JP2015007518A - Cold storage heat exchanger - Google Patents

Cold storage heat exchanger Download PDF

Info

Publication number
JP2015007518A
JP2015007518A JP2013133513A JP2013133513A JP2015007518A JP 2015007518 A JP2015007518 A JP 2015007518A JP 2013133513 A JP2013133513 A JP 2013133513A JP 2013133513 A JP2013133513 A JP 2013133513A JP 2015007518 A JP2015007518 A JP 2015007518A
Authority
JP
Japan
Prior art keywords
refrigerant
cold storage
heat exchanger
storage material
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013133513A
Other languages
Japanese (ja)
Inventor
朋広 千葉
Tomohiro Chiba
朋広 千葉
亮輔 櫻井
Ryosuke Sakurai
亮輔 櫻井
隆行 大野
Takayuki Ono
隆行 大野
亜矢 吉澤
Aya Yoshizawa
亜矢 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2013133513A priority Critical patent/JP2015007518A/en
Publication of JP2015007518A publication Critical patent/JP2015007518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cold storage heat exchanger capable of suppressing reduction in the total heat storage amount of overall cold storage medium vessels due to a refrigerant overheated region, appropriately maintaining air cooling function by a heat storage medium when a compressor stops operating, and ensuring cooling performance.SOLUTION: In a cold storage heat exchanger in which refrigerant tubes 3 are provided in two front and back rows, a counter-flow technique is adopted such that a downstream side (an upstream side) of refrigerant flow corresponds to an upstream side (a downstream side) of air flow, the refrigerant tubes 3 are partitioned into four groups by four paths having inverted flow directions, an arrangement ratio of cold storage medium vessels 5 (ratio of the arrangement number of cold storage medium vessels 5 to the arrangement number of refrigerant tubes 3) in the fourth path P4 (and first path P1) including an overheat region in which refrigerant is heated to generate sensible heat to increase temperature is set lower than an arrangement ratio of cold storage medium vessels 5 in the other paths (second path P2 and third path P3).

Description

本発明は、カーエアコンなどの冷凍サイクルにて蒸発器(エバポレータ)として使用でき、蓄冷材による蓄冷と放冷とが可能な蓄冷熱交換器に関する。   The present invention relates to a cold storage heat exchanger that can be used as an evaporator (evaporator) in a refrigeration cycle such as a car air conditioner and can store and cool by a cold storage material.

蓄冷熱交換器は、一般に、扁平部を向かい合わせにして所定の間隔で並設される複数の扁平状冷媒管と、隣り合う冷媒管の扁平部間の空隙に配置され該空隙を通流する空気と接触するフィンと、これら冷媒管及びフィンの列に組み込まれ蓄冷材が収容される蓄冷材容器と、を含んで構成される。   Generally, a cold storage heat exchanger is arranged in a space between a plurality of flat refrigerant tubes arranged in parallel at a predetermined interval with the flat portions facing each other, and the flat portions of adjacent refrigerant tubes, and flows through the space. It is comprised including the fin which contacts air, and the cool storage material container which is integrated in the row | line | column of these refrigerant pipes and fins, and the cool storage material is accommodated.

蓄冷熱交換器は、通常は、カーエアコンなどの冷凍サイクルにて蒸発器として使用される。従って、エンジン駆動される圧縮機により凝縮器及び膨張弁を介して供給される冷媒が冷媒管内を流れ、ここで蒸発する。そして、隣合う冷媒管の扁平部間の空隙を流れる空気から蒸発熱を奪って、冷房用空気を冷却する。このとき同時に蓄冷材容器内の蓄冷材に蓄冷する。その後、エンジンがアイドルストップなどで停止して圧縮機が停止したときは、蓄冷材に蓄えた冷熱を利用して空気を冷却し、冷房能力を確保する。   The cold storage heat exchanger is usually used as an evaporator in a refrigeration cycle such as a car air conditioner. Therefore, the refrigerant supplied via the condenser and the expansion valve by the compressor driven by the engine flows through the refrigerant pipe and evaporates here. And the heat for evaporation is taken from the air which flows through the space | gap between the flat parts of an adjacent refrigerant pipe, and cooling air is cooled. At the same time, the cold storage material in the cold storage material container is stored cold. After that, when the engine stops at an idle stop or the like and the compressor stops, the air is cooled using the cold energy stored in the cold storage material to ensure the cooling capacity.

特許文献1に記載の蓄冷熱交換器(蓄冷エバポレータ)は、3個並んだ冷媒管の間に2個のフィンと、1個の蓄冷材容器が配設されており、蓄冷材容器は、冷媒管が配設される全領域において一定の割合で均一に配設されている。また、特許文献2に記載の蓄冷熱交換器(蓄冷エバポレータ)では、冷媒管と蓄冷材容器とが一体に形成されており、蓄冷材容器は、冷媒管に対し1対1の比率で均一に配設されている。   In the cold storage heat exchanger (cold storage evaporator) described in Patent Document 1, two fins and one cold storage material container are disposed between three refrigerant tubes arranged in parallel, and the cold storage material container is a refrigerant. It is uniformly arranged at a constant rate in the entire area where the tubes are arranged. Further, in the cold storage heat exchanger (cold storage evaporator) described in Patent Document 2, the refrigerant pipe and the cold storage material container are integrally formed, and the cold storage material container is uniformly in a ratio of 1: 1 to the refrigerant pipe. It is arranged.

特開2011−12947号公報JP 2011-12947 A 特開2011−149684号公報JP 2011-149684 A

ところで、エバポレータでは、膨張弁から気液混合状態で流入した冷媒が、送風空気と熱交換して吸熱し、潜熱で相変化する間は冷媒温度が一定の低温に維持されるが、相変化を終了すると気化された冷媒は顕熱変化して温度上昇し、過熱域を生じる。
過熱域となる冷媒管配設領域の中に配設される蓄冷材容器は、相対的に高温の冷媒と熱交換するため蓄冷効率が低く、蓄冷材容器全体の総蓄冷量が減少するため、圧縮機停止時の蓄冷材による空気冷却機能が損なわれていた。
By the way, in the evaporator, the refrigerant flowing in the gas-liquid mixed state from the expansion valve exchanges heat with the blown air and absorbs heat, and while the phase change is caused by latent heat, the refrigerant temperature is maintained at a constant low temperature. When completed, the vaporized refrigerant changes its sensible heat and rises in temperature, generating an overheating region.
The regenerator container disposed in the refrigerant pipe disposition region that becomes the overheated area is heat-exchanged with a relatively high-temperature refrigerant, so that the regenerator efficiency is low, and the total regenerator amount of the entire regenerator container decreases, The air cooling function by the cold storage material when the compressor was stopped was impaired.

本発明は、このような従来の問題点に鑑み、蓄冷熱交換器において、冷媒の過熱域による蓄冷材容器全体の総蓄冷量の減少を抑制し、圧縮機停止時の蓄冷材による空気冷却機能を良好に維持して冷房性能を確保することを課題とする。   In view of such conventional problems, the present invention suppresses a decrease in the total cold storage amount of the entire cold storage container due to the refrigerant overheating region in the cold storage heat exchanger, and the air cooling function by the cold storage material when the compressor is stopped It is an object to maintain cooling well and ensure cooling performance.

本発明に係る蓄冷熱交換器は、扁平部を向かい合わせにして所定の間隔で並設される複数の扁平状冷媒管と、隣合う冷媒管の扁平部間の空隙に配置され該空隙を通流する空気と接触するフィンと、一部の隣合う冷媒管の扁平部間の空隙に前記フィンに代えて配置され蓄冷材が収容される蓄冷材容器とを備える。   The regenerative heat exchanger according to the present invention is arranged in a space between a plurality of flat refrigerant tubes arranged in parallel at a predetermined interval with the flat portions facing each other, and the flat portions of adjacent refrigerant tubes. A fin that comes into contact with flowing air, and a cold storage material container that is arranged in place of the fin in a gap between flat portions of some adjacent refrigerant pipes and that stores the cold storage material.

そして、前記冷媒管内の冷媒が顕熱化して温度上昇する過熱域を含む冷媒管配設領域における前記蓄冷材容器の配設割合を、他の冷媒管配設領域における配設割合より小さくする。   And the arrangement | positioning ratio of the said cool storage material container in the refrigerant | coolant pipe | tube arrangement | positioning area | region containing the overheating area where the refrigerant | coolant in the said refrigerant | coolant pipe | steam sensible heat | fever rises is made smaller than the arrangement | positioning ratio in another refrigerant | coolant pipe | tube arrangement | positioning area.

本発明によれば、過熱域を含む冷媒管配設領域内に配設される蓄冷材容器の蓄冷効率は小さいので、他の冷媒管配設領域における配設割合より小さくすることにより、蓄冷材容器全体の総蓄冷量を増大することができ、アイドルストップ等、圧縮機停止時の蓄冷材による空気冷却機能を良好に維持して冷房性能を確保することができる。   According to the present invention, since the cold storage efficiency of the cold storage container disposed in the refrigerant pipe arrangement region including the overheated area is small, the cold storage material can be reduced by making it smaller than the arrangement ratio in the other refrigerant pipe arrangement regions. The total cold storage amount of the entire container can be increased, and the air cooling function by the cold storage material when the compressor is stopped, such as idling stop, can be well maintained to ensure the cooling performance.

本発明の第1実施形態を示す蓄冷熱交換器の正面図The front view of the cool storage heat exchanger which shows 1st Embodiment of this invention 同上の蓄冷熱交換器の平面図Top view of the regenerative heat exchanger 同上の蓄冷熱交換器の底面図Bottom view of the regenerative heat exchanger 図1のX−X矢視断面図XX arrow sectional view of FIG. 図1のY−Y矢視断面図YY arrow cross-sectional view of FIG. 同上の蓄冷熱交換器での冷媒の流れを示す概略斜視図Schematic perspective view showing the flow of refrigerant in the above regenerative heat exchanger 第2実施形態を示す蓄冷熱交換器の正面図Front view of cold storage heat exchanger showing the second embodiment 同上の蓄冷熱交換器での冷媒の流れを示す概略斜視図Schematic perspective view showing the flow of refrigerant in the above regenerative heat exchanger 第3実施形態を示す蓄冷熱交換器の正面図Front view of cold storage heat exchanger showing the third embodiment

以下、本発明の実施の形態について、詳細に説明する。
図1〜図6は、それぞれ本発明の第1実施形態を示す蓄冷熱交換器(蓄冷エバポレータ)の正面図、平面図、底面図、図1のX−X矢視断面図、図1のY−Y矢視断面図、蓄冷熱交換器での冷媒の流れを示す概略斜視図である。尚、熱交換器に対する空気の通流方向上流側を前側、下流側を後側という。
Hereinafter, embodiments of the present invention will be described in detail.
1 to 6 are a front view, a plan view, a bottom view, a cross-sectional view taken along the line XX in FIG. 1, and a Y in FIG. 1, respectively, showing a cold storage heat exchanger (cold storage evaporator) showing a first embodiment of the present invention. -Y arrow sectional drawing, It is a schematic perspective view which shows the flow of the refrigerant | coolant in a cool storage heat exchanger. The upstream side in the air flow direction with respect to the heat exchanger is referred to as the front side, and the downstream side is referred to as the rear side.

本実施形態の蓄冷熱交換器は、上側ヘッダタンク1と下側ヘッダタンク2とを連通する複数の扁平状冷媒管3と、隣合う冷媒管3、3間の空隙に配設されるフィン4と、一部の空隙にフィン4に代えて配設される蓄冷材容器5と、両側のサイドプレート6とを含んで構成される。   The cold storage heat exchanger according to the present embodiment includes a plurality of flat refrigerant tubes 3 communicating with the upper header tank 1 and the lower header tank 2 and fins 4 disposed in the gaps between the adjacent refrigerant tubes 3 and 3. And the cool storage material container 5 arrange | positioned instead of the fin 4 in a part of space | gap, and the side plates 6 of both sides are comprised.

上側ヘッダタンク1は、水平方向に延在し、また延在方向と直交する前後方向に2つのタンク1A、1Bに分割されている。ここで、後側のタンク1Aの一端部に冷媒入口7が形成され、これと隣合う前側のタンク1Bの一端部に冷媒出口8が形成されている。   The upper header tank 1 extends in the horizontal direction, and is divided into two tanks 1A and 1B in the front-rear direction orthogonal to the extending direction. Here, a refrigerant inlet 7 is formed at one end of the rear tank 1A, and a refrigerant outlet 8 is formed at one end of the front tank 1B adjacent thereto.

下側ヘッダタンク2は、上側ヘッダタンク1の下方に、上側ヘッダタンク1と同様、水平方向に延在し、また延在方向と直交する前後方向に2つのタンク2A、2Bに分割されている。   The lower header tank 2 extends in the horizontal direction below the upper header tank 1 in the same manner as the upper header tank 1, and is divided into two tanks 2A and 2B in the front-rear direction orthogonal to the extending direction. .

冷媒管3は、扁平状であり、扁平部を向かい合わせにして所定の間隔で並設される。そして、冷媒管3は、ここでは、前後2列に配置され、後側の1列目は上側タンク1Aと下側タンク2Aとを連通し、前側の2列目は上側タンク1Bと下側タンク2Bとを連通する。また、前記並設方向に隣合う冷媒管3、3の扁平部間には、冷媒管3、3内の冷媒と熱交換する空気が通る空隙が形成される。   The refrigerant pipe 3 has a flat shape, and is arranged in parallel at a predetermined interval with the flat portions facing each other. Here, the refrigerant pipes 3 are arranged in two front and rear rows, the rear first row communicates the upper tank 1A and the lower tank 2A, and the front second row is the upper tank 1B and the lower tank. Communicate with 2B. In addition, a gap is formed between the flat portions of the refrigerant pipes 3 and 3 adjacent to each other in the juxtaposed direction so as to allow air to exchange heat with the refrigerant in the refrigerant pipes 3 and 3.

フィン4は、コルゲートフィンであり、前記空隙、すなわち、隣合う冷媒管3、3の扁平部間に、熱交換効率向上のために配置される。   The fins 4 are corrugated fins, and are arranged for improving heat exchange efficiency between the gaps, that is, between the flat portions of the adjacent refrigerant pipes 3 and 3.

蓄冷材容器5は、蓄冷材を封入した扁平な容器であり、下端部に蓄冷材注入口5a(蓄冷材封入後に閉塞される)が形成され、一部の隣合う冷媒管3、3の扁平部間の空隙に、フィン4に代えて、配置される。なお、フィン4と蓄冷材容器5は、前後2個の冷媒管3に跨って形成される。該蓄冷材容器5の冷媒管3配設数に対する配設数割合については、後述する。   The regenerator material container 5 is a flat container in which a regenerator material is enclosed, and a cold storage material inlet 5a (closed after the regenerator material is enclosed) is formed in the lower end portion, and the flatness of some adjacent refrigerant tubes 3 and 3 is formed. It replaces with the fin 4 and is arrange | positioned at the space | gap between parts. The fins 4 and the regenerator container 5 are formed across the two front and rear refrigerant tubes 3. The ratio of the number of the regenerator containers 5 to the number of refrigerant tubes 3 will be described later.

本実施形態では、冷媒管3は、前側の列と後側の列とに分けられる他、前側の列は更に2つの群に分けられ、後側の列も更に2つの群に分けられる。従って、熱交換器全体では、図6の概略図(及び図1の一点鎖線)に示されるように、冷媒流通方向に沿って後側の第1,第2パス(P1,P2)と、前側の第3,第4パス(P3,P4)とに分けられる。   In the present embodiment, the refrigerant pipe 3 is divided into a front row and a rear row, the front row is further divided into two groups, and the rear row is further divided into two groups. Therefore, in the entire heat exchanger, as shown in the schematic diagram of FIG. 6 (and the one-dot chain line in FIG. 1), the first and second passes (P1, P2) on the rear side along the refrigerant flow direction and the front side And the third and fourth paths (P3, P4).

このような第1〜第4パス(P1〜P4)を実現するため、上側ヘッダタンク1(1A、1B)及び下側ヘッダタンク2(2A、2B)は次のように区画されている。   In order to realize such first to fourth paths (P1 to P4), the upper header tank 1 (1A, 1B) and the lower header tank 2 (2A, 2B) are partitioned as follows.

図2を参照し、タンク1Aと1Bとは互いに長手方向図示右側部分が仕切り11により仕切られているが、同左側部分の連通部12にて連通している。そして、各タンク1A、1Bにはそれぞれ長手方向中央部に仕切り13が設けられている。
一方、図3に示すように、タンク2Aと2Bとは互いに仕切り14により仕切られて非連通となっている。
Referring to FIG. 2, tanks 1 </ b> A and 1 </ b> B are separated from each other by a partition 11 on the right side in the longitudinal direction, but communicate with each other at a communication part 12 on the left side. Each tank 1A, 1B is provided with a partition 13 at the center in the longitudinal direction.
On the other hand, as shown in FIG. 3, the tanks 2 </ b> A and 2 </ b> B are separated from each other by a partition 14 and are not in communication.

このような4パス方式では、冷媒は、エンジン駆動される圧縮機により凝縮器及び膨張弁を介して供給されて、冷媒入口7より後側の上側タンク1Aに流入し、仕切り板13手前の長手方向図示右側半分から第1パスP1の冷媒管3群を下向きに流れて、下側タンク2Aに至る。そして、下側タンク2Aの同左側半分から第2パスP2の冷媒管3群を上向きに流れ、上側タンク1Aに至り、上側タンク1Aから連通部12を経て前側の上側タンク1Bに至る。   In such a 4-pass system, the refrigerant is supplied by an engine-driven compressor via a condenser and an expansion valve, flows into the upper tank 1A on the rear side from the refrigerant inlet 7, and extends in front of the partition plate 13 in front. From the right half of the direction shown, the refrigerant flows through the refrigerant pipe 3 group in the first path P1 downward and reaches the lower tank 2A. Then, the refrigerant pipe 3 of the second path P2 flows upward from the left half of the lower tank 2A, reaches the upper tank 1A, and reaches the front upper tank 1B via the communication portion 12 from the upper tank 1A.

そして、前側の上側タンク1Bの同左側部分から第3パスP3の冷媒管3群を下向きに流れて、前側の下側タンク2Bに至る。そして、下側タンク2Bの同右側部分から第4パスP4の冷媒管3群を上向きに流れ、前側の上側タンク1Bに至り、冷媒出口8から流出する。   Then, the refrigerant flows through the refrigerant pipe 3 group in the third path P3 downward from the left side portion of the front upper tank 1B and reaches the front lower tank 2B. Then, it flows upward from the right side portion of the lower tank 2B through the refrigerant pipe 3 group in the fourth path P4, reaches the front upper tank 1B, and flows out from the refrigerant outlet 8.

ここにおいて、冷媒が冷媒管3内を流れるときに、フィン4を介し、空隙を通過する空気を冷却する。このとき同時に一部の隣合う冷媒管3、3の扁平部間に配置された蓄冷材容器5内の蓄冷材に蓄冷する。その後、エンジンがアイドルストップなどで停止して圧縮機が停止したときは、蓄冷材容器5内の蓄冷材に蓄えた冷熱を利用して空気を冷却し、冷房能力を確保する。   Here, when the refrigerant flows through the refrigerant pipe 3, the air passing through the gap is cooled via the fins 4. At this time, cold storage is performed in the cold storage material in the cold storage material container 5 disposed between the flat portions of some of the adjacent refrigerant tubes 3 and 3. Thereafter, when the engine is stopped due to an idle stop or the like and the compressor is stopped, the air is cooled by using the cold energy stored in the cool storage material in the cool storage material container 5 to ensure the cooling capacity.

かかる構成の蓄冷熱交換器において、冷媒入口7から気液混合状態で流入した冷媒は送風空気と熱交換して吸熱するが、第1パスP1から第3パスP3までは、気化が完了せず潜熱状態で相変化し、冷媒温度が一定の低温に維持される。そして、第4パスP4の途中で相変化(気化)が終了し、その下流側では気化された冷媒は顕熱変化して温度上昇し、過熱域となる。   In the regenerative heat exchanger having such a configuration, the refrigerant flowing in the gas-liquid mixed state from the refrigerant inlet 7 exchanges heat with the blown air and absorbs heat, but the vaporization is not completed from the first pass P1 to the third pass P3. The phase changes in the latent heat state, and the refrigerant temperature is maintained at a constant low temperature. Then, the phase change (vaporization) ends in the middle of the fourth pass P4, and on the downstream side, the vaporized refrigerant changes in sensible heat and rises in temperature to become a superheated region.

そして、冷媒管3群の過熱域を含む第4パスP4領域に配設される蓄冷材容器は、該過熱域にある冷媒の温度が他の潜熱状態に維持される冷媒の温度に比較して高いため、冷媒による蓄冷効率(蓄冷量)が低下する。なお、本実施形態のように送風空気の上流側(前側)で、冷媒流通が下流側(後側)となるカウンター方式においては、上述したように各蓄冷材容器5は、前側のパスと後側のパスとに跨って配設されている。   And the cool storage material container arrange | positioned in the 4th path | pass P4 area | region containing the overheating area of the refrigerant | coolant pipe | tube 3 group is compared with the temperature of the refrigerant | coolant in which the temperature of the refrigerant | coolant in this overheating area is maintained in another latent heat state. Since it is high, the cold storage efficiency (cold storage amount) by the refrigerant decreases. In the counter system in which the refrigerant flow is downstream (rear side) on the upstream side (front side) of the blown air as in the present embodiment, each of the regenerator containers 5 is connected to the front path and the rear side as described above. It is disposed across the side path.

そこで、本第1実施形態では、上記の点に着目し、過熱域を含む第4パスP4(及び第1パスP1)における蓄冷材容器5の配設割合(冷媒管3の配設数に対する蓄冷材容器5の配設数の割合)を、他のパス(第2パスP2及び第3パスP3)における蓄冷材容器5の配設割合より小さく設定する。   Therefore, in the first embodiment, paying attention to the above points, the arrangement ratio of the cold storage material containers 5 in the fourth path P4 (and the first path P1) including the overheating region (cold storage with respect to the number of refrigerant tubes 3 arranged). The ratio of the number of material containers 5 disposed) is set to be smaller than the ratio of the cold storage material containers 5 disposed in the other paths (second path P2 and third path P3).

具体的には、第2パスP2及び第3パスP3における蓄冷材容器5を蓄冷熱交換器の長手方向均等間隔に6本(冷媒管3の配設数は、第2パスP2と第3パスP3とで12本ずつ、計24本)配設するのに対し、第4パスP4及び第1パスP1の蓄冷材容器5の配設数を4本(冷媒管3の配設数は、4パス側と1パス側とで12本ずつ、計24本)とする。   Specifically, the cool storage material containers 5 in the second pass P2 and the third pass P3 are arranged at six equal intervals in the longitudinal direction of the cool storage heat exchanger (the number of the refrigerant pipes 3 is the same as the second pass P2 and the third pass). P3 and 12 are arranged in total (24 in total), whereas the number of the regenerator containers 5 in the fourth pass P4 and the first pass P1 is four (the number of refrigerant pipes 3 is 4). 12 on the pass side and 1 on the pass side, for a total of 24).

このように、過熱域を含むパスにおける蓄冷効率の低い蓄冷材容器5の冷媒管3に対する配設割合(=4/24=1/6)を、他のパスにおける蓄冷効率が相対的に高い蓄冷材容器5の冷媒管3に対する配設割合(=6/24=1/4)より小さくする。   As described above, the arrangement ratio (= 4/24 = 1/6) of the cool storage material container 5 with low cool storage efficiency in the path including the overheated region is set to the cool storage with relatively high cool storage efficiency in the other paths. The ratio of the material container 5 to the refrigerant pipe 3 is set smaller than (6/24 = 1/4).

一方、10本全ての蓄冷材容器5の冷媒管3に対する配設割合を一定にした場合は、第4パスP4及び第1パスP1と、第2パスP2及び第3パスP3とで、蓄冷材容器5が5本ずつ配設されることとなる。   On the other hand, when the arrangement ratio of all the ten cool storage material containers 5 with respect to the refrigerant pipe 3 is made constant, the cool storage material in the fourth pass P4 and the first pass P1, and the second pass P2 and the third pass P3. Five containers 5 are arranged at a time.

したがって、本実施形態を、上記のように蓄冷材容器5全体を均等な割合で配設した場合に比較すると、蓄冷効率が高いパスにおける蓄冷材容器5の配設割合が大きく、蓄冷効率が低いパスにおける蓄冷材容器5の配設割合が小さくなるため、10本の蓄冷材容器5全体の総蓄冷量が増大する。これにより、アイドルストップ等で圧縮機が停止したときでも、送風空気の蓄冷材容器5との熱交換による冷却量が増大し、室内に送られる空気の温度をより大きく低下させて良好な冷房性能を確保することができる。   Therefore, compared with the case where this embodiment arrange | positions the whole cool storage material container 5 by the equal ratio as mentioned above, the arrangement | positioning ratio of the cool storage material container 5 in a path | pass with high cool storage efficiency is large, and cool storage efficiency is low. Since the arrangement ratio of the cool storage material containers 5 in the path is reduced, the total cool storage amount of the entire ten cool storage material containers 5 is increased. Thereby, even when the compressor is stopped due to idle stop or the like, the cooling amount by heat exchange of the blown air with the cold storage material container 5 is increased, and the temperature of the air sent to the room is greatly reduced, and the good cooling performance Can be secured.

ここで、蓄冷材容器5の総数を増加すれば総蓄冷量は増加するが、熱交換器の稼働開始後蓄冷材容器5の蓄冷に要する冷媒の冷熱量が増大する分、冷媒と送風空気との熱交換量が低下し、良好な冷房性能が確保できなくなる。   Here, if the total number of the cool storage material containers 5 is increased, the total cool storage amount increases. However, the amount of cold heat of the refrigerant required for storing the cool storage material container 5 after the start of operation of the heat exchanger increases, so that the coolant and the blown air The amount of heat exchange decreases, and good cooling performance cannot be ensured.

したがって、これらのこと等を考慮して蓄冷材容器5の適切な配設本数が決定され(本実施形態では10本)、該配設本数において過熱域の配設割合を小さくすることにより、総蓄冷量を増大することができる。
図7及び図8は、第2の実施形態を示す。
Accordingly, in consideration of these factors, the appropriate number of the regenerator containers 5 is determined (10 in this embodiment), and the total number of the regenerator containers 5 is reduced by reducing the arrangement ratio of the superheat zone. The amount of cold storage can be increased.
7 and 8 show a second embodiment.

本実施形態では、冷媒管3は、前側の列と後側の列とに分けられる他、前側の列は更に3つの群に分けられ、後側の列も更に3つの群に分けられる。従って、熱交換器全体では、図8の概略図に示されるように、後側の第1パスP1〜第3パスP3と、前側の第4P4〜第6パスP6とに分けられる。   In the present embodiment, the refrigerant pipe 3 is divided into a front row and a rear row, the front row is further divided into three groups, and the rear row is further divided into three groups. Therefore, as shown in the schematic diagram of FIG. 8, the entire heat exchanger is divided into a first path P1 to a third path P3 on the rear side and a fourth path P6 to a sixth path P6 on the front side.

このような第1パスP1〜第6パスP6を実現するため、上側ヘッダタンク1(1A、1B)及び下側ヘッダタンク2(2A、2B)は次のように区画されている。
図8を参照し、タンク1Aと1Bとは互いに仕切り21により仕切られて非連通となっている。そして、各タンク1A、1Bにはそれぞれ長手方向一端部寄りに仕切り22が設けられている。
In order to realize such first path P1 to sixth path P6, the upper header tank 1 (1A, 1B) and the lower header tank 2 (2A, 2B) are partitioned as follows.
Referring to FIG. 8, tanks 1 </ b> A and 1 </ b> B are separated from each other by a partition 21 and are not in communication. Each tank 1A, 1B is provided with a partition 22 near one end in the longitudinal direction.

また、タンク2Aと2Bとは互いに仕切り23により仕切られているが、他端部側の連通部24にて連通している。そして、各タンク2A、2Bにはそれぞれ長手方向他端部寄りに仕切り25が設けられている。   The tanks 2A and 2B are separated from each other by a partition 23, but communicate with each other through a communication portion 24 on the other end side. Each tank 2A, 2B is provided with a partition 25 near the other end in the longitudinal direction.

このような6パス方式では、冷媒は、冷媒入口7より後側の上側タンク1Aに流入し、第1パスP1の冷媒管3群を下向きに流れて、下側タンク2Aに至る。そして、下側タンク2Aの長手方向中間部から第2パスP2の冷媒管3群を上向きに流れ、上側タンク1Aに至る。そして、上側タンク1Aの長手方向他端部側から第3パスP3の冷媒管3群を下向きに流れて、下側タンク2Aに至る。そして、下側タンク2Aから連通部24を経て前側の下側タンク2Bに至る。   In such a 6-pass system, the refrigerant flows into the upper tank 1A on the rear side from the refrigerant inlet 7, flows downward through the refrigerant pipe 3 group of the first path P1, and reaches the lower tank 2A. And it flows upward through the refrigerant | coolant pipe | tube 3 group of the 2nd path | pass P2 from the longitudinal direction intermediate part of the lower tank 2A, and reaches the upper tank 1A. Then, it flows downward from the other end side in the longitudinal direction of the upper tank 1A through the refrigerant pipe 3 group in the third path P3 and reaches the lower tank 2A. Then, the lower tank 2A reaches the lower tank 2B on the front side through the communication portion 24.

そして、前側の下側タンク2Bの長手方向他端部側から第4パスP4の冷媒管3群を上向きに流れて、上側タンク1Bに至る。そして、上側タンク1Bの長手方向中間部から第5パスP5の冷媒管3群を下向きに流れ、下側タンク2Bに至る。そして、下側タンク2Bの長手方向一端部側から第6パスP6を上方向に流れて、上側タンク1Bに至る。そして、冷媒出口8から流出する。   Then, it flows upward from the other end in the longitudinal direction of the lower tank 2B on the front side through the refrigerant pipe 3 group in the fourth path P4 and reaches the upper tank 1B. And it flows downward through the refrigerant pipe 3 group of the 5th path P5 from the longitudinal direction middle part of upper tank 1B, and reaches lower tank 2B. Then, the sixth tank P6 flows upward from one longitudinal end of the lower tank 2B and reaches the upper tank 1B. Then, it flows out from the refrigerant outlet 8.

なお、パス数は冷房性能の要求に応じて設定されるが、パス数の増減は冷媒流動速度及び圧力損失が変化することを考慮して決定する。   The number of passes is set according to the cooling performance requirement, but the increase or decrease in the number of passes is determined in consideration of changes in the refrigerant flow rate and pressure loss.

本第2実施形態においても、冷媒入口7から気液混合状態で流入した冷媒は送風空気と熱交換して吸熱し、第1パスP1から第5パスP5までは、気化が完了せず潜熱で相変化し、冷媒温度が一定の低温に維持され、第6パスP6の途中で相変化(気化)が終了し、その下流側に過熱域を生じる。   Also in the second embodiment, the refrigerant that flows in the gas-liquid mixed state from the refrigerant inlet 7 exchanges heat with the blown air and absorbs heat. From the first pass P1 to the fifth pass P5, vaporization is not completed and latent heat is generated. The phase changes, the refrigerant temperature is maintained at a constant low temperature, the phase change (vaporization) ends in the middle of the sixth pass P6, and an overheating region is generated downstream thereof.

したがって、過熱域を含む第6パスP6(及び第1パスP1)における蓄冷材容器5の配設割合(冷媒管3の配設数に対する蓄冷材容器5の配設数の割合)を、他のパス(第2パスP2〜第5パスP5)における蓄冷材容器5の配設割合より小さく設定する。   Therefore, the arrangement ratio of the cool storage material containers 5 in the sixth pass P6 (and the first pass P1) including the superheat zone (the ratio of the number of the cool storage material containers 5 to the number of the refrigerant pipes 3) is set to other values. It sets smaller than the arrangement | positioning ratio of the cool storage material container 5 in a path | pass (2nd path | pass P2-5th path | pass P5).

具体的には、第5パスP5及び第2パスP2と、第4パスP4及び第3パスP3における蓄冷材容器5の配設数を長手方向均等間隔にそれぞれ4本(冷媒管3の配設数は、前後のパスで8本ずつ計16本)配設するのに対し、第6パスP6及び第1パスP1における蓄冷材容器5を長手方向均等間隔に蓄冷熱交換器の2本(冷媒管3の配設数は16本)とする。   Specifically, the number of the cold storage material containers 5 in the fifth pass P5 and the second pass P2, and the fourth pass P4 and the third pass P3 is set to be equal to four in the longitudinal direction (the arrangement of the refrigerant pipes 3). The number of the regenerator heat exchangers in the sixth pass P6 and the first pass P1 is two at the same interval in the longitudinal direction (refrigerant), whereas the number is arranged in a total of 16 in each of the eight passes in the front and rear passes. The number of tubes 3 is 16).

本実施形態においても、第1実施形態同様に、過熱域を含む蓄冷効率が低いパスの蓄冷材容器5の配設割合を小さく、蓄冷効率が高い他のパスの蓄冷材容器5の配設割合を大きくしたことにより、総蓄冷量が増大し、アイドルストップ等での冷房効果を高めることができる。   Also in the present embodiment, as in the first embodiment, the arrangement ratio of the cold storage material containers 5 in the path including the superheated region with low cold storage efficiency is small, and the arrangement ratio of the cold storage material containers 5 in the other paths with high cold storage efficiency. Since the total cold storage amount is increased, the cooling effect at idle stop or the like can be enhanced.

第1及び第2実施形態では、過熱域を含む最下流パスにおいて、蓄冷材容器5を均等間隔で配設したため、蓄冷熱交換器を通過する空気の風量分布のばらつきを抑制できる。   In 1st and 2nd embodiment, since the cool storage material container 5 was arrange | positioned at equal intervals in the most downstream path | pass including a superheat zone, the dispersion | variation in the air volume distribution of the air which passes a cool storage heat exchanger can be suppressed.

図9は、第3の実施形態を示す。
本実施形態では、第2実施形態同様の6パス方式の蓄冷熱交換器において、過熱域を含む6パスにおける蓄冷材容器5の配設割合は同様で2本配設するが、過熱域の発生領域を除く部分に集約して2本の蓄冷材容器5を配設したものである。
FIG. 9 shows a third embodiment.
In the present embodiment, in the 6-pass type regenerative heat exchanger similar to the second embodiment, the arrangement ratio of the regenerator containers 5 in the 6-pass including the superheat region is the same and two are provided, but the overheat region is generated. The two cool storage material containers 5 are arranged in a portion excluding the region.

即ち、気液混合状態の冷媒が第5パスP5から下側タンク2Bに流出した後、第6パスP6側に向かって流動する際に、下側タンク2B内に一点鎖線で図示するように、慣性によって端部側(図示右側)に液状冷媒が偏って流動する。   That is, when the refrigerant in the gas-liquid mixed state flows out from the fifth path P5 to the lower tank 2B and then flows toward the sixth path P6 side, as shown in the dashed line in the lower tank 2B, Due to inertia, the liquid refrigerant is biased to flow toward the end side (right side in the figure).

この結果、第6パスP6では、第5パスP5に近い側(図示左側)の冷媒管3ほど、液体成分が少なく気体成分が大きい冷媒が流入し、気化の完了が早められて過熱化されるので、図示のように過熱域SHが台形状に生じる。   As a result, in the sixth pass P6, the refrigerant pipe 3 on the side closer to the fifth pass P5 (the left side in the drawing) flows in the refrigerant having a small liquid component and a large gas component, and the completion of vaporization is accelerated and the refrigerant pipe 3 is overheated. Therefore, as shown in the figure, the superheat region SH is formed in a trapezoidal shape.

そこで、上記過熱域SHを含む冷媒管3群領域には、これらに隣接する蓄冷材容器5は配設せず、過熱域を含まない前後4本ずつ計8本の冷媒管3群領域に2本の蓄冷材容器5を均等間隔に配設する。   Therefore, the refrigerant tube 3 group region including the superheat region SH is not provided with the cold storage material container 5 adjacent thereto, and the refrigerant tube 3 group region including the four refrigerant tubes 3 group regions including the front and rear four regions not including the superheat region is 2 in total. The cool storage material containers 5 are arranged at equal intervals.

このように、2本の蓄冷材容器5を、過熱域SHを含まない冷媒管3群領域に集約的に配設したことにより、これらの蓄冷材容器5においても蓄冷効率を確保することができ、総蓄冷量を可及的に増大して、アイドルストップ等圧縮機停止時の冷房性能をより高めることができる。   Thus, the cold storage efficiency can be ensured also in these cool storage material containers 5 by arranging the two cool storage material containers 5 collectively in the refrigerant tube 3 group region not including the superheat region SH. The total cool storage amount can be increased as much as possible to further improve the cooling performance when the compressor is stopped, such as an idle stop.

以上の実施形態では、冷媒管群が前後2列に設けられて送風空気の上流側(下流側)で、冷媒流通が下流側(上流側)となるカウンター方式の蓄冷熱交換器に適用したものを示したが、本発明は、冷媒管群が一列設けられる蓄冷熱交換器にも適用でき、最終パスなど過熱域を含む冷媒管配設領域における蓄冷材容器の配設割合を小さくすることにより、同様の効果が得られる。   In the above embodiment, the refrigerant tube group is provided in two rows in the front and rear, and is applied to a counter-type regenerative heat exchanger in which the refrigerant flow is on the downstream side (upstream side) and the refrigerant flow is on the downstream side (upstream side). However, the present invention can also be applied to a cold storage heat exchanger in which a group of refrigerant tubes is provided, and by reducing the arrangement ratio of the cold storage material container in the refrigerant tube arrangement region including the superheated region such as the final pass. A similar effect can be obtained.

また、パス数を大きくした場合など、最終パスより上流側のパスにも過熱域を含む場合は、該過熱域を含む上流側のパスにおける蓄冷材容器の配設割合を小さくしてもよいことは勿論である。   In addition, when the number of passes is increased or the like, and the upstream side of the final pass also includes a superheated area, the arrangement ratio of the regenerator container in the upstream path including the superheated area may be reduced. Of course.

また、図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、特許請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。   The illustrated embodiments are merely examples of the present invention, and the present invention is not limited to those directly described by the described embodiments, and various improvements and modifications made by those skilled in the art within the scope of the claims. Needless to say, it encompasses changes.

1(1A、1B) 上側ヘッダタンク
2(2A、2B) 下側ヘッダタンク
3 冷媒管
4 フィン
5 蓄冷材容器
7 冷媒入口
8 冷媒出口
11、13、14、21、22,23、25 仕切り
12、24 連通部
P1 第1パス
P2 第2パス
P3 第3パス
P4 第4パス
P5 第5パス
P6 第6パス
SH 過熱域
1 (1A, 1B) Upper header tank 2 (2A, 2B) Lower header tank 3 Refrigerant pipe 4 Fin 5 Cold storage material container 7 Refrigerant inlet 8 Refrigerant outlet 11, 13, 14, 21, 22, 23, 25 Partition 12, 24 communication part P1 1st pass P2 2nd pass P3 3rd pass P4 4th pass P5 5th pass P6 6th pass SH Superheated area

Claims (7)

扁平部を向かい合わせにして所定の間隔で並設される複数の扁平状冷媒管と、隣合う冷媒管の扁平部間の空隙に配置され該空隙を通流する空気と接触するフィンと、一部の隣合う冷媒管の扁平部間の空隙に前記フィンに代えて配置され蓄冷材が収容される蓄冷材容器とを備える、蓄冷熱交換器であって、
前記冷媒管内の冷媒が顕熱化して温度上昇する過熱域を含む冷媒管配設領域における前記蓄冷材容器の配設割合を、他の冷媒管配設領域における配設割合より小さくしたことを特徴とする蓄冷熱交換器。
A plurality of flat refrigerant tubes arranged in parallel at a predetermined interval with the flat portions facing each other, fins arranged in a space between the flat portions of adjacent refrigerant tubes and contacting with air flowing through the space; A cold storage heat exchanger comprising a cold storage material container in which a cold storage material is accommodated in place of the fins in a space between flat portions of refrigerant pipes adjacent to each other,
The arrangement ratio of the cold storage material container in the refrigerant pipe arrangement area including the superheated area where the temperature of the refrigerant in the refrigerant pipe is increased by sensible heat is made smaller than the arrangement ratio in the other refrigerant pipe arrangement areas. Regenerative heat exchanger.
前記複数の冷媒管は、両端部がそれぞれヘッダタンクに連通して接続され、前記少なくとも一部のヘッダタンクに形成された仕切り壁により、隣接する冷媒管群相互間で冷媒流通方向が反転する複数の冷媒管群に区画され、前記過熱域を含む冷媒管群における前記蓄冷材容器の配設割合を、他の冷媒管群における配設割合より小さくしたことを特徴とする請求項1に記載の蓄冷熱交換器。   The plurality of refrigerant tubes are connected at both end portions thereof to communicate with the header tank, and a plurality of refrigerant flow directions are inverted between adjacent refrigerant tube groups by a partition wall formed in the at least some of the header tanks. 2. The refrigerant pipe group that is divided into the refrigerant pipe groups of the first and second refrigerant pipe groups, and the arrangement ratio of the cold storage material containers in the refrigerant pipe group including the superheated area is smaller than the arrangement ratio of the other refrigerant pipe groups. Cold storage heat exchanger. 前記過熱域を含む冷媒管群は、少なくとも冷媒流通方向最下流の冷媒管群を含むことを特徴とする請求項2に記載の蓄冷熱交換器。   The regenerative heat exchanger according to claim 2, wherein the refrigerant tube group including the overheated region includes at least a refrigerant tube group located downstream in the refrigerant flow direction. 前記複数の冷媒管は、両端部がそれぞれヘッダタンクに連通して接続された冷媒管群が一対形成され、冷媒流通方向上流側の冷媒管群を空気送風方向の下流側、冷媒流通方向下流側の冷媒管群を空気送風方向の上流側に並べて配置すると共に、前記冷媒流通方向上流側及び下流側の一対の冷媒管群の隣接するヘッダ同志が連通接続されたカウンターフロー方式の熱交換器であることを特徴とする請求項2又は請求項3に記載の蓄冷熱交換器。   The plurality of refrigerant pipes are formed with a pair of refrigerant pipe groups whose both ends are connected to and connected to the header tank. The refrigerant pipe group on the upstream side in the refrigerant flow direction is the downstream side in the air blowing direction and the downstream side in the refrigerant flow direction. Are arranged side by side on the upstream side in the air blowing direction, and a counter flow type heat exchanger in which adjacent headers of the pair of refrigerant pipe groups on the upstream side and the downstream side in the refrigerant flow direction are connected in communication. The regenerative heat exchanger according to claim 2 or 3, wherein the regenerative heat exchanger is provided. 前記蓄冷材容器は、前記冷媒流通方向上流側及び下流側の冷媒管群に跨って配設されることを特徴とする請求項4に記載の蓄冷熱交換器。   The cold storage heat exchanger according to claim 4, wherein the cold storage material container is disposed across the refrigerant pipe groups on the upstream side and the downstream side in the refrigerant flow direction. 前記蓄冷材容器は、前記過熱域を含む冷媒管群における全冷媒管に対し、均等な割合で配設されることを特徴とする請求項2〜請求項5のいずれか1つに記載の蓄冷熱交換器。   The cold storage material container according to any one of claims 2 to 5, wherein the cold storage material container is arranged at an equal ratio with respect to all the refrigerant tubes in the refrigerant tube group including the superheat zone. Heat exchanger. 前記蓄冷材容器は、前記過熱域を含む冷媒管群において、過熱域となる冷媒管配設領域を除く冷媒管配設領域に集約して配設したことを特徴とする請求項2〜請求項5のいずれか1つに記載の蓄冷熱交換器。   The said cool storage material container is concentrated and arrange | positioned in the refrigerant | coolant pipe | tube arrangement | positioning area | region except the refrigerant | coolant pipe arrangement | positioning area | region used as an overheated area in the refrigerant | coolant tube group containing the said superheated area. The regenerative heat exchanger according to any one of 5.
JP2013133513A 2013-06-26 2013-06-26 Cold storage heat exchanger Pending JP2015007518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133513A JP2015007518A (en) 2013-06-26 2013-06-26 Cold storage heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133513A JP2015007518A (en) 2013-06-26 2013-06-26 Cold storage heat exchanger

Publications (1)

Publication Number Publication Date
JP2015007518A true JP2015007518A (en) 2015-01-15

Family

ID=52337902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133513A Pending JP2015007518A (en) 2013-06-26 2013-06-26 Cold storage heat exchanger

Country Status (1)

Country Link
JP (1) JP2015007518A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067430A (en) * 2015-10-01 2017-04-06 株式会社デンソー Cold storage heat exchanger
WO2017057174A1 (en) * 2015-10-01 2017-04-06 株式会社デンソー Cold storage heat exchanger
JP2017187217A (en) * 2016-04-05 2017-10-12 株式会社デンソー Refrigerant evaporator
CN107567239A (en) * 2017-07-24 2018-01-09 广东美的暖通设备有限公司 Radiating subassembly and refrigeration plant
CN107735898A (en) * 2015-04-21 2018-02-23 达纳加拿大公司 Counterflow heat exchanger for battery thermal management application
CN108007025A (en) * 2017-11-20 2018-05-08 珠海格力节能环保制冷技术研究中心有限公司 Dispenser, compressor, air-conditioner system and there is its air conditioner
CN108253820A (en) * 2018-01-12 2018-07-06 湘潭大学 A kind of multimedium heat exchanger for methanol fuel cell
CN112594819A (en) * 2020-12-29 2021-04-02 深圳市海吉源科技有限公司 Large-temperature-difference chilled water storage system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091250A (en) * 2008-09-12 2010-04-22 Denso Corp Heat regenerator
WO2010150774A1 (en) * 2009-06-23 2010-12-29 昭和電工株式会社 Evaporator with cold storage function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091250A (en) * 2008-09-12 2010-04-22 Denso Corp Heat regenerator
WO2010150774A1 (en) * 2009-06-23 2010-12-29 昭和電工株式会社 Evaporator with cold storage function

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107735898A (en) * 2015-04-21 2018-02-23 达纳加拿大公司 Counterflow heat exchanger for battery thermal management application
CN108139173B (en) * 2015-10-01 2020-03-24 株式会社电装 Cold storage heat exchanger
WO2017057174A1 (en) * 2015-10-01 2017-04-06 株式会社デンソー Cold storage heat exchanger
CN108139173A (en) * 2015-10-01 2018-06-08 株式会社电装 cold-storage heat exchanger
US20180281553A1 (en) * 2015-10-01 2018-10-04 Denso Corporation Cold storage heat exchanger
JP2017067430A (en) * 2015-10-01 2017-04-06 株式会社デンソー Cold storage heat exchanger
US10696128B2 (en) * 2015-10-01 2020-06-30 Denso Corporation Cold storage heat exchanger
JP2017187217A (en) * 2016-04-05 2017-10-12 株式会社デンソー Refrigerant evaporator
CN107567239A (en) * 2017-07-24 2018-01-09 广东美的暖通设备有限公司 Radiating subassembly and refrigeration plant
CN108007025A (en) * 2017-11-20 2018-05-08 珠海格力节能环保制冷技术研究中心有限公司 Dispenser, compressor, air-conditioner system and there is its air conditioner
CN108007025B (en) * 2017-11-20 2024-03-01 珠海格力节能环保制冷技术研究中心有限公司 Knockout, compressor, air conditioner system and have its air conditioner
CN108253820A (en) * 2018-01-12 2018-07-06 湘潭大学 A kind of multimedium heat exchanger for methanol fuel cell
CN112594819A (en) * 2020-12-29 2021-04-02 深圳市海吉源科技有限公司 Large-temperature-difference chilled water storage system and method

Similar Documents

Publication Publication Date Title
JP2015007518A (en) Cold storage heat exchanger
JP6115896B2 (en) Cold storage material container
JP6073561B2 (en) Cold storage heat exchanger
JP5764335B2 (en) Evaporator with cool storage function
JP6183100B2 (en) Cold storage heat exchanger
US11274838B2 (en) Air-conditioner outdoor heat exchanger and air-conditioner including the same
JP2013061136A (en) Cooling unit of air conditioning apparatus for vehicle
JP2013061136A5 (en)
JP5531570B2 (en) Boiling-cooled heat exchanger
JP2001324244A (en) Heat exchanger
KR101748242B1 (en) Refrigerant evaporator
JP5920087B2 (en) Cold storage heat exchanger
JP5998854B2 (en) Refrigerant evaporator
JP2011158250A (en) Heat exchanger and refrigerator-freezer mounted with the heat exchanger
JP4039141B2 (en) Heat exchanger
JP2010243066A (en) Cold storage heat exchanger
JP7259287B2 (en) Heat exchanger
JP2016223763A (en) Heat exchanger
JP2012102969A (en) Evaporator with cool storage function
JP2016125774A (en) Refrigeration cycle device
JP2007333320A (en) Heat exchanger
JP2016223684A (en) Heat exchanger
JP7164291B2 (en) refrigerator
CN214665366U (en) Evaporator and household appliance
JP6327386B2 (en) Cold storage heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170905