズとその背後配置された一対の受光部によって行われる。なお、この一実施の形態では、撮像装置の構成は図1に示す構成と同様であり、焦点検出位置の配置は図2に示す配置と同様である。
<< Third Embodiment of the Invention >>
The ratio of the center of gravity of the distance measurement pupil caused by vignetting is determined by the ratio of the two image shift amounts obtained based on the focus detection light flux passing through the distance measurement pupil whose range pupil F value has changed by changing the aperture of the photographing optical system. A third embodiment in which a change is obtained will be described. In this embodiment, pupil division is performed by a microlens and a pair of light receiving units arranged behind the microlens. In this embodiment, the configuration of the imaging apparatus is the same as that shown in FIG. 1, and the arrangement of focus detection positions is the same as that shown in FIG.

図37は撮像素子212Cの詳細な構成を示す正面図である。この撮像素子212Cは、図3に示す構成から焦点検出画素312を省略したものである。射出瞳面における測距瞳の関係は図12に示す関係と同様である。   FIG. 37 is a front view showing a detailed configuration of the image sensor 212C. This imaging element 212C is obtained by omitting the focus detection pixel 312 from the configuration shown in FIG. The relationship between the distance measuring pupils on the exit pupil plane is the same as the relationship shown in FIG.

図38および図39は、図21の状態における射出瞳面における測距瞳関係を示す正面図である。図38および図39においては、図12の状態に開口制限要素98に対応した領域903を付け加えた状態を示している。図38において、測距瞳922が領域903によりけられており、領域903によって制限された測距瞳922を通過する光束(焦点検出光束)の重心972はけられていない場合の重心952より中心によっている。一方、測距瞳933は領域903によりけられず、測距瞳922を通過する光束(焦点検出光束)の重心953の位置は変化しない。したがって、測距瞳重心972と953の間隔はケラレが生じていない場合の重心間隔G1より狭い重心間隔G1’となる。   38 and 39 are front views showing the distance-measuring pupil relationship on the exit pupil plane in the state of FIG. 38 and 39 show a state in which a region 903 corresponding to the opening restriction element 98 is added to the state of FIG. In FIG. 38, the distance measurement pupil 922 is located by the region 903, and the center of gravity 972 of the light beam (focus detection light beam) passing through the distance measurement pupil 922 restricted by the region 903 is centered from the center of gravity 952 when not being located. It depends on. On the other hand, the distance measuring pupil 933 is not displaced by the region 903, and the position of the center of gravity 953 of the light beam (focus detection light beam) passing through the distance measuring pupil 922 does not change. Therefore, the distance between the distance measurement pupil centroids 972 and 953 is a centroid distance G1 'narrower than the centroid distance G1 when no vignetting occurs.

図39において、領域903によるケラレの影響がなくなるよう撮影光学系の絞り径を絞って(絞り値を大きくして)おり、その範囲を破線801で示している。領域801によって制限された測距瞳922,933を通過する光束(焦点検出光束)の重心982,983はけられていない場合の重心952,953より中心によっている。重心982,983の間隔G3は、絞り以外の開口制限要素でけられが発生しないので、予め測定または演算により求めて記憶しておくことができる。   In FIG. 39, the aperture diameter of the photographing optical system is reduced (the aperture value is increased) so that the influence of vignetting due to the region 903 is eliminated, and the range is indicated by a broken line 801. The centroids 982 and 983 of the light beams (focus detection light beams) passing through the distance measuring pupils 922 and 933 limited by the region 801 are more centered than the centroids 952 and 953 when they are not located. The gap G3 between the centroids 982 and 983 can be obtained and memorized in advance by measurement or calculation because no squealing occurs in aperture limiting elements other than the diaphragm.

以上の構成により図2に示す2つの焦点検出エリア101102のそれぞれに対して、光学系の絞り開口を絞らない状態(図38の測距瞳の状態)での像ズレ量と、光学系の絞り開口を絞った状態(図39の測距瞳の状態)での像ズレ量とが求められる。この4つの像ズレ量に対し(12)式〜(16)式を適用することによって、重心間隔の変化を補正したデータによりデフォーカス量検出が可能になる。
With the above configuration, the image shift amount when the aperture stop of the optical system is not stopped (the state of the distance measuring pupil in FIG. 38) and the optical system for each of the two focus detection areas 101 and 102 shown in FIG. The image shift amount in the state where the aperture of the aperture is stopped (the state of the distance measuring pupil in FIG. 39) is obtained. By applying the formulas (12) to (16) to these four image shift amounts, it is possible to detect the defocus amount using data in which the change in the center of gravity interval is corrected.

図40は、第3の実施の形態における図15のステップ120〜130の処理を示すフローチャートである。ステップ400において、絞り開口径が撮影絞り値に設定された状態で焦点検出エリア101,102における焦点検出画素列のデータを読出し、これらのデータに各々焦点検出演算処理(相関演算処理)を行い、焦点検出エリア101および102における像ズレ量x11、x21を算出する。ステップ410では、絞り開口径を、予め記憶されているケラレがなくなる交換レンズの絞り径まで絞り込んだ状態で焦点検出エリア101,102における焦点検出画素列のデータを読出し、これらのデータに各々焦点検出演算処理(相関演算処理)を行い、焦点検出エリア101および102における像ズレ量x12、x22を算出する。   FIG. 40 is a flowchart showing the processing of steps 120 to 130 in FIG. 15 according to the third embodiment. In step 400, the data of the focus detection pixel columns in the focus detection areas 101 and 102 are read with the aperture diameter set to the shooting aperture value, and focus detection calculation processing (correlation calculation processing) is performed on each of these data. Image shift amounts x11 and x21 in the focus detection areas 101 and 102 are calculated. In step 410, the data of the focus detection pixel columns in the focus detection areas 101 and 102 are read out with the aperture diameter reduced to the aperture diameter of the interchangeable lens that eliminates the pre-stored vignetting, and each of these data is subjected to focus detection. Calculation processing (correlation calculation processing) is performed, and image shift amounts x12 and x22 in the focus detection areas 101 and 102 are calculated.

ステップ420において、4つの像ズレ量に(12)式〜(14)式を適用することによって、絞り開口径が撮影絞り値に設定された状態での測距瞳重心間隔G1’を算出する。なお、(12)式、(13)式において、重心間隔G2の代わりに、絞りを所定値に絞り込んだ状態における重心間隔G3を用いる。ステップ430で補正重心間隔G1’に基づいて(15)式または(16)式により選択された焦点検出エリアのデフォーカス量DEFを算出する。その後、ステップ440でリターンする。   In step 420, the distance measurement pupil center-of-gravity interval G1 'with the aperture diameter set to the photographing aperture value is calculated by applying the equations (12) to (14) to the four image shift amounts. In the equations (12) and (13), the center-of-gravity interval G3 in a state where the aperture is reduced to a predetermined value is used instead of the center-of-gravity interval G2. In step 430, the defocus amount DEF of the focus detection area selected by the equation (15) or the equation (16) is calculated based on the corrected center-of-gravity interval G1 '. Thereafter, the process returns at step 440.

この第3の実施の形態によれば、一つの焦点検出エリアにおいて複数の焦点検出画素配列を必要としないというメリットがある。   According to the third embodiment, there is an advantage that a plurality of focus detection pixel arrays are not required in one focus detection area.

《発明の第3の実施の形態の変形例》
この変形例では、瞳分割がマイクロレンズとその背後配置された受光部によって行われる。1つのマイクロレンズには1つの受光部が備えられる。図26に示す焦点検出画素を図37の焦点検出画素の配列に適用することによって、図41に示す撮像素子212Dを構成することができる。このような構成においても、絞り開口径を変化させることによって測距重心間隔の変化を補正したデータを求め、これらのデータに基づいてデフォーカス量検出が可能になる。
<< Modification of Third Embodiment of Invention >>
In this modification, pupil division is performed by a microlens and a light receiving unit disposed behind the microlens. One microlens is provided with one light receiving unit. By applying the focus detection pixels shown in FIG. 26 to the array of focus detection pixels in FIG. 37, the image sensor 212D shown in FIG. 41 can be configured. Even in such a configuration, it is possible to obtain data in which the change in the distance between the center of gravity of distance measurement is corrected by changing the aperture diameter of the aperture, and the defocus amount can be detected based on these data.

《発明の第3の実施の形態の他の変形例》
この変形例では、瞳分割が再結像型瞳分割方式によって行われる。再結像光学系の構成は、図29において開口部370に対応する焦点検出光学系のみが存在する構成となる。このような構成においても、撮影光学系の絞り開口径を異ならせて求められた4つの像ズレ量に対して(12)式〜(16)式を適用することによって、重心間隔の変化を補正したデータによりデフォーカス量検出が可能になる。
<< Another Modification of the Third Embodiment of the Invention >>
In this modification, pupil division is performed by a re-imaging type pupil division method. The configuration of the re-imaging optical system is such that only the focus detection optical system corresponding to the opening 370 exists in FIG. Even in such a configuration, the change in the center-of-gravity interval is corrected by applying Equations (12) to (16) to four image shift amounts obtained by varying the aperture diameter of the photographing optical system. The defocus amount can be detected based on the data.

《その他の変形例》
上述した撮像素子では撮像画素がベイヤー配列の色フィルタを備えた例を示したが、色フィルタの構成や配列はこれに限定されることはなく、例えば補色フィルタ(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)を採用してもよい。焦点検出画素はシアンとマゼンタ(出力誤差が比較的目立たない青成分を含む)が配置されるべき画素位置に配置される。
<< Other modifications >>
In the imaging device described above, an example in which the imaging pixel includes a Bayer color filter is shown. However, the configuration and arrangement of the color filter are not limited to this, and for example, complementary color filters (green: G, yellow: Ye, Magenta: Mg, cyan: Cy) may be employed. The focus detection pixel is arranged at a pixel position where cyan and magenta (including a blue component whose output error is relatively inconspicuous) should be arranged.

上述した撮像素子では焦点検出画素に色フィルタを設けない例を示したが、撮像画素と同色の色フィルタの内、一つのフィルタ(たとえば緑フィルタ)を備えるようにした場合でも、本発明を適用することができる。   In the image pickup device described above, an example in which the focus detection pixel is not provided with a color filter is shown. However, the present invention is applied even when one filter (for example, a green filter) is provided among the color filters of the same color as the image pickup pixel. can do.

上述した撮像素子では、撮像画素の一部に撮像画素の代わりに焦点検出画素を用いる例を示したが、全画素を焦点検出画素で構成してもよい。   In the above-described imaging device, an example in which focus detection pixels are used instead of imaging pixels as part of the imaging pixels has been described, but all pixels may be configured with focus detection pixels.

図1に示す撮像装置(カメラ)では、撮像素子を焦点検出用と撮像用とに兼用する例を示したが、焦点検出用撮像素子と撮像用撮像素子とを別個に設け、撮影光束を分割してそれぞれの撮像素子に撮影光束を導く構成とし、焦点検出と撮像を行うようにしてもよい。   In the image pickup apparatus (camera) shown in FIG. 1, an example in which the image pickup device is used for both focus detection and image pickup has been shown, but the focus detection image pickup device and the image pickup image pickup device are provided separately to divide the photographing light flux. Thus, the configuration may be such that the imaging light flux is guided to each imaging element, and focus detection and imaging are performed.

図15に示すフローチャートでは、補正した画像データをメモリーカードに保存する例を示したが、補正した画像データを電子ビューファインダーやボディの背面に設けられた不図示の背面モニター画面に表示するようにしてもよい。   In the flowchart shown in FIG. 15, the corrected image data is stored in the memory card. However, the corrected image data is displayed on a back monitor screen (not shown) provided on the back of the electronic viewfinder or the body. May be.

上述した撮像素子はCCDイメージセンサ、CMOSイメージセンサとして形成することができる。また、撮像装置は交換レンズをカメラボディに装着する構成のデジタルスチルカメラやフィルムスチルカメラに限定されず、レンズ一体型のデジタルスチルカメラやフィルムスチルカメラやビデオカメラにも適用できる。また、携帯電話などに内蔵される小型カメラモジュールや、監視カメラなどにも適用できる。あるいは、カメラ以外の焦点検出装置や測距装置やステレオ測距装置にも適用できる。   The above-described imaging device can be formed as a CCD image sensor or a CMOS image sensor. The imaging apparatus is not limited to a digital still camera or a film still camera in which an interchangeable lens is mounted on the camera body, and can also be applied to a lens-integrated digital still camera, a film still camera, and a video camera. It can also be applied to a small camera module built in a mobile phone or a surveillance camera. Alternatively, the present invention can be applied to a focus detection device other than a camera, a distance measuring device, or a stereo distance measuring device.

上述したように、一実施の形態によれば、光学系の膨大なデータと複雑な演算処理を必要とせず、像ズレ量をデフォーカス量に変換するための変換係数を簡単な演算で正確に求めることができる上に、構成の異なる種々の光学系にも容易に対応できる。   As described above, according to one embodiment, the conversion coefficient for converting the image shift amount into the defocus amount can be accurately calculated with simple calculation without requiring a huge amount of data and complicated calculation processing of the optical system. In addition, it can be easily applied to various optical systems having different configurations.

一実施の形態の構成を示す図The figure which shows the structure of one embodiment 撮像画面上の焦点検出位置を示す図Diagram showing the focus detection position on the imaging screen 撮像素子の詳細な構成を示す正面図Front view showing detailed configuration of image sensor 撮像画素の構成を示す図The figure which shows the structure of an imaging pixel 第1焦点検出画素の構成を示す図The figure which shows the structure of a 1st focus detection pixel. 第2焦点検出画素の構成を示す図The figure which shows the structure of a 2nd focus detection pixel. 緑画素、赤画素および青画素の分光特性を示す図Diagram showing spectral characteristics of green, red and blue pixels 焦点検出画素の分光特性を示す図Diagram showing spectral characteristics of focus detection pixels 撮像画素の断面図Cross section of imaging pixel 焦点検出画素の断面図Cross section of focus detection pixel マイクロレンズを用いた瞳分割方式による焦点検出方法について説明するための図The figure for demonstrating the focus detection method by the pupil division system using a micro lens 射出瞳面における第1焦点検出画素の光電変換部の投影関係を示す正面図Front view showing the projection relationship of the photoelectric conversion unit of the first focus detection pixel on the exit pupil plane 射出瞳面における第2焦点検出画素の光電変換部の投影関係を示す正面図Front view showing the projection relationship of the photoelectric conversion unit of the second focus detection pixel on the exit pupil plane 画面周辺の焦点検出位置における焦点検出画素の像信号の強度分布(光量)を縦軸、焦点検出画素の位置を横軸にとって示した図A graph showing the intensity distribution (light quantity) of the image signal of the focus detection pixel at the focus detection position around the screen on the vertical axis and the position of the focus detection pixel on the horizontal axis. 図1に示すデジタルスチルカメラ(撮像装置)の動作を示すフローチャート1 is a flowchart showing the operation of the digital still camera (imaging device) shown in FIG. 図15のステップ130における像ズレ量演算処理の詳細を示すフローチャートThe flowchart which shows the detail of the image shift amount calculation process in step 130 of FIG. 図16のステップ200における焦点検出演算処理の詳細を示すフローチャート16 is a flowchart showing details of the focus detection calculation process in step 200 of FIG. 相関演算処理を説明する図Diagram explaining correlation calculation processing 射出瞳面における第1焦点検出画素の一対の光電変換部投影関係を示す正面図Front view showing a pair of photoelectric conversion unit projection relationship of the first focus detection pixel on the exit pupil plane 射出瞳面における第2焦点検出画素の一対の光電変換部投影関係を示す正面図Front view showing a pair of photoelectric conversion unit projection relationship of the second focus detection pixels on the exit pupil plane 画面周辺における測距瞳のケラレを説明する図The figure explaining the vignetting of the distance measuring pupil around the screen 第1焦点検出画素の図21に示す状態における射出瞳面の投影関係を示す正面図Front view showing the projection relationship of the exit pupil plane of the first focus detection pixel in the state shown in FIG. 第2焦点検出画素の図21に示す状態における射出瞳面の投影関係を示す正面図Front view showing the projection relation of the exit pupil plane in the state shown in FIG. 21 of the second focus detection pixel. 測距瞳重心間隔と像ズレ量の関係を示す図The figure which shows the relationship between the distance pupil center-of-gravity interval and the amount of image gap 像ズレ量からデフォーカス量への変換を説明するための図Diagram for explaining conversion from image shift amount to defocus amount 第1焦点検出画素の変形例の構成を示す図The figure which shows the structure of the modification of a 1st focus detection pixel. 第2焦点検出画素の変形例の構成を示す図The figure which shows the structure of the modification of a 2nd focus detection pixel. 変形例の撮像素子の詳細な構成を示す正面図Front view showing a detailed configuration of an image sensor of a modification 再結像型瞳分割方式の構成を示す図Diagram showing the configuration of the re-imaging pupil division method 撮像画面上における焦点検出位置を示す図The figure which shows the focus detection position on the imaging screen 変形例の撮像素子の詳細な構成を示す正面図Front view showing a detailed configuration of an image sensor of a modification 射出瞳面における一対の光電変換部の投影関係を示す正面図Front view showing the projection relationship of a pair of photoelectric conversion units on the exit pupil plane 射出瞳面における一対の光電変換部の投影関係を示す正面図Front view showing the projection relationship of a pair of photoelectric conversion units on the exit pupil plane 図21の状態における射出瞳面の投影関係を示す正面図The front view which shows the projection relationship of the exit pupil plane in the state of FIG. 図21の状態における射出瞳面の投影関係を示す正面図The front view which shows the projection relationship of the exit pupil plane in the state of FIG. 再結像型瞳分割方式の構成を示す図Diagram showing the configuration of the re-imaging pupil division method 変形例の撮像素子詳細な構成を示す正面図Front view showing a detailed configuration of the image sensor of the modification 図21の状態における射出瞳面における測距瞳関係を示す正面図FIG. 21 is a front view showing a distance measuring pupil relationship on the exit pupil plane in the state of FIG. 図21の状態における射出瞳面における測距瞳関係を示す正面図FIG. 21 is a front view showing a distance measuring pupil relationship on the exit pupil plane in the state of FIG. 第3の実施の形態における図15のステップ120〜130の処理を示すフローチャートThe flowchart which shows the process of steps 120-130 of FIG. 15 in 3rd Embodiment. 変形例の撮像素子の詳細な構成を示す図The figure which shows the detailed structure of the image pick-up element of a modification.

符号の説明Explanation of symbols

212、212A、212B、212C、212D 撮像素子
214 ボディ駆動制御装置
216 液晶表示素子
219 メモリカード
212, 212A, 212B, 212C, 212D Image sensor 214 Body drive control device 216 Liquid crystal display element 219 Memory card

Claims (13)

光学系の射出瞳の第1の対の領域をそれぞれ通過する第1の対の光束によって形成される第1の対の像と、前記光学系の射出瞳の第2の対の領域をそれぞれ通過する第2の対の光束によって形成される第2の対の像とをそれぞれ受光し、前記第1の対の像及び第2の対の像にそれぞれ対応する第1の対の像信号及び第2の対の像信号を出力する第1の受光手段と、
前記第1の対の像信号に基づき第1の像ズレ量と前記第2の対の像信号に基づき第2の像ズレ量とをそれぞれ検出する第1の像ズレ量検出手段と、
前記第2の対の領域の重心間隔と前記第1の像ズレ量と前記第2の像ズレ量とに基づき、前記第1の対の領域の重心間隔を算出する第1の重心間隔算出手段と、
前記第1の重心間隔算出手段によって算出された前記重心間隔と前記第1の像ズレ量とに基づき、デフォーカス量を算出するデフォーカス量算出手段と、を備え、
前記第1の対の領域の重心間隔は、前記第2の対の領域の重心間隔よりも大きいことを特徴とする焦点検出装置。
A first pair of images formed by a first pair of luminous fluxes respectively passing through a first pair of regions of the exit pupil of the optical system, and a second pair of regions of the exit pupil of the optical system, respectively. And a second pair of images formed by the second pair of luminous fluxes, respectively, and a first pair of image signals corresponding to the first pair of images and the second pair of images and the second pair of images, respectively. First light receiving means for outputting two pairs of image signals ;
First image shift amount detection means for detecting a first image shift amount based on the first pair of image signals and a second image shift amount based on the second pair of image signals ;
First center-of-gravity interval calculation means for calculating the center-of-gravity interval of the first pair of regions based on the center-of-gravity interval of the second pair of regions, the first image shift amount, and the second image shift amount. When,
Defocus amount calculating means for calculating a defocus amount based on the center of gravity interval calculated by the first center of gravity interval calculating means and the first image shift amount;
The focus detection apparatus according to claim 1, wherein a center-of-gravity interval between the first pair of regions is larger than a center-of-gravity interval between the second pair of regions .
請求項1に記載の焦点検出装置において、
前記焦点検出装置は、前記光学系の撮影画面内に、撮影画面中心から所定距離だけ離れた位置に第1の焦点検出エリアと、前記撮影画面中心から前記所定距離だけ離れた位置に第2の焦点検出エリアとを有し、
前記焦点検出装置は、前記光学系の射出瞳の第3の対の領域をそれぞれ通過する第3の対の光束によって形成される第3の対の像と、前記光学系の射出瞳の第4の対の領域をそれぞれ通過する第4の対の光束によって形成される第4の対の像とをそれぞれ受光し、前記第3の対の像及び第4の対の像にそれぞれ対応する第3の対の像信号及び第4の対の像信号を出力する第2の受光手段と、前記第3の対の像信号に基づき第3の像ズレ量と、前記第4の対の像信号に基づき第4の像ズレ量とをそれぞれ検出する第2の像ズレ量検出手段と、前記第4の対の領域の重心間隔と前記第3の像ズレ量と前記第4の像ズレ量とに基づき、前記第3の対の領域の重心間隔を算出する第2の重心間隔算出手段と、を更に備え、
前記第3の対の領域の重心間隔は、前記第4の対の領域の重心間隔よりも大きく、
前記第1の受光手段は、前記第1の焦点検出エリアにおいて前記第1の対の像と前記第2の対の像とを受光し、
前記第2の受光手段は、前記第2の焦点検出エリアにおいて前記第3の対の像と前記第4の対の像とを受光し、
前記デフォーカス量算出手段は、前記第1の重心間隔算出手段によって算出された前記重心間隔と前記第2の重心間隔算出手段によって算出された前記重心間隔との平均値と、前記第1の像ズレ量とに基づき、デフォーカス量を算出することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1,
The focus detection device includes a first focus detection area at a position away from the center of the shooting screen by a predetermined distance within a shooting screen of the optical system, and a second position at a position away from the center of the shooting screen by the predetermined distance. A focus detection area,
The focus detection device includes a third pair of images formed by a third pair of light beams respectively passing through a third pair of regions of the exit pupil of the optical system, and a fourth of the exit pupil of the optical system. And a fourth pair of images formed by a fourth pair of light beams respectively passing through the pair of regions, and a third pair corresponding to the third pair of images and the fourth pair of images, respectively. A second light receiving means for outputting a pair of image signals and a fourth pair of image signals; a third image shift amount based on the third pair of image signals; and a fourth pair of image signals. A second image shift amount detecting means for detecting a fourth image shift amount based on the second image shift amount; a center-of-gravity interval of the fourth pair of regions; a third image shift amount; and a fourth image shift amount. And a second center-of-gravity interval calculating means for calculating the center-of-gravity interval of the third pair of regions based on:
The centroid spacing of the third pair of regions is greater than the centroid spacing of the fourth pair of regions,
The first light receiving means receives the first pair of images and the second pair of images in the first focus detection area,
The second light receiving means receives the third pair of images and the fourth pair of images in the second focus detection area,
The defocus amount calculating means includes an average value of the centroid distance calculated by the first centroid distance calculating means and the centroid distance calculated by the second centroid distance calculating means, and the first image. A focus detection apparatus that calculates a defocus amount based on a shift amount .
請求項に記載の焦点検出装置において、
前記第1の受光手段は、前記第1の対の領域をそれぞれ通過する前記第1の対の光束によって形成される前記第1の対の像を受光して前記第1の対の像信号を出力する第1の受光部と、前記第2の対の領域をそれぞれ通過する前記第2の対の光束によって形成される前記第2の対の像を受光して前記第2の対の像信号を出力する第2の受光部とを有することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1 ,
The first light receiving means receives the first pair of images formed by the first pair of light beams respectively passing through the first pair of regions, and outputs the first pair of image signals. The second pair of image signals are received by receiving the second pair of images formed by the first light receiving unit to output and the second pair of light beams respectively passing through the second pair of regions. And a second light receiving unit that outputs a focus detection device.
請求項に記載の焦点検出装置において、
前記焦点検出装置は、前記光学系の撮影画面内に、撮影画面中心から所定距離だけ離れた位置に第1の焦点検出エリアと、前記撮影画面中心から前記所定距離だけ離れた位置に第2の焦点検出エリアとを有し、
前記焦点検出装置は、前記光学系の射出瞳の第3の対の領域をそれぞれ通過する第3の対の光束によって形成される第3の対の像を受光して第3の対の像信号を出力する第3の受光部と前記光学系の射出瞳の第4の対の領域をそれぞれ通過する第4の対の光束によって形成される第4の対の像を受光して第4の対の像信号を出力する第4の受光部とを有する第2の受光手段と、前記第3の対の像信号に基づき第3の像ズレ量と前記第4の対の像信号に基づき第4の像ズレ量とをそれぞれ検出する第2の像ズレ量検出手段と、前記第4の対の領域の重心間隔と前記第3の像ズレ量と前記第4の像ズレ量とに基づき、前記第3の対の領域の重心間隔を算出する第2の重心間隔算出手段と、を更に備え、
前記第3の対の領域の重心間隔は、前記第4の対の領域の重心間隔よりも大きく、
前記第1の受光手段は、前記第1の焦点検出エリアにおいて前記第1の対の像と前記第2の対の像とを受光し、
前記第2の受光手段は、前記第2の焦点検出エリアにおいて前記第3の対の像と前記第4の対の像とを受光し、
前記デフォーカス量算出手段は、前記第1の重心間隔算出手段によって算出された前記重心間隔と前記第2の重心間隔算出手段によって算出された前記重心間隔との平均値と、前記第1の像ズレ量とに基づき、デフォーカス量を算出することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 3 ,
The focus detection device includes a first focus detection area at a position away from the center of the shooting screen by a predetermined distance within a shooting screen of the optical system, and a second position at a position away from the center of the shooting screen by the predetermined distance. A focus detection area,
The focus detection device receives a third pair of images formed by a third pair of light beams respectively passing through a third pair of regions of the exit pupil of the optical system, and receives a third pair of image signals. And receiving a fourth pair of images formed by a fourth pair of light fluxes that respectively pass through a third pair of light receiving sections that output and a fourth pair of regions of the exit pupil of the optical system. A second light receiving unit having a fourth light receiving unit for outputting the image signal of the second, a fourth image shift based on the third image shift amount based on the third pair of image signals and the fourth pair of image signals. Based on the second image displacement amount detecting means for detecting the image displacement amount of each of the second pair of regions, the center-of-gravity interval of the fourth pair of regions, the third image displacement amount, and the fourth image displacement amount. Second centroid distance calculating means for calculating the centroid distance of the third pair of regions,
The centroid spacing of the third pair of regions is greater than the centroid spacing of the fourth pair of regions,
The first light receiving means receives the first pair of images and the second pair of images in the first focus detection area,
The second light receiving means receives the third pair of images and the fourth pair of images in the second focus detection area,
The defocus amount calculating means includes an average value of the centroid distance calculated by the first centroid distance calculating means and the centroid distance calculated by the second centroid distance calculating means, and the first image. A focus detection apparatus that calculates a defocus amount based on a shift amount .
請求項に記載の焦点検出装置において、
前記光学系の絞り開口を少なくとも第1の開口径と前記第1の開口径よりも小さい第2の開口径とに制御する絞り制御手段を更に備え、
前記第1の受光手段は、前記絞り制御手段によって前記絞り開口が前記第1の開口径に制御された時に、前記第1の対の領域をそれぞれ通過する前記第1の対の光束によって形成される前記第1の対の像を受光して前記第1の対の像信号を出力すると共に、前記絞り制御手段によって前記絞り開口が前記第2の開口径に制御された時に、前記第2の対の領域をそれぞれ通過する前記第2の対の光束によって形成される前記第2の対の像を受光して前記第2の対の像信号を出力することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 1 ,
A diaphragm control means for controlling the diaphragm aperture of the optical system to at least a first aperture diameter and a second aperture diameter smaller than the first aperture diameter;
The first light receiving means is formed by the first pair of light beams respectively passing through the first pair of regions when the stop opening is controlled to the first opening diameter by the stop control means. Receiving the first pair of images and outputting the first pair of image signals, and when the diaphragm opening is controlled to the second opening diameter by the diaphragm control means, A focus detection apparatus that receives the second pair of images formed by the second pair of light beams respectively passing through the pair of regions and outputs the second pair of image signals .
請求項に記載の焦点検出装置において、
前記焦点検出装置は、前記光学系の撮影画面内に、撮影画面中心から所定距離だけ離れた位置に第1の焦点検出エリアと、前記撮影画面中心から前記所定距離だけ離れた位置に第2の焦点検出エリアとを有し、
前記焦点検出装置は、前記光学系の射出瞳の第3の対の領域をそれぞれ通過する第3の対の光束によって形成される第3の対の像と前記光学系の射出瞳の第4の対の領域をそれぞれ通過する第4の対の光束によって形成される第4の対の像とをそれぞれ受光し、前記第3の対の像及び第4の対の像にそれぞれ対応する第3の対の像信号及び第4の対の像信号を出力する第2の受光手段と、前記第3の対の像信号に基づき第3の像ズレ量と前記第4の対の像信号に基づき第4の像ズレ量とをそれぞれ検出する第2の像ズレ量検出手段と、前記第4の対の領域の重心間隔と前記第3の像ズレ量と前記第4の像ズレ量とに基づき、前記第3の対の領域の重心間隔を算出する第2の重心間隔算出手段と、を更に備え、
前記第2の受光手段は、前記絞り制御手段によって前記絞り開口が前記第1の開口径に制御された時に、前記第3の対の領域をそれぞれ通過する前記第3の対の光束によって形成される前記第3の対の像を受光して前記第3の対の像信号を出力すると共に、前記絞り制御手段によって前記絞り開口が前記第2の開口径に制御された時に、前記第4の対の領域をそれぞれ通過する前記第4の対の光束によって形成される前記第4の対の像を受光して前記第4の対の像信号を出力し、
前記第3の対の領域の重心間隔は、前記第4の対の領域の重心間隔よりも大きく、
前記第1の受光手段は、前記第1の焦点検出エリアにおいて前記第1の対の像と前記第2の対の像とを受光し、
前記第2の受光手段は、前記第2の焦点検出エリアにおいて前記第3の対の像と前記第4の対の像とを受光し、
前記デフォーカス量算出手段は、前記第1の重心間隔算出手段によって算出された前記重心間隔と前記第2の重心間隔算出手段によって算出された前記重心間隔との平均値と、前記第1の像ズレ量とに基づき、デフォーカス量を算出することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 5 ,
The focus detection device includes a first focus detection area at a position away from the center of the shooting screen by a predetermined distance within a shooting screen of the optical system, and a second position at a position away from the center of the shooting screen by the predetermined distance. A focus detection area,
The focus detection device includes a third pair of images formed by a third pair of light beams respectively passing through a third pair of regions of the exit pupil of the optical system and a fourth of the exit pupil of the optical system. A fourth pair of images formed by a fourth pair of light beams respectively passing through the pair of regions, and receiving a third pair of images corresponding to the third pair of images and the fourth pair of images, respectively. A second light receiving means for outputting a pair of image signals and a fourth pair of image signals; a third image shift amount based on the third pair of image signals; and a second pair of image signals based on the fourth pair of image signals. A second image deviation amount detecting means for detecting each of the four image deviation amounts, a center-of-gravity interval of the fourth pair of regions, the third image deviation amount, and the fourth image deviation amount, Second centroid distance calculating means for calculating a centroid distance of the third pair of regions,
The second light receiving means is formed by the third pair of light beams respectively passing through the third pair of regions when the diaphragm opening is controlled to the first opening diameter by the diaphragm control means. Receiving the third pair of images and outputting the third pair of image signals, and when the stop opening is controlled to the second opening diameter by the stop control means, Receiving the fourth pair of images formed by the fourth pair of light beams respectively passing through the pair of regions, and outputting the fourth pair of image signals;
The centroid spacing of the third pair of regions is greater than the centroid spacing of the fourth pair of regions,
The first light receiving means receives the first pair of images and the second pair of images in the first focus detection area,
The second light receiving means receives the third pair of images and the fourth pair of images in the second focus detection area,
The defocus amount calculating means includes an average value of the centroid distance calculated by the first centroid distance calculating means and the centroid distance calculated by the second centroid distance calculating means, and the first image. A focus detection apparatus that calculates a defocus amount based on a shift amount .
光学系の射出瞳の一対の領域を通る一対の光束によって形成される一対の像を受光し、前記一対の像に対応する一対の像信号を出力する受光手段と、
前記光学系の絞り開口を少なくとも第1の開口径と前記第1の開口径よりも小さい第2の開口径とに制御する絞り制御手段と、
前記絞り制御手段によって前記絞り開口が前記第1の開口径に制御された時の前記一対の像信号に基づき第1の像ズレ量を検出し、前記絞り制御手段によって前記絞り開口が前記第2の開口径に制御された時の前記一対の像信号に基づき第2の像ズレ量を検出する像ズレ量検出手段と、
前記絞り開口が前記第2の開口径に制御された時の前記一対の領域の重心間隔と前記第1の像ズレ量と前記第2の像ズレ量とに基づき、前記絞り開口が前記第1の開口径に制御された時の前記一対の領域の重心間隔を算出する重心間隔算出手段と、
前記重心間隔算出手段によって算出された前記重心間隔と前記第1の像ズレ量とに基づき、デフォーカス量を算出するデフォーカス量算出手段と、を備えることを特徴とする焦点検出装置。
A light receiving means for receiving a pair of images formed by a pair of light beams passing through a pair of regions of the exit pupil of the optical system and outputting a pair of image signals corresponding to the pair of images;
Stop control means for controlling the aperture of the optical system to at least a first aperture and a second aperture smaller than the first aperture;
A first image shift amount is detected based on the pair of image signals when the stop opening is controlled to the first opening diameter by the stop control means, and the stop opening is detected by the stop control means. Image displacement amount detection means for detecting a second image displacement amount based on the pair of image signals when controlled to the aperture diameter of
Based on the center-of-gravity interval of the pair of regions, the first image shift amount, and the second image shift amount when the stop aperture is controlled to the second aperture diameter, the stop aperture is the first aperture. Centroid interval calculating means for calculating the centroid interval of the pair of regions when controlled to the opening diameter of
A focus detection apparatus comprising: a defocus amount calculating unit that calculates a defocus amount based on the center of gravity interval calculated by the center of gravity interval calculating unit and the first image shift amount .
光学系の撮影画面内に、撮影画面中心から所定距離だけ離れた位置に前記撮影画面中心から放射方向に延びた第1の焦点検出エリアと前記第1の焦点検出エリアに直交するように延びた第2の焦点検出エリアとを有する焦点検出装置であって、
前記第1の焦点検出エリアに対応する方向に配列され、前記光学系の射出瞳の第1の対の領域をそれぞれ通過する第1の対の光束によって形成される第1の対の像をそれぞれ受光し、前記第1の対の像に対応する第1の対の像信号を出力する第1の焦点検出画素列と、前記第2の焦点検出エリアに対応する方向に配列され、前記光学系の射出瞳の第2の対の領域をそれぞれ通過する第2の対の光束によって形成される第2の対の像をそれぞれ受光し、前記第2の対の像に対応する第2の対の像信号を出力する第2の焦点検出画素列とを有する第1の受光手段と、
前記第1の対の像信号に基づき第1の像ズレ量と前記第2の対の像信号に基づき第2の像ズレ量とをそれぞれ検出する第1の像ズレ量検出手段と、
前記第2の対の領域の重心間隔と前記第1の像ズレ量と前記第2の像ズレ量とに基づき、前記第1の対の領域の重心間隔を算出する第1の重心間隔算出手段と、
前記第1の重心間隔算出手段によって算出された前記重心間隔と前記第2の像ズレ量とに基づき、デフォーカス量を算出するデフォーカス量算出手段と、を備えることを特徴とする焦点検出装置。
A first focus detection area extending in a radial direction from the center of the shooting screen and a position perpendicular to the first focus detection area at a predetermined distance from the center of the shooting screen in the shooting screen of the optical system. A focus detection device having a second focus detection area,
A first pair of images formed by a first pair of light beams respectively arranged in a direction corresponding to the first focus detection area and passing through a first pair of regions of the exit pupil of the optical system, respectively. A first focus detection pixel array that receives light and outputs a first pair of image signals corresponding to the first pair of images, and is arranged in a direction corresponding to the second focus detection area; Each of the second pair of images formed by the second pair of light fluxes respectively passing through the second pair of regions of the exit pupil of the second pupil, and a second pair of images corresponding to the second pair of images First light receiving means having a second focus detection pixel row for outputting an image signal;
First image shift amount detection means for detecting a first image shift amount based on the first pair of image signals and a second image shift amount based on the second pair of image signals;
First center-of-gravity interval calculation means for calculating the center-of-gravity interval of the first pair of regions based on the center-of-gravity interval of the second pair of regions, the first image shift amount, and the second image shift amount. When,
A focus detection device comprising: a defocus amount calculation unit that calculates a defocus amount based on the center of gravity interval calculated by the first center of gravity interval calculation unit and the second image shift amount. .
請求項に記載の焦点検出装置において、
前記焦点検出装置は、前記光学系の撮影画面内に、前記撮影画面中心から前記所定距離だけ離れた位置に前記撮影画面中心から放射方向に延びた第3の焦点検出エリアと前記第3の焦点検出エリアに直交するように延びた第4の焦点検出エリアとを、
前記焦点検出装置は、前記第3の焦点検出エリアに対応する方向に配列され、前記光学系の射出瞳の第3の対の領域をそれぞれ通過する第3の対の光束によって形成される第3の対の像をそれぞれ受光して第3の対の像信号を出力する第3の焦点検出画素列と、前記第4の焦点検出エリアに対応する方向に配列され、前記光学系の射出瞳の第4の対の領域をそれぞれ通過する第4の対の光束によって形成される第4の対の像をそれぞれ受光して第4の対の像信号を出力する第4の焦点検出画素列とを有する第2の受光手段と、前記第3の対の像信号に基づき第3の像ズレ量と前記第4の対の像信号に基づき第4の像ズレ量とをそれぞれ検出する第2の像ズレ量検出手段と、前記第4の対の領域の重心間隔と前記第3の像ズレ量と前記第4の像ズレ量とに基づき、前記第3の対の領域の重心間隔を算出する第2の重心間隔算出手段と、を更に備え、
前記デフォーカス量算出手段は、前記第1の重心間隔算出手段によって算出された前記重心間隔と前記第2の重心間隔算出手段によって算出された前記重心間隔との平均値と、前記第2の像ズレ量とに基づき、デフォーカス量を算出することを特徴とする焦点検出装置。
The focus detection apparatus according to claim 8 , wherein
The focus detection device includes a third focus detection area and a third focus that extend in a radial direction from the center of the photographing screen to a position separated from the center of the photographing screen by the predetermined distance within the photographing screen of the optical system. A fourth focus detection area extending perpendicular to the detection area,
The focus detection device is arranged in a direction corresponding to the third focus detection area, and is formed by a third pair of light beams respectively passing through a third pair of regions of the exit pupil of the optical system. Are arranged in a direction corresponding to the fourth focus detection area and a third focus detection pixel array for receiving a pair of images and outputting a third pair of image signals. A fourth focus detection pixel array for receiving a fourth pair of images formed by a fourth pair of light beams respectively passing through a fourth pair of regions and outputting a fourth pair of image signals; And a second image that detects a third image shift amount based on the third pair of image signals and a fourth image shift amount based on the fourth pair of image signals, respectively. Deviation amount detection means, the center-of-gravity distance of the fourth pair of regions, the third image deviation amount, and the fourth image Based on les amount and, further comprising a second centroid distance calculating means for calculating the centroid distance of the third pair of regions,
The defocus amount calculation means includes an average value of the centroid distance calculated by the first centroid distance calculation means and the centroid distance calculated by the second centroid distance calculation means, and the second image. A focus detection apparatus that calculates a defocus amount based on a shift amount .
請求項1、3、5、7または8に記載の焦点検出装置において、The focus detection apparatus according to claim 1, 3, 5, 7, or 8,
前記受光手段は、前記第1の対の像を受光する焦点検出用画素と、前記第2の対の像を受光する焦点検出用画素と、前記光学系による像を受光する撮像用画素とが二次元状に配列された撮像素子から構成されることを特徴とする焦点検出装置。  The light receiving means includes a focus detection pixel that receives the first pair of images, a focus detection pixel that receives the second pair of images, and an imaging pixel that receives the image by the optical system. A focus detection apparatus comprising two-dimensionally arranged image sensors.
請求項2、4、6または9に記載の焦点検出装置において、The focus detection apparatus according to claim 2, 4, 6 or 9,
前記第1の受光手段及び前記第2の受光手段は、前記第1の対の像を受光する焦点検出用画素と、前記第2の対の像を受光する焦点検出用画素と、前記第3の対の像を受光する焦点検出用画素と、前記第4の対の像を受光する焦点検出用画素と、前記光学系による像を受光する撮像用画素とが二次元状に配列された撮像素子から構成されることを特徴とする焦点検出装置。  The first light receiving unit and the second light receiving unit include a focus detection pixel that receives the first pair of images, a focus detection pixel that receives the second pair of images, and the third An imaging in which focus detection pixels that receive the pair of images, focus detection pixels that receive the fourth pair of images, and imaging pixels that receive the image by the optical system are arranged in a two-dimensional manner A focus detection device comprising an element.
請求項1〜のいずれか1項に記載の焦点検出装置を備える撮像装置であって、
前記受光手段は、前記複数の領域対を通る光束による像を受光する焦点検出用画素と、前記光学系による像を受光する撮像用画素とが二次元状に配列して構成し、
前記撮像用画素で得られた信号に基づく撮像画像を表示する表示手段と、
前記撮像用画素で得られた信号に基づく撮像画像を記録する記録手段とを備えることを特徴とする撮像装置。
An imaging apparatus comprising a focus detection device according to any one of claims 1 to 7
The light receiving means is configured by two-dimensionally arranging focus detection pixels that receive an image of a light flux passing through the plurality of region pairs and imaging pixels that receive an image of the optical system,
Display means for displaying a captured image based on a signal obtained by the imaging pixel;
An image pickup apparatus comprising: a recording unit that records a picked-up image based on a signal obtained by the image pickup pixel.
請求項1〜のいずれか1項に記載の焦点検出装置を備える撮像装置であって、
前記光学系により結像された画像に応じた信号を出力する撮像用受光手段と、
前記撮像用受光手段の出力信号に基づく撮像画像を表示する表示手段と、
前記撮像用受光手段の出力信号に基づく撮像画像を記録する記録手段とを備えることを特徴とする撮像装置。
An imaging apparatus comprising a focus detection device according to any one of claims 1 to 7
An imaging light receiving means for outputting a signal corresponding to an image formed by the optical system;
Display means for displaying a captured image based on an output signal of the imaging light receiving means;
An imaging apparatus comprising: a recording unit that records a captured image based on an output signal of the imaging light receiving unit.
JP2006264144A 2006-09-28 2006-09-28 Focus detection apparatus and imaging apparatus Expired - Fee Related JP5028930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006264144A JP5028930B2 (en) 2006-09-28 2006-09-28 Focus detection apparatus and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006264144A JP5028930B2 (en) 2006-09-28 2006-09-28 Focus detection apparatus and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2008083456A JP2008083456A (en) 2008-04-10
JP5028930B2 true JP5028930B2 (en) 2012-09-19

Family

ID=39354388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264144A Expired - Fee Related JP5028930B2 (en) 2006-09-28 2006-09-28 Focus detection apparatus and imaging apparatus

Country Status (1)

Country Link
JP (1) JP5028930B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488050B2 (en) * 2008-04-21 2013-07-16 Panasonic Corporation Camera body, and camera system
WO2009133960A1 (en) 2008-04-30 2009-11-05 Canon Kabushiki Kaisha Image sensing apparatus
JP2010060771A (en) * 2008-09-03 2010-03-18 Canon Inc Imaging device
JP5300414B2 (en) 2008-10-30 2013-09-25 キヤノン株式会社 Camera and camera system
JP5147645B2 (en) * 2008-10-30 2013-02-20 キヤノン株式会社 Imaging device
JP5662667B2 (en) * 2009-10-08 2015-02-04 キヤノン株式会社 Imaging device
JP5595014B2 (en) * 2009-11-09 2014-09-24 キヤノン株式会社 Imaging device
EP2762941B1 (en) * 2011-09-30 2016-12-28 Fujifilm Corporation Imaging device and focus parameter value calculation method
JP6254843B2 (en) * 2013-12-19 2017-12-27 キヤノン株式会社 Image processing apparatus and control method thereof
CN107005647B (en) * 2014-12-02 2020-08-11 奥林巴斯株式会社 Focus control device, endoscope device, and control method for focus control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667088A (en) * 1992-08-18 1994-03-11 Nikon Corp Focus detecting device
JP4011710B2 (en) * 1998-01-23 2007-11-21 キヤノン株式会社 Imaging device
JP2005106994A (en) * 2003-09-29 2005-04-21 Canon Inc Focal point detecting device, imaging device, and method for controlling them

Also Published As

Publication number Publication date
JP2008083456A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4858008B2 (en) FOCUS DETECTION DEVICE, FOCUS DETECTION METHOD, AND IMAGING DEVICE
JP4973273B2 (en) Digital camera
JP5028930B2 (en) Focus detection apparatus and imaging apparatus
JP5458475B2 (en) Focus detection apparatus and imaging apparatus
JP4961993B2 (en) Imaging device, focus detection device, and imaging device
JP4802993B2 (en) Correlation calculation method, correlation calculation device, focus detection device, and imaging device
JP5176959B2 (en) Imaging device and imaging apparatus
JP5157400B2 (en) Imaging device
JP5374862B2 (en) Focus detection apparatus and imaging apparatus
JP5066893B2 (en) Correlation calculation method, correlation calculation device, focus detection device, and imaging device
JP4867566B2 (en) Imaging device, focus detection device, and imaging device
JP5133533B2 (en) Imaging device
JP2009124573A (en) Imaging apparatus
JP5157084B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5067148B2 (en) Imaging device, focus detection device, and imaging device
JP5423111B2 (en) Focus detection apparatus and imaging apparatus
JP5338112B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5407314B2 (en) Focus detection apparatus and imaging apparatus
JP2010091848A (en) Focus detecting apparatus and imaging apparatus
JP5338113B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5440585B2 (en) Digital camera
JP2014132354A (en) Imaging apparatus
JP5332384B2 (en) Correlation calculation device, focus detection device, and imaging device
JP2009162845A (en) Imaging device, focus detecting device and imaging apparatus
JP5338118B2 (en) Correlation calculation device, focus detection device, and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5028930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees