JP5025953B2 - Method for manufacturing wear-resistant products - Google Patents

Method for manufacturing wear-resistant products Download PDF

Info

Publication number
JP5025953B2
JP5025953B2 JP2005370018A JP2005370018A JP5025953B2 JP 5025953 B2 JP5025953 B2 JP 5025953B2 JP 2005370018 A JP2005370018 A JP 2005370018A JP 2005370018 A JP2005370018 A JP 2005370018A JP 5025953 B2 JP5025953 B2 JP 5025953B2
Authority
JP
Japan
Prior art keywords
casting
molten metal
particles
heat treatment
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005370018A
Other languages
Japanese (ja)
Other versions
JP2007167914A (en
Inventor
茂樹 深井
俊三 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ahresty Corp
Original Assignee
Ahresty Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahresty Corp filed Critical Ahresty Corp
Priority to JP2005370018A priority Critical patent/JP5025953B2/en
Publication of JP2007167914A publication Critical patent/JP2007167914A/en
Application granted granted Critical
Publication of JP5025953B2 publication Critical patent/JP5025953B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、アルミニウム合金を用いた耐摩耗性製品の製造方法に関し、例えば内燃機関におけるエンジンブロックのシリンダー部分のように高い耐摩耗性を要求される製品の製造に適した製造方法に関するものである。   The present invention relates to a method for manufacturing a wear-resistant product using an aluminum alloy, and more particularly to a manufacturing method suitable for manufacturing a product that requires high wear resistance, such as a cylinder portion of an engine block in an internal combustion engine. .

アルミニウム合金を用いて耐摩耗性が要求される製品を鋳造により製造する場合、鋳造過程で硬い初晶Si粒子を晶出する過共晶Al-Si合金が多く用いられる。それは、初晶Si粒子が鋳造製品としての耐摩耗性に寄与していることが知られているからであり、例えば、自動車用エンジンブロックが過共晶Al-Si合金を用いて低圧鋳造法等により量産されている。
しかし、過共晶Al-Si合金を用いて鋳造された製品は、鋳造過程で初晶Si粒子の粒径が大きくなりやすく、特に、凝固速度の遅い低圧鋳造法で製造される場合に初晶Si粒子が大きくなり、後加工での切削加工性が悪くなるといった問題が生じている。
When a product requiring wear resistance is produced by casting using an aluminum alloy, a hypereutectic Al-Si alloy that crystallizes hard primary Si particles during casting is often used. This is because it is known that primary Si particles contribute to the wear resistance of cast products. For example, automotive engine blocks use hypereutectic Al-Si alloys and low pressure casting methods. Is mass-produced by
However, products cast using a hypereutectic Al-Si alloy tend to have a large primary Si particle size during the casting process, especially when manufactured by the low pressure casting method with a slow solidification rate. There is a problem that Si particles become large and the machinability in post-processing deteriorates.

また、耐摩耗性が要求されるシリンダー部分に別成形したライナーをダイカスト法によりアルミニウム合金溶融金属で鋳ぐるんでエンジンブロックを製造する際に、上記ライナーをアルミニウム合金製とする場合、アトマイズ法で作製された過共晶Al-Si合金粒子やアルミナ粒子を焼き固める粉末冶金法、或いはアトマイズ後の粒子を堆積させたビレットを引抜き加工するスプレイフォーミング法等で生産される場合がある(例えば、特許文献1参照。)。
しかし、粉末冶金法で生産されるアルミニウム製シリンダライナーは、初晶Si粒子やアルミナ粒子の粒径が小さく、良好な切削加工性及び耐摩耗性が得られる反面、コスト高になってしまう問題がある。
In addition, when an engine block is manufactured by casting a liner separately molded into a cylinder part that requires wear resistance with an aluminum alloy molten metal by a die casting method, if the liner is made of an aluminum alloy, it is manufactured by an atomizing method. May be produced by a powder metallurgy method in which sintered hypereutectic Al-Si alloy particles or alumina particles are baked or solidified, or a spray forming method in which billets on which the particles after atomization are deposited are drawn (for example, patent documents) 1).
However, aluminum cylinder liners produced by powder metallurgy have the problem that the particle size of primary Si particles and alumina particles is small, and good cutting workability and wear resistance can be obtained, but the cost becomes high. is there.

そこで、上記ライナーを、過共晶Al-Si合金を用いて空気の巻込み欠陥等を少なく管理できるスクイズ鋳造法等に代表される低速充填高圧鋳造法で製造することが考えられる。しかし、スクイズ鋳造法で製造される鋳物は、低コストで鋳造でき且つ急冷凝固されるため初晶Siの大きさを小さくすることができ良好な切削加工性を得られるようになるが、金型キャビティ内へ溶湯を充填するまでの間にスリーブやランナー、キャビティにおいて溶湯の温度低下を来たすため鋳物中に充満される溶湯温度にバラツキが生じ、その為に鋳物中に析出する初晶Si粒子に偏りが生じやすく、安定した耐摩耗特性が得られない不具合があった。   Therefore, it is conceivable to manufacture the liner by a low-speed filling and high-pressure casting method represented by a squeeze casting method and the like that can manage air entrainment defects with a hypereutectic Al—Si alloy. However, castings manufactured by squeeze casting can be cast at low cost and rapidly solidified, so that the size of primary Si can be reduced and good machinability can be obtained. The temperature of the molten metal in the sleeve, runner, and cavity is lowered before the molten metal is filled into the cavity, resulting in variations in the molten metal temperature that fills the casting. There was a problem that bias was likely to occur and stable wear resistance characteristics could not be obtained.

特開2000−42709公報JP 2000-42709 A

本願発明者等はこのような現状にあって耐摩耗性に優れた鋳造製品を提供するべく鋭意研究を重ねた結果、過共晶Al-Si合金を用いて低速充填して加圧急冷凝固させる低速充填高圧鋳造法で鋳造された製品に熱処理を施すことによって、初晶Si粒子の粒径を製品としての耐摩耗性を損なわない程度に小さくし且つ低速充填高圧鋳造法で発生する初晶Si粒子の分布の偏りを、共晶Siを凝集させて粒状のSi結晶を成長させることによって補うことができることを見出し、本発明を完成するに至った。   Inventors of the present application have conducted intensive research to provide a cast product with excellent wear resistance in such a current situation. As a result, low-pressure filling is performed using a hypereutectic Al-Si alloy, followed by rapid solidification under pressure. By heat-treating the product cast by the low-speed filling high-pressure casting method, the particle size of the primary crystal Si particles is made small enough not to impair the wear resistance of the product, and the primary crystal Si generated by the low-speed filling high-pressure casting method. It has been found that the uneven distribution of particles can be compensated by agglomerating eutectic Si to grow granular Si crystals, and the present invention has been completed.

本発明は、過共晶Al-Si合金を用いて低速充填高圧鋳造法で鋳造された製品に熱処理を施すことによって、耐摩耗性並びに切削加工性に優れた製品を低コストで量産することが可能な耐摩耗性製品の製造方法を提供することを目的とする。   The present invention is capable of mass-producing products having excellent wear resistance and cutting workability at low cost by heat-treating a product cast by a low-speed filling high-pressure casting method using a hypereutectic Al-Si alloy. It is an object of the present invention to provide a method for producing a possible wear-resistant product.

上記した目的を達成する本発明の耐摩耗性製品の製造方法は、過共晶Al-Si合金の溶湯を金型キャビティ内に充満させるのに要する時間が1秒以上の低速で充填して20MPa以上の高圧で加圧急冷凝固させて製品を鋳造する低速高圧鋳造工程と、前記低速高圧鋳造工程で得られた鋳造製品を520℃〜550℃の温度範囲で熱処理することによって該鋳造製品中の針状の共晶Siを凝集させて粒状Si結晶の大きさを2〜20μmの範囲に成長させる熱処理工程、とから構成されることを特徴としたものである(請求項1)。
この際、熱処理工程中のブリスター欠陥および製品変形を防止するために、鋳造に用いる過共晶Al-Si合金の溶湯中に含まれるガス量が、0.4cc/100g以下、更には0.2cc/100g以下に調整されていることが好ましい。更には、溶湯充填途中でのガスの巻き込みを最小限に抑えるように潤滑剤・離型剤の種類・希釈率・塗布方法などが管理されていることが望ましい(請求項2)。
また、過共晶Al-Si合金を用いて製品を鋳造する場合、金型キャビティ内に充填される溶湯が高温で且つ充填後の溶湯の冷却速度が速い鋳造法であれば何れの方法でも良いが、前記低圧高圧鋳造工程において、充填途中での溶湯の温度低下を抑制するために金型キャビティ面に断熱性を有する粉体離型剤を塗布した金型内に、例えば射出スリーブをなくして溶湯炉から直接溶湯を充満させるなどした後に当該溶湯を加圧する鋳造工程を含むことがより望ましい(請求項3)。
また、前記過共晶Al-Si合金のSi含有量としては、17wt%未満とすることが好ましい(請求項4)。
また、耐摩耗性製品としてエンジンブロックを製造する場合は、特に耐摩耗性を要求されるシリンダー部のライナーを前記請求項1〜4のいずれか1項に記載された方法により作製し、そのアルミニウム製ライナーをエンジンブロック鋳造用金型にセットしてダイカスト法よりアルミニウム合金溶融金属で鋳ぐるむことによりシリンダーボア面を形成するようにする(請求項5)。
この時、前記低圧高圧鋳造工程と熱処理工程を経て製造されたアルミニウム製ライナーを、その両端面を切断しただけのものを内面を加工することなく製造時の抜け勾配を有したままエンジンブロック鋳造用金型にセットしてアルミニウム溶融金属で鋳ぐるむようにすることが好ましい(請求項6)。
The manufacturing method of the wear-resistant product according to the present invention that achieves the above-described object is that the time required for filling the mold cavity with the melt of the hypereutectic Al—Si alloy is filled at a low speed of 1 second or more and 20 MPa. The low-speed high-pressure casting process in which the product is cast by rapid solidification under pressure at the above-mentioned high pressure, and the cast product obtained in the low-speed high-pressure casting process is heat-treated in a temperature range of 520 ° C. to 550 ° C. And a heat treatment step for aggregating acicular eutectic Si to grow the size of the granular Si crystal in the range of 2 to 20 μm (Claim 1).
At this time, in order to prevent blister defects and product deformation during the heat treatment process, the amount of gas contained in the molten eutectic Al-Si alloy used for casting is 0.4 cc / 100 g or less, and further 0.2 cc / 100 g. It is preferable to adjust to the following. Furthermore, it is desirable to manage the type of lubricant, mold release agent, dilution rate, coating method, etc. so as to minimize the entrainment of gas during the filling of the molten metal (claim 2).
Further, when casting a product using a hypereutectic Al-Si alloy, any method may be used as long as the molten metal filled in the mold cavity is a high temperature and the molten metal has a high cooling rate. However, in the low-pressure and high-pressure casting process, in order to suppress the temperature drop of the molten metal in the middle of filling, for example, an injection sleeve is eliminated in the mold in which a powder mold release agent having heat insulation properties is applied to the mold cavity surface. It is more desirable to include a casting step of pressurizing the molten metal after the molten metal is directly filled from the molten metal furnace.
In addition, the Si content of the hypereutectic Al—Si alloy is preferably less than 17 wt%.
Further, when an engine block is manufactured as a wear-resistant product, a liner for a cylinder portion that is particularly required to have wear resistance is prepared by the method described in any one of claims 1 to 4, and the aluminum A cylinder bore surface is formed by setting a liner made in an engine block casting mold and casting it with an aluminum alloy molten metal by a die casting method.
At this time, the aluminum liner manufactured through the low-pressure and high-pressure casting process and the heat treatment process is used for casting an engine block without cutting the inner surface of the aluminum liner that has been cut at both end faces while maintaining the draft at the time of manufacture. It is preferable to set it in a mold and cast it with molten aluminum metal (Claim 6).

本発明に係る耐摩耗性製品の製造方法によれば、過共晶Al-Si合金で鋳造された製品の初晶Siの大きさを2〜20μmの範囲に抑制することができ、低速充填高圧鋳造法で発生する初晶Si粒子の分布の偏りを共晶Siの凝集による粒状Si結晶に成長させることにより補うことが出来るので、耐磨耗性に優れるだけでなく、切削加工性にも優れた製品とすることが可能となる。 According to the method for manufacturing a wear-resistant product according to the present invention, the size of primary crystal Si of a product cast with a hypereutectic Al—Si alloy can be suppressed to a range of 2 to 20 μm , and a low-speed filling high pressure The uneven distribution of primary Si particles generated by the casting method can be compensated for by growing into granular Si crystals by agglomeration of eutectic Si, so it not only has excellent wear resistance but also has excellent machinability. Product.

しかも、請求項2に記載の耐摩耗性製品の製造方法によれば、充填途中でのガス巻き込みを最小限に抑えるように使用する潤滑剤・離型剤の種類・希釈率・塗布方法などを管理した上で、過共晶Al-Si合金溶湯中に含まれるガス量を、0.4cc/100g以下に調整することで、針状の共晶Siを凝集させて粒状Si結晶を成長させる熱処理工程においてブリスターを生成することがなく、また製品の変形を来たす惧れがなくなる。   Moreover, according to the method for manufacturing an abrasion-resistant product according to claim 2, the type of lubricant, mold release agent, dilution rate, application method, etc. used to minimize gas entrainment during filling. A heat treatment process that grows granular Si crystals by agglomerating acicular eutectic Si by adjusting the amount of gas contained in the hypereutectic Al-Si alloy melt to 0.4cc / 100g or less after being controlled. In this case, no blisters are produced, and there is no risk of product deformation.

また、請求項3に記載の耐摩耗性製品の製造方法によれば、高圧鋳造工程において粉体離型剤を塗布した金型キャビティ内に過共晶Al-Si合金溶湯を充満させた後に当該溶湯を加圧するようにしたので、金型キャビティ内に流入する溶湯の温度が充填途中で低下することなくより均一化するので、鋳造製品中に析出する初晶Siの大きさをより小さくすることができるだけでなく、析出する初晶Si粒子の偏りを減少させることが出来る。よって、耐磨耗性をより向上させることが出来る。   According to the method for manufacturing a wear-resistant product according to claim 3, the hypereutectic Al-Si alloy melt is filled in the mold cavity coated with the powder release agent in the high-pressure casting process. Since the molten metal is pressurized, the temperature of the molten metal flowing into the mold cavity becomes more uniform without lowering during filling, so the primary Si deposited in the cast product must be made smaller in size. In addition to this, it is possible to reduce the unevenness of the precipitated primary Si particles. Therefore, the wear resistance can be further improved.

そして、請求項4に記載の耐摩耗性製品の製造方法によれば、過共晶Al-Si合金のSi含有量は少ない方が溶湯温度の低下の影響を受けないで鋳造することが可能となる知見に基づいて、過共晶Al-Si合金のSi含有量を17wt%未満としたので、鋳造条件の管理範囲が広がりその分鋳造がより容易となり、且つ初晶Si粒子の大きさや分布の偏りを小さくすることができる。一方、Si含有量が少なくなって減少したSi粒子数は、熱処理工程で生成する針状の共晶Siが凝集し成長してできる粒状Si結晶の数は変らず多く析出するので、充分補うことができ、結果として耐摩耗性が向上する。   And according to the manufacturing method of the wear-resistant product according to claim 4, it is possible to perform casting without being affected by a decrease in molten metal temperature when the Si content of the hypereutectic Al-Si alloy is smaller. Based on the above knowledge, the Si content of the hypereutectic Al-Si alloy was set to less than 17 wt%, so that the management range of casting conditions was expanded, and casting became easier, and the size and distribution of primary crystal Si particles The bias can be reduced. On the other hand, the number of Si particles decreased as the Si content decreased, so that the number of granular Si crystals formed by the agglomeration and growth of acicular eutectic Si produced in the heat treatment process does not change, and should be compensated sufficiently. As a result, the wear resistance is improved.

また、請求項に記載のエンジンブロックの製造方法によれば、前記請求項1〜のいずれか1項に記載された方法により製造されたアルミニウム製ライナーをエンジンブロック鋳造用金型にセットしてダイカスト法よりアルミニウム合金溶融金属で鋳ぐるむことによりシリンダーボア面を形成させるようにしたので、通常の鋳鉄ライナーを鋳ぐるむ場合と比較して軽量且つ低コストになる共に、そのシリンダー部を耐摩耗性並びに切削加工性に優れたものとすることが出来る。 According to the engine block manufacturing method of claim 5 , the aluminum liner manufactured by the method of any one of claims 1 to 4 is set in an engine block casting mold. Since the cylinder bore surface is formed by casting with an aluminum alloy molten metal by the die casting method, it is lighter and lower in cost than when casting a normal cast iron liner, and the cylinder part is It can be excellent in wear resistance and machinability.

そして、請求項に記載のエンジンブロックの製造方法によれば、低圧高圧鋳造工程と熱処理工程を経て製造されたアルミニウム製ライナーを、その両端面を切断しただけのものを内面を加工することなくエンジンブロック鋳造用金型のライナー製造時の中子形状とほぼ同一形状のホルダーにセットしてアルミニウム溶融金属で鋳ぐるむようにしたので、ライナー製造における加工工程を少なくすることができ、エンジンブロックの製造コストを低減して安価に提供することが可能となる。
すなわち、アルミニウム製ライナーの製造とエンジンブロックの製造が、同じ冷却した金型に溶湯を高圧凝固させる工程を用いるため、アルミニウム製ライナーを作製(鋳造)する際に当該ライナー内面を形成するのに使用した中子ピンと同じ形状(径および勾配を有する)をしたライナー用ホルダーピンをエンジンブロック鋳造用金型に組み込むことにより、ライナーがエンジンブロックのシリンダー部に鋳込まれる時に、ライナーの剛性が向上して溶湯流による変形抵抗が増加すると同時に、ライナー内面と上記ホルダーピンとの間の勘合精度が高くなるのでその間に溶融金属が差し込むのをほぼ完全に防止することが出来る。よって、ライナー内面に対する隙間管理(対シリンダピストンとの隙間管理)のための高い寸法精度要求に対応することが可能となり、その結果、従来必要であったライナー内面の機械加工工程をなくすることが可能となるので工程削減ができ、コストダウンを図ることができる。
According to the engine block manufacturing method of claim 6 , the aluminum liner manufactured through the low- pressure and high-pressure casting process and the heat treatment process is processed by cutting both end faces without processing the inner surface. The engine block casting mold liner is set in a holder that has almost the same shape as the core at the time of manufacturing the liner, and is cast with molten aluminum metal, so the number of processing steps in liner manufacturing can be reduced, and engine block manufacturing is possible. Costs can be reduced and provided at low cost.
That is, since the manufacture of aluminum liner and the manufacture of engine block use the process of high-pressure solidification of molten metal in the same cooled mold, it is used to form the inner surface of the liner when producing (casting) the aluminum liner Incorporating a liner holder pin that has the same shape (diameter and gradient) as the core pin in the engine block casting mold increases the rigidity of the liner when it is cast into the cylinder part of the engine block. As a result, the deformation resistance due to the molten metal flow increases, and at the same time, the fitting accuracy between the liner inner surface and the holder pin is increased, so that it is possible to almost completely prevent the molten metal from being inserted therebetween. Therefore, it becomes possible to meet the high dimensional accuracy requirements for clearance management on the inner surface of the liner (for clearance management with respect to the cylinder piston), and as a result, it is possible to eliminate the machining process for the inner surface of the liner that was conventionally required. Therefore, the process can be reduced and the cost can be reduced.

以下、本発明の具体的な好適実施例を、図面を参照しながら詳細に説明する。
過共晶Al-Si合金を用いて低圧鋳造された耐摩耗性製品の鋳造組織は通常、図1に示すごとく、大きな角状をした初晶Si粒子と、針状の共晶Si及びα-Al相などからなる。
Hereinafter, specific preferred embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the cast structure of wear-resistant products cast using a hypereutectic Al—Si alloy is usually low, and primary crystal Si particles with large horns, acicular eutectic Si and α- It consists of Al phase.

ここで、初晶Si粒子は耐摩耗性に寄与するが、その大きさ(粒径)が小さ過ぎると耐摩耗性に寄与し得なくなるため初晶Si粒子の粒径は2μm以上であることが好ましく、さらには5μm以上とすることがより好ましい。しかし乍ら、初晶Si粒子の粒径が凡そ20μmより大きくなると後加工での切削加工性が悪くなるため、初晶Si粒子の粒径は2〜20μmの範囲が好ましく、さらには5〜20μmの範囲とすることが好ましい。   Here, the primary Si particles contribute to the wear resistance, but if the size (particle size) is too small, the primary Si particles cannot contribute to the wear resistance, so the primary crystal Si particles may have a particle size of 2 μm or more. More preferably, it is more preferably 5 μm or more. However, if the particle size of the primary Si particles is larger than about 20 μm, the machinability in post-processing deteriorates, so the particle size of the primary Si particles is preferably in the range of 2 to 20 μm, more preferably 5 to 20 μm. It is preferable to set it as the range.

また、鋳造した製品の耐摩耗性には初晶Si粒子の分布の偏りが影響しており、できるだけ初晶Si粒子の分布の偏りを小さくする必要がある。
そこで、Al-17%Si系合金を用いて低圧鋳造法で鋳造した製品(A:低圧鋳造法)とAl-15%Si系合金を用いて通常の低速高圧鋳造法で鋳造した製品(B:スクイズ法)、及びAl-15%Si系合金を用いて粉体離型剤を塗布した金型キャビティ内に当該溶湯を充満させた後に当該溶湯を加圧する低速高圧鋳造法で鋳造した製品(C:粉体低速高圧鋳造法)について、鋳放し品(非熱処理品)と、製品(C)については鋳造後熱処理を施したもの(製品(D))のミクロ組織を観察することにより、初晶Si粒子の大きさと分布の偏り状態を評価した(図2を参照)。その結果を表1に示す。
In addition, the uneven distribution of the primary Si particles affects the wear resistance of the cast product, and it is necessary to reduce the uneven distribution of the primary Si particles as much as possible.
Therefore, products cast by the low pressure casting method using Al-17% Si alloy (A: low pressure casting method) and products cast by the normal low speed high pressure casting method using Al-15% Si alloy (B: Squeeze method) and a product cast by a low-speed high-pressure casting method in which the molten metal is filled in a mold cavity coated with a powder release agent using an Al-15% Si alloy (C) : Powder low-speed, high-pressure casting method), and by observing the microstructure of the as-cast product (non-heat treated product) and the product (C) subjected to heat treatment after casting (product (D)), the primary crystal The size and distribution of Si particles were evaluated (see FIG. 2). The results are shown in Table 1.

ちなみに、本明細書で言う「低圧鋳造法」の一般的な鋳造条件は、50KPa以下の鋳造圧力で低圧鋳造機を用いて鋳造する方法であり、「低速高圧鋳造法」の鋳造条件としては、溶湯を金型キャビティ内に充満させるのに要する時間を1秒以上とし、金型キャビティ内に充満された溶湯を凝固させるときに加える圧力を20MPa以上で鋳造する方法である。
上記した低圧鋳造品(A)は、金型温度350℃、溶湯温度720℃、溶湯への圧力30KPa、金型充填時間15秒、サイクルタイム10分で鋳造したものである。そして、上記低速高圧鋳造品(B)は、金型温度250℃、溶湯温度740℃、鋳造圧力50MPa、金型充填時間1.5秒、サイクルタイム60秒で鋳造したものである。また、粉体離型剤を塗布した金型キャビティ内に溶湯を充満させた後に当該溶湯を加圧する粉体低速高圧鋳造法の鋳造品(C)は、金型温度200℃、溶湯温度715℃、鋳造圧力70MPa、金型充填時間5秒、サイクルタイム90秒で鋳造したものである。
Incidentally, the general casting conditions of the “low pressure casting method” referred to in the present specification is a method of casting using a low pressure casting machine at a casting pressure of 50 KPa or less. As the casting conditions of the “low speed high pressure casting method”, In this method, the time required for filling the mold cavity with the molten metal is set to 1 second or more, and the pressure applied when the molten metal filled in the mold cavity is solidified is cast at 20 MPa or more.
The low-pressure cast product (A) described above is cast at a mold temperature of 350 ° C., a molten metal temperature of 720 ° C., a molten metal pressure of 30 KPa, a mold filling time of 15 seconds, and a cycle time of 10 minutes. The low-speed high-pressure cast product (B) is cast at a mold temperature of 250 ° C., a molten metal temperature of 740 ° C., a casting pressure of 50 MPa, a mold filling time of 1.5 seconds, and a cycle time of 60 seconds. Further, the casting product (C) of the powder low-speed high-pressure casting method in which the mold cavity coated with the powder release agent is filled with the molten metal and then the molten metal is pressurized has a mold temperature of 200 ° C and a molten metal temperature of 715 ° C. , Casting pressure 70MPa, mold filling time 5 seconds, cycle time 90 seconds.

上記の表1に示されたとおり、低圧鋳造法で鋳造された製品(A)では、1mm中の初晶Si粒子数が約270個と少ないこと、初晶Si粒子の大きさが20〜45μmの粒子が27%、46〜60μmの粒子が25%もあり、切削加工性が悪いことがうかがえる。
一方、通常の低速充填高圧鋳造法(スクイズ法)で鋳造された製品(B)では、1mm中の初晶Si粒子数が約350個と増えており、しかも初晶Si粒子の大きさが20〜45μmの粒子が48%で46μm以上の粒子がなくなり、全体として小さくなっているので切削加工性は改善されているが、初晶Si粒子の分布に偏りがあるため耐摩耗性が悪いものと予想される。
これに対して、粉体離型剤を塗布した金型キャビティ内に溶湯を充満させた後に当該溶湯を加圧する粉体低速高圧鋳造法で鋳造された製品(C)では、1mm中の初晶Si粒子数が約600個と多く、初晶Si粒子の大きさも20〜45μmの粒子が11%とさらに少なくなり、初晶Si粒子の大きさも小さい。しかし、初晶Si粒子の分布に偏りが見られ、これでは耐摩耗性が悪いものと予想される。
As shown in Table 1 above, in the product (A) cast by the low pressure casting method, the number of primary crystal Si particles in 1 mm 2 is as small as about 270, and the size of primary crystal Si particles is 20 to There are 27% of 45 μm particles and 25% of 46-60 μm particles, indicating that the machinability is poor.
On the other hand, in the product (B) cast by the normal low speed filling high pressure casting method (squeeze method), the number of primary Si particles in 1 mm 2 is increased to about 350, and the size of the primary Si particles is Machinability is improved because 48% of particles of 20-45 μm are eliminated and particles of 46 μm or more are eliminated and the size is reduced as a whole, but wear resistance is poor due to uneven distribution of primary Si particles It is expected to be.
On the other hand, in the product (C) cast by the powder low-speed high-pressure casting method in which the mold cavity coated with the powder release agent is filled with the molten metal and then the molten metal is pressurized, the first in 1 mm 2 The number of primary Si particles is as large as about 600, and the size of primary Si particles is further reduced to 11% of 20-45 μm particles, and the size of primary Si particles is also small. However, there is a bias in the distribution of primary Si particles, which is expected to have poor wear resistance.

一方、粉体離型剤を塗布した金型キャビティ内に溶湯を充満させた後に当該溶湯を加圧する粉体低速高圧鋳造法で鋳造された製品(C)に、540℃で1時間熱処理を施した製品(D)では、熱処理前の共晶部の組織が細かくなることから、熱処理によって共晶Siが凝集して成長してできる粒状Si結晶数も多くなり、1mm中の初晶Si粒子数と共晶Si粒子が凝集して成長した粒状Si結晶数を合わせた合計数が約1120個と非常に多くなり、それに伴い初晶Si粒子の分布の偏りが補われ、図4に示すとおりSi粒子が全体に均一に存在する状態となっているので、耐摩耗性が良好であることが予想される。 On the other hand, a product (C) cast by a powder low-speed high-pressure casting method in which a mold cavity coated with a powder release agent is filled with a molten metal and then the molten metal is pressurized is subjected to heat treatment at 540 ° C. for 1 hour. In the product (D), since the structure of the eutectic part before heat treatment becomes finer, the number of granular Si crystals formed by aggregation and growth of eutectic Si by heat treatment increases, and the primary crystal Si particles in 1 mm 2 The total number of particles and the number of granular Si crystals that have grown by the aggregation of eutectic Si particles is very large, about 1120, which compensates for the uneven distribution of primary Si particles, as shown in FIG. Since the Si particles are present uniformly throughout, it is expected that the wear resistance is good.

次に、上記製品(A)〜(D)について、それぞれ下記の方法で耐磨耗性及び耐焼付性を評価した。その結果を図3のグラフで示す。
<磨耗試験>
ライナ−と同材質のディスクを回転し、表面に潤滑油を噴霧しながらピストンリングと同材質のピンを一定荷重で、一定時間押し当てるピンオンディスク式の磨耗試験を行い、磨耗深さを求める。
<焼付試験(リングオンディスク式)>
ライナ−と同材質のディスクを回転し、表面に潤滑油を滴下しながらピストンリングと同材質のリングを押し当て、リングに対する荷重を徐々に増して行き、摩擦係数が急に上昇する面圧を求める。
Next, with respect to the products (A) to (D), the wear resistance and seizure resistance were evaluated by the following methods, respectively. The result is shown in the graph of FIG.
<Abrasion test>
Rotate a disk made of the same material as the liner, and perform a pin-on-disk type wear test in which a pin of the same material as the piston ring is pressed at a constant load for a certain period of time while spraying lubricant on the surface to determine the wear depth. .
<Baking test (ring-on-disk type)>
Rotate a disk made of the same material as the liner, press the ring made of the same material as the piston ring while dripping lubricating oil on the surface, gradually increase the load on the ring, and increase the surface pressure at which the friction coefficient suddenly increases. Ask.

図3から分るように、低圧鋳造法で鋳造された製品(A)の磨耗深さは4.5μm、焼付面圧は8MPaであり、低速充填高圧鋳造法(スクイズ法)で鋳造された製品(B)の摩耗深さは3.6μm、焼付面圧は5MPaであり、粉体離型剤を塗布した金型キャビティ内に溶湯を充満させた後に溶湯を加圧する粉体低速充填高圧鋳造法で鋳造された製品(C)の摩耗深さは2.2μm、焼付面圧は8MPaであるのに対して、製品(C)に熱処理を施した製品(D)の磨耗深さは0.9μm、焼付面圧は13MPaになった。このことから、初晶Si粒子の大きさが小さく、Si粒子の数の多いもの、更にSi粒子の分布の偏りのないものほど耐磨耗性、耐焼付性が良くなることが確認された。ちなみに、磨耗深さが小さいほど、焼付き面圧が高いほど、耐摩耗性は良好となる。   As can be seen from FIG. 3, the wear depth of the product (A) cast by the low pressure casting method is 4.5 μm, the baking surface pressure is 8 MPa, and the product cast by the low speed filling high pressure casting method (squeeze method) ( The wear depth of B) is 3.6μm, the baking surface pressure is 5MPa, and it is cast by the powder low-speed filling high-pressure casting method in which the melt is filled after filling the mold cavity coated with the powder release agent. The wear depth of the finished product (C) is 2.2 μm and the baked surface pressure is 8 MPa, while the product (D) obtained by heat-treating the product (C) has a wear depth of 0.9 μm and the baked surface pressure. Became 13MPa. From this, it was confirmed that wear resistance and seizure resistance were improved as the size of the primary crystal Si particles was small, the number of Si particles was large, and the distribution of Si particles was not biased. Incidentally, the smaller the wear depth and the higher the seizure surface pressure, the better the wear resistance.

他方、鋳造製品にガスが巻き込まれた場合や溶湯中のガス含有量が多いと、熱処理工程で製品にブリスター(いわゆる、”ふくれ”)と変形が生成し、製品としての機能及び品質への悪影響を与えることがある。その為に、製品鋳造時に空気や、充填途中で溶湯と反応して生成するガス等を巻き込まないようにすることが必要となる。その為、金型キャビティ面に塗布する離型剤の種類やプランジャーに塗布する潤滑剤の種類、そして塗布条件等を制限して、層流で流れる条件で鋳造することが必要となる。離型剤および潤滑剤の種類はガス発生成分が極力少ないものを選定することと、塗布量を必要最低限の量に制御して塗布する条件にすることが必要である。しかし、鋳造条件をこのように制御したとしても、溶湯中に含まれるガス量が0.4cc/100g以上になると熱処理工程の条件によってはブリスターと変形が生じることがあり、溶湯の脱ガス処理等による溶湯中のガス量を制御することが必要となるし、熱処理温度が高い条件では、さらに溶湯中のガス量を0.2cc/100g以下とするのが望ましい。   On the other hand, if gas is entrained in the casting product or if the gas content in the molten metal is high, blisters (so-called “blister”) and deformation are generated in the product during the heat treatment process, adversely affecting the function and quality of the product. May give. Therefore, it is necessary to prevent air or gas generated by reacting with the molten metal during filling from being caught during product casting. Therefore, it is necessary to perform casting under a laminar flow condition by limiting the type of release agent applied to the mold cavity surface, the type of lubricant applied to the plunger, and application conditions. It is necessary to select a release agent and a lubricant that have as few gas generating components as possible, and to make the application conditions by controlling the application amount to the minimum necessary amount. However, even if the casting conditions are controlled in this way, blistering and deformation may occur depending on the heat treatment process conditions when the amount of gas contained in the molten metal is 0.4 cc / 100 g or more. It is necessary to control the amount of gas in the molten metal, and it is desirable that the amount of gas in the molten metal be 0.2 cc / 100 g or less under conditions where the heat treatment temperature is high.

下記の表2は、鋳造した製品を530℃および540℃で2時間熱処理したときの製品に生成するブリスターを調べた結果である。離型剤の塗布量を200ccから100ccに制限することでブリスターがなくなるが、溶湯中のガス量が0.4cc/100gを超えると、ブリスターが生成するようになり、熱処理温度540℃では、0.2 cc/100gを越えるとブリスターが若干であるが発生するようになる。
なお、ここで用いた離型剤は、市販されているシリコーン系の水溶性離型剤を100倍で希釈したもので、離型剤はスプレー方式で塗布しており、塗布量は、金型キャビティの可動型、固定型の両方に塗布した合計量である。
Table 2 below shows the results of examining the blisters produced in the product when the cast product was heat treated at 530 ° C. and 540 ° C. for 2 hours. Blistering is eliminated by limiting the amount of release agent applied from 200cc to 100cc, but when the amount of gas in the molten metal exceeds 0.4cc / 100g, blistering is generated, and at a heat treatment temperature of 540 ° C, 0.2 cc When it exceeds / 100g, some blisters are generated.
The release agent used here is a commercially available silicone-based water-soluble release agent diluted by a factor of 100, and the release agent is applied by a spray method. This is the total amount applied to both the movable mold and fixed mold of the cavity.

また、鋳造製品における初晶Si粒子の大きさは、溶湯温度や冷却速度の影響が大きく、金型キャビティ内に充填された時の溶湯温度が高く且つ冷却速度が速い鋳造条件で鋳造すると初晶Si粒子が小さくなると言われている。   In addition, the size of the primary crystal Si particles in the cast product is greatly affected by the melt temperature and cooling rate, and when cast under casting conditions where the melt temperature is high when the mold cavity is filled and the cooling rate is fast, the primary crystal Si particles are said to be smaller.

そこで本発明では、過共晶Al-Si合金の溶湯を金型キャビティ内に低速充填して加圧急冷凝固させて製品を鋳造する高圧鋳造工程を採用するが、充填途中で溶湯の温度低下が起こりやすいので、溶湯温度の低下を極力減らことが望ましい。すなわち、溶湯を金型キャビティ内に射出スリーブを通して充填するのではなく、予め断熱性を有する粉体離型剤を塗布せしめた金型キャビティとするのが良く、さらには金型キャビティ内に溶湯を充満させる際に射出スリーブを使用せずに、溶湯を溶湯炉から金型キャビティ内に直接充満させ、その後に金型キャビティ内に充満した溶湯を加圧子等で加圧することが望ましい。粉体離型剤は、離型剤に粉体を希釈して塗布する場合もあるが、断熱粉体を静電塗布などで金型面に直接付着させる方法がより効果的である。   Therefore, in the present invention, a high-pressure casting process is used in which a molten product of hypereutectic Al-Si alloy is slowly filled into the mold cavity and then the product is cast by rapid solidification under pressure. Since this is likely to occur, it is desirable to reduce the decrease in molten metal temperature as much as possible. That is, it is better not to fill the molten metal into the mold cavity through the injection sleeve, but to use a mold cavity in which a powder release agent having a heat insulating property is applied in advance. It is desirable to fill the mold cavity directly from the melt furnace into the mold cavity without using the injection sleeve when filling, and then pressurize the molten metal filled into the mold cavity with a pressurizer or the like. In some cases, the powder release agent may be applied by diluting the powder into the release agent, but a method of directly attaching the heat insulating powder to the mold surface by electrostatic application or the like is more effective.

係る低速高圧鋳造法によれば、射出スリーブに供給されたときの溶湯温度低下をなくすることができると共に、粉体離型剤が塗布された金型キャビティ内に溶湯がダイレクトに給湯されるため金型キャビティに充満される途中での溶湯の温度低下を抑制することができ、加えて、金型キャビティ内に充満させた後に当該溶湯に外部から(加圧子で)加圧することにより、金型キャビティ表面と溶湯を隔てていた粉体離型剤が瞬間的に押しつぶされて溶湯が粉体の中に侵入して金型キャビティ表面に直接接触するようになる。すると、金型キャビティ内の溶湯が急激に冷却され、速い凝固速度で鋳造されることになる。その結果、図2に示すごとく、通常の低圧鋳造法やスクイズ法で鋳造された製品と比較して、初晶Si粒子の粒径が小さく、しかも初晶Si粒子の分布の偏りも比較的少ない耐摩耗性及び切削加工性がより良くなる。
なお、本発明で言及している粉体離型剤を塗布した金型キャビティ内に溶湯を充満させた後に当該溶湯を加圧する粉体低速高圧鋳造法の詳細については、特公平6−88119号公報、特許第3204568号公報、特許第3480875号公報、等に記載されているので、ここでの詳しい説明は省略する。
According to such a low-speed high-pressure casting method, it is possible to eliminate the temperature drop of the molten metal when it is supplied to the injection sleeve, and the molten metal is directly fed into the mold cavity coated with the powder release agent. It is possible to suppress the temperature drop of the molten metal in the middle of filling the mold cavity, and in addition, after filling the mold cavity, pressurizing the molten metal from the outside (with a pressurizer), the mold The powder release agent that has separated the cavity surface from the molten metal is momentarily crushed so that the molten metal enters the powder and comes into direct contact with the mold cavity surface. Then, the molten metal in the mold cavity is rapidly cooled and cast at a high solidification rate. As a result, as shown in FIG. 2, the primary Si particles have a smaller particle size and the distribution of the primary Si particles is relatively small compared to products cast by a normal low pressure casting method or squeeze method. Abrasion resistance and machinability are improved.
In addition, for details of the powder low-speed high-pressure casting method in which the molten metal is filled in the mold cavity coated with the powder release agent referred to in the present invention and then the molten metal is pressurized, JP-B-6-88119 Since it is described in the publication, the patent 3204568 publication, the patent 3480875 publication, etc., detailed description here is abbreviate | omitted.

他方で、エンジンブロックやシリンダライナーに求められる要求品質、特に耐摩耗性及び切削加工性に対する要求品質は非常に高いため、上述したごとく粉体離型剤を塗布せしめた金型キャビティ内に過共晶Al-Si合金を直接充満させて加圧する低速高圧鋳造法で鋳造しても、初晶Si粒子の分布の偏りについては要求レベルに達しないことがある。   On the other hand, the required quality required for engine blocks and cylinder liners, particularly the required quality for wear resistance and machinability, is very high, so it is difficult to overfill the mold cavity coated with the powder release agent as described above. Even if casting is performed by a low-speed high-pressure casting method in which a crystalline Al—Si alloy is directly filled and pressed, the distribution of primary Si particles may not reach the required level.

過共晶Al-Si合金で鋳造された製品に特定の熱処理を施すと、図4に例示したごとく、偏りにより初晶Si粒子が存在しない領域中に針状の共晶Siが凝集して初晶Si粒子と同じ寸法オーダの大きさ(粒径)に粒状に成長して耐摩耗性を発揮する粒状Si粒子の数が増加し、初晶Si粒子の分布の偏りが補われていることが理解される。   When a specific heat treatment is applied to a product cast from a hypereutectic Al—Si alloy, as shown in FIG. 4, acicular eutectic Si aggregates in the region where primary Si particles do not exist due to the bias. The number of granular Si particles that grow in the same size order (particle size) as the crystalline Si particles and exhibit wear resistance has increased, and the uneven distribution of primary Si particles has been compensated for Understood.

しかし、鋳造製品を熱処理することにより耐摩耗性が向上する現象は過共晶Al-Si合金特有の性質と考えられ、亜共晶Al-Si合金を用いて過共晶Al-Si合金の場合と同一の条件で鋳造し熱処理を施しても、図5に示すとおり、薄い板状の共晶Siが熱処理でやや大きな棒状に成長するだけで粒子にはならないことを発明者等は確認している。   However, the phenomenon that the wear resistance is improved by heat treatment of the cast product is considered to be a property unique to hypereutectic Al-Si alloys. In the case of hypereutectic Al-Si alloys using hypoeutectic Al-Si alloys, As shown in FIG. 5, the inventors confirmed that a thin plate-like eutectic Si grows into a slightly larger rod shape by heat treatment and does not become particles as shown in FIG. Yes.

次に、過共晶Al-Si合金で鋳造された製品に施す本発明に係る熱処理条件について説明する。
ちなみに、本明細書に記載の各実施例では、鋳造製品を直接電気炉の内部に収容することにより熱処理を施した。
Next, heat treatment conditions according to the present invention applied to a product cast from a hypereutectic Al—Si alloy will be described.
Incidentally, in each Example described in this specification, heat treatment was performed by accommodating the cast product directly inside the electric furnace.

過共晶Al-Si合金(Al-15%Si系合金)を用いて、前述した低速高圧鋳造法により、エンジンブロックに鋳込まれるシリンダライナーを鋳造し、そのシリンダライナーを500℃から570℃まで10℃刻みで温度を変えてそれぞれ1時間熱処理を施し、熱処理後水冷した製品のミクロ組織を観察した。その結果を、図6aと図6bに示す。
なお、ここで作製したシリンダライナーの固相線温度は、577℃である。
Using a hypereutectic Al-Si alloy (Al-15% Si alloy), the cylinder liner cast into the engine block is cast by the low-speed high-pressure casting method described above, and the cylinder liner is heated from 500 ° C to 570 ° C. The microstructure of the product that was heat-treated for 1 hour at different temperatures in increments of 10 ° C. and then water-cooled after the heat treatment was observed. The results are shown in FIGS. 6a and 6b.
The cylinder liner produced here has a solidus temperature of 577 ° C.

図6のミクロ組織を観察すると、熱処理温度が500℃になると針状の共晶Siが成長をして、共晶Si粒子の大きさ(粒径)が初晶Si粒子と同レベルの大きさに成長し始め、熱処理温度が540℃以上で初晶Si粒子と成長した粒状Si結晶がほぼ均一に分散した組織になる。しかし、560℃以上になると初晶Si粒子同士が結合し始め、初晶Si粒子の粒径が切削加工性を悪くする程の大きさ(20μm)以上になってしまうことが理解される。
このことから、熱処理温度は、500℃〜550℃の範囲が好ましく、540℃〜550℃の範囲が最も好ましいと判断される。
When the microstructure shown in FIG. 6 is observed, acicular eutectic Si grows when the heat treatment temperature reaches 500 ° C., and the size (particle size) of the eutectic Si particles is the same level as that of the primary Si particles. When the heat treatment temperature is 540 ° C. or higher, the primary Si particles and the grown granular Si crystals become almost uniformly dispersed. However, it is understood that when the temperature exceeds 560 ° C., the primary Si particles begin to bond with each other, and the particle size of the primary crystal Si particles becomes a size (20 μm) or more that degrades the machinability.
From this, it is judged that the heat treatment temperature is preferably in the range of 500 ° C to 550 ° C, and most preferably in the range of 540 ° C to 550 ° C.

なお、鋳造製品を520℃〜550℃の範囲で熱処理をすると、鋳物中に含まれるガスの影響により製品にブリスターが生成されたり、変形が生じたりする。一般的には、金型キャビティ内に溶湯を低速で充填すれば製品に影響を及ぼすほどのガスの巻き込みは抑制されるので、ブリスターの発生を防止できるが、530℃以上の温度で熱処理すると溶湯中に溶解されるガスの影響によりブリスターを発生する。従って、使用する過共晶Al-Si合金溶湯中に含まれるガス量を0.4cc/100g以下、熱処理温度が540℃以上の場合は、0.2cc/100g以下に調整しておくことが望ましい。
しかし、溶湯中のガス量を調整しても、金型充満中で溶湯と反応するガス発生成分があると、溶湯中にガスが吸収され、熱処理時にブリスターと変形を生成するので、金型に塗布する離型剤及びプランジャーに塗布する潤滑剤の成分と種類、更にはこれら離型剤や潤滑剤の塗布条件を制御する必要がある。
When the cast product is heat-treated in the range of 520 ° C. to 550 ° C., blisters are generated or deformed due to the influence of gas contained in the casting. In general, if the molten metal is filled into the mold cavity at a low speed, gas entrainment that affects the product is suppressed, so that blistering can be prevented, but if the heat treatment is performed at a temperature of 530 ° C or higher, the molten metal Blisters are generated under the influence of gas dissolved in the inside. Accordingly, it is desirable to adjust the amount of gas contained in the hypereutectic Al—Si alloy melt to be used to 0.4 cc / 100 g or less, and to 0.2 cc / 100 g or less when the heat treatment temperature is 540 ° C. or more.
However, even if the amount of gas in the molten metal is adjusted, if there is a gas generating component that reacts with the molten metal while the mold is full, the gas is absorbed into the molten metal and blisters and deformation are generated during heat treatment. It is necessary to control the release agent to be applied and the components and types of the lubricant to be applied to the plunger, as well as the application conditions of the release agent and the lubricant.

次に、鋳造製品として上記シリンダライナーを用いて、熱処理温度を520℃で一定にして、1時間、4時間、7時間にわたってそれぞれ熱処理を施し、熱処理後水冷した製品のミクロ組織を観察した。その結果を、図7に示す。
図7のミクロ組織を観察すると、520℃で1時間熱処理すると針状の共晶Siが成長をして初晶Si粒子と同じ寸法オーダの大きさに成長し始め、7時間熱処理すると針状の共晶から成長した粒状Si結晶がほぼ均一に分散した組織になった。このことから、熱処理温度を520℃と鋳造製品の固相線温度よりかなり低いと、熱処理にかなりの時間を要することが理解される。
Next, using the cylinder liner as a cast product, the heat treatment temperature was kept constant at 520 ° C., heat treatment was performed for 1 hour, 4 hours, and 7 hours, and the microstructure of the product cooled with water after the heat treatment was observed. The result is shown in FIG.
When the microstructure in FIG. 7 is observed, acicular eutectic Si grows when heat-treated at 520 ° C. for 1 hour and begins to grow to the same size order as the primary Si particles. The granular Si crystals grown from the eutectic became almost uniformly dispersed. From this, it is understood that if the heat treatment temperature is 520 ° C., which is considerably lower than the solidus temperature of the cast product, a considerable time is required for the heat treatment.

そこで次に、鋳造製品として上記シリンダライナーを用いて、熱処理温度を540℃と550℃に上げて、1時間、2時間、4時間にわたってそれぞれ熱処理を施し、熱処理後水冷した製品のミクロ組織を観察した。
熱処理温度を540℃とした時のミクロ組織を図8に示し、熱処理温度を550℃とした時のミクロ組織を図9に示す。
Then, using the cylinder liner as a cast product, the heat treatment temperature was raised to 540 ° C and 550 ° C, heat treatment was performed for 1 hour, 2 hours, and 4 hours, respectively, and the microstructure of the product cooled with water after the heat treatment was observed. did.
FIG. 8 shows the microstructure when the heat treatment temperature is 540 ° C., and FIG. 9 shows the microstructure when the heat treatment temperature is 550 ° C.

図8に示すとおり、熱処理温度が540℃の場合は、熱処理時間が1時間で既に針状の共晶から成長した粒状Si結晶がほぼ均一に分散した組織となり、この状態は熱処理時間が4時間になってもさほど変化が観られなかった。
そして、熱処理温度が550℃の場合には、図9に示すとおり、熱処理時間が1時間で針状の共晶から成長した粒状Si結晶がほぼ均一に分散したミクロ組織になったが、熱処理時間が2時間になると初晶Si粒子同士が結合し始めて、初晶Si粒子の粒径が切削加工性を悪くする程の大きさ(25μm)以上になってしまった。
このことから、鋳造製品の固相線温度に近い温度で熱処理を施せば、熱処理時間は短時間で済むことが推察される。
As shown in FIG. 8, when the heat treatment temperature is 540 ° C., the granular Si crystal grown from the needle-like eutectic already has a structure in which the heat treatment time is 1 hour, and the heat treatment time is 4 hours. Even so, there was not much change.
When the heat treatment temperature is 550 ° C., as shown in FIG. 9, the heat treatment time is 1 hour, and the granular Si crystal grown from the needle-like eutectic becomes a substantially uniformly dispersed microstructure. After 2 hours, the primary Si particles started to bond with each other, and the primary Si particle size became larger than the size (25 μm) to deteriorate the machinability.
From this, it is presumed that the heat treatment time is short if the heat treatment is performed at a temperature close to the solidus temperature of the cast product.

次に、過共晶Al-Si合金におけるSi成分の割合(wt%)が耐摩耗性及び鋳造性(生産性)に及ぼす影響について考察した。
過共晶Al-Si合金として、Al-15%Si系合金とAl-17%Si系合金を用いて、上記と同様にしてシリンダライナーを鋳造し、それぞれ熱処理前と熱処理後におけるSi粒子の分布の偏り状態を観察した。そのミクロ組織を図10に示す。
ちなみに、熱処理条件としては、熱処理温度が540℃で1時間熱処理を施した。
Next, the influence of the Si component ratio (wt%) in the hypereutectic Al-Si alloy on wear resistance and castability (productivity) was examined.
As the hypereutectic Al-Si alloy, Al-15% Si alloy and Al-17% Si alloy were used to cast the cylinder liner in the same manner as above, and the distribution of Si particles before and after heat treatment, respectively. The biased state of was observed. The microstructure is shown in FIG.
Incidentally, as the heat treatment conditions, heat treatment was performed at a heat treatment temperature of 540 ° C. for 1 hour.

図10に示したミクロ組織のとおり、Siの含有量が多くなるほど溶湯温度は高温度で鋳造する必要があり、充填過程での溶湯温度の低下の影響を受けやすくなるため初晶Si粒子の大きさや分布の偏りが大きくなるため、同じ条件で鋳造した場合、15%Si系合金の方が17%Si系合金よりも初晶Si粒子の大きさが小さく、分布の偏りも小さいことがうかがえる。
このことから、Si含有量は少ない方が溶湯温度の低下の影響を受けないで鋳造することが可能となるので鋳造条件の管理範囲が広がり鋳造がより容易となり、且つ初晶Si粒子の大きさや分布の偏りも小さくなることが理解される。
As shown in the microstructure shown in FIG. 10, as the Si content increases, the molten metal temperature needs to be cast at a higher temperature, and is easily affected by a decrease in the molten metal temperature during the filling process. Since the uneven distribution of the sheath becomes large, it can be seen that when cast under the same conditions, the size of the primary Si particles is smaller in the 15% Si alloy than in the 17% Si alloy, and the uneven distribution is small.
From this, it is possible to perform casting with a lower Si content without being affected by the lowering of the molten metal temperature, so that the management range of casting conditions is widened and casting becomes easier, and the size of primary Si particles and It is understood that the distribution bias is also reduced.

一方、Si含有量が少ないと当然のことながら初晶Si粒子の晶出量が少なくなり、それに伴って耐摩耗性も悪くなる。しかし、図10に示したミクロ組織のとおり、Si含有量の少ない合金(15%Si系合金)でも、熱処理を施すことにより針状の共晶Si同士が成長し、初晶Si粒子の大きさと同レベルの大きさの粒状Si結晶に成長し、全体としてSi粒子数の多い、耐摩耗性に優れた金属組織になることがうかがえる。   On the other hand, if the Si content is low, the amount of primary Si particles crystallized is naturally reduced, and the wear resistance is also deteriorated accordingly. However, as shown in the microstructure shown in FIG. 10, even in an alloy having a low Si content (15% Si-based alloy), acicular eutectic Si grows by heat treatment, and the size of the primary Si particles increases. It grows into granular Si crystals of the same size, and it can be seen that the overall metal structure has a large number of Si particles and excellent wear resistance.

なお、Si含有量が20%より多くなると、熱処理前における初晶Si粒子の粒径が比較的大きい場合が多く、熱処理工程によりSi粒子の分布の偏りを小さくすることは可能であるが、初晶Si粒子は熱処理により大きくなることはあっても小さくなることはないので、切削加工性が悪くなってしまう。このことから、過共晶Al-Si合金におけるSi成分の割合は17wt%未満がより好ましい。   If the Si content exceeds 20%, the primary Si particle size before heat treatment is often relatively large, and it is possible to reduce the uneven distribution of Si particles by the heat treatment process. Crystalline Si particles may be enlarged by heat treatment, but they will not be reduced, so that the machinability is deteriorated. For this reason, the ratio of the Si component in the hypereutectic Al—Si alloy is more preferably less than 17 wt%.

また、耐摩耗性製品としてエンジンブロックを製造する場合に、特に耐摩耗性を要求されるシリンダー部のライナーを過共晶Al-Si合金を用いて上述した方法により作製する。そして、このアルミニウム製ライナーを、その内面を加工することなくエンジンブロック鋳造用金型にセットしてダイカスト法よりアルミニウム合金溶融金属で鋳ぐるむことによりシリンダーボア面を形成するようにする。   Further, when an engine block is manufactured as a wear-resistant product, a cylinder part liner that is particularly required to have wear resistance is manufactured by the above-described method using a hypereutectic Al-Si alloy. Then, the cylinder bore surface is formed by setting the aluminum liner in an engine block casting mold without machining the inner surface and casting it with an aluminum alloy molten metal by a die casting method.

その際、エンジンブロック鋳造用金型に、アルミニウム製ライナーを作製(鋳造)する際にライナー内面を形成するのに使用した中子と同じ形状のライナーセット用のホルダー(ボアピン)を設置することが望ましい。   At that time, a liner set holder (bore pin) having the same shape as the core used to form the inner surface of the liner when producing (casting) the aluminum liner can be installed in the engine block casting mold. desirable.

すなわち、ダイカストにおいては、製品をスムーズに金型から離型させるために抜け勾配を付けて製品を鋳造する必要がある。従って、アルミニウム製ライナーを鋳造する場合においても、ライナーの内面を形成する中子に抜け勾配を付ける必要があり、その結果、ライナーの内面に勾配ができてしまう。
他方、エンジンブロックにライナーを鋳込み鋳造する場合に、ライナーの内面とライナーをホールド(装着セット)するボアピンとの隙間の設定が大きすぎると、その隙間に溶湯が侵入し、侵入した溶湯がボアピンに付着して次のライナーが設置できなくなるトラブルが発生する。かと言って、ボアピンとの隙間の設定が小さいと、鋳造に伴ってボアピンの温度が上昇し外径(ボア径)が大きくなった場合ライナーを装着できなくなるトラブルが生ずる。その為に、ライナーの内面を非常に寸法精度良く加工する必要があり、それが原因でライナーのコストを高くしている。
そこで、アルミニウム製ライナーを鋳造するのに用いた中子、すなわちアルミニウム製ライナー内面を形成するのに用いた中子と同じ大きさで、且つ同じ抜け勾配を有するボアピンをエンジンブロック成形用金型に組み込み、そのボアピンに上記アルミニウム製ライナーを装着セットして鋳造することにより、ライナー内面とボアピン外周面との間の隙間をほぼ無くすことができ、その結果、ライナーとボアピンとの間に溶湯が侵入したりボアピンにライナーを装着できなくなると言った問題を解決することができる。しかも、アルミニウム製ライナーの肉厚は勾配がつく分だけ厚くなり、その分強度と剛性が強くなり、充填中の溶湯による変形等の影響も受けにくくなると言った効果も期待し得る。
更に加えて、アルミニウム製ライナーは鋳造後において、湯口部及びオーバーフロー部を除去するために両端面を切断し、熱処理した後にエンジンブロックの鋳造工程に持ち込んでそのまま使用することができる為、ライナーの加工工程が削減されて、在庫を無くすことができる。
That is, in die casting, it is necessary to cast a product with a draft angle in order to release the product from the mold smoothly. Therefore, even when an aluminum liner is cast, it is necessary to provide a draft to the core forming the inner surface of the liner, and as a result, a gradient is formed on the inner surface of the liner.
On the other hand, when casting a liner into an engine block, if the gap between the inner surface of the liner and the bore pin that holds the liner is set too large, the molten metal enters the gap, and the molten metal enters the bore pin. A problem occurs that the next liner cannot be installed due to adhesion. However, if the setting of the gap with the bore pin is small, there is a problem that the liner cannot be mounted when the temperature of the bore pin rises with casting and the outer diameter (bore diameter) increases. Therefore, it is necessary to process the inner surface of the liner with very high dimensional accuracy, which increases the cost of the liner.
Therefore, a bore pin having the same size as the core used to cast the aluminum liner, that is, the core used to form the inner surface of the aluminum liner, and the same draft angle is used as the engine block molding die. By installing and casting the above aluminum liner on the bore pin, the gap between the inner surface of the liner and the outer peripheral surface of the bore pin can be almost eliminated. As a result, molten metal enters between the liner and the bore pin. And can solve the problem that the liner cannot be installed on the bore pin. In addition, the thickness of the aluminum liner is increased as much as the gradient is applied, and the strength and rigidity are increased accordingly, so that the effect of being less susceptible to deformation due to the molten metal during filling can be expected.
In addition, since the liner made of aluminum can be used as it is after being cast, both ends are cut to remove the sprue part and overflow part, heat treated, and then brought into the engine block casting process. Processes can be reduced and inventory can be eliminated.

熱処理前後におけるSi粒子の分布の偏りを説明するマクロ組織写真。Macro structure photograph explaining the uneven distribution of Si particles before and after heat treatment. 各種の鋳造法と初晶Si粒子の大きさ及び分布の偏り状態の関係を説明するミクロ組織写真。Microstructure photographs explaining the relationship between various casting methods and the size and distribution of primary Si particles. 初晶Si粒子の大きさおよび分布の偏り状態と耐磨耗性及び耐焼付性の関係を説明するグラフ。The graph explaining the relationship between the unevenness of the size and distribution of primary Si particles and the wear resistance and seizure resistance. 熱処理温度と共晶Si粒子の成長状態を説明するミクロ組織写真。Microstructure photograph explaining the heat treatment temperature and the growth state of eutectic Si particles. 亜共晶Al-Si合金の熱処理と共晶Siの成長状態を説明するミクロ組織写真。Microstructure photograph explaining heat treatment of hypoeutectic Al-Si alloy and growth state of eutectic Si. 熱処理温度と共晶Si粒子の成長状態を説明するミクロ組織写真。Microstructure photograph explaining the heat treatment temperature and the growth state of eutectic Si particles. 熱処理温度と共晶Si粒子の成長状態を説明するミクロ組織写真。Microstructure photograph explaining the heat treatment temperature and the growth state of eutectic Si particles. 熱処理温度(520℃)を一定にした時の熱処理時間と共晶Si粒子の成長状態を説明するミクロ組織写真。Microstructure photograph explaining the heat treatment time and the growth state of eutectic Si particles when the heat treatment temperature (520 ° C) is kept constant. 熱処理温度(540℃)を一定にした時の熱処理時間と共晶Si粒子の成長状態を説明するミクロ組織写真。Microstructure photograph explaining the heat treatment time and the growth state of eutectic Si particles when the heat treatment temperature (540 ° C) is kept constant. 熱処理温度(550℃)を一定にした時の熱処理時間と共晶Si粒子の成長状態を説明するミクロ組織写真。Microstructure photograph explaining the heat treatment time and the growth state of eutectic Si particles when the heat treatment temperature (550 ° C) is constant. 過共晶Al-Si合金におけるSi成分量の違いによる熱処理前後におけるSi粒子の分布の偏りを説明するミクロ組織写真。Microstructure photograph explaining the uneven distribution of Si particles before and after heat treatment due to the difference in Si content in hypereutectic Al-Si alloy.

Claims (6)

過共晶Al-Si合金の溶湯を金型キャビティ内に充満させるのに要する時間が1秒以上の低速で充填して20MPa以上の高圧で加圧急冷凝固させて製品を鋳造する低速高圧鋳造工程と、前記低速高圧鋳造工程で得られた鋳造製品を520℃〜550℃の温度範囲で熱処理することによって該鋳造製品中の針状の共晶Siを凝集させて粒状Si結晶の大きさを2〜20μmの範囲に成長させる熱処理工程、とから構成されることを特徴とする耐摩耗性製品の製造方法。 Low-speed and high-pressure casting process in which the time required to fill the mold cavity with the melt of hypereutectic Al-Si alloy is filled at a low speed of 1 second or more, and is rapidly quenched and solidified at a high pressure of 20 MPa or more. Then, the cast product obtained in the low-speed and high-pressure casting process is heat-treated in a temperature range of 520 ° C. to 550 ° C. to agglomerate acicular eutectic Si in the cast product, thereby reducing the size of the granular Si crystal to 2 A method for producing a wear-resistant product comprising: a heat treatment step for growing in a range of ˜20 μm. 前記過共晶Al-Si合金溶湯中に含まれるガス量が、0.4cc/100g以下に調整されていることを特徴とする請求項1に記載の耐摩耗性製品の製造方法。   The method for producing a wear-resistant product according to claim 1, wherein the amount of gas contained in the hypereutectic Al-Si alloy molten metal is adjusted to 0.4 cc / 100 g or less. 前記低速高圧鋳造工程が、粉体離型剤を塗布した金型キャビティ内に前記溶湯を充満させた後に当該溶湯を加圧する鋳造工程を含むことを特徴とする請求項1又は2に記載の耐摩耗性製品の製造方法。   The low-pressure high-pressure casting step includes a casting step of pressurizing the molten metal after the molten metal is filled in a mold cavity coated with a powder release agent. A manufacturing method for wearable products. 前記過共晶Al-Si合金のSi含有量を17wt%未満とすることを特徴とする請求項1〜3のいずれか1項に記載の耐摩耗性製品の製造方法   The method for producing a wear-resistant product according to any one of claims 1 to 3, wherein the Si content of the hypereutectic Al-Si alloy is less than 17 wt%. 耐摩耗性製品が、前記請求項1〜4のいずれか1項に記載された方法により製造されたアルミニウム製ライナーであり、該ライナーをエンジンブロック鋳造用金型にセットしてダイカスト法よりアルミニウム合金溶融金属で鋳ぐるむことによりシリンダーボア面を形成させることを特徴とするエンジンブロックの製造方法。   The wear-resistant product is an aluminum liner produced by the method described in any one of claims 1 to 4, and the liner is set in an engine block casting die and an aluminum alloy is formed by a die casting method. A method for manufacturing an engine block, wherein a cylinder bore surface is formed by casting with molten metal. 請求項5記載のエンジンブロックの製造方法において、前記低速高圧鋳造工程と熱処理工程を経て製造されたアルミニウム製ライナーの内面を加工することなく前記エンジンブロック鋳造用金型にセットしてアルミニウム溶融金属で鋳ぐるむことを特徴とするエンジンブロックの製造方法。   6. The method of manufacturing an engine block according to claim 5, wherein an aluminum molten metal is set in the mold for casting the engine block without processing an inner surface of the aluminum liner manufactured through the low speed and high pressure casting process and the heat treatment process. An engine block manufacturing method characterized by casting.
JP2005370018A 2005-12-22 2005-12-22 Method for manufacturing wear-resistant products Expired - Fee Related JP5025953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370018A JP5025953B2 (en) 2005-12-22 2005-12-22 Method for manufacturing wear-resistant products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370018A JP5025953B2 (en) 2005-12-22 2005-12-22 Method for manufacturing wear-resistant products

Publications (2)

Publication Number Publication Date
JP2007167914A JP2007167914A (en) 2007-07-05
JP5025953B2 true JP5025953B2 (en) 2012-09-12

Family

ID=38295156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370018A Expired - Fee Related JP5025953B2 (en) 2005-12-22 2005-12-22 Method for manufacturing wear-resistant products

Country Status (1)

Country Link
JP (1) JP5025953B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014482B1 (en) * 2008-05-02 2011-02-14 대림기업 주식회사 method of making cylinder liner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688119B2 (en) * 1988-05-25 1994-11-09 株式会社アーレスティ Die casting
JPH02104465A (en) * 1988-10-07 1990-04-17 Mazda Motor Corp Production of aluminum alloy member having wear resistance
EP0704613A1 (en) * 1994-09-28 1996-04-03 KS Aluminium Technologie Aktiengesellschaft Compositely cast cylinder or cylinderblock
JPH093610A (en) * 1995-06-15 1997-01-07 Nippon Light Metal Co Ltd Thin aluminum diecast product excellent in dimensional accuracy and ductility and its production
JP3668081B2 (en) * 1998-12-25 2005-07-06 株式会社神戸製鋼所 Method for refining molten aluminum alloy and flux for refining molten aluminum alloy
MY130713A (en) * 2000-01-12 2007-07-31 Nippon Light Metal Co A die-casting process and a die-casting machine
JP2001214228A (en) * 2000-01-28 2001-08-07 Nippon Light Metal Co Ltd Diecast cylinder block excellent in airtightness and wear resistance, and its producing method
JP2002282997A (en) * 2001-03-22 2002-10-02 Denso Corp Low-speed mold release agent for die-casting
JP2005161349A (en) * 2003-12-02 2005-06-23 Aisan Ind Co Ltd Die casting molding method
JP2005224819A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Structure of injection part in high vacuum die casting machine and forming method with high vacuum die casting

Also Published As

Publication number Publication date
JP2007167914A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP5027844B2 (en) Method for producing aluminum alloy molded product
KR101534864B1 (en) Manufacturing method for cylinder liner of vehicle
JP5526130B2 (en) Manufacturing method of engine piston profile
JPWO2008016169A1 (en) Aluminum alloy molded product manufacturing method, aluminum alloy molded product and production system
JP4359231B2 (en) Method for producing aluminum alloy molded product, and aluminum alloy molded product
JP5020889B2 (en) Al alloy die casting and method for producing the same
JP4328321B2 (en) Piston for internal combustion engine
JP2017078213A (en) Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same
JP4390762B2 (en) Differential gear case and manufacturing method thereof
JP5025953B2 (en) Method for manufacturing wear-resistant products
JP6752671B2 (en) Sliding materials, their manufacturing methods, and sliding members
JP6752672B2 (en) Sliding member and its manufacturing method
KR102042715B1 (en) Method of producing high quality semi-solidification slurry through optimized process variables
JP5689423B2 (en) Manufacturing method of engine piston profile
JP2000355722A (en) Al-Si DIECAST PRODUCT EXCELLENT IN AIRTIGHTNESS AND WEAR RESISTANCE, AND ITS MANUFACTURE
JPH1136030A (en) Aluminum alloy for piston, and manufacture of piston
JP2001214228A (en) Diecast cylinder block excellent in airtightness and wear resistance, and its producing method
JP3416503B2 (en) Hypereutectic Al-Si alloy die casting member and method of manufacturing the same
JP2000001731A (en) Hypereutectic aluminum-silicon alloy diecast member and its production
JP5373649B2 (en) Engine cylinder liner and method of manufacturing the same, engine cylinder block
JPS61259829A (en) Production of wear resistant aluminum alloy extrudate
JPS63266004A (en) High strength aluminum alloy powder having heat and wear resistances
JPH05261503A (en) Casting method of al alloy casting
JPH0284245A (en) Manufacture of wear resistant aluminum alloy member
JP2023149111A (en) Alloy ingot production method and alloy ingot production bottom tap nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5025953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees