JP5025616B2 - Electronic components - Google Patents

Electronic components Download PDF

Info

Publication number
JP5025616B2
JP5025616B2 JP2008271963A JP2008271963A JP5025616B2 JP 5025616 B2 JP5025616 B2 JP 5025616B2 JP 2008271963 A JP2008271963 A JP 2008271963A JP 2008271963 A JP2008271963 A JP 2008271963A JP 5025616 B2 JP5025616 B2 JP 5025616B2
Authority
JP
Japan
Prior art keywords
chip
cavity
container
electronic component
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008271963A
Other languages
Japanese (ja)
Other versions
JP2009016884A (en
Inventor
喜和 若山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008271963A priority Critical patent/JP5025616B2/en
Publication of JP2009016884A publication Critical patent/JP2009016884A/en
Application granted granted Critical
Publication of JP5025616B2 publication Critical patent/JP5025616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component wherein an IC chip as an element is strongly connected to a container while reducing its malfunction and connection failure by reducing stress on an IC when a resin filled, hardened and formed in and around the lower part of the IC chip is heated/cooled in the following processes. <P>SOLUTION: The electronic component stores an element and the thermosetting resin arranged around the element, in the cavity of the container on its bottom face. The cavity has an opposite face opposite to the bottom face at a position lower than its opening portion and higher than the height position of the lower face of the element. The thermosetting resin is filled in a remaining cavity space between a position higher than the height position of the opposite face and the bottom face. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、キャビティを有する容器内にフリップチップIC素子を収容した電子部品、特に圧電振動子などと組み合わせた発振器などの圧電デバイスに関するものである。   The present invention relates to an electronic component in which a flip chip IC element is accommodated in a container having a cavity, and more particularly to a piezoelectric device such as an oscillator combined with a piezoelectric vibrator.

容器の底面に形成したキャビティにバンプを介してフェイスボンディング方式でフリップチップIC素子が実装され、このフリップチップIC素子と容器底面との間隙に樹脂が充填された構造の電子部品が知られている。   An electronic component having a structure in which a flip chip IC element is mounted in a cavity formed on the bottom surface of a container by a face bonding method via a bump, and a gap is filled between the flip chip IC element and the bottom surface of the container is known. .

例えば、水晶振動子の温度補償を行うためのフリップチップIC素子(以下、単に「ICチップ」という)が実装された温度補償型水晶発振器においては、図8に示すように、セラミック層を多層に積層してなる容器51のキャビティ52内に、Auバンプ53を形成したICチップ54を、Auバンプ53がキャビティ52の底面の電極パッド(図示しない)と接するように収容する。そして、ICチップ54は、Agペーストによる接着又は超音波による融着等の手段でAuバンプ53及び電極パッドを介して容器51のキャビティ52の底面に接合される。このようにフェイスボンディング方式で実装されるのは、近年の電子部品の小型化、薄型化の要請による。   For example, in a temperature compensated crystal oscillator on which a flip chip IC element (hereinafter simply referred to as “IC chip”) for performing temperature compensation of a crystal resonator is mounted, as shown in FIG. The IC chip 54 on which the Au bump 53 is formed is accommodated in the cavity 52 of the laminated container 51 so that the Au bump 53 contacts an electrode pad (not shown) on the bottom surface of the cavity 52. The IC chip 54 is bonded to the bottom surface of the cavity 52 of the container 51 via the Au bump 53 and the electrode pad by means such as adhesion using Ag paste or fusion using ultrasonic waves. The mounting by the face bonding method is due to the recent demand for smaller and thinner electronic components.

しかし、Agペーストによる接着や超音波による融着などの接合手段だけでは1バンプ当たり約6gの重みで剥離してしまうほどに接合強度が乏しいので、接合後に、ICチップ54とキャビティ52の底面との間隙にアンダーフィル樹脂と称される収縮率の高い熱硬化性樹脂55が充填されて樹脂の硬化とともにICチップ54がキャビティ52の底面に固定されていた。   However, bonding strength such as adhesion by Ag paste or ultrasonic fusion alone is so low that the bumps are peeled off with a weight of about 6 g per bump. Therefore, after bonding, the bottom surface of the IC chip 54 and the cavity 52 The gap was filled with a thermosetting resin 55 called an underfill resin having a high shrinkage rate, and the IC chip 54 was fixed to the bottom surface of the cavity 52 as the resin was cured.

尚、水晶振動子は、容器51のキャビティ52が形成された面と反対側の面に搭載され、気密的に封止されているが、従来例では図示を省略する。   The crystal resonator is mounted on the surface of the container 51 opposite to the surface on which the cavity 52 is formed and hermetically sealed, but is not shown in the conventional example.

しかし、容器の薄型化の要請は高まる一方、ICチップ54を搭載する部分の裏側に存在する構成要素、特に、ICチップ54搭載前に搭載、気密封止など組み立てを完了させる水晶振動子へのICチップ54搭載の影響を考慮すると、Agペーストの塗布量や超音波のパワーを小さくして接合することが必要になる。そのため、容器51にICチップ54のAuバンプ53を設け、超音波などを加えることにより、接続した後、キャビティ52内のICチップ54以外の残部空間にアンダーフィルするための熱硬化性樹脂55を充填、硬化させていた。   However, while there is a growing demand for thinner containers, components that exist on the back side of the portion where the IC chip 54 is mounted, particularly a quartz crystal resonator that completes assembly such as mounting and hermetic sealing before mounting the IC chip 54 are mounted. In consideration of the effect of mounting the IC chip 54, it is necessary to reduce the amount of Ag paste applied and the power of ultrasonic waves for bonding. Therefore, the thermosetting resin 55 for underfilling the remaining space other than the IC chip 54 in the cavity 52 after the connection is made by providing the Au bump 53 of the IC chip 54 on the container 51 and applying ultrasonic waves or the like. Filled and cured.

しかし、その後に温度補償型水晶発振器が回路基板にはんだ接合する場合、部品全体を加熱させ、冷却する工程を経るために、熱硬化性樹脂55が膨張及び収縮する。この時、ICチップ54の端面とキャビティ52の容器内壁面51aの周囲で形成される領域50はキャビティ52底面からその上部空間が開口している図上上側に向けて合成応力Tがかかり、ICチップ54を容器51に押さえる応力Gを弱める方向に働く。これにより、ICチップ54が歪み、接触が不安定となる場合が起こり、その結果、動作が不安定になり、異常や動作しなくなるという異常が起こることがあった。   However, when the temperature-compensated crystal oscillator is soldered to the circuit board thereafter, the thermosetting resin 55 expands and contracts in order to heat and cool the entire component. At this time, the region 50 formed around the end face of the IC chip 54 and the inner wall surface 51a of the cavity 52 is subjected to the composite stress T from the bottom surface of the cavity 52 toward the upper side in the figure where the upper space is open, It works in the direction of weakening the stress G that holds the tip 54 against the container 51. As a result, the IC chip 54 may be distorted and the contact may become unstable. As a result, the operation may become unstable, causing an abnormality such as an abnormality or no operation.

本発明は、上述の問題に鑑みて案出されたものであり、その目的は、ICチップの歪みを低減し、ICチップが容器に接合する強度を上げることができる電子部品を提供することにある。  The present invention has been devised in view of the above-described problems, and an object of the present invention is to provide an electronic component that can reduce the distortion of the IC chip and increase the strength at which the IC chip is bonded to the container. is there.

上述の課題を解決するために本発明は、容器のキャビティ内に、該キャビティの底面にフリップチップ実装されたIC素子と該IC素子の周囲に配置される熱硬化性樹脂とを収容した電子部品であって、前記キャビティは、その開口部よりも下方位置であって且つ前記IC素子の下面の高さ位置よりも高い位置に前記底面と対向する対向面を有しており、前記キャビティ内の残部空間であって、前記対向面の高さ位置よりも高い位置から前記底面の間に前記熱硬化性樹脂が充填されていることを特徴とする。 In order to solve the above-described problems, the present invention provides an electronic component in which an IC element flip-chip mounted on the bottom surface of the cavity and a thermosetting resin disposed around the IC element are accommodated in the cavity of the container. The cavity has a facing surface facing the bottom surface at a position lower than the opening and higher than the height position of the lower surface of the IC element. The remaining space is filled with the thermosetting resin between the bottom surface from a position higher than the height position of the facing surface.

また、本発明は、前記対向面が、前記キャビティの内壁面に沿って周回するように形成されていることを特徴とする。  The present invention is characterized in that the facing surface is formed so as to circulate along the inner wall surface of the cavity.

また、本発明は、前記対向面の高さ位置が、前記素子の上面高さ位置と下面高さ位置との間に位置することを特徴とする。   In the invention, it is preferable that a height position of the facing surface is located between an upper surface height position and a lower surface height position of the element.

また、本発明は、前記素子が、前記底面にフリップチップ実装されていることを特徴とする。   Further, the present invention is characterized in that the element is flip-chip mounted on the bottom surface.

本発明の構成によれば、キャビティは、その開口部よりも下方位置にキャビティ底面と対向する対向面が設けられる形状であるため、熱が電子部品に加わった場合、キャビティ底面から開口部の方向に生じる応力が溝部の上側壁面からキャビティ底面に向かって生じる応力と打ち消しあう。そのため、最終的にキャビティ底面から開口部に向かって生じる合成応力を弱めることができ、ICチップの湾曲を抑えることができる。   According to the configuration of the present invention, since the cavity has a shape in which a facing surface facing the cavity bottom surface is provided at a position below the opening, when heat is applied to the electronic component, the direction from the cavity bottom to the opening The stress generated in the channel cancels out with the stress generated from the upper wall surface of the groove toward the bottom surface of the cavity. Therefore, it is possible to weaken the resultant stress finally generated from the bottom surface of the cavity toward the opening, and to suppress the bending of the IC chip.

この場合、開口部の面積を従来に比べ、小さくしておけば、結果として、樹脂膨張収縮時の合成応力は大きさは小さくなり、従来の電子部品よりICチップを固定する応力を弱めずにすむ。  In this case, if the area of the opening is made smaller than before, the resultant stress during resin expansion and contraction becomes smaller, and the stress for fixing the IC chip than the conventional electronic component is not weakened. I'm sorry.

本発明によれば、ICチップに従来加わっていた応力による歪みが低減し、さらに、容器に対するICチップの実質的な接合強度を高めることができるので、電子部品の一層の薄型化を安定して達成することができる。   According to the present invention, distortion due to stress conventionally applied to the IC chip can be reduced, and further, the substantial bonding strength of the IC chip to the container can be increased. Can be achieved.

本発明の実施形態を図面とともに説明する。図1は本発明の電子部品の中で温度補償型水晶発振器の断面図であり、図2はそのICチップ側から見た平面図、図3は電子部品のICチップを搭載したキャビティ側を説明するためのX−X線一部断面図、図4はその要部断面図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a temperature-compensated crystal oscillator in the electronic component of the present invention, FIG. 2 is a plan view seen from the IC chip side, and FIG. 3 illustrates the cavity side on which the IC chip of the electronic component is mounted. FIG. 4 is a partial cross-sectional view taken along line XX for the purpose.

本発明の温度補償型水晶発振器10は上下に2つのキャビティ2a、2bを有した断面がH型のセラミック容器1と、その容器1の上側キャビティには水晶振動子7が搭載された水晶発振器11が、下側キャビティには水晶振動子7の発振用ICチップ4が収納されている発振部品収納部12形成されている。   The temperature compensated crystal oscillator 10 of the present invention has a ceramic container 1 having an H-shaped cross section having two cavities 2a and 2b at the top and bottom, and a crystal oscillator 11 in which a crystal resonator 7 is mounted in the upper cavity of the container 1. However, in the lower cavity, an oscillation component storage portion 12 in which the oscillation IC chip 4 of the crystal resonator 7 is stored is formed.

発振部品収納部12は、その容器1の構造が各々配線パターンを有し、枠状のセラミック絶縁層1a、1bと、平板状のセラミック絶縁層1aが順次積層して枠状のセラミック絶縁層1a、1bの内周と平板状のセラミック絶縁層1cとで囲まれる空間が、ICチップ4を収容するキャビティ2bとなる。   The structure of the oscillating component storage portion 12 has a wiring pattern, and the frame-shaped ceramic insulating layers 1a and 1b and the plate-shaped ceramic insulating layers 1a are sequentially laminated to form the frame-shaped ceramic insulating layer 1a. A space surrounded by the inner periphery of 1b and the flat ceramic insulating layer 1c is a cavity 2b for accommodating the IC chip 4.

本発明では発振部品収納部12において、図2〜図4に示すように枠状のセラミック層1aの開口面積は1bの開口面積に比較して小さくなっている。これにより、溝部1dがキャビティ2の底面20と容器1の内壁面(セラミック層1a〜1cの内壁面)との角部に形成されている。なお、溝部1dはキャビティ2bの外周に周回して形成しても良い。   In the present invention, as shown in FIGS. 2 to 4, the opening area of the frame-shaped ceramic layer 1 a is smaller than the opening area of 1 b in the oscillation component housing portion 12. Thereby, the groove part 1d is formed in the corner | angular part of the bottom face 20 of the cavity 2, and the inner wall face of the container 1 (inner wall face of the ceramic layers 1a-1c). The groove 1d may be formed around the outer periphery of the cavity 2b.

また、ICチップ4の電極部4aには予めAuバンプ3を形成し、ICチップ4は、このAuバンプ3がセラミック絶縁層1c上の電極パッド6にAgペーストによる接着又は超音波による融着により接合されることにより、容器1の底面に形成された電極パッド6と電気的に接続される。ICチップ4は、この接合によって機械的にも固定されるが、ICチップ4以外のキャビティ2bの残部空間にアンダーフィルするための熱硬化性樹脂5を充填し、加熱し硬化させることに強度面で補強され固定される。   Further, the Au bump 3 is formed in advance on the electrode portion 4a of the IC chip 4, and the IC chip 4 is bonded to the electrode pad 6 on the ceramic insulating layer 1c by Ag paste or fusion by ultrasonic wave. By being joined, the electrode pad 6 formed on the bottom surface of the container 1 is electrically connected. The IC chip 4 is also mechanically fixed by this bonding, but it has a strength surface that is filled with a thermosetting resin 5 for underfilling the remaining space of the cavity 2b other than the IC chip 4 and is heated and cured. Reinforced and fixed with.

熱硬化性樹脂5としては、例えばエポキシ系であって、粘度3000cps、線膨張係数30ppm、収縮率1.7%のものが用いられる。熱硬化性樹脂5は、その表面がICチップ4の上面を完全に覆う高さまで、しかもキャビティ2bの開口端縁よりも低い高さまで、隙間無く充填される。そして、充填後、一気に樹脂の硬化温度まで昇温する。これにより表面が先に硬化して収縮する応力Gが発生し、その応力GでICチップ4が容器1のキャビティ部11の底面20、即ちセラミック絶縁層1c側に押さえられる。   As the thermosetting resin 5, for example, an epoxy resin having a viscosity of 3000 cps, a linear expansion coefficient of 30 ppm, and a shrinkage rate of 1.7% is used. The thermosetting resin 5 is filled without a gap until the surface completely covers the upper surface of the IC chip 4 and is lower than the opening edge of the cavity 2b. And after filling, it heats up to the curing temperature of resin at a stretch. As a result, a stress G that the surface hardens first and shrinks is generated, and the IC chip 4 is pressed against the bottom surface 20 of the cavity portion 11 of the container 1, that is, the ceramic insulating layer 1c side.

更に熱硬化性樹脂5の充填量としては、図4に示すように、ICチップ4の端面と容器2の溝部1dの最外周壁面110dとの距離をB、溝部1dのキャビティ2の底面20から上面111dまでの幅をCとした場合、B<Cであるのが好ましい。これは、ICチップ4を押さえる応力Gと距離Bとの関係を考えると、応力Gは図5のようにBが増すに連れて小さくなり、BがCの値を超えると一定になるからである。この理由は、C×Bの長方形の面積S部分を考えると、その形状がC>Bのときは縦長となり、縦方向の収縮力が大きくなり、逆にC<Bのときの面積S部分は横長となり、横方向の収縮力が大きくなるだけで、ICチップ4を押さえる応力Gは弱くなる。   Furthermore, as shown in FIG. 4, the filling amount of the thermosetting resin 5 is such that the distance between the end face of the IC chip 4 and the outermost peripheral wall surface 110 d of the groove portion 1 d of the container 2 is B, and the bottom surface 20 of the cavity 2 of the groove portion 1 d. When the width to the upper surface 111d is C, it is preferable that B <C. This is because considering the relationship between the stress G holding the IC chip 4 and the distance B, the stress G decreases as B increases as shown in FIG. 5, and becomes constant when B exceeds the value of C. is there. The reason for this is that, considering the area S portion of a C × B rectangle, when the shape is C> B, the area becomes vertically long, the contraction force in the vertical direction increases, and conversely, the area S portion when C <B is The stress G holding the IC chip 4 is weakened only by becoming horizontally long and increasing the contraction force in the lateral direction.

また、より好ましいのは、2×B<Cとなることである。この条件を満足すると、図4に示す合成応力の角度が垂直方向に近づき、即ち、合成応力の方向もほぼ垂直となり、容器の内周壁面に凹部を形成したことによる効果が充分得られるようになる。   More preferably, 2 × B <C. If this condition is satisfied, the angle of the resultant stress shown in FIG. 4 approaches the vertical direction, that is, the direction of the resultant stress is also substantially vertical, so that a sufficient effect can be obtained by forming the concave portion on the inner peripheral wall surface of the container. Become.

また、図6に示すようにICチップの端面と前記容器1のセラミック層1aの内周壁面との距離をAとした場合、B/2<B−A<B−0.05(mm)であるのが好ましい。   Moreover, as shown in FIG. 6, when the distance between the end face of the IC chip and the inner peripheral wall surface of the ceramic layer 1a of the container 1 is A, B / 2 <BA <B-0.05 (mm). Preferably there is.

これは、ICチップを押さえる応力Gを考慮した場合は、上述のようにB<Cであればよいのだが、B/2≧B−Aであると、本発明の目的である、樹脂部全体の合成応力の低減を達成しようとした場合、十分な効果が発揮が困難となるため、B/2<B−Aであることが必要だからである。また、B−A<B−0.05(mm)、即ち、A>0.05(mm)については、Aが0.05mmより小さいと、現在のアセンブリ技術では、キャビティ2内にICチップ4を収容する際に、ICチップ4がキャビティ2の壁面に接触してICチップ4を安定して収容できず、またICチップ4が欠ける可能性があるからである。   In consideration of the stress G holding the IC chip, B <C as described above is sufficient, but if B / 2 ≧ B−A, the entire resin portion is the object of the present invention. This is because it is necessary to satisfy B / 2 <B−A because it is difficult to achieve a sufficient effect when trying to achieve a reduction in the composite stress. Also, for B-A <B-0.05 (mm), that is, A> 0.05 (mm), if A is smaller than 0.05 mm, the current assembly technology allows the IC chip 4 to be placed in the cavity 2. This is because when the IC chip 4 is accommodated, the IC chip 4 comes into contact with the wall surface of the cavity 2 so that the IC chip 4 cannot be stably accommodated, and the IC chip 4 may be missing.

また、図7に示すように、ICチップ4の上面と熱硬化性樹脂5の表面との距離をD、ICチップ4とキャビティ2の底面との距離をFとするとき、応力Gは図4のようにDが増すに連れて大きくなり、DがFと同等のとき最大となる。これは、DがFより大きくなると、ICチップ4の上部にある樹脂の収縮力がICチップ4の下部にある樹脂の収縮力よりも大きくなるからである。   Further, as shown in FIG. 7, when the distance between the top surface of the IC chip 4 and the surface of the thermosetting resin 5 is D, and the distance between the IC chip 4 and the bottom surface of the cavity 2 is F, the stress G is as shown in FIG. As D increases, it becomes the maximum when D is equal to F. This is because when D is larger than F, the shrinkage force of the resin on the upper part of the IC chip 4 becomes larger than the shrinkage force of the resin on the lower part of the IC chip 4.

キャビティ2b内には、ICチップ4の他にコンデンサなどの回路素子4bが収容される。例えば電子部品10が水晶振動子であって、ICチップ4が水晶振動子の温度補償に用いられるときは、ICチップ4に集積(IC)化された発振インバータに供給される電源電圧に重畳する高周波ノイズをカットする必要がある。また、発振インバータの出力信号に直流成分が重畳しないようにする必要もある。外部回路を複雑化することなく、これらの目的を達成するために上記キャビティ2内にコンデンサも実装される。この場合、コンデンサの方がICチップ4よりも薄ければ、樹脂5がICチップ4を覆うと同時にコンデンサをも覆うこととなる。逆にコンデンサの方が厚い場合でもキャビティ2の開口端縁を超えない限り、コンデンサを覆う程度に熱硬化性樹脂5を充填するとよい。   In addition to the IC chip 4, a circuit element 4b such as a capacitor is accommodated in the cavity 2b. For example, when the electronic component 10 is a crystal resonator and the IC chip 4 is used for temperature compensation of the crystal resonator, it is superimposed on the power supply voltage supplied to the oscillation inverter integrated (IC) on the IC chip 4. It is necessary to cut high frequency noise. It is also necessary to prevent a direct current component from being superimposed on the output signal of the oscillation inverter. In order to achieve these objects without complicating the external circuit, a capacitor is also mounted in the cavity 2. In this case, if the capacitor is thinner than the IC chip 4, the resin 5 covers the IC chip 4 and also the capacitor. On the contrary, even when the capacitor is thicker, as long as it does not exceed the opening edge of the cavity 2, the thermosetting resin 5 is preferably filled to the extent that the capacitor is covered.

水晶発振器11は容器1の平板状セラミック基板1dにリング状のセラミック層1eが積層されており、キャビティ部11が形成されている。キャビティ部11の長手方向一端には電極パッド(不図示)が形成され、その電極パッド上に水晶振動子搭載用バンプ13が形成されており、水晶振動子7が導電性接着部材8を介して水晶振動子搭載用バンプ13上に接合されている。9はシーム溶接されて気密封止できる蓋体である。   In the crystal oscillator 11, a ring-shaped ceramic layer 1 e is laminated on a flat ceramic substrate 1 d of the container 1, and a cavity portion 11 is formed. An electrode pad (not shown) is formed at one end in the longitudinal direction of the cavity portion 11, a crystal resonator mounting bump 13 is formed on the electrode pad, and the crystal resonator 7 is interposed via the conductive adhesive member 8. Bonded on the crystal resonator mounting bump 13. Reference numeral 9 denotes a lid that can be hermetically sealed by seam welding.

次に、本発明の電子部品の製造方法について説明する。まず、容器1であるセラミックパッケージを用意し、その容器1のICチップ4を搭載するキャビティー2bと、反対側の面に形成されたキャビティー2aの水晶振動子搭載用バンプ13上に硬化して導電性接着部材8となる導電性樹脂ペーストを供給し、水晶振動子7の引き出し電極が水晶振動子搭載用バンプ13と接続するように、導電性樹脂ペーストに、水晶振動子7を載置する。そして、導電性樹脂ペーストを硬化して、セラミックパッケージに水晶振動子7を固定する。   Next, the manufacturing method of the electronic component of this invention is demonstrated. First, a ceramic package as a container 1 is prepared and cured on the cavity 2b for mounting the IC chip 4 of the container 1 and the crystal resonator mounting bumps 13 of the cavity 2a formed on the opposite surface. Then, a conductive resin paste that becomes the conductive adhesive member 8 is supplied, and the crystal resonator 7 is placed on the conductive resin paste so that the lead electrode of the crystal resonator 7 is connected to the crystal resonator mounting bump 13. To do. Then, the conductive resin paste is cured, and the crystal unit 7 is fixed to the ceramic package.

次に、水晶振動子7の周波数調整を行う。具体的には、セラミックパッケージのICチップ4を搭載する側の開口周囲に形成した電極パッドにて電源電圧、グラウンド及び測定用プローブを接続し、発振させ、発振周波数を測定しながら、水晶振動子7の励振電極にAg蒸着させる方法やイオンビームを照射する方法により、実質的に励振電極の質量を増加若しくは減少させて、発振周波数の調整を行う。   Next, frequency adjustment of the crystal unit 7 is performed. Specifically, a crystal oscillator while connecting a power supply voltage, a ground, and a measurement probe with an electrode pad formed around the opening on the side where the IC chip 4 of the ceramic package is mounted, oscillating, and measuring the oscillation frequency The oscillation frequency is adjusted by substantially increasing or decreasing the mass of the excitation electrode by the Ag deposition method on the excitation electrode 7 or the ion beam irradiation method.

次に、150℃〜250℃の熱エージングにより、発振周波数の安定化を行い、その後、金属製蓋体9により気密封止を行う。この時、金属製蓋体9をセラミックパッケージの封止用導体上に載置し、N2やHeなどのガスや真空の雰囲気中にて、シーム溶接などの溶接により、前記金属製蓋体9の周囲にローラヘッドを当接させて溶接を行う。   Next, the oscillation frequency is stabilized by thermal aging at 150 ° C. to 250 ° C., and then hermetically sealed with the metal lid 9. At this time, the metal lid body 9 is placed on the sealing conductor of the ceramic package, and the metal lid body 9 is welded by seam welding or the like in a gas or vacuum atmosphere such as N2 or He. Welding is performed by bringing a roller head into contact with the periphery.

次に、ICチップ4や電子部品4a、4bをキャビティ2a,2b内に実装を行う。具体的には、まずICチップ4の実装は、ICチップ4に形成した各Auバンプ3と各IC電極パッドとが合致するように、ICチップ4を位置決め載置し、その後、ICチップ4にAgペーストによる接着や超音波による融着などにより互いに接合させる。   Next, the IC chip 4 and the electronic components 4a and 4b are mounted in the cavities 2a and 2b. Specifically, first, the IC chip 4 is mounted by positioning and mounting the IC chip 4 so that each Au bump 3 formed on the IC chip 4 and each IC electrode pad coincide with each other. They are bonded to each other by bonding with Ag paste or fusion with ultrasonic waves.

また、電子部品4a、4bの接合は、素子電極パッドにAg粉末などを含む導電性樹脂ペーストを塗布し、電子部品4a、4bを載置し、導電性樹脂ペーストをキュアーして硬化する。   The electronic components 4a and 4b are joined by applying a conductive resin paste containing Ag powder to the element electrode pads, placing the electronic components 4a and 4b, and curing the conductive resin paste to cure.

次に、ICチップ4、電子部品4a、4bを充填樹脂5で充填・被覆する。具体的には、キャビティ2b内に配置されたICチップ4や電子部品4a、4bの全体を、一般にアンダーフィルと言われる方法で、前述のように例えばエポキシ系の熱硬化性の樹脂にて完全に覆い、加熱し、硬化する。これにより電子部品10が構成されることになる。   Next, the IC chip 4 and the electronic components 4 a and 4 b are filled and covered with the filling resin 5. Specifically, the entire IC chip 4 and electronic components 4a and 4b disposed in the cavity 2b are completely made of, for example, an epoxy-based thermosetting resin as described above by a method generally referred to as underfill. Cover, heat and cure. Thereby, the electronic component 10 is comprised.

上述のように、容器1のキャビティ2bを形成しているセラミック絶縁層1aと1bは開口面積が1aのほうが1bよりも小さくなっており、そのため、図1に示すように、容器1の断面を見た場合、キャビティ部11の底面20に沿って溝部1dが形成されている。   As described above, the ceramic insulating layers 1a and 1b forming the cavity 2b of the container 1 have an opening area 1a that is smaller than 1b. Therefore, as shown in FIG. When viewed, a groove 1 d is formed along the bottom surface 20 of the cavity 11.

従って、従来の容器1を使用した場合、硬化後のアンダーフィル樹脂は、その後の工程にて加熱された場合、結局、その後再度冷却されるため、その際の膨張収縮時に、図9に示すように、合成された応力は、容器の形状により、容器の開口面に対して垂直で、しかも大きな応力が加わることになる。このことにより、この応力が大きくなった場合に、Auバンプにより、それぞれのバンプにつき約6gという弱い力で一旦接続されたICチップを歪ませICの接着強度を弱めてしまい、回路として動作異常をきたしたり、導通不良となってしまう場合があった。   Accordingly, when the conventional container 1 is used, the cured underfill resin is eventually cooled again after being heated in the subsequent process, and as shown in FIG. In addition, the synthesized stress is perpendicular to the opening surface of the container and a large stress is applied depending on the shape of the container. As a result, when this stress becomes large, the Au bumps distort the IC chip once connected with a weak force of about 6 g for each bump and weaken the adhesive strength of the IC, causing abnormal operation as a circuit. In some cases, it may lead to poor conduction.

しかし、本発明の容器を使用すると、図4に示すように、容器1のキャビティ部12の底面20に沿って溝部1dが形成されており、溝部1dの上面111dからの応力が加わることになり、全体として合成された応力を低減させることができる。これにより、ICチップを歪ませる応力も低減させることができ、動作異常や接続不良を防ぐことができるようになる。   However, when the container of the present invention is used, as shown in FIG. 4, the groove 1d is formed along the bottom surface 20 of the cavity 12 of the container 1, and stress from the upper surface 111d of the groove 1d is applied. The combined stress can be reduced as a whole. As a result, the stress that distorts the IC chip can also be reduced, and abnormal operation and poor connection can be prevented.

また、この場合、容器を仕切りとしてキャビティの反対側の水晶振動子搭載用バンプ13に導電性接着部材8により水晶振動子7が搭載され、金属製蓋体9により気密封止されている。このような構成であり、キャビティをマザーボード側に向けてマザーボードに実装されるため、樹脂5をアンダーフィルするときに、同時にコンデンサを覆うことによりコンデンサ電極とボードの配線との短絡が防止されるという効果も得られる。   Further, in this case, the crystal resonator 7 is mounted on the crystal resonator mounting bump 13 on the opposite side of the cavity by the conductive adhesive member 8 and hermetically sealed by the metal lid 9 with the container as a partition. With this configuration, the cavity is mounted on the motherboard with the motherboard facing, so that when the resin 5 is underfilled, the capacitor is simultaneously covered to prevent a short circuit between the capacitor electrode and the board wiring. An effect is also obtained.

以上のように、本発明によれば、ICチップに従来加わっていた応力による歪みを低減し、さらに、容器に対するICチップの実質的な接合強度を高めることができるので、電子部品の一層の薄型化を安定して達成することができる。   As described above, according to the present invention, distortion due to stress conventionally applied to an IC chip can be reduced, and further, the substantial bonding strength of the IC chip to the container can be increased. Can be achieved stably.

本発明の電子部品である温度補償型水晶発振器の全体を示す中央断面図である。It is a center sectional view showing the whole temperature compensation type crystal oscillator which is an electronic part of the present invention. 本発明の電子部品である温度補償型水晶発振器のICチップ側から見た上面図である。It is the top view seen from the IC chip side of the temperature compensation type crystal oscillator which is an electronic part of the present invention. 本発明の電子部品である温度補償型水晶発振器の発振部品収納部を説明する図2のX−X線要部断面図である。FIG. 3 is a cross-sectional view of the main part of FIG. 2 for explaining an oscillation part housing part of a temperature compensated crystal oscillator which is an electronic part of the present invention. 本発明の電子部品である温度補償型水晶発振器の発振部品収納部の溝部を拡大した要部断面図である。It is principal part sectional drawing to which the groove part of the oscillation component accommodating part of the temperature compensation type | mold crystal oscillator which is an electronic component of this invention was expanded. 熱硬化性樹脂によりICチップと溝部の最外周壁面との距離BとICチップに働く応力Gとの関係を示すグラフである。It is a graph which shows the relationship between the distance G of an IC chip and the outermost peripheral wall surface of a groove part, and the stress G which acts on an IC chip by thermosetting resin. 熱硬化性樹脂によりICチップと溝部の最外周壁面との距離BとICチップと容器の内周壁面との距離Aの差(B−A)と合成応力との関係を示すグラフである。It is a graph which shows the relationship between the difference (BA) of distance B of an IC chip and the outermost peripheral wall surface of a groove part, distance A of an IC chip and the inner peripheral wall surface of a container, and a synthetic stress by thermosetting resin. ICチップを押さえる応力と熱硬化性樹脂が占める距離F、Dとの関係を示すグラフである。It is a graph which shows the relationship between the stress F which presses an IC chip, and the distances F and D which a thermosetting resin occupies. 従来の電子部品である温度補償型水晶発振器の発振部品収納部を説明する要部断面図である。It is principal part sectional drawing explaining the oscillation component accommodating part of the temperature compensation type | mold crystal oscillator which is the conventional electronic component. 従来の発振部品収納部の溝部を説明する図である。It is a figure explaining the groove part of the conventional oscillation component accommodating part.

符号の説明Explanation of symbols

1,51 ・・・容器
2,52 ・・・キャビティ
3,53・・・ バンプ
4,54 ・・・ICチップ
5,55・・・ 樹脂
10・・・ 電子部品
DESCRIPTION OF SYMBOLS 1,51 ... Container 2,52 ... Cavity 3,53 ... Bump 4,54 ... IC chip 5,55 ... Resin 10 ... Electronic component

Claims (3)

容器のキャビティ内に、該キャビティの底面にフリップチップ実装されたIC素子と該IC素子の周囲に配置される熱硬化性樹脂とを収容した電子部品であって、
前記キャビティは、その開口部よりも下方位置であって且つ前記IC素子の下面の高さ位置よりも高い位置に前記底面と対向する対向面を有しており、前記キャビティ内の残部空間であって前記対向面の高さ位置よりも高い位置から前記底面の間に前記熱硬化性樹脂が充填されていることを特徴とする電子部品。
An electronic component containing an IC element flip-chip mounted on the bottom surface of the cavity and a thermosetting resin disposed around the IC element in the cavity of the container,
The cavity has a facing surface facing the bottom surface at a position below the opening and higher than the height position of the lower surface of the IC element, and is a remaining space in the cavity. The thermosetting resin is filled between the bottom surface from a position higher than the height position of the facing surface.
請求項1に記載の電子部品であって、
前記対向面は、前記キャビティの内壁面に沿って周回するように形成されていることを特徴とする電子部品。
The electronic component according to claim 1,
The said opposing surface is formed so that it may wrap around along the inner wall face of the said cavity, The electronic component characterized by the above-mentioned.
請求項1に記載の電子部品であって、
前記対向面の高さ位置は、前記IC素子の上面高さ位置と下面高さ位置との間に位置することを特徴とする電子部品。
The electronic component according to claim 1,
The electronic component according to claim 1, wherein a height position of the opposing surface is located between an upper surface height position and a lower surface height position of the IC element.
JP2008271963A 2008-10-22 2008-10-22 Electronic components Expired - Fee Related JP5025616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271963A JP5025616B2 (en) 2008-10-22 2008-10-22 Electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271963A JP5025616B2 (en) 2008-10-22 2008-10-22 Electronic components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000231937A Division JP4234889B2 (en) 2000-07-31 2000-07-31 Electronic components

Publications (2)

Publication Number Publication Date
JP2009016884A JP2009016884A (en) 2009-01-22
JP5025616B2 true JP5025616B2 (en) 2012-09-12

Family

ID=40357309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271963A Expired - Fee Related JP5025616B2 (en) 2008-10-22 2008-10-22 Electronic components

Country Status (1)

Country Link
JP (1) JP5025616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018003419T5 (en) 2017-07-03 2020-08-20 Mitsubishi Electric Corporation SEMICONDUCTOR COMPONENT

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274350A (en) * 1991-03-01 1992-09-30 Fuji Electric Co Ltd Semiconductor device
JPH08148629A (en) * 1994-09-20 1996-06-07 Fujitsu Ltd Semiconductor device, its manufacture and substrate for semiconductor device
JP3457895B2 (en) * 1998-10-30 2003-10-20 京セラ株式会社 Electronic components
JP4234889B2 (en) * 2000-07-31 2009-03-04 京セラ株式会社 Electronic components

Also Published As

Publication number Publication date
JP2009016884A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP6077813B2 (en) Piezoelectric module
JP2013207686A (en) Crystal oscillator
JP2013219738A5 (en)
JP2013207686A5 (en)
JP2007208568A (en) Surface-mounted crystal oscillator
JP2010050778A (en) Piezoelectric device
JP4234889B2 (en) Electronic components
JP5025616B2 (en) Electronic components
JP2007157785A (en) Electronic component
US11251768B2 (en) Piezoelectric device
US8093101B2 (en) Electronic device and method of fabricating the same
JPH11308052A (en) Structure of oscillator
JP2004228894A (en) Piezoelectric oscillator and its manufacturing method
JP6360572B2 (en) Piezoelectric module
JP5432533B2 (en) Manufacturing method of electronic device
US10262929B2 (en) Semiconductor device with lead frame
JP3457895B2 (en) Electronic components
JP2002198453A (en) Package for accommodating electronic component and electronic component device
JP2004235564A (en) Ceramic substrate and piezoelectric resonator, and manufacturing method of piezoelectric resonator
JP4398233B2 (en) Method for manufacturing piezoelectric oscillator
TWI812028B (en) Thermostatic Bath Type Piezoelectric Oscillator
JP6601525B2 (en) Piezoelectric vibration device
JP3744822B2 (en) Electronic component and method for manufacturing electronic component
JP2018056303A (en) Bump terminal and piezoelectric device having the same built in, and manufacturing method therefor
JP2010062973A (en) Piezoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees