JP5025783B2 - Evaporator and refrigeration system provided with the evaporator - Google Patents

Evaporator and refrigeration system provided with the evaporator Download PDF

Info

Publication number
JP5025783B2
JP5025783B2 JP2010262587A JP2010262587A JP5025783B2 JP 5025783 B2 JP5025783 B2 JP 5025783B2 JP 2010262587 A JP2010262587 A JP 2010262587A JP 2010262587 A JP2010262587 A JP 2010262587A JP 5025783 B2 JP5025783 B2 JP 5025783B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
heat exchange
path
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010262587A
Other languages
Japanese (ja)
Other versions
JP2012112591A (en
Inventor
信雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2010262587A priority Critical patent/JP5025783B2/en
Publication of JP2012112591A publication Critical patent/JP2012112591A/en
Application granted granted Critical
Publication of JP5025783B2 publication Critical patent/JP5025783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、単一成分冷媒や、共沸混合冷媒、疑似共沸混合冷媒、非共沸混合冷媒等の冷媒と水等の被熱交換流体とを熱交換させるための蒸発器、及び該蒸発器を備えた冷凍システムに関する。   The present invention relates to an evaporator for exchanging heat between a single component refrigerant, a refrigerant such as an azeotropic refrigerant mixture, a pseudo-azeotropic refrigerant mixture, a non-azeotropic refrigerant mixture, and a heat exchange fluid such as water, and the evaporation The present invention relates to a refrigeration system equipped with a container.

従来から、冷凍システム(冷凍サイクル)に採用される蒸発器には、種々タイプのものがあり、その一つとして、図10に示す如く、複数の伝熱プレート1’…,2’…が積層され、液体状態又は気液混合状態の冷媒CM’を流通させる第一流路R1’と被熱交換流体W’を流通させる第二流路R2’とが各伝熱プレート1’…,2’…を境にして交互に形成されたものが周知である(例えば、特許文献1参照)。   Conventionally, there are various types of evaporators employed in refrigeration systems (refrigeration cycles), and as one of them, as shown in FIG. 10, a plurality of heat transfer plates 1 '..., 2' ... are stacked. The first flow path R1 ′ for flowing the refrigerant CM ′ in the liquid state or the gas-liquid mixed state and the second flow path R2 ′ for flowing the heat exchange fluid W ′ are each heat transfer plates 1 ′, 2 ′,. Those formed alternately on the boundary are well known (for example, see Patent Document 1).

かかる蒸発器A’は、いわゆるプレート式熱交換器と言われるもので、各伝熱プレート1’,2’の両端の形成された開口H1’,H2’,H3’,H4’が連なることで、第一流路R1’に対して冷媒CM’を流出入させる冷媒流入路31a’及び冷媒流出路31b’が伝熱プレート1’,2’の両端に形成されるとともに、第二流路R2’に被熱交換流体W’を流出入させる被熱交換流体流入路32a’及び被熱交換流体流出路32b’が伝熱プレート1’,2’の両端に形成されている。   Such an evaporator A ′ is a so-called plate heat exchanger, and is formed by connecting openings H1 ′, H2 ′, H3 ′, and H4 ′ formed at both ends of each heat transfer plate 1 ′ and 2 ′. The refrigerant inflow path 31a ′ and the refrigerant outflow path 31b ′ for allowing the refrigerant CM ′ to flow into and out of the first flow path R1 ′ are formed at both ends of the heat transfer plates 1 ′ and 2 ′, and the second flow path R2 ′. A heat exchange fluid inflow passage 32a ′ and a heat exchange fluid outflow passage 32b ′ through which the heat exchange fluid W ′ flows in and out are formed at both ends of the heat transfer plates 1 ′ and 2 ′.

かかる蒸発器A’は、第一流路R1’で流通する冷媒CM’の流通方向と第二流路R2’で流通する被熱交換流体W’の流通方向が逆方向になる(対向流になる)ように、冷媒流入路31a’、冷媒流出路31b’、被熱交換流体流入路32a’及び被熱交換流体流出路32b’が配置される。   In such an evaporator A ′, the flow direction of the refrigerant CM ′ flowing through the first flow path R1 ′ and the flow direction of the heat exchange fluid W ′ flowing through the second flow path R2 ′ are opposite to each other (a counter flow). ), The refrigerant inflow path 31a ′, the refrigerant outflow path 31b ′, the heat exchange fluid inflow path 32a ′, and the heat exchange fluid outflow path 32b ′ are arranged.

このように、上記構成の蒸発器A’は、液体状態又は気液混合状態の冷媒CM’を第一流路R1’に流通させつつ被熱交換流体W’を第二流路R2’に流通させることで、冷媒CM’と被熱交換流体W’とが熱交換を行い、第一流路R1’内の冷媒CM’が蒸発しつつ第二流路R2’内の被熱交換流体W’が冷却されるようになっている。   Thus, the evaporator A ′ configured as described above causes the heat exchange fluid W ′ to flow through the second flow path R2 ′ while flowing the refrigerant CM ′ in the liquid state or the gas-liquid mixed state through the first flow path R1 ′. Thus, the refrigerant CM ′ and the heat exchange fluid W ′ exchange heat, and the refrigerant CM ′ in the first flow path R1 ′ evaporates and the heat exchange fluid W ′ in the second flow path R2 ′ cools. It has come to be.

ところで、上記構成の蒸発器A’を備えた冷凍システムは、一般的に蒸発器A’の冷媒流出路31b’から排出された冷媒CM’を圧縮機で加圧した後に凝縮器で凝縮して再度蒸発器A’に供給するように構成されるが、蒸発器A’から排出された冷媒CM’(圧縮機に供給される冷媒CM’)に液体が含まれると圧縮機が破損してしまう虞があるとして、蒸発器A’で冷媒CM’と被熱交換流体W’とが熱交換する間(冷媒CM’が第一流路R1’を流通する間)に該冷媒CM’を完全に蒸発させ、蒸発器A’から完全にガス化した冷媒CM’を排出するように構成される。   By the way, the refrigeration system provided with the evaporator A ′ having the above configuration generally condenses the refrigerant CM ′ discharged from the refrigerant outflow passage 31b ′ of the evaporator A ′ by the compressor and then condenses it by the condenser. It is configured to be supplied again to the evaporator A ′, but if the refrigerant CM ′ discharged from the evaporator A ′ (refrigerant CM ′ supplied to the compressor) contains liquid, the compressor will be damaged. There is a possibility that the refrigerant CM ′ is completely evaporated during the heat exchange between the refrigerant CM ′ and the heat exchange fluid W ′ in the evaporator A ′ (while the refrigerant CM ′ flows through the first flow path R1 ′). And the refrigerant CM ′ completely gasified is discharged from the evaporator A ′.

特許第4554025号公報Japanese Patent No. 4554025

しかしながら、第一流路R1’内で冷媒CM’を完全に蒸発させ、蒸発器A’から完全にガス化した冷媒CM’を排出するように構成すると、第一流路R1’の下流域で流通する冷媒(略完全にガス化した冷媒)CM’における被熱交換流体W’に対する冷却の効果が小さくなり、熱交換効率が低下するといった問題がある。   However, if the refrigerant CM ′ is completely evaporated in the first flow path R1 ′, and the gasified refrigerant CM ′ is discharged from the evaporator A ′, the refrigerant CM ′ flows in the downstream area of the first flow path R1 ′. There is a problem that the cooling effect on the heat exchange fluid W ′ in the refrigerant (substantially completely gasified refrigerant) CM ′ is reduced and the heat exchange efficiency is lowered.

具体的に説明すると、伝熱プレート1’,2’が冷媒CM’で濡れた状態になると、冷媒CM’の蒸発に伴う気化潜熱で伝熱プレート1’,2’及び被熱交換流体W’を効率的に冷却できるが、略完全にガス化した冷媒CM’は、気化潜熱が殆ど無いため、伝熱プレート1’,2’及び被熱交換流体W’を効率的に冷却できなくなってしまう。   More specifically, when the heat transfer plates 1 ′ and 2 ′ are wetted by the refrigerant CM ′, the heat transfer plates 1 ′ and 2 ′ and the heat exchange fluid W ′ are caused by the latent heat of vaporization accompanying the evaporation of the refrigerant CM ′. However, since the refrigerant CM ′ that is almost completely gasified has almost no latent heat of vaporization, the heat transfer plates 1 ′ and 2 ′ and the heat exchange fluid W ′ cannot be efficiently cooled. .

そのため、従来の冷凍システム(蒸発器A’)は、第一流路R1’内の下流域を流通する冷媒CM’が第二流路R2’内を流通する被熱交換流体W’の冷却に殆ど貢献せずに、熱交換効率が低下するといった問題がある。   Therefore, the conventional refrigeration system (evaporator A ′) is almost used for cooling the heat exchange fluid W ′ in which the refrigerant CM ′ flowing in the downstream area in the first flow path R1 ′ flows in the second flow path R2 ′. There is a problem that heat exchange efficiency is reduced without contributing.

そこで、本発明は、斯かる実情に鑑み、被熱交換流体を効率的に冷却できる上に、完全にガス化した冷媒を排出することのできる蒸発器、及び該蒸発器を備えた冷凍システムを提供することを課題とする。   Accordingly, in view of such circumstances, the present invention provides an evaporator that can efficiently cool a heat exchange fluid and that can discharge a completely gasified refrigerant, and a refrigeration system including the evaporator. The issue is to provide.

本発明に係る蒸発器は、積層された複数の伝熱プレートのそれぞれを境にして冷媒を流通させる第一流路と被熱交換流体を流通させる第二流路とが交互に形成され、各第一流路に対して冷媒を流出入させる冷媒流入路及び冷媒流出路が第一流路の形成される領域を通るように一方向に間隔をあけて形成されるとともに、第二流路に対して被熱交換流体を流出入させる被熱交換流体流入路及び被熱交換流体流出路が第二流路の形成される領域を通るように前記一方向に間隔をあけて形成された蒸発器において、互いに対向する伝熱プレートの一方の面間に前記一方向と直交する他方向に延びる仕切部が設けられ、該仕切部を境にして伝熱プレートの一方の面間における前記一方向の一方側に前記第二流路が形成されるとともに伝熱プレートの一方の面間における前記一方向の他方側に被熱交換流体よりも温度の高い加熱流体を流通させる第三流路が形成される一方、互いに対向する伝熱プレートの他方の面間に第一流路が形成され、前記第三流路に対して加熱流体を流出入させる加熱流体流入路及び加熱流体流出路が該第三流路の形成される領域を通るように形成され、前記冷媒流入路が第二流路の形成される領域を通るように形成されるとともに冷媒流出路が第三流路の形成される領域を通るように形成されていることを特徴とする。   In the evaporator according to the present invention, the first flow path for circulating the refrigerant and the second flow path for circulating the heat exchange fluid are alternately formed with each of the plurality of stacked heat transfer plates as a boundary. The refrigerant inflow path and the refrigerant outflow path for allowing the refrigerant to flow in and out of the one flow path are formed at an interval in one direction so as to pass through the region where the first flow path is formed, and In the evaporator formed in such a manner that the heat exchange fluid inflow passage and the heat exchange fluid outflow passage through which the heat exchange fluid flows in and out through the region where the second flow path is formed are spaced apart in the one direction. A partition extending in the other direction orthogonal to the one direction is provided between one surface of the opposing heat transfer plates, and on one side of the one direction between the surfaces of the heat transfer plate with the partition as a boundary. One of the heat transfer plates is formed while the second flow path is formed. On the other side of the one direction between the two surfaces, a third flow path is formed for flowing a heated fluid having a temperature higher than that of the heat exchange fluid, while a first flow path is formed between the other surfaces of the heat transfer plates facing each other. And a heating fluid inflow path for allowing the heating fluid to flow into and out of the third flow path and a heating fluid outflow path through the region where the third flow path is formed, It is formed so that it may pass through the area | region in which a 2nd flow path is formed, and it is formed so that a refrigerant | coolant outflow path may pass through the area | region in which a 3rd flow path is formed.

上記構成の蒸発器によれば、冷媒流入路が第二流路の形成される領域を通るように形成(配置)されるとともに、冷媒流出路が第三流路の形成される領域を通るように形成(配置)されているため、伝熱プレートの他方の面間に形成される第一流路は、伝熱プレートを挟んで第二流路及び第三流路に対向して形成されることになる。   According to the evaporator having the above configuration, the refrigerant inflow path is formed (arranged) so as to pass through the area where the second flow path is formed, and the refrigerant outflow path is passed through the area where the third flow path is formed. The first flow path formed between the other surfaces of the heat transfer plate is formed to face the second flow path and the third flow path with the heat transfer plate interposed therebetween. become.

従って、冷媒流入路から第一流路に流入した冷媒は、第二流路全域の被熱交換流体と熱交換した上で、第三流路で流通する加熱流体とも熱交換することになる。   Therefore, the refrigerant that has flowed into the first flow path from the refrigerant flow path exchanges heat with the heat exchange fluid in the entire second flow path, and also exchanges heat with the heating fluid that flows through the third flow path.

すなわち、上記構成の蒸発器は、第一流路における第二流路と対応する全領域に液体成分を十分に含む気液混合状態の冷媒を流通させることで、伝熱プレートの第二流路と対応する多くの領域が冷媒で濡れ状態になるため、第一流路内の冷媒と第二流路全域の被熱交換流体とが熱交換を行うことになる。すなわち、伝熱プレートの第二流路と対応する多くの領域に付着した冷媒の蒸発に伴う気化潜熱によって第二流路全域の被熱交換流体が冷却されることになる。従って、上記構成の蒸発器は、冷媒と被熱交換流体とが熱交換し難い領域が形成されることがなく、第二流路を流通する被熱交換流体全体を効率的に冷却することができる。   That is, the evaporator having the above-described configuration causes the second flow path of the heat transfer plate to flow through the gas-liquid mixed state refrigerant that sufficiently contains the liquid component in the entire region corresponding to the second flow path in the first flow path. Since many corresponding regions are wetted with the refrigerant, the refrigerant in the first flow path and the heat exchange fluid in the entire second flow path exchange heat. In other words, the heat exchange fluid in the entire second flow path is cooled by the latent heat of vaporization accompanying the evaporation of the refrigerant attached to many areas corresponding to the second flow path of the heat transfer plate. Therefore, the evaporator configured as described above can efficiently cool the entire heat exchange fluid flowing through the second flow path without forming a region where it is difficult for the refrigerant and the heat exchange fluid to exchange heat. it can.

そして、上述の如く、第一流路における第二流路と対応する全領域に液体成分を十分に含む気液混合状態の冷媒を流通させると、第一流路で流通する冷媒は、第二流路と対応する領域から第三流路と対応する領域に進入したときにも液体成分を含む気液混合状態であるが、第三流路に被熱交換流体よりも温度の高い加熱流体を流通させておくことで、第一流路を流通する冷媒と第三流路を流通する加熱流体とが熱交換を行って該第一流路内の冷媒が急速に蒸発して完全にガス化した状態で冷媒流出路から排出されることになる。従って、上記構成の蒸発器は、冷凍システムに採用したときに、被熱交換流体を効率的に冷却できる上に、後段に設けられる圧縮機の破損も防止することができる。   Then, as described above, when the refrigerant in the gas-liquid mixed state sufficiently containing the liquid component is circulated in the entire region corresponding to the second channel in the first channel, the refrigerant circulated in the first channel is The gas-liquid mixed state containing the liquid component also enters the area corresponding to the third flow path from the area corresponding to the flow path, but the heated fluid having a temperature higher than the heat exchange fluid is circulated through the third flow path. The refrigerant flowing through the first flow path and the heated fluid flowing through the third flow path exchange heat so that the refrigerant in the first flow path rapidly evaporates and is completely gasified. It will be discharged from the outflow channel. Therefore, when the evaporator having the above-described configuration is employed in a refrigeration system, the heat exchange fluid can be efficiently cooled, and damage to the compressor provided in the subsequent stage can be prevented.

本発明の一態様として、各伝熱プレートは、互いに対向する一方の面に前記一方向と直交する他方向に延びる仕切用凸条が形成され、前記仕切部は、互いに対向する伝熱プレートの仕切用凸条同士が面接触した状態で溶着されて形成されてもよい。このようにすれば、第二流路と第三流路との間に幅広な仕切部が形成されるため、第二流路内を流通する被熱交換流体が第三流路内で流通する温度の高い加熱流体の熱影響を受けることが防止される。   As one aspect of the present invention, each heat transfer plate is formed with partitioning ridges extending in the other direction orthogonal to the one direction on one surface facing each other, and the partitioning portion of the heat transfer plates facing each other. It may be formed by welding in a state where the partitioning ridges are in surface contact with each other. In this way, since a wide partition portion is formed between the second flow path and the third flow path, the heat exchange fluid flowing in the second flow path flows in the third flow path. It is prevented from being affected by the heat of the heated fluid having a high temperature.

本発明の他態様として、前記冷媒流入路、前記冷媒流出路、前記被熱交換流体流入路、及び被熱交換流体流出路は、伝熱プレートの前記他方向の中央部で前記一方向に整列して配置されてもよい。このようにすれば第一流路内の冷媒の流れ及び第二流路内の被熱交換流体の流れを均一にすることができる。   As another aspect of the present invention, the refrigerant inflow path, the refrigerant outflow path, the heat exchange fluid inflow path, and the heat exchange fluid outflow path are aligned in the one direction at a central portion in the other direction of the heat transfer plate. May be arranged. In this way, the flow of the refrigerant in the first flow path and the flow of the heat exchange fluid in the second flow path can be made uniform.

本発明の別の態様として、第三流路側に配置された前記被熱交換流体流出路又は前記被熱交換流体流入路の何れか一方は、断面形状が前記一方向に長軸を有する楕円形状に形成されてもよい。このようにすれば、冷媒を第一流路内で円滑に流通させることができる。すなわち、第二流路内の被熱交換流体との熱交換で蒸発が進んだ冷媒が流通する領域に前記被熱交換流体流出路又は前記被熱交換流体流入路の何れか一方が存在すると該冷媒の流れを妨げて圧力損失を増大させる。しかしながら、第三流路側に配置された前記被熱交換流体流出路又は前記被熱交換流体流入路の何れか一方の断面形状を一方向(冷媒の長手方向)に長軸を有する楕円形状に形成すると、他方向に短軸が位置することになるため、冷媒の流通を妨げる範囲が狭くなる結果、圧力損失を大きくすることなく冷媒を円滑に流通させることができる。   As another aspect of the present invention, any one of the heat exchange fluid outflow passage or the heat exchange fluid inflow passage disposed on the third flow path side has an elliptical shape in which a cross-sectional shape has a long axis in the one direction. May be formed. If it does in this way, a refrigerant can be circulated smoothly in the 1st channel. That is, if any one of the heat exchange fluid outflow path or the heat exchange fluid inflow path exists in a region where the refrigerant having evaporated by heat exchange with the heat exchange fluid in the second flow path flows. Prevents the flow of refrigerant and increases pressure loss. However, the cross-sectional shape of either the heat exchange fluid outflow passage or the heat exchange fluid inflow passage arranged on the third flow path side is formed in an elliptical shape having a major axis in one direction (longitudinal direction of the refrigerant). Then, since the minor axis is positioned in the other direction, the range that hinders the circulation of the refrigerant is narrowed. As a result, the refrigerant can be smoothly circulated without increasing the pressure loss.

本発明に係る冷凍システムは、冷媒と被熱交換流体とを熱交換させる蒸発器と、該蒸発器から排出された冷媒を加圧する圧縮機と、該圧縮機で圧縮された冷媒を凝縮させる凝縮器とを備え、該凝縮器で凝縮された冷媒を前記蒸発器に供給するように構成された冷凍システムにおいて、前記蒸発器は、上記何れかの蒸発器で構成され、第一流路に冷媒を流通させた状態で、第二流路に被熱交換流体を流通させつつ第三流路に被熱交換流体よりも温度の高い加熱流体を流通させるように構成されたことを特徴とする。上記冷凍システムによれば、上記何れかの蒸発器を用いるため、上記蒸発器と同様の作用及び効果を奏することができる。   The refrigeration system according to the present invention includes an evaporator for exchanging heat between the refrigerant and the heat exchange fluid, a compressor for pressurizing the refrigerant discharged from the evaporator, and a condensation for condensing the refrigerant compressed by the compressor. A refrigeration system configured to supply the refrigerant condensed in the condenser to the evaporator, wherein the evaporator is constituted by any of the evaporators described above, and the refrigerant is supplied to the first flow path. In a state of being circulated, the heat exchange fluid is circulated through the second flow path, and the heating fluid having a temperature higher than that of the heat exchange fluid is circulated through the third flow path. According to the refrigeration system, since any one of the evaporators is used, the same operations and effects as the evaporator can be achieved.

以上のように、本発明の蒸発器によれば、被熱交換流体を効率的に冷却できる上に、完全にガス化した冷媒を排出することができるという優れた効果を奏し得る。   As described above, according to the evaporator of the present invention, the heat exchange fluid can be efficiently cooled, and the excellent effect that the completely gasified refrigerant can be discharged can be obtained.

また、本発明の冷凍システムによれば、上記蒸発器を備えているため、被熱交換流体を効率的に冷却できる上に、完全にガス化した冷媒を排出することができるという優れた効果を奏し得る。   Further, according to the refrigeration system of the present invention, since the evaporator is provided, the heat exchange fluid can be efficiently cooled, and the excellent effect that the completely gasified refrigerant can be discharged. Can play.

本発明の一実施形態に係る蒸発器の概略斜視図であって、(a)は、蒸発器の正面側から見た概略斜視図をいい、(b)は、蒸発器の背面側から見た概略斜視図を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic perspective view of the evaporator which concerns on one Embodiment of this invention, Comprising: (a) says the schematic perspective view seen from the front side of the evaporator, (b) saw from the back side of the evaporator. A schematic perspective view is shown. 同実施形態に係る蒸発器の中間位置にある伝熱プレートを省略した状態の概略分解斜視図を示す。The schematic disassembled perspective view of the state which abbreviate | omitted the heat-transfer plate in the intermediate position of the evaporator which concerns on the same embodiment is shown. 同実施形態に係る蒸発器に採用される一方の伝熱プレートの説明図であって、(a)は、伝熱部の一方の面側から見た正面図を示し、(b)は、伝熱部の他方の面側から見た背面図を示す。It is explanatory drawing of one heat-transfer plate employ | adopted as the evaporator which concerns on the embodiment, Comprising: (a) shows the front view seen from the one surface side of the heat-transfer part, (b) The rear view seen from the other surface side of the heat part is shown. 同実施形態に係る蒸発器に採用される他方の伝熱プレートの説明図であって、(a)は、伝熱部の他方の面側から見た正面図を示し、(b)は、伝熱部の一方の面側から見た背面図を示す。It is explanatory drawing of the other heat-transfer plate employ | adopted as the evaporator which concerns on the embodiment, Comprising: (a) shows the front view seen from the other surface side of the heat-transfer part, (b) shows heat-transfer. The rear view seen from the one surface side of a thermal part is shown. (a)は、同実施形態に係る蒸発器の仕切部近傍の部分拡大断面図を示し、(b)は、同実施形態に係る蒸発器を構成する伝熱プレート同士の接合部分の部分拡大図であって、開口(第一開口、第二開口、第三開口、第四開口、第五開口、第六開口)回りに設けられた環状凸部同士(第一環状凸部同士、第二環状凸部同士、第三環状凸部同士、第四環状凸部同士、第六環状凸部同士)を接合させた部分の概略図を示す。(A) shows the partial expanded sectional view of the partition part vicinity of the evaporator which concerns on the embodiment, (b) is the elements on larger scale of the junction part of the heat exchanger plates which comprise the evaporator which concerns on the embodiment. Annular projections provided around the openings (first opening, second opening, third opening, fourth opening, fifth opening, sixth opening) (first annular protruding parts, second annular The schematic of the part which joined convex parts, 3rd annular convex parts, 4th annular convex parts, 6th annular convex parts) is shown. 同実施形態に係る蒸発器の縦断面図に冷媒、被熱交換流体、及び加熱流体の流れを付記した図であって、(a)は、第一パス領域及び第二パス領域における第一流路での断面図を示し、(b)は、第一パス領域における第二流路内での断面図を示し、(c)は、第二パス領域における第二流路内での断面図を示す。It is the figure which added the flow of the refrigerant | coolant, the heat exchange fluid, and the heating fluid to the longitudinal cross-sectional view of the evaporator which concerns on the embodiment, Comprising: (a) is the 1st flow path in a 1st path | pass area | region and a 2nd path | pass area | region. (B) shows a cross-sectional view in the second flow path in the first path region, and (c) shows a cross-sectional view in the second flow path in the second pass region. . 同実施形態に係る蒸発器を採用した冷凍システム(空調機)の概略系統図を示す。The schematic system diagram of the refrigerating system (air conditioner) which employ | adopted the evaporator which concerns on the embodiment is shown. 図7に示す冷凍システムに採用される凝縮器の全体斜視図を示す。The whole perspective view of the condenser employ | adopted as the refrigeration system shown in FIG. 7 is shown. 図8に示す凝縮器の縦断面図であって、(a)は、冷却水用流入路及び冷却水用流出路が冷却水用流路を介して連通した部分の縦断面図を示し、(b)は、冷媒用流入路及び冷媒用流出路が冷媒用流路を介して連通した部分の縦断面図を示す。FIG. 9 is a longitudinal sectional view of the condenser shown in FIG. 8, wherein (a) is a longitudinal sectional view of a portion where the cooling water inflow passage and the cooling water outflow passage communicate with each other through the cooling water passage; b) shows a longitudinal sectional view of a portion where the refrigerant inflow passage and the refrigerant outflow passage communicate with each other through the refrigerant flow passage. 冷凍システムに採用される従来の蒸発器の概略分解斜視図を示す。The schematic exploded perspective view of the conventional evaporator employ | adopted as a refrigerating system is shown.

以下、本発明の一実施形態について、添付図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態に係る蒸発器は、冷凍サイクルを実現するためのもので、空調機や冷凍機等に搭載される冷凍システムの一構成として採用される。   The evaporator which concerns on this embodiment is for implement | achieving a refrigerating cycle, and is employ | adopted as one structure of the refrigerating system mounted in an air conditioner, a refrigerator, etc.

かかる蒸発器は、いわゆるプレート式熱交換器であり、図1及び図2に示す如く、積層された複数の伝熱プレート1…,2…を備えている。各伝熱プレート1,2は、金属プレート(本実施形態においてはステンレス合金製のプレート)をプレス成形することで形成されたもので、図3及び図4に示す如く、平面視四角形状(本実施形態においては平面視長方形状)の伝熱部10,20と、該伝熱部10,20と面交差する方向に該伝熱部10,20の外周から延出した環状部11,21とを備えており、隣り合う伝熱プレート1,2の環状部11,21同士を嵌合させた状態で伝熱部10,20同士が対向するようになっている(図2参照)。   Such an evaporator is a so-called plate heat exchanger, and includes a plurality of stacked heat transfer plates 1, 2,... As shown in FIGS. Each of the heat transfer plates 1 and 2 is formed by press-molding a metal plate (a plate made of a stainless alloy in the present embodiment). As shown in FIGS. In the embodiment, the heat transfer portions 10 and 20 have a rectangular shape in plan view, and annular portions 11 and 21 extending from the outer periphery of the heat transfer portions 10 and 20 in a direction intersecting the heat transfer portions 10 and 20. The heat transfer portions 10 and 20 face each other in a state where the annular portions 11 and 21 of the adjacent heat transfer plates 1 and 2 are fitted to each other (see FIG. 2).

本実施形態において、各伝熱プレート1,2は、図3(a)及び図4(b)に示す如く、伝熱部10,20を一方向で二つの領域に区画するように、該伝熱部10,20の一方の面上に一方向と直交する他方向に延びる仕切用凸条100,200が形成されている。なお、図3〜6において、伝熱部10,20から突出した部分(仕切用凸条100,200や後述する第一乃至第六環状凸部)にハッチングを付している。   In the present embodiment, each of the heat transfer plates 1 and 2 is arranged such that the heat transfer portions 10 and 20 are divided into two regions in one direction as shown in FIGS. 3 (a) and 4 (b). On one surface of the heat parts 10 and 20, partitioning ridges 100 and 200 extending in the other direction orthogonal to one direction are formed. In addition, in FIGS. 3-6, the part (The partition protrusion 100,200 and the 1st thru | or 6th annular convex part mentioned later) protruded from the heat-transfer parts 10 and 20 is hatched.

本実施形態おいて、各伝熱プレート1,2は、積層した状態で互いに対向する伝熱部10,20の一方の面上に該伝熱プレート1,2の長手方向と直交する方向(以下、短手方向という)に延びる仕切用凸条100,200が形成されている。なお、各伝熱プレート1,2は、上述の如く、金属プレートをプレス成形することで形成されているため、伝熱部10,20の他方の面(一方の面の裏面)には、仕切用凸条100,200と対応して短手方向に延びる凹条(溝)が形成されている(図3(b)及び図4(a)参照)。   In the present embodiment, the heat transfer plates 1 and 2 are arranged on one surface of the heat transfer portions 10 and 20 facing each other in a stacked state (hereinafter referred to as the longitudinal direction of the heat transfer plates 1 and 2). , Extending in the short direction). Since each of the heat transfer plates 1 and 2 is formed by press-molding a metal plate as described above, the other surface (the back surface of one surface) of the heat transfer portions 10 and 20 has a partition. Corrugations (grooves) extending in the lateral direction are formed in correspondence with the projecting ridges 100 and 200 (see FIGS. 3B and 4A).

これにより、各伝熱プレート1,2の伝熱部10,20は、仕切用凸条100,200(及びその裏面側に形成された凹条)を境にして長手方向で二つの領域A1,A2に区画されている。   Thereby, the heat-transfer parts 10 and 20 of each heat-transfer plate 1 and 2 are two area | region A1 in a longitudinal direction bordering on the protruding protrusions 100 and 200 (and the recessed line formed in the back surface side). It is partitioned into A2.

本実施形態に係る仕切用凸条100,200は、図5(a)に示す如く、頂部が平面状に形成されており、隣り合う伝熱プレート1,2の仕切用凸条100,200の頂部(平面)同士が面接触するようになっている。該仕切用凸条100,200は、伝熱プレート1,2の一方の面間を温度の異なる流体を流通させる二つの流路(後述する第二流路R2及び第三流路R3)に区切る仕切部30を形成するためのものである。そのため、第二流路R2及び第三流路R3を流通する流体のそれぞれが相手方の熱影響を受けにくくなるように、仕切用凸条100,200の頂部(平面)の長手方向の長さ(幅)をできるだけ広く設定して幅広な仕切部30を形成することが好ましいが、例えば、伝熱プレート1,2をオーステナイト系のステンレス合金(熱伝導率16W/mk)で構成し、仕切用凸条100,200(平面状の頂部)同士を銅(熱伝導率370W/mk)でロウ付けする場合には、仕切用凸条100,200の頂部(平面)の幅(伝熱プレート1,2の長手方向の長さ)は、1mm以上あればよい。   As shown in FIG. 5A, the partitioning ridges 100 and 200 according to the present embodiment have a flat top, and the partitioning ridges 100 and 200 of the adjacent heat transfer plates 1 and 2 are formed. The tops (planes) are in surface contact with each other. The partitioning ridges 100 and 200 divide between one surface of the heat transfer plates 1 and 2 into two flow paths (second flow path R2 and third flow path R3 to be described later) through which fluids having different temperatures flow. This is for forming the partition portion 30. Therefore, the length in the longitudinal direction of the top portions (planes) of the partitioning ridges 100, 200 is such that each of the fluids flowing through the second flow path R2 and the third flow path R3 is not easily affected by the heat of the other party ( It is preferable to form the wide partition portion 30 by setting the width as wide as possible. For example, the heat transfer plates 1 and 2 are made of austenitic stainless alloy (thermal conductivity 16 W / mk), When brazing the strips 100 and 200 (planar tops) with copper (thermal conductivity 370 W / mk), the width (heat transfer plates 1 and 2) of the tops (planes) of the partitioning projections 100 and 200 The length in the longitudinal direction) may be 1 mm or more.

図3(a)及び図4(b)に戻り、前記仕切用凸条100,200は、伝熱プレート1,2(伝熱部10,20)の長手方向(一方向)における一端側に偏った位置に設けられている。すなわち、仕切用凸条100,200は、伝熱部10,20の長手方向の中央よりも一端側に設けられている。これにより、伝熱部10,20は、仕切用凸条100,200によって区画された二つの領域のうち、長手方向の一端側の領域(以下、第一領域という)A1よりも他端側の領域(以下、第二領域という)A2が広くなっている。第二領域A2の長手方向の長さは、水等の被熱交換流体Wを流通させるのに必要な流路長(冷媒CMと被熱交換流体Wを熱交換させるのに必要な流路長)以上に設定される。   Returning to FIG. 3A and FIG. 4B, the partitioning ridges 100 and 200 are biased toward one end side in the longitudinal direction (one direction) of the heat transfer plates 1 and 2 (heat transfer portions 10 and 20). It is provided at the position. That is, the partitioning ridges 100 and 200 are provided on one end side of the center of the heat transfer units 10 and 20 in the longitudinal direction. Thereby, the heat-transfer parts 10 and 20 are the other end side rather than the area | region (henceforth 1st area | region) A1 of the one end side of a longitudinal direction among the two area | regions divided by the protruding protrusions 100 and 200 for partitioning. A region (hereinafter referred to as a second region) A2 is widened. The length in the longitudinal direction of the second region A2 is the flow path length necessary for circulating the heat exchange fluid W such as water (the flow path length necessary for heat exchange between the refrigerant CM and the heat exchange fluid W). ) Set above.

本実施形態に係る蒸発器Aは、上述の如く、各伝熱プレート1,2が伝熱部10,20と面交差する方向に該伝熱部10,20の外周から延出した環状部11,21を備えているため、互いに隣り合う伝熱プレート1,2のうち、一方の伝熱プレート1は、図3(a)に示す如く、仕切用凸条100が環状部11の延出側とは反対側に突出するように形成され、他方の伝熱プレート2は、図4(b)に示す如く、仕切用凸条200が環状部21と同方向に突出するように形成されている。すなわち、本実施形態に係る蒸発器Aは、図3及び図4に示す如く、仕切用凸条100,200及び後述する開口(第一開口H1、第二開口H2、第三開口H3、第四開口H4、第五開口H5、第六開口H6)回りの環状凸部(第一環状凸部101,201、第二環状凸部102,202、第三環状凸部103,203、第四環状凸部104,204、第五環状凸部105,205、第六環状凸部106,206)の突出方向を異にする二種類の伝熱プレート1,2を交互に積層することで形成されている(図2参照)。   As described above, the evaporator A according to this embodiment includes the annular portion 11 that extends from the outer periphery of the heat transfer portions 10 and 20 in the direction in which the heat transfer plates 1 and 2 intersect the heat transfer portions 10 and 20. , 21, of the heat transfer plates 1 and 2 adjacent to each other, one of the heat transfer plates 1 has a partitioning ridge 100 on the extending side of the annular portion 11 as shown in FIG. The other heat transfer plate 2 is formed such that the partitioning ridge 200 protrudes in the same direction as the annular portion 21 as shown in FIG. 4B. . That is, as shown in FIGS. 3 and 4, the evaporator A according to the present embodiment includes partitioning ridges 100 and 200 and openings (described below) (first opening H1, second opening H2, third opening H3, fourth). Annular projections (first annular projections 101, 201, second annular projections 102, 202, third annular projections 103, 203, fourth annular projection) around the opening H4, the fifth opening H5, and the sixth opening H6) Part 104, 204, fifth annular convex part 105, 205, sixth annular convex part 106, 206) are formed by alternately stacking two kinds of heat transfer plates 1, 2 having different projecting directions. (See FIG. 2).

各伝熱プレート1,2は、伝熱部10,20に複数の開口が形成されている。より具体的に説明すると、各伝熱プレート1,2は、第一領域A1に大口径の開口が一つ設けられるとともに、該大口径の開口よりも小口径の開口が二つ設けられている。また、各伝熱プレート1,2は、第二領域A2に大口径の開口が伝熱部10,20の長手方向に間隔をあけて三つ設けられている。   Each of the heat transfer plates 1 and 2 has a plurality of openings formed in the heat transfer portions 10 and 20. More specifically, each of the heat transfer plates 1 and 2 is provided with one large-diameter opening in the first region A1 and two smaller-diameter openings than the large-diameter opening. . Each of the heat transfer plates 1 and 2 is provided with three large-diameter openings in the second region A2 at intervals in the longitudinal direction of the heat transfer portions 10 and 20.

第一領域A1及び第二領域A2に設けられた大口径の開口は、伝熱プレート1,2(伝熱部10,20)の短手方向の中央部上で伝熱プレート1,2(伝熱部10,20)の長手方向で一列をなすように配置されている。なお、以下の説明において、伝熱プレート1,2の長手方向に一列で整列する四つの開口(第一領域A1及び第二領域A2に設けられた大口径の開口)を伝熱部10,20の一端側から他端側に向けて順に第一開口H1、第二開口H2、第三開口H3、第四開口H4といい、第一領域A1にある小口径の開口を第五開口H5及び第六開口H6ということとする。   The large-diameter openings provided in the first area A1 and the second area A2 are arranged on the heat transfer plates 1 and 2 (heat transfer plates 1 and 2 (heat transfer sections 10 and 20) on the center in the short direction of the heat transfer plates 1 and 2 (heat transfer sections 10 and 20). They are arranged in a row in the longitudinal direction of the heat parts 10, 20). In the following description, four openings (large-diameter openings provided in the first area A1 and the second area A2) aligned in a line in the longitudinal direction of the heat transfer plates 1 and 2 are defined as the heat transfer sections 10 and 20. The first opening H1, the second opening H2, the third opening H3, and the fourth opening H4 are sequentially called from one end side to the other end side, and the small-diameter opening in the first region A1 is the fifth opening H5 and the fourth opening H4. Let it be a six-opening H6.

前記第一開口H1は、第一領域A1内の伝熱部10,20の長手方向の一端側に偏った位置に配置されている。第二領域A2にある第二開口H2、第三開口H3、第四開口H4のうち、第二開口H2は、第二領域A2内の伝熱部10,20の長手方向の一端側に配置され、第三開口H3及び第四開口H4は、第二領域A2内の伝熱部10,20の長手方向の他端側に配置されている。   Said 1st opening H1 is arrange | positioned in the position biased to the one end side of the longitudinal direction of the heat-transfer parts 10 and 20 in 1st area | region A1. Of the second opening H2, the third opening H3, and the fourth opening H4 in the second region A2, the second opening H2 is disposed on one end side in the longitudinal direction of the heat transfer sections 10 and 20 in the second region A2. The third opening H3 and the fourth opening H4 are arranged on the other end side in the longitudinal direction of the heat transfer parts 10 and 20 in the second region A2.

そして、第五開口H5及び第六開口H6は、第一領域A1で第一開口H1の両側に配置されている。本実施形態において、第五開口H5及び第六開口H6は、伝熱部10,20の短手方向に一列をなすように配置されている。   The fifth opening H5 and the sixth opening H6 are arranged on both sides of the first opening H1 in the first region A1. In the present embodiment, the fifth opening H5 and the sixth opening H6 are arranged in a line in the short direction of the heat transfer units 10 and 20.

そして、第一開口H1、第三開口H3、第四開口H4、第五開口H5、及び第六開口H6は、それぞれ略真円状に形成される一方、第二開口H2は、伝熱プレート1,2の長手方向に長軸が設定された楕円形状に形成されている。   The first opening H1, the third opening H3, the fourth opening H4, the fifth opening H5, and the sixth opening H6 are each formed in a substantially circular shape, while the second opening H2 is the heat transfer plate 1. , 2 are formed in an elliptical shape with a major axis set in the longitudinal direction.

各伝熱プレート1,2の伝熱部10,20には、第一開口H1、第二開口H2、第三開口H3、第四開口H4、第五開口H5、第六開口H6のそれぞれを独立して包囲する環状凸部101,102,103,104,105,106,201,202,203,204,205,206が形成されている。なお、以下において、各環状凸部101,102,103,104,105,106,201,202,203,204,205,206を第一開口H1乃至第六開口H6のそれぞれに対応させて第一環状凸部101,201、第二環状凸部102,202、第三環状凸部103,203、第四環状凸部104,204、第五環状凸部105,205、第六環状凸部106,206ということとする。   In the heat transfer portions 10 and 20 of the heat transfer plates 1 and 2, the first opening H1, the second opening H2, the third opening H3, the fourth opening H4, the fifth opening H5, and the sixth opening H6 are independent. Thus, annular convex portions 101, 102, 103, 104, 105, 106, 201, 202, 203, 204, 205, 206 are formed. In the following description, each annular protrusion 101, 102, 103, 104, 105, 106, 201, 202, 203, 204, 205, 206 is associated with each of the first opening H1 to the sixth opening H6. Annular projections 101, 201, second annular projections 102, 202, third annular projections 103, 203, fourth annular projections 104, 204, fifth annular projections 105, 205, sixth annular projection 106, 206.

各伝熱プレート1,2は、図3(a)及び図4(b)に示す如く、第一環状凸部101,201及び第三環状凸部103,203が伝熱部10,20の一方の面(仕切用凸条100,200の形成された面)に凸設され、図3(b)及び図4(a)に示す如く、第二環状凸部102,202、第四環状凸部104,204、第五環状凸部105,205及び第六環状凸部106,206が伝熱部10,20の他方の面に凸設されている。   As shown in FIG. 3A and FIG. 4B, each of the heat transfer plates 1 and 2 includes the first annular protrusions 101 and 201 and the third annular protrusions 103 and 203 as one of the heat transfer parts 10 and 20. 4 (surface on which partitioning ridges 100 and 200 are formed), and as shown in FIGS. 3B and 4A, the second annular protrusions 102 and 202, the fourth annular protrusion 104, 204, fifth annular protrusions 105, 205 and sixth annular protrusions 106, 206 are provided on the other surface of the heat transfer parts 10, 20.

図3及び図4に示す如く、本実施形態において、第一開口H1、第三開口H3、第四開口H4、第五開口H5、及び第六開口H6は、それぞれ略真円状に形成されているため、第一環状凸部101,201、第三環状凸部103,203、第四環状凸部104,204、第五環状凸部105,205、及び第六環状凸部106,206のそれぞれは、対応する開口H1,H2,H3,H4に即して円環状に形成されている。これに対し、第二環状凸部102,202は、第二開口H2が楕円形状に形成されているため、伝熱プレート1,2の長手方向に長軸が設定された楕円環状をなしている。   As shown in FIGS. 3 and 4, in the present embodiment, the first opening H1, the third opening H3, the fourth opening H4, the fifth opening H5, and the sixth opening H6 are each formed in a substantially circular shape. Therefore, the first annular convex portions 101 and 201, the third annular convex portions 103 and 203, the fourth annular convex portions 104 and 204, the fifth annular convex portions 105 and 205, and the sixth annular convex portions 106 and 206, respectively. Are formed in an annular shape corresponding to the corresponding openings H1, H2, H3, H4. On the other hand, since the 2nd cyclic | annular convex parts 102 and 202 have the 2nd opening H2 formed in the elliptical shape, they have comprised the elliptical cyclic | annular form by which the long axis was set to the longitudinal direction of the heat exchanger plates 1 and 2. .

そして、各伝熱プレート1,2は、図5(b)に示す如く、積層した状態で、隣り合う伝熱プレート1,2の互いに対向する一方の面側において、対応する環状凸部同士(第一環状凸部101,201同士、第三環状凸部103,203同士)がそれぞれ全周に亘って接触し、互いに対向する他方の面側においても対応する環状凸部同士(第二環状凸部102,202同士、第四環状凸部104,204同士、第五環状凸部105,205同士、第六環状凸部106,206同士)がそれぞれ全周に亘って接触するようになっている。これにより、各伝熱プレート1,2は、対応関係にある開口(第一開口H1…同士、第二開口H2…同士、第三開口H3…同士、第四開口H4…同士、第五開口H5…同士、第六開口H6…同士)が連なるようになっている。   Then, as shown in FIG. 5 (b), the heat transfer plates 1 and 2 are stacked in a stacked state on the one surface side of the adjacent heat transfer plates 1 and 2 facing each other. The first annular projections 101 and 201 and the third annular projections 103 and 203 are in contact with each other over the entire circumference, and the corresponding annular projections (second annular projections) are also provided on the other surface facing each other. Portions 102 and 202, fourth annular convex portions 104 and 204, fifth annular convex portions 105 and 205, and sixth annular convex portions 106 and 206) are in contact with each other over the entire circumference. . As a result, the heat transfer plates 1 and 2 have corresponding openings (first openings H1..., Second openings H2..., Third openings H3..., Fourth openings H4. ..., the sixth openings H6 ...) are connected to each other.

また、図3(a)及び図4(b)に示す如く、各伝熱プレート1,2の一方の面には、第二開口H2の外周の前記長手方向の他端側の一部に沿った案内用凸部107,207が形成されている。かかる案内用凸部107,207は、第二環状凸部102,202の外側で平面視円弧状に形成されており、第二開口H2の開口中心(第二環状凸部102,202の曲率中心)と両端とを結ぶ二本の仮想線のなす角度θが60°〜120°(好ましくは、80°〜90°)になる範囲で形成されている。   Further, as shown in FIGS. 3 (a) and 4 (b), one surface of each heat transfer plate 1, 2 is along a part of the other end side in the longitudinal direction of the outer periphery of the second opening H2. Guide convex portions 107 and 207 are formed. The guide convex portions 107 and 207 are formed in an arc shape in plan view outside the second annular convex portions 102 and 202, and the opening center of the second opening H2 (the center of curvature of the second annular convex portions 102 and 202). ) And two imaginary lines connecting the two ends are formed in a range where the angle θ is 60 ° to 120 ° (preferably 80 ° to 90 °).

そして、図3(b)及び図4(a)に示す如く、各伝熱プレート1,2の他方の面には、第三開口H3の少なくとも前記長手方向の一端側を部分的に包囲するガイド用凸部108,208が設けられている。本実施形態に係るガイド用凸部108,208は、第三開口H3の開口中心に対して長手方向の他端側に偏った位置に曲率中心が設定された円弧状に形成されており、周方向の両端が第四開口H4の周囲(第四環状凸部104,204)と間隔をあけて長手方向の他端側で開放するように形成されている。   As shown in FIGS. 3B and 4A, the other surface of each of the heat transfer plates 1 and 2 is a guide that partially surrounds at least one end in the longitudinal direction of the third opening H3. Protrusion portions 108 and 208 are provided. The guide convex portions 108 and 208 according to the present embodiment are formed in an arc shape in which the center of curvature is set at a position offset toward the other end side in the longitudinal direction with respect to the opening center of the third opening H3. Both ends in the direction are formed so as to open at the other end side in the longitudinal direction with a space from the periphery of the fourth opening H4 (fourth annular convex portions 104, 204).

そして、本実施形態においては、前記ガイド用凸部108,208の両端から第四開口H4の両側に延出した一対のサイドガイド用凸部109,209が形成されている。該一対のサイドガイド用凸部109,209は、伝熱部10,20の長手方向の他端にまで到達しないように形成されており、長手方向の他端側に向かうにつれて互いの間隔が拡大するように形成されている。   In this embodiment, a pair of side guide convex portions 109 and 209 extending from both ends of the guide convex portions 108 and 208 to both sides of the fourth opening H4 is formed. The pair of side guide convex portions 109 and 209 are formed so as not to reach the other end in the longitudinal direction of the heat transfer portions 10 and 20, and the distance between them increases toward the other end in the longitudinal direction. It is formed to do.

各伝熱プレート1,2は、伝熱部10,20の第一領域A1及び第二領域A2に複数の凹条と凸条(図示しない)とが交互に形成されている。各伝熱プレート1,2は、積層した状態で、隣り合う伝熱プレート1,2の伝熱部10,20の凸条同士が交差衝合し、積層された伝熱プレート1,2間に流体が流通可能な空間が形成されるようになっている。すなわち、蒸発器Aは、隣り合う伝熱プレート1,2の凸条同士が交差衝合して対向する凹条間に流体が流通可能な空間が形成されている。   Each of the heat transfer plates 1 and 2 has a plurality of recesses and protrusions (not shown) alternately formed in the first region A1 and the second region A2 of the heat transfer parts 10 and 20. In the state where each heat transfer plate 1 and 2 is laminated, the protrusions of the heat transfer portions 10 and 20 of the adjacent heat transfer plates 1 and 2 intersect each other, and between the laminated heat transfer plates 1 and 2. A space through which fluid can flow is formed. That is, in the evaporator A, a space in which fluid can flow is formed between the opposing ridges by the ridges of the adjacent heat transfer plates 1 and 2 crossing each other.

そして、本実施形態に係る蒸発器Aは、隣り合う伝熱プレート1,2同士がロウ付けによって永久接合される。すなわち、本実施形態に係る蒸発器Aは、図5に示す如く、隣り合う伝熱プレート1,2の接触部分(仕切用凸条100,200同士、環状部11,21同士、第一環状凸部101,201同士、第二環状凸部102,202同士、第三環状凸部103,203同士、第四環状凸部104,204同士、第五環状凸部105,205同士、第六環状凸部106,206同士、案内用凸部107,207同士、ガイド用凸部108,208同士、サイドガイド用凸部109,209同士、凸条が接触する接触点同士)がロウ付けされ、開口H1,H2,H3,H4,H5,H6回り及び伝熱部10,20の外周が封着されている。   In the evaporator A according to this embodiment, the adjacent heat transfer plates 1 and 2 are permanently joined by brazing. That is, as shown in FIG. 5, the evaporator A according to the present embodiment has a contact portion between adjacent heat transfer plates 1 and 2 (partition ridges 100 and 200, annular portions 11 and 21, first annular projections). Parts 101, 201, second annular convex parts 102, 202, third annular convex parts 103, 203, fourth annular convex parts 104, 204, fifth annular convex parts 105, 205, sixth annular convex part The portions 106 and 206, the guide convex portions 107 and 207, the guide convex portions 108 and 208, the side guide convex portions 109 and 209, and the contact points where the ridges contact) are brazed, and the opening H1 , H2, H3, H4, H5 and H6 and the outer periphery of the heat transfer parts 10 and 20 are sealed.

これにより、前記蒸発器Aは、図2及び図6に示す如く、各伝熱プレート1,2のそれぞれを境にして冷媒CMを流通させる第一流路R1と被熱交換流体Wを流通させる第二流路R2とが交互に形成されている。   Thereby, the evaporator A, as shown in FIG. 2 and FIG. 6, distributes the heat exchange fluid W through the first flow path R1 through which the refrigerant CM flows through each of the heat transfer plates 1 and 2. Two flow paths R2 are alternately formed.

本実施形態に係る蒸発器Aは、隣り合う伝熱部10,20の一方の面上にある仕切用凸条100,200同士が接続(ロウ付け)されることで、伝熱部10,20の一方の面間を長手方向(一方向)で二つに区画する仕切部30が短手方向(一方向と直交する他方向)に延びるように形成される。そして、該蒸発器Aは、図6(a)に示す如く、伝熱部10,20の他方の面間に長手方向の全長に亘って(第一領域A1と第二領域A2と併せた全領域と対応する領域に)第一流路R1が形成され、図6(b)及び図6(c)に示す如く、前記仕切部30を境にして伝熱部10,20の一方の面間の長手方向の他端側(第二領域A2と対応する領域)に被熱交換流体Wを流通させる第二流路R2が形成されるとともに長手方向の一端側(第一領域A1と対応する領域)に被熱交換流体Wよりも温度の高い加熱流体WMを流通させる第三流路R3が形成されている。   In the evaporator A according to the present embodiment, the partition projections 100 and 200 on one surface of the adjacent heat transfer units 10 and 20 are connected (brazed), whereby the heat transfer units 10 and 20 are connected. A partition portion 30 that divides one of the two surfaces into two in the longitudinal direction (one direction) is formed so as to extend in the short direction (the other direction orthogonal to the one direction). Then, as shown in FIG. 6 (a), the evaporator A extends over the entire length in the longitudinal direction between the other surfaces of the heat transfer sections 10 and 20 (all together with the first region A1 and the second region A2). The first flow path R1 is formed (in a region corresponding to the region), and as shown in FIGS. 6B and 6C, between the one surface of the heat transfer units 10 and 20 with the partition 30 as a boundary. A second flow path R2 for circulating the heat exchange fluid W is formed on the other end side in the longitudinal direction (region corresponding to the second region A2), and one end side in the longitudinal direction (region corresponding to the first region A1). A third flow path R3 is formed through which the heated fluid WM having a temperature higher than that of the heat exchange fluid W is circulated.

また、本実施形態に係る蒸発器Aは、図6に示す如く、各伝熱プレート1,2の第一開口H1が連なるとともに第三開口H3が連なることで、各第一流路R1に対して冷媒CMを流出入させる冷媒流入路31a及び冷媒流出路31bが形成され、各伝熱プレート1,2の第二開口H2が連なるとともに第四開口H4が連なることで、第二流路R2に対して被熱交換流体Wを流出入させる被熱交換流体流入路32a及び被熱交換流体流出路32bが形成されている。   Further, as shown in FIG. 6, the evaporator A according to the present embodiment has the first opening H1 of each of the heat transfer plates 1 and 2 connected and the third opening H3 connected to each of the first flow paths R1. A refrigerant inflow path 31a and a refrigerant outflow path 31b through which the refrigerant CM flows in and out are formed, and the second openings H2 of the heat transfer plates 1 and 2 are connected and the fourth opening H4 is connected, so that the second flow path R2 is connected. Thus, a heat exchange fluid inflow passage 32a and a heat exchange fluid outflow passage 32b through which the heat exchange fluid W flows in and out are formed.

すなわち、本実施形態に係る蒸発器Aは、第一開口H1及び第三開口H3の配置に対応して、冷媒流入路31a及び冷媒流出路31bが第一流路R1の形成される領域を通るように伝熱部10,20の長手方向に間隔をあけて形成されるとともに、第二開口H2及び第三開口H3の配置に対応して、被熱交換流体流入路32a及び被熱交換流体流出路32bが第二流路R2の形成される領域を通るように伝熱部10,20の長手方向に所定間隔をあけて形成されている。   That is, in the evaporator A according to the present embodiment, the refrigerant inflow path 31a and the refrigerant outflow path 31b pass through the region where the first flow path R1 is formed, corresponding to the arrangement of the first opening H1 and the third opening H3. Are formed at intervals in the longitudinal direction of the heat transfer sections 10 and 20, and the heat exchange fluid inflow passage 32a and the heat exchange fluid outflow passage are provided corresponding to the arrangement of the second opening H2 and the third opening H3. 32b is formed at a predetermined interval in the longitudinal direction of the heat transfer sections 10 and 20 so as to pass through the region where the second flow path R2 is formed.

第一開口H1、第二開口H2、第三開口H3、及び第四開口H4は、上述の如く、伝熱部10,20の短手方向の中央で長手方向に整列配置されているため、冷媒流入路31a、冷媒流出路31b、被熱交換流体流入路32a及び被熱交換流体流出路32bについても、伝熱部10,20の短手方向の中央で長手方向に一列で整列配置されている。   As described above, the first opening H1, the second opening H2, the third opening H3, and the fourth opening H4 are aligned in the longitudinal direction at the center in the short direction of the heat transfer sections 10 and 20, and thus the refrigerant. The inflow path 31a, the refrigerant outflow path 31b, the heat exchange fluid inflow path 32a, and the heat exchange fluid outflow path 32b are also arranged in a line in the longitudinal direction at the center in the short direction of the heat transfer units 10 and 20. .

本実施形態において、冷媒CMとして単一成分冷媒、共沸混合冷媒、又は疑似共沸混合冷媒が採用される。これに伴い、本実施形態に係る蒸発器Aは、第一流路R1内で流通する冷媒CMと第二流路R2で流通する被熱交換流体Wとの流れ方向が同方向になる(冷媒CMと被熱交換流体Wとが並行流になる)ように、第三開口H3が連なって冷媒流入路31aが形成されるとともに、第一開口H1が連なって冷媒流出路31bが形成されている。また、前記蒸発器Aは、各伝熱プレート1,2の第四開口H4が連なって被熱交換流体流入路32aが形成されるとともに、第二開口H2が連なって被熱交換流体流出路32bが形成されている。   In the present embodiment, a single component refrigerant, an azeotropic mixed refrigerant, or a pseudo azeotropic mixed refrigerant is employed as the refrigerant CM. Accordingly, in the evaporator A according to the present embodiment, the flow direction of the refrigerant CM flowing in the first flow path R1 and the heat exchange fluid W flowing in the second flow path R2 are the same direction (refrigerant CM). And the heat exchange fluid W are in parallel flow), the third opening H3 is connected to form the refrigerant inflow passage 31a, and the first opening H1 is connected to form the refrigerant outflow passage 31b. In the evaporator A, the fourth opening H4 of each of the heat transfer plates 1 and 2 is connected to form a heat exchange fluid inflow passage 32a, and the second opening H2 is connected to form a heat exchange fluid outflow passage 32b. Is formed.

そして、本実施形態に係る蒸発器Aは、各伝熱プレート1,2の第五開口H5が連なるとともに第六開口H6が連なることで加熱流体流入路33a及び加熱流体流出路33bが形成されている。本実施形態において、第五開口H5及び第六開口H6は、伝熱部10,20の短手方向に一列をなすように設けられているため、前記加熱流体流入路33a及び加熱流体流出路33bについても伝熱部10,20の短手方向で一列をなして冷媒流出路31bの両側に配置されている。   In the evaporator A according to this embodiment, the heating fluid inflow passage 33a and the heating fluid outflow passage 33b are formed by connecting the fifth openings H5 of the heat transfer plates 1 and 2 and the sixth opening H6. Yes. In the present embodiment, the fifth opening H5 and the sixth opening H6 are provided so as to form a line in the short direction of the heat transfer sections 10 and 20, and thus the heating fluid inflow path 33a and the heating fluid outflow path 33b. Are also arranged on both sides of the refrigerant outflow path 31b in a row in the short direction of the heat transfer sections 10 and 20.

本実施形態に係る蒸発器Aは、図1及び図2に示す如く、積層された複数の伝熱プレート1,2が二枚のフレームプレート3,4で挟み込まれている。そして、一方のフレームプレート3には、図2に示す如く、冷媒流入路31a及び冷媒流出路31bと対応する第一開口H1及び第三開口H3が形成されるとともに一方の小口径の開口(加熱流体流出路33bになる開口)である第五開口H5が設けられ、他方のフレームプレート4には、被熱交換流体流入路32a及び被熱交換流体流出路32bと対応する第二開口H2及び第四開口H4が形成されるとともに一方の小口径の開口(加熱流体流入路33aになる開口)である第五開口H5が設けられている。これにより、本実施形態に係る蒸発器Aは、一方のフレームプレート3側から冷媒CMを流出入可能に構成されるとともに他方のフレームプレート4側から被熱交換流体Wを流出可能に構成されている。また、該蒸発器Aは、前記他方のフレームプレート4側から加熱流体WMを流入させて前記一方のフレームプレート3側から加熱流体WMを排出させるようになっている。   As shown in FIGS. 1 and 2, the evaporator A according to the present embodiment includes a plurality of laminated heat transfer plates 1 and 2 sandwiched between two frame plates 3 and 4. Then, as shown in FIG. 2, the first opening H1 and the third opening H3 corresponding to the refrigerant inflow path 31a and the refrigerant outflow path 31b are formed in one frame plate 3, and one small-diameter opening (heating) is formed. A fifth opening H5 that is a fluid outflow path 33b) is provided, and the other frame plate 4 has a second opening H2 and a second opening corresponding to the heat exchange fluid inflow path 32a and the heat exchange fluid outflow path 32b. A fourth opening H4 is formed, and a fifth opening H5 that is one small-diameter opening (an opening that becomes the heating fluid inflow passage 33a) is provided. Thus, the evaporator A according to the present embodiment is configured to allow the refrigerant CM to flow in and out from one frame plate 3 side, and to be configured to flow out the heat exchange fluid W from the other frame plate 4 side. Yes. Further, the evaporator A is configured to allow the heating fluid WM to flow from the other frame plate 4 side and to discharge the heating fluid WM from the one frame plate 3 side.

本実施形態において、一方のフレームプレート3から所定位置(所定枚数になる位置)にある一枚の伝熱プレート2は、小口径の開口として第六開口H6のみが設けられており、加熱流体流入路33aと加熱流体流出路33bとが途中位置で逆転するようになっている。すなわち、本実施形態に係る蒸発器Aは、図2、図6(b)及び図6(c)に示す如く、一方のフレームプレート3と該一方のフレームプレート3から所定位置(所定枚数になる位置)にある伝熱プレート2との間(第一パス領域Pa1という)では、第六開口H6が連なって加熱流体流入路33aが形成されるとともに第五開口H5が連なって加熱流体流出路33bが形成され、他方のフレームプレート4と前記所定位置にある伝熱プレート2との間(第二パス領域Pa2とう)では、第五開口H5が連なって加熱流体流入路33aが形成されるとともに第六開口H6が連なって加熱流体流出路33bが形成されている。これにより、本実施形態に係る蒸発器Aは、所定位置にある伝熱プレート2の第六開口H6を介して第一パス領域Pa1の加熱流体流入路33aと第二パス領域Pa2の加熱流体流出路33bとが連続した状態になっている。   In the present embodiment, the single heat transfer plate 2 located at a predetermined position (a position where the predetermined number of sheets are located) from one frame plate 3 is provided with only the sixth opening H6 as a small-diameter opening, and the heating fluid inflow The path 33a and the heated fluid outflow path 33b are reversed at a midway position. That is, the evaporator A according to this embodiment has a predetermined position (a predetermined number of sheets) from one frame plate 3 and the one frame plate 3 as shown in FIGS. 2, 6 (b) and 6 (c). The sixth opening H6 is connected to form the heating fluid inflow passage 33a and the fifth opening H5 is connected to the heating fluid outflow passage 33b. In the space between the other frame plate 4 and the heat transfer plate 2 at the predetermined position (second pass region Pa2), the fifth opening H5 is connected to form a heating fluid inflow passage 33a. The six fluid openings H6 are connected to form a heated fluid outflow passage 33b. Thereby, the evaporator A according to the present embodiment allows the heating fluid inflow passage 33a in the first pass region Pa1 and the heating fluid outflow in the second pass region Pa2 through the sixth opening H6 of the heat transfer plate 2 at a predetermined position. The path 33b is in a continuous state.

本実施形態に係る蒸発器Aは、第二開口H2が長手方向に長軸が設定された楕円形状に形成されているため、第三流路R3側に配置された被熱交換流体流出路32bは、断面形状が伝熱プレート1,2の長手方向に長軸を有する楕円形状に形成されている。そして、第二開口H2を包囲する第二環状凸部102,202は、長手方向に長軸が設定された楕円環状をなしているため、第一流路R1内に存在する封止部分(第二環状凸部102,202同士を封着した部分)は、伝熱部10,20の長手方向よりも短手方向が幅狭に形成されている。   In the evaporator A according to the present embodiment, the second opening H2 is formed in an elliptical shape in which the long axis is set in the longitudinal direction, and therefore the heat exchange fluid outflow passage 32b disposed on the third flow path R3 side. Is formed in an elliptical shape having a long axis in the longitudinal direction of the heat transfer plates 1 and 2. And since the 2nd cyclic | annular convex parts 102 and 202 surrounding the 2nd opening H2 have comprised the elliptical cyclic | annular form by which the long axis was set to the longitudinal direction, the sealing part (2nd 2nd) which exists in 1st flow path R1. The portion where the annular convex portions 102 and 202 are sealed is formed so that the short direction is narrower than the longitudinal direction of the heat transfer portions 10 and 20.

本実施形態に係る蒸発器Aは、上述の如く、互いに対向する伝熱部10,20の案内用凸部107,207同士が接続されることで、図6(b)及び図6(c)に示す如く、伝熱プレート1,2の一方の面間には前記被熱交換流体流出路32bの周囲を長手方向の他端側で部分的の包囲する流体案内部34が形成されている。   In the evaporator A according to the present embodiment, as described above, the guide convex portions 107 and 207 of the heat transfer portions 10 and 20 facing each other are connected to each other, so that FIG. 6B and FIG. As shown in FIG. 2, a fluid guide portion 34 is formed between the one surface of the heat transfer plates 1 and 2 to partially surround the periphery of the heat exchange fluid outflow passage 32b on the other end side in the longitudinal direction.

また、該蒸発器Aは、ガイド用凸部108,208同士が接続されることで、図6(a)に示す如く、伝熱プレート1,2の他方の面間には、冷媒流入路31aの少なくとも前記伝熱プレート1,2の長手方向の一端側を部分的に包囲するガイド部35が形成されている。   Further, in the evaporator A, the guide projections 108 and 208 are connected to each other, so that the refrigerant inflow passage 31a is provided between the other surfaces of the heat transfer plates 1 and 2 as shown in FIG. The guide part 35 which partially surrounds at least one end side in the longitudinal direction of the heat transfer plates 1 and 2 is formed.

本実施形態において、各伝熱プレート1,2の他方の面にガイド用凸部108,208の両端から延出した一対のサイドガイド用凸部109,209が設けられているため、互いに対向する伝熱部10,20の他方の面上にあるサイドガイド用凸部109,209同士が接続(ロウ付け)されることで、前記伝熱プレート1,2の他方の面間には、前記ガイド部35の両端から被熱交換流体流入路32aの両側に延出した一対のサイドガイド部36a,36bが形成されている。   In the present embodiment, a pair of side guide convex portions 109 and 209 extending from both ends of the guide convex portions 108 and 208 are provided on the other surface of each of the heat transfer plates 1 and 2 so as to face each other. The side guide convex portions 109 and 209 on the other surface of the heat transfer portions 10 and 20 are connected (brazed), so that the guide is interposed between the other surfaces of the heat transfer plates 1 and 2. A pair of side guide portions 36a and 36b extending from both ends of the portion 35 to both sides of the heat exchange fluid inflow passage 32a are formed.

本実施形態に係る蒸発器Aは、以上の通りであり、図7に示す如く、空調機や冷凍機等に搭載される冷凍システムFSの一構成として採用される。なお、ここでは空調機に搭載される冷凍システムFSに採用した場合を一例に説明することとする。   The evaporator A according to the present embodiment is as described above, and is adopted as one configuration of the refrigeration system FS mounted on an air conditioner, a refrigerator, or the like as shown in FIG. Here, the case where it is employed in a refrigeration system FS mounted on an air conditioner will be described as an example.

かかる冷凍システムFSは、前記蒸発器Aと、該蒸発器Aから排出された冷媒CMを加圧する圧縮機Bと、該圧縮機Bで圧縮された冷媒CMを凝縮させる凝縮器Cとを備えている。   The refrigeration system FS includes the evaporator A, a compressor B that pressurizes the refrigerant CM discharged from the evaporator A, and a condenser C that condenses the refrigerant CM compressed by the compressor B. Yes.

前記蒸発器Aは、冷媒流出路31bが圧縮機Bの一次側に配管Pを介して接続されている。そして、該蒸発器Aは、被熱交換流体流入路32a及び被熱交換流体流出路32bが別途室内に配置される室内機に対して配管Pを介して接続されている。   In the evaporator A, the refrigerant outflow path 31b is connected to the primary side of the compressor B through a pipe P. The evaporator A is connected via a pipe P to an indoor unit in which the heat exchange fluid inflow passage 32a and the heat exchange fluid outflow passage 32b are separately arranged indoors.

すなわち、蒸発器Aは、被熱交換流体流入路32a及び被熱交換流体流出路32bのそれぞれが室内機に接続されており、第二流路R2、被熱交換流体流入路32a、被熱交換流体流出路32b、配管P、室内機で被熱交換流体W(本実施形態においては水)の循環流路が形成されている。これにより、本実施形態に係る空調機(冷凍システムFS)は、蒸発器Aで熱交換した水(冷水)Wを室内機に供給し、室内機で熱交換された水(温度上昇した水)Wを蒸発器Aに戻すようになっている。   That is, in the evaporator A, each of the heat exchange fluid inflow path 32a and the heat exchange fluid outflow path 32b is connected to the indoor unit, and the second flow path R2, the heat exchange fluid inflow path 32a, the heat exchange is performed. A circulation flow path for the heat exchange fluid W (water in this embodiment) is formed by the fluid outflow path 32b, the pipe P, and the indoor unit. Thereby, the air conditioner (refrigeration system FS) according to the present embodiment supplies water (cold water) W heat-exchanged by the evaporator A to the indoor unit, and water exchanged heat (water whose temperature has increased) by the indoor unit. W is returned to the evaporator A.

前記圧縮機Bには、レシプロ式やスクリュー式の一般的なものが採用され、二次側が凝縮器Cに配管Pを介して接続されている。   The compressor B employs a general reciprocating type or screw type, and the secondary side is connected to the condenser C via a pipe P.

前記凝縮器Cには、種々タイプの熱交換器を採用することができるが、本実施形態においては、プレート式熱交換器が採用される。   Although various types of heat exchangers can be adopted as the condenser C, a plate heat exchanger is adopted in the present embodiment.

本実施形態に係る冷凍システムFSの凝縮器Cは、蒸発器Aと異なり、一般的なプレート式熱交換器が採用されている。すなわち、本実施形態に係る凝縮器Cは、図8に示す如く、複数の伝熱プレート5,6が積層され、図9(a)及び図9(b)に示す如く、冷却水CWを流通させる冷却水用流路R4と、前記冷却水CWとの熱交換の対象とされる冷媒CM(圧縮機Bで加圧された冷媒CM)を流通させる冷媒用流路R5とが各伝熱プレート5,6を境にして交互に形成され、各伝熱プレート5,6の四隅に形成された開口が連なることで、伝熱プレート5,6の両端に冷却水用流路R4に対して冷却水CWを流出入させる冷却水用流入路50a及び冷却水用流出路50bが形成されるとともに、冷媒用流路R5に対して冷媒CMを流出入させる冷媒用流入路51a及び冷媒用流出路51bが形成されている。これにより、凝縮器Cは、冷却水用流路R4で流通する冷却水CWと冷媒用流路R5で流通する冷媒CMとが熱交換することで、冷媒CMを凝縮させるようになっている。   Unlike the evaporator A, the condenser C of the refrigeration system FS according to the present embodiment employs a general plate heat exchanger. That is, in the condenser C according to this embodiment, a plurality of heat transfer plates 5 and 6 are stacked as shown in FIG. 8, and the cooling water CW is circulated as shown in FIGS. 9 (a) and 9 (b). Each of the heat transfer plates includes a cooling water flow path R4 to be circulated and a refrigerant flow path R5 through which the refrigerant CM (the refrigerant CM pressurized by the compressor B) subjected to heat exchange with the cooling water CW flows. 5 and 6 are alternately formed as boundaries, and openings formed at the four corners of each of the heat transfer plates 5 and 6 are connected to cool the cooling water flow path R4 at both ends of the heat transfer plates 5 and 6. A cooling water inflow path 50a and a cooling water outflow path 50b through which water CW flows in and out are formed, and a refrigerant inflow path 51a and a refrigerant outflow path 51b through which the refrigerant CM flows in and out of the refrigerant flow path R5. Is formed. Thereby, the condenser C condenses the refrigerant CM by heat exchange between the cooling water CW flowing through the cooling water flow path R4 and the refrigerant CM flowing through the refrigerant flow path R5.

図7に戻り、凝縮器Cは、冷却水用流入路50a及び冷却水用流出路50bのそれぞれが冷却装置(例えばクーリングタワー)に配管Pで接続されており、冷却水用流入路50a、冷却水用流出路50b、配管P、冷却装置で冷却水CWの循環流路が形成されている。これにより、本実施形態に係る冷凍システムFSは、冷却装置で冷却された冷却水CWが冷却水用流入路50aに供給され、該冷却水CWが冷却水用流路R4内で冷媒用流路R5内の冷媒CMとの熱交換に用いられた上で冷却水用流出路50bから冷却装置に向けて排出されるようになっている。また、前記凝縮器Cは、冷媒用流入路51aが前記圧縮機Bに配管Pを介して接続され、冷媒用流出路51bが蒸発器Aの冷媒流入路31aに直接的又間接的に配管Pを介して接続される。   Returning to FIG. 7, in the condenser C, each of the cooling water inflow passage 50a and the cooling water outflow passage 50b is connected to a cooling device (for example, a cooling tower) by a pipe P. The cooling water inflow passage 50a, the cooling water A circulation passage for the cooling water CW is formed by the outflow passage 50b, the pipe P, and the cooling device. Thereby, in the refrigeration system FS according to the present embodiment, the cooling water CW cooled by the cooling device is supplied to the cooling water inflow passage 50a, and the cooling water CW is supplied to the refrigerant flow passage in the cooling water flow passage R4. After being used for heat exchange with the refrigerant CM in R5, the refrigerant is discharged from the cooling water outflow passage 50b toward the cooling device. In the condenser C, the refrigerant inflow path 51a is connected to the compressor B via a pipe P, and the refrigerant outflow path 51b is directly or indirectly connected to the refrigerant inflow path 31a of the evaporator A. Connected through.

本実施形態に係る冷凍システムFSは、凝縮器Cの冷媒用流出路51bと蒸発器Aの加熱流体流入路33aとが配管Pで接続され、該蒸発器Aの加熱流体流出路33bと当該蒸発器Aの冷媒流入路31aとが途中位置に膨張弁Vの備えた配管Pで接続されている。   In the refrigeration system FS according to the present embodiment, the refrigerant outflow path 51b of the condenser C and the heating fluid inflow path 33a of the evaporator A are connected by a pipe P, and the heating fluid outflow path 33b of the evaporator A and the evaporation The refrigerant inflow passage 31a of the vessel A is connected to the intermediate position by a pipe P provided with the expansion valve V.

なお、本実施形態に係る冷凍システムFSは、冷媒CMの流通経路上に四方弁を設けて冷媒CMの流れを逆向きにすることで、冷暖房兼用機とすることができる。このようにした場合、前記蒸発器Aと凝縮器Cとが入れ替わることになる。すなわち、冷房時において蒸発器Aとして機能したプレート式熱交換器は暖房時に凝縮器Cとして機能し、暖房時に凝縮器Cとして機能したプレート式熱交換器は冷房時に蒸発器Aとして機能する。従って、冷暖房兼用機にする場合、凝縮器Cに上記構成の蒸発器Aと同様のプレート式熱交換器を採用することが好ましいことは言うまでもない。   Note that the refrigeration system FS according to the present embodiment can be an air conditioning / heating machine by providing a four-way valve on the flow path of the refrigerant CM to reverse the flow of the refrigerant CM. In this case, the evaporator A and the condenser C are interchanged. That is, the plate heat exchanger that functions as the evaporator A during cooling functions as the condenser C during heating, and the plate heat exchanger that functions as the condenser C during heating functions as the evaporator A during cooling. Therefore, it goes without saying that when the air conditioner is used, it is preferable to employ a plate-type heat exchanger similar to the evaporator A configured as described above as the condenser C.

本実施形態に係る冷凍システムFS(空調機)は、以上の通りであり、次に、上記構成の空調機(上記構成の蒸発器Aを備えた冷凍システムFS)の作動について説明する。   The refrigeration system FS (air conditioner) according to the present embodiment is as described above. Next, the operation of the air conditioner having the above configuration (the refrigeration system FS including the evaporator A having the above configuration) will be described.

まず、冷却装置(クリーングタワー)を駆動して冷却水CWを循環流路内で循環させる。これに併せて冷凍システムFSの圧縮機Bを作動させて冷媒CMを加圧して下流側(凝縮器C側)に送り出し、冷凍システムFS内の循環経路内で冷媒CMを循環させるとともに、室内機を作動させて被熱交換流体である水Wを循環経路内で循環させる。   First, the cooling device (cleaning tower) is driven to circulate the cooling water CW in the circulation channel. At the same time, the compressor B of the refrigeration system FS is operated to pressurize the refrigerant CM and send it to the downstream side (condenser C side) to circulate the refrigerant CM in the circulation path in the refrigeration system FS and To circulate the water W, which is the heat exchange fluid, in the circulation path.

そうすると、蒸発器Aでは、第一流路R1で流通する冷媒CMと第二流路R2で流通する水Wとが熱交換を行い、第二流路R2を通過した水Wは冷却された状態で室内機(図示しない)に送られ、室内機で室内の空気と水Wとが熱交換されて温度の低下した空気が冷風として室内に送風される。そして、空気との熱交換に伴って温度上昇した水Wは、再度蒸発器Aに戻って第一流路R1で流通する冷媒CMと熱交換して冷却されることになる。   Then, in the evaporator A, the refrigerant CM flowing in the first flow path R1 and the water W flowing in the second flow path R2 exchange heat, and the water W that has passed through the second flow path R2 is cooled. It is sent to an indoor unit (not shown), and the indoor air and water W are heat-exchanged by the indoor unit, and the air whose temperature has decreased is blown into the room as cold air. Then, the water W whose temperature has increased due to the heat exchange with the air returns to the evaporator A again and is cooled by exchanging heat with the refrigerant CM flowing in the first flow path R1.

このように水Wを冷却すると、第一流路R1内の冷媒CMは、第二流路R2内で流通する水Wとの熱交換により、下流側に流れるにつれて蒸発して気体成分を多く含む気液混合状態になる。本実施形態に係る冷凍システムFSは、蒸発器Aにおいて、冷媒CMが第一流路R1内の第二流路R2と対応する全領域を通過する状態で液体成分を十分に含む気液混合状態になるように冷媒CMを流通させるように設定されており、第二流路R2内で流通する水W全体を冷却できるようになっている。すなわち、冷媒CMが第一流路R1内の第二流路R2と対応する領域を通過する状態で液体成分を十分に含む気液混合状態であると、伝熱部10,20の第二流路R2と対応する領域が濡れ状態となるため、第一流路R1を流通する冷媒CMが第二流路R2の全域において被熱交換流体Wの熱を活発に奪い取ることになり、被熱交換流体Wが効率的に冷却されることになる。   When the water W is cooled in this manner, the refrigerant CM in the first flow path R1 evaporates as it flows downstream due to heat exchange with the water W flowing in the second flow path R2, and contains a large amount of gas components. It becomes a liquid mixed state. In the evaporator A, the refrigeration system FS according to the present embodiment is in a gas-liquid mixed state in which the refrigerant CM is sufficiently contained in a state where the refrigerant CM passes through the entire region corresponding to the second flow path R2 in the first flow path R1. The refrigerant CM is set to circulate so that the entire water W flowing in the second flow path R2 can be cooled. That is, when the refrigerant CM is in a gas-liquid mixed state that sufficiently contains a liquid component in a state of passing through a region corresponding to the second flow path R2 in the first flow path R1, the second flow paths of the heat transfer units 10 and 20 are used. Since the region corresponding to R2 is in a wet state, the refrigerant CM flowing through the first flow path R1 actively takes the heat of the heat exchange fluid W over the entire area of the second flow path R2, and the heat exchange fluid W Is efficiently cooled.

このように第一流路R1における第二流路R2と対応する領域で液体成分を十分に含む気液混合状態の冷媒CMを流通させると、第一流路R1で流通する冷媒CMは、第二流路R2と対応する領域から第三流路R3と対応する領域に進入したときにも気液混合状態であるが、第三流路R3に被熱交換流体Wよりも温度の高い加熱流体WMを流通させておくことで、第一流路R1を流通する冷媒CMと第三流路R3を流通する加熱流体WMとの間の熱移動で第一流路R1の最下流域にある冷媒CMが急速に蒸発する結果、完全にガス化した冷媒CMが冷媒流出路31bから排出されることになる(図6参照)。   As described above, when the refrigerant CM in the gas-liquid mixed state sufficiently containing the liquid component is circulated in the region corresponding to the second flow path R2 in the first flow path R1, the refrigerant CM flowing in the first flow path R1 is the second flow. The gas-liquid mixed state is also obtained when entering the region corresponding to the third flow path R3 from the region corresponding to the path R2, but the heating fluid WM having a temperature higher than that of the heat exchange fluid W is applied to the third flow path R3. By making it circulate, the refrigerant CM in the most downstream area of the first flow path R1 is rapidly moved by heat transfer between the refrigerant CM flowing through the first flow path R1 and the heating fluid WM flowing through the third flow path R3. As a result of evaporation, the completely gasified refrigerant CM is discharged from the refrigerant outflow path 31b (see FIG. 6).

そして、冷媒流出路31bから排出された冷媒CMは、圧縮機Bで圧縮された上で凝縮器Cに供給されて凝縮され、蒸発器Aに戻ることになる。   The refrigerant CM discharged from the refrigerant outflow path 31b is compressed by the compressor B, supplied to the condenser C, condensed, and returned to the evaporator A.

本実施形態に係る冷凍システムFSは、凝縮器Cから排出された温度の高い冷媒CMを加熱流体WMとして蒸発器Aの第三流路R3に流通させた上で、膨張弁Vで減圧して冷媒CMの温度を低下させた上で冷媒流入路31aに再度供給される。   In the refrigeration system FS according to the present embodiment, the high-temperature refrigerant CM discharged from the condenser C is circulated through the third flow path R3 of the evaporator A as the heating fluid WM, and then decompressed by the expansion valve V. After the temperature of the refrigerant CM is lowered, the refrigerant CM is supplied again to the refrigerant inflow passage 31a.

例えば、冷媒CMとして単一成分冷媒を採用し、図7に示す如く、5℃の冷媒CMを冷媒流入路31aに供給し、室内機から戻ってくる12℃の水Wを7℃にまで冷却して室内機に向けて送水すると仮定した場合、5℃で供給された冷媒CMは、水Wと交換しながら第一流路R1を流通する。そして、該冷媒CMは、第一流路R1での流通に伴って、流動抵抗によって圧力が降下し、温度低下しながら蒸発が進む。そして、該冷媒CMは、最終的に4℃で蒸発が完了し、8℃の過熱状態で冷媒流出路31bから圧縮機Bに供給される。そして、凝縮器Cに冷却装置から32℃の冷却水が供給されると、圧縮機Bで圧縮された冷媒CMは、冷却水CWとの熱交換によって凝縮されて40℃になった状態で蒸発器Aの第三流路R3に供給される。なお、凝縮器Cに供給された冷却水CWは、冷媒CMとの熱交換によって37℃にまで温度上昇した状態で排出される。   For example, a single component refrigerant is used as the refrigerant CM, and as shown in FIG. 7, 5 ° C. refrigerant CM is supplied to the refrigerant inflow passage 31a, and 12 ° C. water W returning from the indoor unit is cooled to 7 ° C. Assuming that the water is supplied toward the indoor unit, the refrigerant CM supplied at 5 ° C. flows through the first flow path R1 while being exchanged with the water W. As the refrigerant CM flows through the first flow path R1, the pressure drops due to flow resistance, and evaporation proceeds while the temperature decreases. The refrigerant CM finally completes evaporation at 4 ° C., and is supplied to the compressor B from the refrigerant outflow passage 31b in an overheated state at 8 ° C. When 32 ° C. cooling water is supplied to the condenser C from the cooling device, the refrigerant CM compressed by the compressor B is condensed by heat exchange with the cooling water CW and evaporated in a state of 40 ° C. To the third flow path R3 of the container A. The cooling water CW supplied to the condenser C is discharged in a state where the temperature has increased to 37 ° C. by heat exchange with the refrigerant CM.

そして、凝縮器Cからの冷媒CMは、蒸発器Aの冷媒流入路31aに供給されて第三流路R3を流通し、第一流路R1内の最下流で流通する冷媒CMと熱交換を行うことになる。そうすると、第一流路R1の最下流域にある冷媒CMは、4℃で蒸発が完了し、8℃の過熱状態で冷媒流出路31bから排出するのに対し、第三流路R3を通過した冷媒CMは30℃にまで温度低下した状態で加熱流体流出路33bから排出されることになる。そして、第三流路R3から排出された冷媒CMは、膨張弁Vを通過することによる減圧で5℃にまで温度低下した上で、再度冷媒流入路31aに供給されることになる。   And the refrigerant | coolant CM from the condenser C is supplied to the refrigerant | coolant inflow path 31a of the evaporator A, distribute | circulates the 3rd flow path R3, and heat-exchanges with the refrigerant | coolant CM distribute | circulated in the most downstream in 1st flow path R1. It will be. Then, the refrigerant CM in the most downstream area of the first flow path R1 is completely evaporated at 4 ° C. and discharged from the refrigerant outflow path 31b in an overheated state at 8 ° C., whereas the refrigerant that has passed through the third flow path R3. The CM is discharged from the heated fluid outflow passage 33b in a state where the temperature is lowered to 30 ° C. And the refrigerant | coolant CM discharged | emitted from 3rd flow path R3 will be supplied to the refrigerant | coolant inflow path 31a again, after temperature fall to 5 degreeC by pressure reduction by passing through the expansion valve V. FIG.

従って、本実施形態に係る空調機(冷凍システムFS)は、循環経路内で循環する冷媒CMのみで水Wが冷却されるとともに第一流路R1内の冷媒CMが完全に蒸発してガス化することになる。従って、該空調機(冷凍システムFS)は、圧縮機Bに到達する冷媒CMに液体が含まれないため、当該圧縮機Bを破損させることなく円滑に運転することになる。   Therefore, in the air conditioner (refrigeration system FS) according to the present embodiment, the water W is cooled only by the refrigerant CM circulating in the circulation path, and the refrigerant CM in the first flow path R1 is completely evaporated and gasified. It will be. Therefore, the air conditioner (refrigeration system FS) operates smoothly without damaging the compressor B because the refrigerant CM reaching the compressor B does not contain liquid.

以上のように、本実施形態に係る蒸発器Aは、互いに対向する伝熱プレート1,2の一方の面間には、該伝熱プレート1,2の長手方向と直交する短手方向に延びる仕切部30が設けられ、前記仕切部30を境にして伝熱プレート1,2の一方の面間における伝熱プレート1,2の長手方向の一方側に前記第二流路R2が形成されるとともに伝熱プレート1,2の一方の面間における伝熱プレート1,2の長手方向の他方側に被熱交換流体Wよりも温度の高い加熱流体WMを流通させる第三流路R3が形成される一方、互いに対向する伝熱プレート1,2の他方の面間に第一流路R1が形成され、第三流路R3に対して加熱流体WMを流出入させる加熱流体流入路33a及び加熱流体流出路33bが該第三流路R3の形成される領域を通るように所定の間隔をあけて形成され、前記冷媒流入路31aが第二流路R2の形成される領域を通るように形成されるとともに冷媒流出路31bが第三流路R3の形成される領域を通るように形成されているため、被熱交換流体Wを効率的に冷却できる上に、完全にガス化した冷媒CMを排出することができるという優れた効果を奏し得る。従って、該蒸発器Aは、冷凍サシステムFSに採用した場合に、被熱交換流体Wを高効率で冷却できる上に、後段に設けられる圧縮機Bの破損を防止することができる。   As described above, the evaporator A according to the present embodiment extends in the short direction perpendicular to the longitudinal direction of the heat transfer plates 1 and 2 between the surfaces of the heat transfer plates 1 and 2 facing each other. A partition portion 30 is provided, and the second flow path R2 is formed on one side in the longitudinal direction of the heat transfer plates 1 and 2 between one surface of the heat transfer plates 1 and 2 with the partition portion 30 as a boundary. At the same time, a third flow path R3 is formed on the other side in the longitudinal direction of the heat transfer plates 1 and 2 between the one surfaces of the heat transfer plates 1 and 2 for circulating the heating fluid WM having a higher temperature than the heat exchange fluid W. On the other hand, a first flow path R1 is formed between the other surfaces of the heat transfer plates 1 and 2 facing each other, and a heating fluid inflow path 33a and a heating fluid outflow flow the heating fluid WM into and out of the third flow path R3. The path 33b passes through the region where the third flow path R3 is formed. The refrigerant inflow path 31a is formed so as to pass through the area where the second flow path R2 is formed, and the refrigerant outflow path 31b is formed in the area where the third flow path R3 is formed. Since it forms so that it may pass, the heat exchange fluid W can be cooled efficiently, and it can produce the outstanding effect that the completely gasified refrigerant CM can be discharged. Therefore, when the evaporator A is employed in the refrigeration system FS, the heat exchange fluid W can be cooled with high efficiency, and damage to the compressor B provided in the subsequent stage can be prevented.

また、前記仕切部30は、互いに対向する伝熱プレート1,2が相手側に向けて吐出した仕切用凸条100,200同士が面接触した状態で溶着されて形成されているため、第二流路R2と第三流路R3との間に幅広な仕切部30が形成され、被熱交換流体Wが該被熱交換流体Wよりも温度の高い加熱流体WMの熱影響を受けることを防止することができる。   Further, the partition portion 30 is formed by being welded in a state where the partition projections 100 and 200 discharged from the heat transfer plates 1 and 2 facing each other toward the other side are in surface contact with each other. A wide partition 30 is formed between the flow path R2 and the third flow path R3 to prevent the heat exchange fluid W from being affected by the heat fluid WM having a higher temperature than the heat exchange fluid W. can do.

さらに、前記冷媒流入路31a、前記冷媒流出路31b、前記被熱交換流体流入路32a、及び被熱交換流体流出路32bは、伝熱プレート1,2の前記他方向の中央部で伝熱プレート1,2の長手方向に整列して配置されているため、第一流路R1内の冷媒CMの流れ及び第二流路R2内の被熱交換流体Wの流れを均一にすることができる。   Further, the refrigerant inflow passage 31a, the refrigerant outflow passage 31b, the heat exchange fluid inflow passage 32a, and the heat exchange fluid outflow passage 32b are arranged at the center of the heat transfer plates 1 and 2 in the other direction. Since they are aligned in the longitudinal direction of 1 and 2, the flow of the refrigerant CM in the first flow path R1 and the flow of the heat exchange fluid W in the second flow path R2 can be made uniform.

特に、前記加熱流体流入路33a及び加熱流体流出路33bは、前記冷媒流出路31bに対して伝熱プレート1,2の短手方向の両側に配置されているため、加熱流体流入路33aから加熱流体流出路33bに向けて流通する加熱流体WMが冷媒流出路31bの周囲を通過することになり、第一流路R1から排出される冷媒CMを確実に蒸発させることができる。   In particular, since the heating fluid inflow passage 33a and the heating fluid outflow passage 33b are disposed on both sides of the heat transfer plates 1 and 2 in the short direction with respect to the refrigerant outflow passage 31b, the heating fluid inflow passage 33a is heated. The heating fluid WM flowing toward the fluid outflow path 33b passes around the refrigerant outflow path 31b, and the refrigerant CM discharged from the first flow path R1 can be reliably evaporated.

そして、第三流路R3側に配置された前記被熱交換流体流出路32bの断面形状が伝熱プレート1,2の長手方向(冷媒CMの流通方向)に長軸を有する楕円形状に形成されているため、冷媒CMを第一流路R1内で円滑に流通させることができる。すなわち、第二流路R2内の被熱交換流体Wとの熱交換で蒸発が進んだ冷媒CMが流通する領域に前記被熱交換流体流出路32bが存在すると該冷媒CMの流れを妨げて圧力損失を増大させるが、上述の如く、前記被熱交換流体流出路32bの断面形状を伝熱プレート1,2の長手方向(冷媒CMの長手方向)に長軸を有する楕円形状に形成すると、伝熱プレート1,2の短手方向に短軸が位置することになるため、冷媒CMの流通を妨げる範囲が狭くなる結果、圧力損失を大きくすることなく冷媒CMを円滑に流通させることができる。   The cross-sectional shape of the heat exchange fluid outflow passage 32b arranged on the third flow path R3 side is formed in an elliptical shape having a long axis in the longitudinal direction of the heat transfer plates 1 and 2 (the flow direction of the refrigerant CM). Therefore, the refrigerant CM can be smoothly circulated in the first flow path R1. That is, if the heat exchange fluid outflow passage 32b exists in a region where the refrigerant CM that has evaporated due to heat exchange with the heat exchange fluid W in the second flow path R2 flows, the flow of the refrigerant CM is hindered and the pressure is reduced. Although the loss increases, as described above, if the cross-sectional shape of the heat exchange fluid outflow passage 32b is formed in an elliptical shape having a long axis in the longitudinal direction of the heat transfer plates 1 and 2 (longitudinal direction of the refrigerant CM), Since the short axis is positioned in the short direction of the heat plates 1 and 2, the range that hinders the circulation of the refrigerant CM is narrowed. As a result, the refrigerant CM can be smoothly circulated without increasing the pressure loss.

また、前記被熱交換流体流出路32bは、前記被熱交換流体流入路32aに対して第三流路R3側に配置され、伝熱プレート1,2の一方の面間には前記被熱交換流体流出路32bの周囲を伝熱プレート1,2の他端側(被熱交換流体Wの流通方向の上流側)で部分的の包囲する流体案内部34が設けられているため、被熱交換流体流入路32a側から流れてくる被熱交換流体Wは、流体案内部34に衝突して該流体案内部34の両側に分かれた上で被熱交換流体流出路32bに流入する。従って、第二流路R1内で被熱交換流体流入路32a側から流れてくる被熱交換流体Wが直接被熱交換流体流出路32bから流出することがないため、第一流路R1内の冷媒CMと第二流路R2内の被熱交換流体Wとが熱交換する機会を多くすることができ、被熱交換流体Wを効率的に冷却することができる。   The heat exchange fluid outflow passage 32b is disposed on the third flow path R3 side with respect to the heat exchange fluid inflow passage 32a, and the heat exchange plate 1 and 2 are disposed between one surface of the heat exchange plates 1 and 2. Since a fluid guide portion 34 is provided that partially surrounds the periphery of the fluid outflow path 32b on the other end side (upstream side in the flow direction of the heat exchange fluid W) of the heat transfer plates 1 and 2, heat exchange is performed. The heat exchange fluid W flowing from the fluid inflow passage 32a collides with the fluid guide portion 34, is divided on both sides of the fluid guide portion 34, and then flows into the heat exchange fluid outflow passage 32b. Accordingly, since the heat exchange fluid W flowing from the heat exchange fluid inflow passage 32a side in the second flow passage R1 does not directly flow out of the heat exchange fluid outflow passage 32b, the refrigerant in the first flow passage R1. The opportunity for heat exchange between the CM and the heat exchange fluid W in the second flow path R2 can be increased, and the heat exchange fluid W can be efficiently cooled.

そして、前記伝熱プレート1,2の他方の面間には、冷媒流入路31aの少なくとも伝熱プレート1,2の長手方向の他端側(第一流路R1における冷媒CMの流通方向の下流側)を部分的に包囲するガイド部35が設けられているため、冷媒流入路31aから第一流路R1に流入した冷媒CMが直接冷媒流出路31bに向けて流れることがなく、被熱交換流体Wとの熱交換の機会を増やすことができる。すなわち、冷媒流入路31aから第一流路R1に流入した冷媒CMが一旦ガイド部35に沿って冷媒流出路31bとは反対側に向けて流れた上で冷媒流出路31b側に流れることになる。これにより、冷媒CMの流通経路を長くすることができるため、被熱交換流体Wとの熱交換の機会を増やすことができる。   Between the other surfaces of the heat transfer plates 1 and 2, at least the other end side of the refrigerant inflow passage 31a in the longitudinal direction of the heat transfer plates 1 and 2 (the downstream side in the flow direction of the refrigerant CM in the first flow path R1). ) Is partially provided so that the refrigerant CM flowing into the first flow path R1 from the refrigerant inflow path 31a does not flow directly toward the refrigerant outflow path 31b, and the heat exchange fluid W Can increase the chance of heat exchange. That is, the refrigerant CM that has flowed into the first flow path R1 from the refrigerant inflow path 31a once flows along the guide portion 35 toward the opposite side of the refrigerant outflow path 31b and then flows toward the refrigerant outflow path 31b. Thereby, since the distribution path of refrigerant | coolant CM can be lengthened, the opportunity of heat exchange with the to-be-heat-exchanged fluid W can be increased.

特に、本実施形態に係る蒸発器Aは、伝熱プレート1,2の他方の面間にガイド部35の両端から被熱交換流体流入路32aの両側に延出した一対のサイドガイド部36a,36bが設けられているため、冷媒流入路31aから第一流路R1に流入した冷媒CMがガイド部35及びサイドガイド部36a,36bに沿って冷媒流出路31bとは反対側に向けて流れた上で冷媒流出路31b側に流れることになる。従って、ガイド部35のみを設けた場合よりも冷媒CMの流通経路を長くすることができるため、被熱交換流体Wとの熱交換の機会をさらに増やすことができる。また、サイドガイド部36a,36bを設けることで、冷媒流入路31aから第一流路R1に流入した冷媒CMが被熱交換流体流入路32aの周囲を冷却することになり、より効率的な冷却が可能となる。   In particular, the evaporator A according to this embodiment includes a pair of side guide portions 36a extending from both ends of the guide portion 35 to both sides of the heat exchange fluid inflow passage 32a between the other surfaces of the heat transfer plates 1 and 2. Since 36b is provided, the refrigerant CM that has flowed into the first flow path R1 from the refrigerant inflow path 31a flows toward the opposite side of the refrigerant outflow path 31b along the guide part 35 and the side guide parts 36a and 36b. Thus, the refrigerant flows to the refrigerant outflow path 31b side. Therefore, since the flow path of the refrigerant CM can be made longer than when only the guide part 35 is provided, the chance of heat exchange with the heat exchange fluid W can be further increased. Further, by providing the side guide portions 36a and 36b, the refrigerant CM flowing into the first flow path R1 from the refrigerant inflow path 31a cools the periphery of the heat exchange fluid inflow path 32a, so that more efficient cooling can be achieved. It becomes possible.

そして、本実施形態に係る冷凍システムFSは、冷媒CMと被熱交換流体Wとを熱交換させる蒸発器と、該蒸発器から排出された冷媒CMを加圧する圧縮機Bと、該圧縮機Bで圧縮された冷媒CMを凝縮させる凝縮器Cとを備え、該凝縮器Cで凝縮された冷媒CMを前記蒸発器に供給するように構成された冷凍システムFSにおいて、前記蒸発器が上記構成の蒸発器Aで構成され、第一流路R1で冷媒CMさせた状態で、第二流路R2に被熱交換流体Wを流通させつつ第三流路R3に加熱流体WMを流通させるため、上記蒸発器Aと同様の作用及び効果を奏することができる。   The refrigeration system FS according to the present embodiment includes an evaporator that exchanges heat between the refrigerant CM and the heat exchange fluid W, a compressor B that pressurizes the refrigerant CM discharged from the evaporator, and the compressor B A refrigeration system FS configured to supply the refrigerant CM condensed in the condenser C to the evaporator. The refrigeration system FS is configured to supply the refrigerant CM condensed in the condenser C to the evaporator. In order to allow the heating fluid WM to flow through the third flow path R3 while flowing the heat exchange fluid W through the second flow path R2 in a state where the refrigerant A is configured in the evaporator A and the refrigerant CM is passed through the first flow path R1, the evaporation The same operations and effects as the device A can be achieved.

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更し得ることは勿論のことである。   In addition, this invention is not limited to the said embodiment, Of course, it can change suitably in the range which does not deviate from the summary of this invention.

例えば、上記実施形態において、圧力が一定の場合、蒸発の進行によっても殆ど温度上昇を伴わない冷媒CM(単一成分冷媒や、共沸混合冷媒、疑似共沸混合冷媒)を採用することを前提に、第二領域A2の長手方向の他端側にある第四開口H4で被熱交換流体流入路32aを構成する一方、第二領域A2の長手方向の一端側にある第二開口H2で被熱交換流体流出路32bを構成し、第一流路R1内で流通する冷媒CMと第二流路R2で流通する被熱交換流体W(水)とを同方向に流通させる(並行流にする)ようにしたが、これに限定されるものではなく、圧力が一定の場合でも、蒸発の進行により温度上昇する冷媒CM(非共沸混合冷媒)を採用する場合、第二領域A2の長手方向の他端側にある第四開口H4で被熱交換流体流出路32bを構成する一方、第二領域A2の長手方向の一端側にある第二開口H2で被熱交換流体流入路32aを構成し、第一流路R1内で流通する冷媒CMと第二流路R2で流通する被熱交換流体W(水)とを逆方向に流通させる(対向流にする)ようにしてもよい。   For example, in the above embodiment, when the pressure is constant, it is assumed that the refrigerant CM (single component refrigerant, azeotropic refrigerant mixture, or pseudo azeotropic refrigerant mixture) that hardly increases in temperature even with the progress of evaporation is employed. In addition, the fourth opening H4 on the other end side in the longitudinal direction of the second region A2 constitutes the heat exchange fluid inflow passage 32a, while the second opening H2 on the one end side in the longitudinal direction of the second region A2 The heat exchange fluid outflow passage 32b is configured to cause the refrigerant CM flowing in the first flow path R1 and the heat exchange fluid W (water) flowing in the second flow path R2 to flow in the same direction (in parallel flow). However, the present invention is not limited to this. Even when the pressure is constant, when the refrigerant CM (non-azeotropic refrigerant mixture) that rises in temperature due to the progress of evaporation is employed, the longitudinal direction of the second region A2 Heat exchange fluid outflow path 3 at the fourth opening H4 on the other end side On the other hand, the second opening H2 on one end side in the longitudinal direction of the second region A2 constitutes the heat exchange fluid inflow passage 32a, and the refrigerant CM and the second passage R2 circulate in the first passage R1. The heat exchange fluid W (water) that circulates in (1) may be circulated in the opposite direction (turned to the opposite flow).

上記実施形態において、加熱流体流入路33a及び加熱流体流出路33b(第五開口H5及び第六開口H6)を伝熱プレート1,2の短手方向で一列になるように配置したが、これに限定されるものではなく、例えば、加熱流体流入路33a及び加熱流体流出路33b(第五開口H5及び第六開口H6)を伝熱プレート1,2の長手方向で一列に整列した状態になるように配置したり、第一領域A1の対角位置に配置したりしてもよい。すなわち、第三流路R3内に被熱交換流体Wよりも高温な加熱流体WMを充満させることができれば、加熱流体流入路33a及び加熱流体流出路33bの配置は適宜変更可能である。   In the above embodiment, the heating fluid inflow passage 33a and the heating fluid outflow passage 33b (the fifth opening H5 and the sixth opening H6) are arranged in a row in the short direction of the heat transfer plates 1 and 2, For example, the heating fluid inflow path 33a and the heating fluid outflow path 33b (the fifth opening H5 and the sixth opening H6) are aligned in a line in the longitudinal direction of the heat transfer plates 1 and 2. It may be arranged at a diagonal position of the first region A1. That is, the arrangement of the heating fluid inflow path 33a and the heating fluid outflow path 33b can be appropriately changed as long as the heating fluid WM having a temperature higher than that of the heat exchange fluid W can be filled in the third flow path R3.

上記実施形態において、冷媒流入路31a、冷媒流出路31b、被熱交換流体流入路32a、及び被熱交換流体流出路32bを伝熱プレート1,2の短手方向の中央部で長手方向に整列させたが、これに限定されるものではなく、これらの流路は適宜位置に配置してもよい。但し、冷媒CMや被熱交換流体Wの流れ等を考慮すれば、上記実施形態と同様にすることが好ましいことは言うまでもない。   In the above embodiment, the refrigerant inflow passage 31a, the refrigerant outflow passage 31b, the heat exchange fluid inflow passage 32a, and the heat exchange fluid outflow passage 32b are aligned in the longitudinal direction at the center of the heat transfer plates 1 and 2 in the short direction. However, the present invention is not limited to this, and these channels may be disposed at appropriate positions. However, it goes without saying that it is preferable to use the same method as in the above embodiment in consideration of the flow of the refrigerant CM, the heat exchange fluid W, and the like.

上記実施形態において、伝熱プレート1,2(伝熱部10,20)を平面視長方形状に形成し、冷媒CM及び被熱交換流体Wを長手方向に流通させるようにしたが、これに限定されるものではなく、例えば、伝熱プレート1,2(伝熱部10,20)を平面視長方形状に形成するとともに、伝熱プレート1,2の一方の面間を区画する仕切部30を長手方向に延びるように形成し、冷媒CM及び被熱交換流体Wを伝熱プレート1,2の短手方向に流通させるようにしてもよい。また、伝熱プレート1,2(伝熱部10,20)を平面視正方形状に形成しても勿論よい。このようにしても、第一流路R1が第二流路R2及び第三流路R3の両方に重なるように形成されるとともに、第三流路R3と対応する領域に冷媒流出路31bを設けることで、上記実施形態と同様の作用及び効果を奏することができる。   In the above embodiment, the heat transfer plates 1 and 2 (heat transfer portions 10 and 20) are formed in a rectangular shape in plan view so that the refrigerant CM and the heat exchange fluid W are circulated in the longitudinal direction. For example, the heat transfer plates 1 and 2 (heat transfer portions 10 and 20) are formed in a rectangular shape in plan view, and the partition 30 that partitions one surface of the heat transfer plates 1 and 2 is provided. It may be formed so as to extend in the longitudinal direction, and the refrigerant CM and the heat exchange fluid W may be circulated in the short direction of the heat transfer plates 1 and 2. Of course, the heat transfer plates 1 and 2 (heat transfer portions 10 and 20) may be formed in a square shape in plan view. Even in this case, the first flow path R1 is formed so as to overlap both the second flow path R2 and the third flow path R3, and the refrigerant outflow path 31b is provided in a region corresponding to the third flow path R3. Thus, the same operations and effects as the above embodiment can be achieved.

上記実施形態では言及しなかったが、例えば、冷媒流出路31bの周辺に冷媒流入路31a側から流れてくる冷媒CMを前記冷媒流出路31bに誘導するためのガイドを設けたり、被熱交換流体流出路32bの周辺に被熱交換流体流入路32a側から流れてくる被熱交換流体Wを前記被熱交換流体流出路32bに誘導するガイドを設けたり、加熱流体流出路33bの周囲に加熱流体流入路33a側から流れてくる加熱流体WMを前記加熱流体流出路33bに誘導するガイドを設けたりしてもよい。かかるガイドは、対象となる流体の流れ方向に沿った凸条で構成すればよい。このようにすれば、各流路内で流通する流体の流れを乱すことなく円滑に排出することができる。   Although not mentioned in the above embodiment, for example, a guide for guiding the refrigerant CM flowing from the refrigerant inflow path 31a side to the refrigerant outflow path 31b around the refrigerant outflow path 31b, or a heat exchange fluid A guide for guiding the heat exchange fluid W flowing from the heat exchange fluid inflow passage 32a side to the heat exchange fluid outflow passage 32b is provided around the outflow passage 32b, or the heating fluid is provided around the heat fluid outflow passage 33b. A guide for guiding the heating fluid WM flowing from the inflow path 33a side to the heating fluid outflow path 33b may be provided. Such a guide may be formed of a ridge along the flow direction of the target fluid. If it does in this way, it can discharge smoothly, without disturbing the flow of the fluid which circulates in each channel.

上記実施形態において、被熱交換流体Wを伝熱プレート1,2の長手方向の他端側から一端側に向けて流通させることを前提に、被熱交換流体流出路32bを部分的に包囲する流体案内部34を伝熱プレート1,2の長手方向の他端側に設けたが、これに限定されるものではなく、例えば、流体案内部34を設けることなく被熱交換流体流入路32a側から流れてくる被熱交換流体Wを直接被熱交換流体流出路32bから排出するようにしてもよい。   In the above embodiment, the heat exchange fluid outflow passage 32b is partially surrounded on the premise that the heat exchange fluid W is circulated from the other end side in the longitudinal direction of the heat transfer plates 1 and 2 toward the one end side. Although the fluid guide part 34 is provided on the other end side in the longitudinal direction of the heat transfer plates 1 and 2, the present invention is not limited thereto. For example, the fluid guide part 34 is not provided and the heat exchange fluid inflow path 32 a side is provided. The heat exchange fluid W flowing from the heat exchange fluid may be directly discharged from the heat exchange fluid outflow passage 32b.

また、上記実施形態において、冷媒流入路31a(第三開口H3)を長手方向の一端側から部分的に包囲するガイド部35を設け、冷媒流入路31aから流入した冷媒CMを伝熱プレート1,2の長手方向の他端側に誘導した上で該長手方向の一端側にある冷媒流出路31bに向けて流通させるようにしたが、これに限定されるものではなく、例えば、ガイド部35を設けることなく、冷媒流入路31aから流入した冷媒CMを直接冷媒流出路31bに向けて流通させるようにしてもよい。   Moreover, in the said embodiment, the guide part 35 which partially surrounds the refrigerant | coolant inflow path 31a (3rd opening H3) from the one end side of a longitudinal direction is provided, and the refrigerant | coolant CM which flowed in from the refrigerant | coolant inflow path 31a is made into the heat-transfer plate 1, 2 is guided toward the other end side in the longitudinal direction and then circulated toward the refrigerant outflow passage 31b on the one end side in the longitudinal direction. However, the present invention is not limited to this. Without providing, the refrigerant CM flowing in from the refrigerant inflow path 31a may be directly circulated toward the refrigerant outflow path 31b.

さらに、上記実施形態において、冷媒流入路31aを被熱交換流体流入路32aよりも長手方向の一端寄りに配置することを前提に、冷媒流入路31aを包囲するガイド部35の両端から延出する一対のサイドガイド部36a,36bを設けたが、これに限定されるものではなく、例えば、ガイド部35のみを設けるようにしてもよいし、ガイド部35及びサイドガイド部36a,36bを設けることなく冷媒流入路31aから第一流路R1に流入した冷媒CMを直接冷媒流出路31bに向けて流すようにしてもよい。但し、冷媒CMと被熱交換流体Wとの熱交換の多くするには、ガイド部35を設けることが好ましく、さらに、ガイド部35とともに一対のサイドガイド部36a,36bを設けることがより好ましいことは言うまでもない。   Further, in the above embodiment, the refrigerant inflow path 31a extends from both ends of the guide portion 35 surrounding the refrigerant inflow path 31a on the premise that the refrigerant inflow path 31a is disposed closer to one end in the longitudinal direction than the heat exchange fluid inflow path 32a. Although the pair of side guide portions 36a and 36b are provided, the present invention is not limited to this. For example, only the guide portion 35 may be provided, or the guide portion 35 and the side guide portions 36a and 36b are provided. Alternatively, the refrigerant CM that has flowed into the first flow path R1 from the refrigerant inflow path 31a may flow directly toward the refrigerant outflow path 31b. However, in order to increase the amount of heat exchange between the refrigerant CM and the heat exchange fluid W, it is preferable to provide the guide portion 35, and it is more preferable to provide a pair of side guide portions 36 a and 36 b together with the guide portion 35. Needless to say.

上記実施形態において、被熱交換流体流出路32bの断面形状を長手方向(冷媒CMの流通方向)に長軸が設定された楕円形状に形成したが、これに限定されるものではなく、例えば、被熱交換流体流出路32bの断面形状を真円状に形成してもよい。また、冷媒流入路31a、冷媒流出路31b、被熱交換流体流入路32a、被熱交換流出路、加熱流体流入路33a、及び加熱流体流出路33bの断面形状は、円形のように丸みを帯びた形状に限定されるものではなく、例えば、これらの断面形状を非円形状に形成してもよい。但し、各流路内での流体の流れを考慮すれば、断面形状を丸みの帯びた形状に設定することが好ましく、特に、第一流路R1の途中位置を貫通する被熱交換流体流入路32a又は被熱交換流出路の断面形状は、冷媒CMの流通方向に長軸が設定された楕円形状にすることが好ましいことは言うまでもない。   In the above embodiment, the cross-sectional shape of the heat exchange fluid outflow passage 32b is formed in an elliptical shape in which the long axis is set in the longitudinal direction (the flow direction of the refrigerant CM), but is not limited to this. The cross-sectional shape of the heat exchange fluid outflow passage 32b may be a perfect circle. Further, the cross-sectional shapes of the refrigerant inflow path 31a, the refrigerant outflow path 31b, the heat exchange fluid inflow path 32a, the heat exchange outflow path, the heating fluid inflow path 33a, and the heating fluid outflow path 33b are rounded. For example, these cross-sectional shapes may be formed in a non-circular shape. However, considering the flow of the fluid in each flow path, it is preferable to set the cross-sectional shape to a rounded shape, and in particular, the heat exchange fluid inflow path 32a penetrating the middle position of the first flow path R1. Alternatively, it goes without saying that the cross-sectional shape of the heat exchange outflow passage is preferably an elliptical shape having a major axis set in the flow direction of the refrigerant CM.

上記実施形態において、積層された複数の伝熱プレート1,2をロウ付けすることで、開口の周囲や伝熱部10,20の外周を封止するようにしたが、これに限定されるものではなく、例えば、開口の周囲や伝熱部10,20の外周回りに環状のガスケットを配置して隣り合う伝熱プレート1,2でガスケットを挟み込むようにしてもよい。このようにしても伝熱プレート1,2間に第一流路R1、第二流路R2、及び第三流路R3は勿論のこと、冷媒流入路31aや冷媒流出路31b等を形成することができるため、上記実施形態と同様の作用及び効果を奏することができる。なお、この種の蒸発器Aは、冷媒CMの種類や性状によってガスケットが劣化する虞があるため、ガスケットの材質を適正に選択したり、適正なガスケットがない場合には上記実施形態と同様のものを採用したりする必要があることは言うまでもない。   In the above embodiment, the plurality of stacked heat transfer plates 1 and 2 are brazed to seal the periphery of the opening and the outer periphery of the heat transfer portions 10 and 20, but the present invention is not limited to this. Instead, for example, an annular gasket may be disposed around the opening or around the outer periphery of the heat transfer portions 10 and 20 so that the gasket is sandwiched between the adjacent heat transfer plates 1 and 2. Even in this manner, the first flow path R1, the second flow path R2, and the third flow path R3 as well as the refrigerant inflow path 31a, the refrigerant outflow path 31b, and the like can be formed between the heat transfer plates 1 and 2. Therefore, the same operation and effect as the above embodiment can be achieved. In this type of evaporator A, the gasket may be deteriorated depending on the type and properties of the refrigerant CM. Therefore, when the material of the gasket is appropriately selected or there is no appropriate gasket, the same as in the above embodiment. Needless to say, you need to adopt something.

上記実施形態において、凝縮器Cを通過して温度の高い冷媒CMを加熱流体WMとして第三流路R3に流通させるようにしたが、蒸発器Aを通過する冷媒CMを第三流路R3に流通させる加熱流体WMに兼用させたものに限定されるものではなく、例えば、第三流路R3を別の経路と接続して温度の高い水や上記を加熱流体として第三流路R3に流通させるようにしても勿論よい。   In the above embodiment, the refrigerant CM having a high temperature passing through the condenser C is circulated through the third flow path R3 as the heating fluid WM. However, the refrigerant CM passing through the evaporator A is transferred to the third flow path R3. For example, the third flow path R3 is connected to another path and the high temperature water or the above is used as the heating fluid to flow to the third flow path R3. Of course, it is possible to make it.

1,2…伝熱プレート、3,4…フレームプレート、10,20…伝熱部、11,21…環状部、30…仕切部、31a…冷媒流入路、31b…冷媒流出路、32a…被熱交換流体流入路、32b…被熱交換流体流出路、33a…加熱流体流入路、33b…加熱流体流出路、34…流体案内部、35…ガイド部、36a,36b…サイドガイド部、100,200…仕切用凸条、101,201…第一環状凸部、102,202…第二環状凸部、103,203…第三環状凸部、104,204…第四環状凸部、105,205…第五環状凸部、106,206…第六環状凸部、107,207…案内用凸部、108,208…ガイド用凸部、109,209…サイドガイド用凸部、A…蒸発器、A1…第一領域、A2…第二領域、B…圧縮機、C…凝縮器、CM…冷媒、FS…冷凍システム、H1…第一開口、H1-…第一開口、H2…第二開口、H3…第三開口、H4…第四開口、H5…第五開口、H6…第六開口、P…配管、Pa1…第一パス領域、Pa2…第二パス領域、R1…第一流路、R2…第二流路、R3…第三流路、V…膨張弁、W…被熱交換流体、WM…加熱流体、θ…角度   1, 2 ... Heat transfer plate, 3, 4 ... Frame plate, 10, 20 ... Heat transfer part, 11, 21 ... Ring part, 30 ... Partition part, 31a ... Refrigerant inflow path, 31b ... Refrigerant outflow path, 32a ... Covered Heat exchange fluid inflow passage, 32b ... Heat exchange fluid outflow passage, 33a ... Heating fluid inflow passage, 33b ... Heating fluid outflow passage, 34 ... Fluid guide portion, 35 ... Guide portion, 36a, 36b ... Side guide portion, 100, 200 ... partitioning projections, 101, 201 ... first annular projection, 102, 202 ... second annular projection, 103, 203 ... third annular projection, 104, 204 ... fourth annular projection, 105, 205 ... Fifth annular projection, 106,206 ... Sixth annular projection, 107,207 ... Guide projection, 108,208 ... Guide projection, 109,209 ... Side guide projection, A ... Evaporator, A1 ... first region, A2 ... second region, B ... compressed , C ... condenser, CM ... refrigerant, FS ... refrigeration system, H1 ... first opening, H1 -... first opening, H2 ... second opening, H3 ... third opening, H4 ... fourth opening, H5 ... fifth Opening, H6 ... sixth opening, P ... piping, Pa1 ... first pass region, Pa2 ... second pass region, R1 ... first flow channel, R2 ... second flow channel, R3 ... third flow channel, V ... expansion valve , W: Heat exchange fluid, WM: Heated fluid, θ: Angle

Claims (5)

積層された複数の伝熱プレートのそれぞれを境にして冷媒を流通させる第一流路と被熱交換流体を流通させる第二流路とが交互に形成され、各第一流路に対して冷媒を流出入させる冷媒流入路及び冷媒流出路が第一流路の形成される領域を通るように一方向に間隔をあけて形成されるとともに、第二流路に対して被熱交換流体を流出入させる被熱交換流体流入路及び被熱交換流体流出路が第二流路の形成される領域を通るように前記一方向に間隔をあけて形成された蒸発器において、互いに対向する伝熱プレートの一方の面間に前記一方向と直交する他方向に延びる仕切部が設けられ、該仕切部を境にして伝熱プレートの一方の面間における前記一方向の一方側に前記第二流路が形成されるとともに伝熱プレートの一方の面間における前記一方向の他方側に被熱交換流体よりも温度の高い加熱流体を流通させる第三流路が形成される一方、互いに対向する伝熱プレートの他方の面間に第一流路が形成され、前記第三流路に対して加熱流体を流出入させる加熱流体流入路及び加熱流体流出路が該第三流路の形成される領域を通るように形成され、前記冷媒流入路が第二流路の形成される領域を通るように形成されるとともに冷媒流出路が第三流路の形成される領域を通るように形成されていることを特徴とする蒸発器。   A first flow path through which the refrigerant flows and a second flow path through which the heat exchange fluid flows are alternately formed across each of the stacked heat transfer plates, and the refrigerant flows out of each first flow path. The refrigerant inflow path and the refrigerant outflow path to be introduced are formed at intervals in one direction so as to pass through the region where the first flow path is formed, and the heat exchange fluid is flowed into and out of the second flow path. In the evaporator formed at intervals in the one direction so that the heat exchange fluid inflow path and the heat exchange fluid outflow path pass through the region where the second flow path is formed, one of the heat transfer plates facing each other A partition portion extending in the other direction orthogonal to the one direction is provided between the surfaces, and the second flow path is formed on one side of the one direction between one surface of the heat transfer plate with the partition portion as a boundary. And the distance between one side of the heat transfer plate A third flow path for flowing a heated fluid having a temperature higher than that of the heat exchange fluid is formed on the other side, and a first flow path is formed between the other surfaces of the heat transfer plates facing each other, A heating fluid inflow path and a heating fluid outflow path for allowing the heating fluid to flow in and out of the three flow paths are formed so as to pass through a region where the third flow path is formed, and the refrigerant inflow path is formed as a second flow path. An evaporator characterized in that it is formed so as to pass through a region where the refrigerant is discharged and the refrigerant outflow passage is formed so as to pass through a region where the third flow path is formed. 各伝熱プレートは、互いに対向する一方の面に前記一方向と直交する他方向に延びる仕切用凸条が形成され、前記仕切部は、互いに対向する伝熱プレートの仕切用凸条同士が面接触した状態で溶着されて形成されている請求項1に記載の蒸発器。   Each heat transfer plate is formed with partitioning ridges extending in the other direction orthogonal to the one direction on one surface facing each other, and the partitioning portion is formed by the partitioning ridges of the heat transfer plates facing each other. The evaporator according to claim 1, wherein the evaporator is formed by welding in a contact state. 前記冷媒流入路、前記冷媒流出路、前記被熱交換流体流入路、及び被熱交換流体流出路は、伝熱プレートの前記他方向の中央部で前記一方向に整列して配置されている請求項1又は2に記載の蒸発器。   The refrigerant inflow path, the refrigerant outflow path, the heat exchange fluid inflow path, and the heat exchange fluid outflow path are aligned in the one direction at the center of the other direction of the heat transfer plate. Item 3. The evaporator according to Item 1 or 2. 第三流路側に配置された前記被熱交換流体流出路又は前記被熱交換流体流入路の何れか一方は、断面形状が前記一方向に長軸を有する楕円形状に形成されている請求項1乃至3の何れか1項に記載の蒸発器。   2. The heat exchange fluid outflow passage or the heat exchange fluid inflow passage arranged on the third flow path side is formed in an elliptical shape with a cross-sectional shape having a long axis in the one direction. 4. The evaporator according to any one of items 1 to 3. 冷媒と被熱交換流体とを熱交換させる蒸発器と、該蒸発器から排出された冷媒を加圧する圧縮機と、該圧縮機で圧縮された冷媒を凝縮させる凝縮器とを備え、該凝縮器で凝縮された冷媒を前記蒸発器に供給するように構成された冷凍システムにおいて、前記蒸発器は、請求項1乃至4の何れか1項に記載の蒸発器で構成され、第一流路に冷媒を流通させた状態で、第二流路に被熱交換流体を流通させつつ第三流路に被熱交換流体よりも温度の高い加熱流体を流通させるように構成されたことを特徴とする冷凍システム。   An evaporator for exchanging heat between the refrigerant and the heat exchange fluid, a compressor for pressurizing the refrigerant discharged from the evaporator, and a condenser for condensing the refrigerant compressed by the compressor, the condenser In the refrigeration system configured to supply the refrigerant condensed in step 1 to the evaporator, the evaporator is configured by the evaporator according to any one of claims 1 to 4, and the refrigerant is provided in the first flow path. Refrigeration characterized in that a heated fluid having a temperature higher than that of the heat exchange fluid is circulated through the third channel while the heat exchange fluid is circulated through the second channel. system.
JP2010262587A 2010-11-25 2010-11-25 Evaporator and refrigeration system provided with the evaporator Expired - Fee Related JP5025783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010262587A JP5025783B2 (en) 2010-11-25 2010-11-25 Evaporator and refrigeration system provided with the evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010262587A JP5025783B2 (en) 2010-11-25 2010-11-25 Evaporator and refrigeration system provided with the evaporator

Publications (2)

Publication Number Publication Date
JP2012112591A JP2012112591A (en) 2012-06-14
JP5025783B2 true JP5025783B2 (en) 2012-09-12

Family

ID=46497005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010262587A Expired - Fee Related JP5025783B2 (en) 2010-11-25 2010-11-25 Evaporator and refrigeration system provided with the evaporator

Country Status (1)

Country Link
JP (1) JP5025783B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709653A (en) * 2017-05-22 2020-01-17 舒瑞普国际股份公司 Refrigeration system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557893B2 (en) * 2012-12-03 2014-07-23 株式会社日阪製作所 Plate heat exchanger
FR3000183B1 (en) * 2012-12-21 2018-09-14 Valeo Systemes Thermiques CONDENSER WITH FRIGORIGENE FLUID RESERVE FOR AIR CONDITIONING CIRCUIT
US10962307B2 (en) 2013-02-27 2021-03-30 Denso Corporation Stacked heat exchanger
JP7214953B2 (en) 2017-05-22 2023-01-31 スウェップ インターナショナル アクティエボラーグ Heat exchanger with integrated intake air heat exchanger
SE544732C2 (en) * 2017-05-22 2022-10-25 Swep Int Ab A reversible refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709653A (en) * 2017-05-22 2020-01-17 舒瑞普国际股份公司 Refrigeration system
JP2020521100A (en) * 2017-05-22 2020-07-16 スウェップ インターナショナル アクティエボラーグ Refrigeration system
JP7022445B2 (en) 2017-05-22 2022-02-18 スウェップ インターナショナル アクティエボラーグ Freezing system
US11480367B2 (en) 2017-05-22 2022-10-25 Swep International Ab Refrigeration system

Also Published As

Publication number Publication date
JP2012112591A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP6641544B1 (en) Plate heat exchanger and heat pump device provided with the same
JP5025783B2 (en) Evaporator and refrigeration system provided with the evaporator
US11719495B2 (en) Plate heat exchanger, heat pump device including plate heat exchanger, and heat pump type of cooling, heating, and hot water supply system including heat pump device
JP5859022B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP6735918B2 (en) Plate heat exchanger and heat pump hot water supply system
US20170248373A1 (en) Plate heat exchanger and heat pump outdoor unit
JPWO2019176566A1 (en) Plate heat exchanger, heat pump device including plate heat exchanger, and heat pump heating and hot water supply system including heat pump device
JPWO2020100276A1 (en) Plate heat exchanger, heat pump device and heat pump heating / cooling hot water supply system
JP2015007518A (en) Cold storage heat exchanger
JP2012193872A (en) Heat exchanger and air conditioner
JP2002022374A (en) Plate type heat exchanger and freezing air conditioning apparatus
JP5085723B2 (en) Plate heat exchanger
JP2003269822A (en) Heat exchanger and refrigerating cycle
JP3658677B2 (en) Plate heat exchanger and refrigeration system
JP7301224B2 (en) Plate heat exchangers, refrigeration cycle equipment and heat transfer equipment
JP7199533B2 (en) Plate heat exchanger and heat transfer device
JP2008008541A (en) Heat exchanger, and indoor unit of air conditioner comprising heat exchanger
JP7259287B2 (en) Heat exchanger
JP6028473B2 (en) Heat exchanger
JP6601380B2 (en) Heat exchanger and air conditioner
JP2022044306A (en) Lamination type header, heat exchanger, and freezer
JP2022044417A (en) Lamination type header, heat exchanger, and freezer
KR20210065554A (en) Heat exchanger
JP2021085535A (en) Heat exchanger
JP2018169053A (en) Heat exchanger and air conditioner using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees