JP5024305B2 - Polishing method of GaN substrate - Google Patents

Polishing method of GaN substrate Download PDF

Info

Publication number
JP5024305B2
JP5024305B2 JP2009023660A JP2009023660A JP5024305B2 JP 5024305 B2 JP5024305 B2 JP 5024305B2 JP 2009023660 A JP2009023660 A JP 2009023660A JP 2009023660 A JP2009023660 A JP 2009023660A JP 5024305 B2 JP5024305 B2 JP 5024305B2
Authority
JP
Japan
Prior art keywords
polishing
surface plate
gan substrate
abrasive
polishing step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009023660A
Other languages
Japanese (ja)
Other versions
JP2009105440A (en
Inventor
直樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009023660A priority Critical patent/JP5024305B2/en
Publication of JP2009105440A publication Critical patent/JP2009105440A/en
Application granted granted Critical
Publication of JP5024305B2 publication Critical patent/JP5024305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、GaN基板の研磨方法に関する。   The present invention relates to a method for polishing a GaN substrate.

磁気ヘッドスライダの研磨方法として、例えば特許文献1に記載された方法が知られている。また、磁気ヘッドスライダを研磨するための研磨液として、例えば特許文献2に記載された仕上げ研磨用ラッピングオイル組成物が知られている。   As a magnetic head slider polishing method, for example, a method described in Patent Document 1 is known. Further, as a polishing liquid for polishing the magnetic head slider, for example, a lapping oil composition for finish polishing described in Patent Document 2 is known.

ところで、磁気ヘッドスライダではなくGaN基板(窒化ガリウム基板)の研磨方法として、例えば非特許文献1に記載された方法が知られている。この方法では、粒径が0.1μmのダイヤモンドペーストとスウェードタイプのパッドを用いてGaN基板を研磨した後、KOHとNaOHの混合液を用いてGaN基板を化学的に研磨する。   By the way, as a method for polishing a GaN substrate (gallium nitride substrate) instead of a magnetic head slider, for example, a method described in Non-Patent Document 1 is known. In this method, a GaN substrate is polished using a diamond paste having a particle size of 0.1 μm and a suede type pad, and then the GaN substrate is chemically polished using a mixed solution of KOH and NaOH.

また、別のGaN基板の研磨方法として、例えば特許文献3に記載された方法が知られている。この方法では、定盤上に供給された遊離砥粒によりGaN基板を研磨する。具体的には、遊離砥粒の粒径を徐々に小さくし、研磨速度を遅くしながらGaN基板を研磨する。   Further, as another GaN substrate polishing method, for example, a method described in Patent Document 3 is known. In this method, the GaN substrate is polished with loose abrasive grains supplied on a surface plate. Specifically, the GaN substrate is polished while gradually reducing the grain size of the loose abrasive grains and slowing the polishing rate.

特開2001−205556号公報JP 2001-205556 A 特開2004−58220号公報JP 2004-58220 A 特開2001−322899号公報JP 2001-322899 A J.L.Weyher、ほか3名、「Chemicalpolishing of bulk and epitaxial GaN」、Journal of Crystal Growth、第182号、1997年、17〜22頁J.L. Weyher and three others, “Chemical polishing of bulk and epitaxial GaN”, Journal of Crystal Growth, No. 182, 1997, pp. 17-22

しかしながら、遊離砥粒を用いてGaN基板を研磨すると、定盤上で遊離砥粒同士が凝集して粗大化し、粗大化した粒子によりGaN基板にスクラッチが発生してしまう。   However, when the GaN substrate is polished using the loose abrasive grains, the loose abrasive grains are aggregated and coarsened on the surface plate, and scratches are generated in the GaN substrate due to the coarsened particles.

本発明は、スクラッチの発生を抑制できるGaN基板の研磨方法を提供することを目的とする。   An object of this invention is to provide the grinding | polishing method of the GaN substrate which can suppress generation | occurrence | production of a scratch.

上述の課題を解決するため、本発明のGaN基板の研磨方法は、研磨材と潤滑剤とを含む研磨液を定盤上に供給しながら、定盤及び研磨液を用いてGaN基板を研磨する方法であって、研磨材を定盤に埋め込むチャージング工程と、研磨材が埋め込まれた定盤を用いてGaN基板を研磨する研磨工程とを含む。   In order to solve the above-described problems, the GaN substrate polishing method of the present invention polishes a GaN substrate using a surface plate and a polishing liquid while supplying a polishing liquid containing an abrasive and a lubricant onto the surface plate. A method includes a charging step of embedding an abrasive in a surface plate and a polishing step of polishing the GaN substrate using the surface plate in which the abrasive is embedded.

別のGaN基板の研磨方法は、第1の研磨材と第1の潤滑剤とを含む研磨液を第1の定盤上に供給しながら、第1の定盤及び研磨液を用いてGaN基板を研磨する第1の研磨工程と、第1の研磨工程の後、第2の研磨材が埋め込まれた第2の定盤上に第2の潤滑剤を供給しながら、第2の研磨材が埋め込まれた第2の定盤を用いてGaN基板を研磨する第2の研磨工程とを含む。   Another method for polishing a GaN substrate is to supply a polishing liquid containing a first abrasive and a first lubricant onto the first surface plate, while using the first surface plate and the polishing liquid. After the first polishing step and the first polishing step, the second abrasive is supplied to the second surface plate in which the second abrasive is embedded while supplying the second lubricant. And a second polishing step of polishing the GaN substrate using the embedded second surface plate.

ここで、第2の定盤として、第1の定盤を用いるとしてもよいし、第1の定盤とは異なる定盤を用いてもよい。また、第2の研磨材として、第1の研磨材を用いるとしてもよいし、第1の研磨材とは異なる研磨材を用いるとしてもよい。例えば、「第2の研磨材が埋め込まれた第2の定盤」として、第1の研磨材が埋め込まれた第1の定盤を用いてもよいし、第1の研磨材とは異なる研磨材が埋め込まれた第1の定盤を用いてもよいし、第1の定盤とは異なる定盤に第1の研磨材とは異なる研磨材が埋め込まれたものを用いてもよい。   Here, the first surface plate may be used as the second surface plate, or a surface plate different from the first surface plate may be used. In addition, the first abrasive may be used as the second abrasive, or an abrasive different from the first abrasive may be used. For example, as the “second surface plate in which the second abrasive material is embedded”, the first surface plate in which the first abrasive material is embedded may be used, or polishing different from that of the first abrasive material. A first surface plate in which a material is embedded may be used, or a surface plate different from the first surface plate may be used in which an abrasive different from the first abrasive is embedded.

このGaN基板の研磨方法では、第2の研磨工程において第2の研磨材が第2の定盤に埋め込まれている。このため、第2の研磨材同士が凝集しない。したがって、第2の研磨工程では、スクラッチの発生を抑制しながらGaN基板を研磨することができる。   In this GaN substrate polishing method, the second abrasive is embedded in the second surface plate in the second polishing step. For this reason, the second abrasives do not aggregate. Therefore, in the second polishing step, the GaN substrate can be polished while suppressing the generation of scratches.

また、第1の定盤の周速度及び第2の定盤の周速度は、7m/min以上57m/min以下であることが好ましい。   The peripheral speed of the first surface plate and the peripheral speed of the second surface plate are preferably 7 m / min or more and 57 m / min or less.

この場合、第1及び第2の研磨工程において、周速度が7m/min未満の場合に比べてGaN基板の研磨速度を大きくできる。また、周速度が57m/minより大きい場合に比べて第1の定盤の回転及び第2の定盤の回転を安定させ易くなる。   In this case, in the first and second polishing steps, the polishing speed of the GaN substrate can be increased as compared with the case where the peripheral speed is less than 7 m / min. In addition, the rotation of the first surface plate and the rotation of the second surface plate can be stabilized more easily than when the peripheral speed is greater than 57 m / min.

また、第1の研磨材は、ダイヤモンド砥粒であることが好ましい。これにより、第1の研磨工程におけるGaN基板の研磨効率を向上させることができる。   The first abrasive is preferably diamond abrasive. Thereby, the polishing efficiency of the GaN substrate in the first polishing step can be improved.

また、第1の定盤の構成材料及び第2の定盤の構成材料は、錫を50質量%以上含有する合金であることが好ましい。錫を50質量%以上含有する合金は軟らかいので、第1の定盤における第1の研磨材の突き出し量及び第2の定盤における第2の研磨材の突き出し量がいずれも小さくなる。このため、第1の研磨工程後におけるGaN基板の表面粗さ及び第2の研磨工程後におけるGaN基板の表面粗さをいずれも小さくできる。また、スクラッチの発生も抑制できる。   Further, the constituent material of the first surface plate and the constituent material of the second surface plate are preferably alloys containing 50% by mass or more of tin. Since an alloy containing 50% by mass or more of tin is soft, both the protruding amount of the first abrasive on the first surface plate and the protruding amount of the second abrasive on the second surface plate are small. For this reason, both the surface roughness of the GaN substrate after the first polishing step and the surface roughness of the GaN substrate after the second polishing step can be reduced. Moreover, generation | occurrence | production of a scratch can also be suppressed.

また、上記GaN基板の研磨方法は、第2の研磨工程の前に、平坦度が10μm以下となるように第2の定盤を切削加工するフェーシング工程と、フェーシング工程の後、第2の研磨工程の前に、第2の研磨材を形成するための第3の研磨材を第2の定盤に埋め込むチャージング工程とを更に含むことが好ましい。   The GaN substrate polishing method includes a facing step of cutting the second surface plate so that the flatness becomes 10 μm or less before the second polishing step, and a second polishing after the facing step. Preferably, the method further includes a charging step of embedding the third abrasive for forming the second abrasive in the second surface plate before the step.

ここで、「平坦度」とは、測定対象物の厚みの最大値と最小値の差を意味する。また、フェーシング工程及びチャージング工程は、第1の研磨工程の前に実施されるとしてもよいし、第1の研磨工程の後、第2の研磨工程の前に実施されるとしてもよい。また、フェーシング工程が第1の研磨工程の前に実施され、チャージング工程が第1の研磨工程の後、第2の研磨工程の前に実施されるとしてもよい。   Here, “flatness” means the difference between the maximum value and the minimum value of the thickness of the measurement object. Further, the facing process and the charging process may be performed before the first polishing process, or may be performed after the first polishing process and before the second polishing process. Further, the facing process may be performed before the first polishing process, and the charging process may be performed after the first polishing process and before the second polishing process.

また、第2の定盤として第1の定盤とは異なる定盤を用いる場合、例えば、当該定盤に第3の研磨材を埋め込むことによって「第2の研磨材が埋め込まれた第2の定盤」が得られる。第2の定盤として第1の定盤を用いて、且つ、第1の研磨工程の後にチャージング工程を実施する場合、例えば、第3の研磨材を第1の定盤に埋め込むことによって「第2の研磨材が埋め込まれた第2の定盤」が得られる。第2の定盤として第1の定盤を用いて、且つ、第1の研磨工程の前にチャージング工程を実施する場合、例えば、第3の研磨材を第1の定盤に埋め込んだ後に第1の研磨工程を実施することによって「第2の研磨材が埋め込まれた第2の定盤」が得られる。   Further, when using a platen different from the first platen as the second platen, for example, by embedding a third abrasive in the platen, the “second abrasive embedded in the second platen”. A “table” is obtained. When the first surface plate is used as the second surface plate and the charging step is performed after the first polishing step, for example, by embedding a third abrasive in the first surface plate, “ A “second surface plate” in which the second abrasive is embedded is obtained. When the first surface plate is used as the second surface plate and the charging step is performed before the first polishing step, for example, after the third polishing material is embedded in the first surface plate. By performing the first polishing step, a “second surface plate in which a second abrasive is embedded” is obtained.

この場合、フェーシング工程を実施するので、第2の研磨工程後におけるGaN基板の平坦度が向上する。また、チャージング工程を実施するので、第2の研磨材の突き出し量の面内ばらつきを低減できる。このため、第2の研磨工程におけるGaN基板の研磨速度及び表面粗さの面内ばらつきが低減される。   In this case, since the facing process is performed, the flatness of the GaN substrate after the second polishing process is improved. In addition, since the charging process is performed, in-plane variation in the protruding amount of the second abrasive can be reduced. For this reason, in-plane variation in the polishing rate and surface roughness of the GaN substrate in the second polishing step is reduced.

また、第1の潤滑剤及び第2の潤滑剤は、エチレングリコール及び水を主成分とすることが好ましい。この場合、第1の研磨工程におけるGaN基板や第1の定盤等、及び、第2の研磨工程後におけるGaN基板や第1及び第2の定盤等の洗浄が容易になる。また、第1の潤滑剤及び第2の潤滑剤はエチレングリコールを含有するので、第1の研磨工程において第1の潤滑剤の蒸発を抑制でき、第1の定盤の防錆を実現できる。また、第2の研磨工程において第2の潤滑剤の蒸発を抑制でき、第2の定盤の防錆を実現できる。   The first lubricant and the second lubricant are preferably composed mainly of ethylene glycol and water. In this case, cleaning of the GaN substrate, the first surface plate, and the like in the first polishing step, and the GaN substrate, the first and second surface plates, etc. after the second polishing step are facilitated. In addition, since the first lubricant and the second lubricant contain ethylene glycol, evaporation of the first lubricant can be suppressed in the first polishing step, and rust prevention of the first surface plate can be realized. Moreover, evaporation of the second lubricant can be suppressed in the second polishing step, and rust prevention of the second surface plate can be realized.

また、第2の研磨工程では、第2の定盤として第1の定盤を用いることが好ましい。この場合、第1の定盤と第2の定盤との間において個体差を考慮する必要がないので、第1の定盤上で研磨されたGaN基板を第2の定盤上で研磨する際に、GaN基板の表面形状と第2の定盤の表面形状とが適合する。このため、スクラッチの発生を抑制できる。   In the second polishing step, it is preferable to use the first surface plate as the second surface plate. In this case, since there is no need to consider individual differences between the first surface plate and the second surface plate, the GaN substrate polished on the first surface plate is polished on the second surface plate. In this case, the surface shape of the GaN substrate matches the surface shape of the second surface plate. For this reason, generation | occurrence | production of a scratch can be suppressed.

また、第2の研磨工程では第2の定盤として第1の定盤を用いる場合、上記GaN基板の研磨方法は、第1の研磨工程の後、第2の研磨工程の前に、第1の定盤上の異物を除去するクリーニング工程を更に含むことが好ましい。これにより、第2の研磨工程において、第1の定盤上の異物に起因するスクラッチの発生や表面粗さを低減できる。   In addition, when the first surface plate is used as the second surface plate in the second polishing step, the GaN substrate polishing method described above is performed after the first polishing step and before the second polishing step. It is preferable to further include a cleaning step for removing foreign matter on the surface plate. Thereby, generation | occurrence | production of the scratch resulting from the foreign material on a 1st surface plate, and surface roughness can be reduced in a 2nd grinding | polishing process.

本発明のGaN基板の研磨方法によれば、スクラッチの発生を抑制できる。   According to the GaN substrate polishing method of the present invention, the generation of scratches can be suppressed.

本実施形態に係るGaN基板の研磨方法に好適に用いられる研磨装置の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the grinding | polishing apparatus used suitably for the grinding | polishing method of the GaN substrate which concerns on this embodiment. 図1に示される研磨ジグの概略斜視図である。FIG. 2 is a schematic perspective view of the polishing jig shown in FIG. 1. 図2に示されるIII−III線に沿った縦断面図である。It is a longitudinal cross-sectional view along the III-III line | wire shown by FIG. 図4(a)及び図4(b)は、GaN基板を構成するGaN結晶の結晶構造を模式的に示す図である。FIG. 4A and FIG. 4B are diagrams schematically showing a crystal structure of a GaN crystal constituting the GaN substrate. 本実施形態に係るGaN基板の研磨方法の一例を示すフローチャートである。It is a flowchart which shows an example of the grinding | polishing method of the GaN substrate which concerns on this embodiment. フェーシング工程を説明するための概略斜視図である。It is a schematic perspective view for demonstrating a facing process. 図7(a)及び図7(b)は、それぞれ、第1及び第2の研磨工程を説明するための概略斜視図である。FIGS. 7A and 7B are schematic perspective views for explaining the first and second polishing steps, respectively. 図8(a)及び図8(b)は、それぞれ、第1及び第2の研磨工程を説明するための概略断面図である。FIGS. 8A and 8B are schematic cross-sectional views for explaining the first and second polishing steps, respectively. 第1及び第2の研磨工程後におけるGaN基板の表面粗さRaと、研磨材の平均粒径との関係を示すグラフである。It is a graph which shows the relationship between the surface roughness Ra of the GaN substrate after the 1st and 2nd grinding | polishing process, and the average particle diameter of an abrasives.

以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。
(GaN基板の研磨装置)
図1は、本実施形態に係るGaN基板の研磨方法に好適に用いられる研磨装置の一例を示す概略斜視図である。図1に示される研磨装置100は、テーブル113上に配置された定盤101と、定盤101の表面101a上に載置された研磨ジグ10とを備える。研磨装置100では、定盤101と研磨ジグ10との間にGaN基板を配置して、定盤101及び研磨ジグ10を回転させることによりGaN基板の研磨を行う。GaN基板は、例えばLEDやLD等のデバイスに好適に用いられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and duplicate descriptions are omitted.
(GaN substrate polishing equipment)
FIG. 1 is a schematic perspective view showing an example of a polishing apparatus suitably used in the method for polishing a GaN substrate according to this embodiment. A polishing apparatus 100 shown in FIG. 1 includes a surface plate 101 disposed on a table 113 and a polishing jig 10 placed on a surface 101a of the surface plate 101. In the polishing apparatus 100, a GaN substrate is disposed between the surface plate 101 and the polishing jig 10, and the surface plate 101 and the polishing jig 10 are rotated to polish the GaN substrate. The GaN substrate is suitably used for devices such as LEDs and LDs.

定盤101は、例えば、中心点O及び半径rを有する円盤である。定盤101は、周速度vで例えば反時計回りに回転する。定盤101には、定盤101を冷却するチラー111が接続されている。チラー111を用いることにより、定盤101の温度を室温と同等の温度(例えば20℃)に制御することができる。この場合、研磨時の定盤101の発熱や変形が防止される。   The surface plate 101 is, for example, a disk having a center point O and a radius r. The surface plate 101 rotates, for example, counterclockwise at a peripheral speed v. A chiller 111 for cooling the surface plate 101 is connected to the surface plate 101. By using the chiller 111, the temperature of the surface plate 101 can be controlled to a temperature equivalent to room temperature (for example, 20 ° C.). In this case, heat generation and deformation of the surface plate 101 during polishing are prevented.

研磨ジグ10には、研磨ジグ10を回転及び揺動させるモータ103が接続されている。モータ103はテーブル113上に配置されている。研磨ジグ10は、定盤101の回転方向と同一方向、例えば反時計回りに回転することが好ましい。   A motor 103 that rotates and swings the polishing jig 10 is connected to the polishing jig 10. The motor 103 is disposed on the table 113. The polishing jig 10 preferably rotates in the same direction as the rotation direction of the surface plate 101, for example, counterclockwise.

テーブル113上には、定盤101の表面101aを切削加工するためのフェーシング機構109と、研磨液27を定盤101の表面101aに滴下する滴下装置(ディスペンサー)105と、潤滑剤31を定盤101の表面101aに滴下する滴下装置(ディスペンサー)107とが配置されている。滴下装置105,107は、それぞれ滴下ノズル105a,107aを有している。これらの滴下ノズル105a,107aから研磨液27又は潤滑剤31が滴下される。研磨液27は例えばスラリー状である。また、研磨液27及び潤滑剤31は例えば水溶性である。   On the table 113, a facing mechanism 109 for cutting the surface 101a of the surface plate 101, a dropping device (dispenser) 105 for dropping the polishing liquid 27 onto the surface 101a of the surface plate 101, and a lubricant 31 are provided on the surface plate. A dropping device (dispenser) 107 for dropping on the surface 101a of the 101 is disposed. The dropping devices 105 and 107 have dropping nozzles 105a and 107a, respectively. The polishing liquid 27 or the lubricant 31 is dropped from these dropping nozzles 105a and 107a. The polishing liquid 27 is in the form of a slurry, for example. Further, the polishing liquid 27 and the lubricant 31 are water-soluble, for example.

図2は、図1に示される研磨ジグ10の概略斜視図である。図3は、図2に示されるIII−III線に沿った縦断面図である。研磨ジグ10は、GaN基板1が貼り付けられるプレート17と、プレート17を取り囲むドライブリング15とを備える。プレート17上には、おもり13と支持棒11とが順に配置されている。   FIG. 2 is a schematic perspective view of the polishing jig 10 shown in FIG. FIG. 3 is a longitudinal sectional view taken along line III-III shown in FIG. The polishing jig 10 includes a plate 17 to which the GaN substrate 1 is attached, and a drive ring 15 surrounding the plate 17. On the plate 17, the weight 13 and the support bar 11 are arranged in order.

プレート17は、例えばセラミックからなる。GaN基板1は、ワックス等の接着剤によりプレート17に貼り付けられることが好ましい。GaN基板1は、おもり13によって、プレート17を介して定盤101に均等に押圧される。ドライブリング15の下面15aには、例えば、溝15bが放射状に形成されている。研磨ジグ10は、GaN基板1の表面1aが定盤101の表面101a(図1参照)に接触するように配置される。   The plate 17 is made of ceramic, for example. The GaN substrate 1 is preferably attached to the plate 17 with an adhesive such as wax. The GaN substrate 1 is evenly pressed by the weight 13 against the surface plate 101 via the plate 17. For example, grooves 15b are formed radially on the lower surface 15a of the drive ring 15. The polishing jig 10 is disposed such that the surface 1a of the GaN substrate 1 is in contact with the surface 101a (see FIG. 1) of the surface plate 101.

図4(a)及び図4(b)は、GaN基板1を構成するGaN結晶の結晶構造を模式的に示す図である。GaN結晶は、図4(a)に示されるように六方晶系のウルツ鉱型結晶構造を有する。このようなGaN結晶からなるGaN結晶体は、図4(b)に示されるように(0001)面及び(000−1)面を有する。(0001)面はGa面であり、(000−1)面はN面である。Ga面のビッカーズ硬度は、1250kg/mmであり、N面のビッカーズ硬度は、1150kg/mmである。また、Ga面はN面よりもKOHに対する耐薬品性が強い。 4A and 4B are diagrams schematically showing the crystal structure of the GaN crystal constituting the GaN substrate 1. FIG. The GaN crystal has a hexagonal wurtzite crystal structure as shown in FIG. A GaN crystal body made of such a GaN crystal has a (0001) plane and a (000-1) plane as shown in FIG. The (0001) plane is a Ga plane, and the (000-1) plane is an N plane. The Vickers hardness of the Ga surface is 1250 kg / mm 2 , and the Vickers hardness of the N surface is 1150 kg / mm 2 . In addition, the Ga surface has higher chemical resistance to KOH than the N surface.

GaN基板1がストライプコア基板である場合、GaN基板1の表面1a(図3参照)にはGa面及びN面がストライプ状に配置される。なお、GaN基板1はストライプコア基板に限定されない。ここで、「ストライプコア基板」とは、直線状に伸び所定の幅を有する低結晶欠陥領域と、直線状に伸び所定の幅を有する高結晶欠陥領域とが、表面に交互に配置された基板のことである。ストライプコア基板の詳細については、例えば特開2004−335646号公報等に示されている。
(GaN基板の研磨方法)
本実施形態に係るGaN基板の研磨方法は、上述の研磨装置100を用いて好適に実施される。
When the GaN substrate 1 is a stripe core substrate, the Ga surface and the N surface are arranged in stripes on the surface 1a of the GaN substrate 1 (see FIG. 3). The GaN substrate 1 is not limited to the stripe core substrate. Here, the “striped core substrate” is a substrate in which low crystal defect regions extending linearly and having a predetermined width and high crystal defect regions extending linearly and having a predetermined width are alternately arranged on the surface. That is. Details of the stripe core substrate are disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-335646.
(GaN substrate polishing method)
The method for polishing a GaN substrate according to this embodiment is preferably performed using the polishing apparatus 100 described above.

図5は、本実施形態に係るGaN基板の研磨方法の一例を示すフローチャートである。このGaN基板の研磨方法では、例えば、フェーシング工程(工程S1)、チャージング工程(工程S2)、第1の研磨工程(工程S3)、クリーニング工程(工程S4)及び第2の研磨工程(工程S5)が順に実施される。なお、本実施形態では、第2の研磨工程において使用される定盤として、第1の研磨工程で使用される定盤101を用いることとする。   FIG. 5 is a flowchart showing an example of a method for polishing a GaN substrate according to the present embodiment. In this GaN substrate polishing method, for example, a facing step (step S1), a charging step (step S2), a first polishing step (step S3), a cleaning step (step S4), and a second polishing step (step S5). ) Are performed in order. In the present embodiment, the surface plate 101 used in the first polishing step is used as the surface plate used in the second polishing step.

以下、図6〜図8を参照しながら各工程S1〜S5について詳細に説明する。図6は、フェーシング工程を説明するための概略斜視図である。図7(a)及び図7(b)は、それぞれ、第1及び第2の研磨工程を説明するための概略斜視図である。図8(a)及び図8(b)は、それぞれ、第1及び第2の研磨工程を説明するための概略断面図である。
(フェーシング工程)
必要に応じて、図6に示されるように、定盤101の平坦度(TTV:TotalThickness Variation)が10μm以下となるように定盤101の表面101aを切削加工するとしてもよい。この定盤101を用いれば、例えば2インチφのGaN基板1を好適に研磨することができる。定盤101の表面101aの形状は、GaN基板1の表面1aに転写される。また、定盤101の中心点Oから外周までの部分(半径部分)の平坦度が5μm以下となるように切削加工することが更に好ましい。特に、平均粒径が小さい研磨材を用いて研磨を行う場合には、定盤101の平坦度を小さくすることが好ましい。
Hereafter, each process S1-S5 is demonstrated in detail, referring FIGS. 6-8. FIG. 6 is a schematic perspective view for explaining the facing process. FIGS. 7A and 7B are schematic perspective views for explaining the first and second polishing steps, respectively. FIGS. 8A and 8B are schematic cross-sectional views for explaining the first and second polishing steps, respectively.
(Facing process)
If necessary, the surface 101a of the surface plate 101 may be cut so that the flatness (TTV: Total Thickness Variation) of the surface plate 101 is 10 μm or less, as shown in FIG. If this surface plate 101 is used, for example, the 2-inch φ GaN substrate 1 can be suitably polished. The shape of the surface 101 a of the surface plate 101 is transferred to the surface 1 a of the GaN substrate 1. Further, it is more preferable to perform cutting so that the flatness of the portion (radius portion) from the center point O to the outer periphery of the surface plate 101 is 5 μm or less. In particular, when polishing is performed using an abrasive having a small average particle diameter, it is preferable to reduce the flatness of the surface plate 101.

切削加工する際には、ダイヤモンドバイト109aを用いることが好ましい。ダイヤモンドバイト109aは、フェーシング機構109(図1参照)の主要部を構成する。ダイヤモンドバイト109aは、定盤101の中心点Oから外周に向けて径方向Xに沿って移動する。定盤101を回転させながらダイヤモンドバイト109aを移動させることにより、切削加工を行う。定盤101の回転速度は、例えば400rpmである。図6において、定盤101の表面101aは、既に切削加工された面101bと未だ切削加工されていない面101cとからなる。切削加工後、必要に応じて定盤101の表面101aを洗浄することが好ましい。
(チャージング工程)
必要に応じて、図7(a)に示されるように、研磨材21(第3の研磨材)を定盤101に埋め込むとしてもよい。具体的には、例えば、研磨材21と潤滑剤(図示せず)とを含む研磨液(図示せず)を定盤101の表面101a上に供給しながら、GaN基板1が貼り付けられていない研磨ジグ10(図2及び図3参照)及び定盤101を回転させる。本実施形態において、研磨材21は、後述のように、第2の研磨工程における研磨材29を形成するためのものである。
When cutting, it is preferable to use a diamond cutting tool 109a. The diamond cutting tool 109a constitutes a main part of the facing mechanism 109 (see FIG. 1). The diamond cutting tool 109a moves along the radial direction X from the center point O of the surface plate 101 toward the outer periphery. Cutting is performed by moving the diamond tool 109 a while rotating the surface plate 101. The rotational speed of the surface plate 101 is 400 rpm, for example. In FIG. 6, the surface 101a of the surface plate 101 includes a surface 101b that has already been cut and a surface 101c that has not yet been cut. After cutting, it is preferable to clean the surface 101a of the surface plate 101 as necessary.
(Charging process)
If necessary, as shown in FIG. 7A, the abrasive 21 (third abrasive) may be embedded in the surface plate 101. Specifically, for example, while supplying a polishing liquid (not shown) containing an abrasive 21 and a lubricant (not shown) onto the surface 101a of the surface plate 101, the GaN substrate 1 is not attached. The polishing jig 10 (see FIGS. 2 and 3) and the surface plate 101 are rotated. In this embodiment, the abrasive 21 is for forming the abrasive 29 in the second polishing step, as will be described later.

以下、チャージング条件の一例を示す。
研磨液の滴下量:5cc/min
ドライブリング15の回転速度:60rpm
おもり13の荷重:1.96×10Pa(200g/cm
チャージング時間:60min以上
(第1の研磨工程)
図7(a)に示されるように、研磨材23(第1の研磨材)と潤滑剤25(第1の潤滑剤)とを含む研磨液27を定盤101の表面101a上に供給しながら、定盤101及び研磨液27を用いてGaN基板1を研磨する。研磨の際には、定盤101及び研磨ジグ10を回転させることが好ましい。研磨液27は、滴下装置105の滴下ノズル105aから定盤101の表面101a上に滴下されることが好ましい。第1の研磨工程において、GaN基板1は、図8(a)に示されるように研磨材21,23によって研磨される。また、GaN基板1と定盤101との間には、潤滑剤25が充填されている。
Hereinafter, an example of charging conditions will be shown.
Amount of polishing liquid dripping: 5 cc / min
Rotation speed of drive ring 15: 60 rpm
Load of weight 13: 1.96 × 10 4 Pa (200 g / cm 2 )
Charging time: 60 min or more (first polishing process)
As shown in FIG. 7A, the polishing liquid 27 containing the abrasive 23 (first abrasive) and the lubricant 25 (first lubricant) is supplied onto the surface 101a of the surface plate 101. Then, the GaN substrate 1 is polished using the surface plate 101 and the polishing liquid 27. In polishing, the surface plate 101 and the polishing jig 10 are preferably rotated. The polishing liquid 27 is preferably dropped from the dropping nozzle 105 a of the dropping device 105 onto the surface 101 a of the surface plate 101. In the first polishing step, the GaN substrate 1 is polished by the abrasives 21 and 23 as shown in FIG. Further, a lubricant 25 is filled between the GaN substrate 1 and the surface plate 101.

研磨材21の殆どは定盤101に埋め込まれ固定されている砥粒(以下、固定砥粒ともいう)であり、研磨材23の殆どは定盤101に埋め込まれていない遊離した砥粒(以下、遊離砥粒ともいう)である。ただし、研磨材21の一部が脱落することにより遊離砥粒になるとしてもよいし、研磨材23の一部が定盤101に埋め込まれることにより固定砥粒になるとしてもよい。研磨材21,23の突き出し量tw1は、図8(a)に示されるように、遊離砥粒としての研磨材23に起因して大きくなっている。 Most of the abrasive 21 is abrasive grains embedded and fixed in the surface plate 101 (hereinafter also referred to as fixed abrasive grains), and most of the abrasive 23 is free abrasive grains (hereinafter referred to as fixed abrasive grains). , Also referred to as loose abrasive grains). However, a part of the abrasive 21 may fall off to become free abrasive grains, or a part of the abrasive 23 may be embedded in the surface plate 101 to become fixed abrasive grains. Protrusion amount t w1 of the abrasive 21 and 23, as shown in FIG. 8 (a), is larger due to the abrasives 23 as free abrasive grains.

以下、第1の研磨工程における研磨条件の一例を示す。
GaN基板1:直径(φ)50.8mm、厚さ400μmのGaN単結晶基板研磨液27の滴下量:5cc/min
研磨材23の最大粒径:1μm以下
定盤101の直径(φ):450mm
定盤101の構成材料:錫
ドライブリング15の回転速度:30rpm
ドライブリング15の揺動速度:10回/min
揺動ストローク:30mm
おもり13の荷重:1.96×10Pa(200g/cm
研磨時間:60min
第1の研磨工程において研磨材21,23を用いてGaN基板1を研磨した後、必要に応じて、プレート17及びドライブリング15(図2及び図3参照)に付着した研磨液27を除去することにより、研磨ジグ10を洗浄する。洗浄方法としては、例えば、超純水を用いた超音波洗浄が挙げられる。
(クリーニング工程)
必要に応じて、定盤101上の異物を除去することにより定盤101の表面101aを洗浄するとしてもよい。このような異物としては、例えば、第1の研磨工程後におけるGaN基板1の研削屑や遊離砥粒等が挙げられる。洗浄する際には、埃や屑が発生しないワイパーと超純水とを用いることが好ましい。しかしながら、このワイパーを用いて洗浄しても遊離砥粒が定盤101の表面101a上に残存する場合がある。この場合、遊離砥粒を定盤101に埋め込むために、定盤101を回転させながら、GaN基板1が貼り付けられていない研磨ジグ10を定盤101上で回転させてもよい。第1の研磨工程における研磨時間が短時間である場合や研磨液27に含まれる研磨材23の濃度が薄い場合には、クリーニング工程を省略するとしてもよい。
Hereinafter, an example of the polishing conditions in the first polishing step will be shown.
GaN substrate 1: Drop amount of GaN single crystal substrate polishing liquid 27 having a diameter (φ) of 50.8 mm and a thickness of 400 μm: 5 cc / min
Maximum particle size of abrasive 23: 1 μm or less Diameter of surface plate 101 (φ): 450 mm
Constituent material of surface plate 101: Rotation speed of tin drive ring 15: 30 rpm
Swing speed of drive ring 15: 10 times / min
Swing stroke: 30mm
Load of weight 13: 1.96 × 10 4 Pa (200 g / cm 2 )
Polishing time: 60 min
After polishing the GaN substrate 1 using the abrasives 21 and 23 in the first polishing step, the polishing liquid 27 attached to the plate 17 and the drive ring 15 (see FIGS. 2 and 3) is removed as necessary. As a result, the polishing jig 10 is cleaned. Examples of the cleaning method include ultrasonic cleaning using ultrapure water.
(Cleaning process)
If necessary, the surface 101a of the surface plate 101 may be cleaned by removing foreign matter on the surface plate 101. Examples of such foreign substances include grinding scraps and loose abrasive grains of the GaN substrate 1 after the first polishing step. When cleaning, it is preferable to use a wiper that does not generate dust and debris and ultrapure water. However, loose abrasive grains may remain on the surface 101 a of the surface plate 101 even if the wiper is used for cleaning. In this case, in order to embed loose abrasive grains in the surface plate 101, the polishing jig 10 to which the GaN substrate 1 is not attached may be rotated on the surface plate 101 while rotating the surface plate 101. When the polishing time in the first polishing process is short or when the concentration of the abrasive 23 contained in the polishing liquid 27 is low, the cleaning process may be omitted.

第1の研磨工程の後、第2の研磨工程の前にクリーニング工程を実施すると、第1の研磨工程において生じた異物に起因するスクラッチの発生や表面粗さRaを低減できる。
(第2の研磨工程)
図7(b)に示されるように、研磨材29(第2の研磨材)が埋め込まれた定盤101に潤滑剤31(第2の潤滑剤)を供給しながら、研磨材29が埋め込まれた定盤101を用いてGaN基板1を研磨する。研磨の際には、定盤101及び研磨ジグ10を回転させることが好ましい。第2の研磨工程において、GaN基板1は、図8(b)に示されるように、研磨材29によって研磨される。GaN基板1と定盤101との間には、潤滑剤31が充填されている。
When the cleaning step is performed after the first polishing step and before the second polishing step, it is possible to reduce the occurrence of scratches and surface roughness Ra due to foreign matters generated in the first polishing step.
(Second polishing step)
As shown in FIG. 7B, the abrasive 29 is embedded while supplying the lubricant 31 (second lubricant) to the surface plate 101 in which the abrasive 29 (second abrasive) is embedded. The GaN substrate 1 is polished using the surface plate 101. In polishing, the surface plate 101 and the polishing jig 10 are preferably rotated. In the second polishing step, the GaN substrate 1 is polished with an abrasive 29 as shown in FIG. A lubricant 31 is filled between the GaN substrate 1 and the surface plate 101.

研磨材29は、上述の研磨材21,23のうち定盤101に埋め込まれた研磨材であるので固定砥粒である。なお、チャージング工程において定盤101に埋め込まれた研磨材21を研磨材29として用いてもよい。研磨材29は固定砥粒であるので、図8(a)及び図8(b)に示されるように、研磨材29の突き出し量tw2は研磨材21,23の突き出し量tw1よりも小さくなっている。ここで、研磨材の突き出し量が小さいほど表面粗さRaは小さくなる。よって、第2の研磨工程後におけるGaN基板1の表面粗さRaは、第1の研磨工程後におけるGaN基板1の表面粗さRaよりも小さくなる。また、定盤の硬さをH、加工対象物の硬さをH、研磨材の平均粒径をφとすると、研磨後の加工対象物の表面粗さRaは例えば下記式(1)で表される。 Since the abrasive 29 is an abrasive embedded in the surface plate 101 of the above-described abrasives 21 and 23, it is a fixed abrasive. Note that the abrasive 21 embedded in the surface plate 101 in the charging step may be used as the abrasive 29. Since the abrasive 29 is a fixed abrasive, as shown in FIG. 8 (a) and 8 (b), protruding amount t w2 of the abrasive 29 is smaller than the protruding amount t w1 of the abrasive 21, 23 It has become. Here, the smaller the protrusion amount of the abrasive, the smaller the surface roughness Ra. Therefore, the surface roughness Ra of the GaN substrate 1 after the second polishing step is smaller than the surface roughness Ra of the GaN substrate 1 after the first polishing step. Further, when the hardness of the surface plate is H p , the hardness of the workpiece is H w , and the average particle diameter of the abrasive is φ d , the surface roughness Ra of the workpiece after polishing is, for example, the following formula (1 ).

Ra=φ×H/4H … (1)
図9は、第1及び第2の研磨工程後におけるGaN基板の表面粗さRaと、研磨材の平均粒径との関係を示すグラフである。図9中の領域P1内の点は、第1の研磨工程後におけるGaN基板1の表面粗さRaを示し、領域P2内の点は、第2の研磨工程後におけるGaN基板1の表面粗さRaを示す。表面粗さRaの値は、原子間力顕微鏡(AFM)を用いて測定された値である。このグラフから明らかなように、第2の研磨工程後におけるGaN基板1では、第1の研磨工程後におけるGaN基板1に比べて、表面粗さRa及び表面粗さRaのばらつきが小さくなっている。
Ra = φ d × H p / 4H w (1)
FIG. 9 is a graph showing the relationship between the surface roughness Ra of the GaN substrate and the average particle diameter of the abrasive after the first and second polishing steps. The points in the region P1 in FIG. 9 indicate the surface roughness Ra of the GaN substrate 1 after the first polishing step, and the points in the region P2 indicate the surface roughness of the GaN substrate 1 after the second polishing step. Ra is shown. The value of the surface roughness Ra is a value measured using an atomic force microscope (AFM). As apparent from this graph, the GaN substrate 1 after the second polishing step has a smaller variation in the surface roughness Ra and the surface roughness Ra than the GaN substrate 1 after the first polishing step. .

以下、第2の研磨工程における研磨条件の一例を示す。
潤滑剤31の滴下量:5cc/min
定盤101の周速度v:28m/min
おもり13の荷重:1.96×10Pa(200g/cm
研磨時間:60min
以上説明したように、本実施形態に係るGaN基板の研磨方法では、第2の研磨工程において研磨材29が定盤101に埋め込まれている。このため、研磨材29同士が凝集しない。また、第2の研磨工程では、研磨材29の突き出し量tw2が小さく且つ均一になる。したがって、第2の研磨工程では、スクラッチの発生を抑制しながらGaN基板1を研磨することができる。さらに、第2の研磨工程後におけるGaN基板1の表面粗さRaを小さくすると共に、表面粗さRaの面内ばらつきも低減できる。一方、第1の研磨工程ではGaN基板1の研磨速度を大きくできるので、第1の研磨工程の前にスライスや研削等の前加工を行うことによりGaN基板1に形成される加工変質層を効率良く除去できる。本実施形態に係るGaN基板の研磨方法を用いることにより、スクラッチの発生が抑制されたGaN基板を好適に製造することができる。
Hereinafter, an example of the polishing conditions in the second polishing step will be shown.
Lubricant 31 drop rate: 5 cc / min
Peripheral speed v of the surface plate 101: 28 m / min
Load of weight 13: 1.96 × 10 4 Pa (200 g / cm 2 )
Polishing time: 60 min
As described above, in the GaN substrate polishing method according to this embodiment, the abrasive 29 is embedded in the surface plate 101 in the second polishing step. For this reason, the abrasives 29 do not aggregate. In the second polishing step, the protruding amount tw2 of the abrasive 29 is small and uniform. Therefore, in the second polishing step, the GaN substrate 1 can be polished while suppressing the generation of scratches. Furthermore, the surface roughness Ra of the GaN substrate 1 after the second polishing step can be reduced, and in-plane variation of the surface roughness Ra can be reduced. On the other hand, since the polishing rate of the GaN substrate 1 can be increased in the first polishing step, the work-affected layer formed on the GaN substrate 1 can be efficiently processed by performing pre-processing such as slicing and grinding before the first polishing step. Can be removed well. By using the method for polishing a GaN substrate according to this embodiment, a GaN substrate in which the generation of scratches is suppressed can be suitably manufactured.

また、第1及び第2の研磨工程において、図1に示される定盤101の周速度vは、7m/min以上57m/min以下であることが好ましい。周速度vが7m/min以上の場合、周速度vが7m/min未満の場合に比べてGaN基板1の研磨速度を大きくできるので、生産性が高い。また、周速度vが57m/min以下の場合、定盤101及び研磨ジグ10の回転を安定させ易くなる。具体的には、スクラッチの原因となるスラスト方向(研磨ジグ10の支持棒11の軸方向)の揺れを抑制できる。このため、周速度vが57m/minより大きい場合に比べてスクラッチの本数を低減できる。   In the first and second polishing steps, the peripheral speed v of the surface plate 101 shown in FIG. 1 is preferably 7 m / min or more and 57 m / min or less. When the peripheral speed v is 7 m / min or more, the polishing speed of the GaN substrate 1 can be increased as compared with the case where the peripheral speed v is less than 7 m / min. Therefore, productivity is high. Moreover, when the peripheral speed v is 57 m / min or less, it becomes easy to stabilize the rotation of the surface plate 101 and the polishing jig 10. Specifically, it is possible to suppress the shaking in the thrust direction (the axial direction of the support rod 11 of the polishing jig 10) that causes a scratch. For this reason, the number of scratches can be reduced as compared with the case where the peripheral speed v is greater than 57 m / min.

また、第1及び第2の研磨工程において、定盤101の回転速度は、5rpm以上40rpm以下であることが好ましい。回転速度が5rpm以上の場合、回転速度が5rpm未満の場合に比べてGaN基板1の研磨速度を大きくできるので、生産性が高い。また、回転速度が40rpm以下の場合、定盤101の回転を安定させ易くなるので、回転速度が40rpmより大きい場合に比べてスクラッチの本数を低減できる。   In the first and second polishing steps, the rotation speed of the surface plate 101 is preferably 5 rpm or more and 40 rpm or less. When the rotational speed is 5 rpm or more, the polishing speed of the GaN substrate 1 can be increased compared to the case where the rotational speed is less than 5 rpm, and thus the productivity is high. Further, when the rotation speed is 40 rpm or less, the rotation of the surface plate 101 can be easily stabilized, so that the number of scratches can be reduced as compared with the case where the rotation speed is higher than 40 rpm.

実施例として、第1の研磨工程において定盤101の周速度v、定盤101の回転速度、及び、スクラッチの本数をそれぞれ測定した結果を表1に示す。表1中、「スクラッチの本数」は、直径(φ)50.8mmのGaN基板の面内に発生したスクラッチの本数を示す。また、スクラッチの本数は集光灯下において目視検査により測定した。   As an example, Table 1 shows the results of measuring the circumferential speed v of the surface plate 101, the rotational speed of the surface plate 101, and the number of scratches in the first polishing step. In Table 1, “Number of scratches” indicates the number of scratches generated in the surface of a GaN substrate having a diameter (φ) of 50.8 mm. The number of scratches was measured by visual inspection under a condenser lamp.

Figure 0005024305
Figure 0005024305

次に、実施例として、第2の研磨工程において定盤101の周速度v、定盤101の回転速度、及び、スクラッチの本数をそれぞれ測定した結果を表2に示す。表2中、「スクラッチの本数」は、直径(φ)50.8mmのGaN基板の面内に発生したスクラッチの本数を示す。また、スクラッチの本数は集光灯下において目視検査により測定した。   Next, as an example, Table 2 shows the results of measuring the peripheral speed v of the surface plate 101, the rotational speed of the surface plate 101, and the number of scratches in the second polishing step. In Table 2, “Number of scratches” indicates the number of scratches generated in the surface of a GaN substrate having a diameter (φ) of 50.8 mm. The number of scratches was measured by visual inspection under a condenser lamp.

Figure 0005024305
Figure 0005024305

また、研磨材21,23,29のビッカーズ硬度は、GaNのビッカーズ硬度(1300kg/mm)よりも大きいことが好ましい。よって、研磨材21,23,29の構成材料としては、例えば、ダイヤモンド、SiC等の炭化物、Al等の酸化物、cBN、Si等の窒化物等が好ましい。これらの中でも、分級精度、価格、加工効率、加工精度等の観点からダイヤモンドが特に好ましい。例えば、研磨材21,23がダイヤモンド砥粒である場合、第1の研磨工程におけるGaN基板1の研磨効率を向上させることができる。また、研磨材29がダイヤモンド砥粒である場合、第2の研磨工程におけるGaN基板1の研磨効率を向上させることができる。 Moreover, it is preferable that the Vickers hardness of the abrasives 21, 23, 29 is larger than the Vickers hardness of GaN (1300 kg / mm 2 ). Therefore, as the constituent material of the abrasives 21, 23, 29, for example, carbides such as diamond and SiC, oxides such as Al 2 O 3 , nitrides such as cBN and Si 3 N 4 , and the like are preferable. Among these, diamond is particularly preferable from the viewpoints of classification accuracy, price, processing efficiency, processing accuracy, and the like. For example, when the abrasives 21 and 23 are diamond abrasive grains, the polishing efficiency of the GaN substrate 1 in the first polishing step can be improved. Further, when the abrasive 29 is diamond abrasive, the polishing efficiency of the GaN substrate 1 in the second polishing step can be improved.

また、定盤101の構成材料は、錫を50質量%以上含有する合金であることが好ましい。なお、定盤101が、錫を50質量%以上含有する合金からなる被覆層を有していてもよい。錫を50質量%以上含有する合金は、銅等の金属よりも軟らかいので、定盤101における研磨材21,23の突き出し量tw1及び研磨材29の突き出し量tw2(図8参照)が小さくなる。このため、第1及び第2の研磨工程後におけるGaN基板1の表面粗さRaを小さくできると共に、スクラッチの発生を抑制できる。 Further, the constituent material of the surface plate 101 is preferably an alloy containing 50 mass% or more of tin. The surface plate 101 may have a coating layer made of an alloy containing 50% by mass or more of tin. Since an alloy containing 50 mass% or more of tin is softer than a metal such as copper, the protruding amounts t w1 of the abrasives 21 and 23 and the protruding amount t w2 of the abrasive 29 on the surface plate 101 are small (see FIG. 8). Become. For this reason, the surface roughness Ra of the GaN substrate 1 after the first and second polishing steps can be reduced, and the occurrence of scratches can be suppressed.

ここで、実施例として、第2の研磨工程において定盤101の構成材料、GaN基板1の表面粗さRa、及び、スクラッチの本数をそれぞれ測定した結果を表3に示す。表3中、「スクラッチの本数」は、直径(φ)50.8mmのGaN基板の面内に発生したスクラッチの本数を示す。また、スクラッチの本数は集光灯下において目視検査により測定した。表面粗さRaは原子間力顕微鏡(AFM)により測定した。   Here, as an example, Table 3 shows the measurement results of the constituent material of the surface plate 101, the surface roughness Ra of the GaN substrate 1, and the number of scratches in the second polishing step. In Table 3, “Number of scratches” indicates the number of scratches generated in the surface of a GaN substrate having a diameter (φ) of 50.8 mm. The number of scratches was measured by visual inspection under a condenser lamp. The surface roughness Ra was measured with an atomic force microscope (AFM).

Figure 0005024305
Figure 0005024305

表3に示されるように、定盤101の構成材料は錫を50質量%以上含有する合金であることが好ましい。表面粗さRaが5nm以下且つスクラッチの本数が0本のGaN基板は、LEDやLD等のデバイスに好適に用いられる。また、環境汚染を防止するために、鉛よりもビスマスやアンチモンを用いることが好ましい。   As shown in Table 3, the constituent material of the surface plate 101 is preferably an alloy containing 50% by mass or more of tin. A GaN substrate having a surface roughness Ra of 5 nm or less and zero scratches is suitably used for devices such as LEDs and LDs. In order to prevent environmental pollution, it is preferable to use bismuth or antimony rather than lead.

また、定盤101が錫製であると、研磨材21,23,29がダイヤモンド砥粒である場合に研磨材21,23,29を定盤101に強く保持・固定することができる。   Further, when the surface plate 101 is made of tin, the abrasives 21, 23, 29 can be strongly held and fixed to the surface plate 101 when the abrasives 21, 23, 29 are diamond abrasive grains.

また、本実施形態に係るGaN基板の研磨方法では、上述のようなフェーシング工程を実施するので、第1及び第2の研磨工程後におけるGaN基板1の平坦度が向上する。フェーシング工程において、定盤101の表面101aに、中心点Oを中心とした螺旋状又は同心円状の溝(図示せず)を形成することが好ましい。これにより、第1及び第2の研磨工程において、GaN基板1と定盤101との摩擦抵抗を低減できると共に、GaN基板1と定盤101との間に研磨液27又は潤滑剤31を供給し易くなる。   Moreover, in the GaN substrate polishing method according to the present embodiment, since the facing process as described above is performed, the flatness of the GaN substrate 1 after the first and second polishing processes is improved. In the facing step, it is preferable to form a spiral or concentric groove (not shown) centered on the center point O on the surface 101a of the surface plate 101. Thereby, in the first and second polishing steps, the frictional resistance between the GaN substrate 1 and the surface plate 101 can be reduced, and the polishing liquid 27 or the lubricant 31 is supplied between the GaN substrate 1 and the surface plate 101. It becomes easy.

また、本実施形態に係るGaN基板の研磨方法では、上述のようなチャージング工程を実施するので、研磨材29の突き出し量tw2の面内ばらつきを低減できる。このため、第2の研磨工程におけるGaN基板1の研磨速度及び表面粗さRaの面内ばらつきが低減される。さらに、スクラッチの発生も抑制される。また、第1の研磨工程の前にチャージング工程を実施すると、第1の研磨工程における研磨速度が、研磨を始める時から安定する。 Further, in the GaN substrate polishing method according to the present embodiment, since the charging process as described above is performed, the in-plane variation of the protrusion amount tw2 of the abrasive 29 can be reduced. For this reason, in-plane variation of the polishing rate and the surface roughness Ra of the GaN substrate 1 in the second polishing step is reduced. Furthermore, the occurrence of scratches is also suppressed. In addition, when the charging step is performed before the first polishing step, the polishing rate in the first polishing step is stabilized from the start of polishing.

また、潤滑剤25,31は、例えばポリエチレングリコール、モノエチレングリコール等のエチレングリコール及び水を主成分とすることが好ましい。具体的には、例えば、潤滑剤の全量に対するエチレングリコール及び水の合計含有量が、95質量%以上であることが好ましい。また、エチレングリコールに代えて、例えば、ポリエチレンアルコール、グリセリン、ラクチトール、ソルビトール等を用いるとしてもよい。具体的には、例えば、潤滑剤の全量に対する、ポリエチレンアルコール、グリセリン、ラクチトール又はソルビトールと水との合計含有量が、95質量%以上であることが好ましい。   The lubricants 25 and 31 are preferably composed mainly of ethylene glycol such as polyethylene glycol or monoethylene glycol and water. Specifically, for example, the total content of ethylene glycol and water with respect to the total amount of the lubricant is preferably 95% by mass or more. Further, for example, polyethylene alcohol, glycerin, lactitol, sorbitol or the like may be used instead of ethylene glycol. Specifically, for example, the total content of polyethylene alcohol, glycerin, lactitol or sorbitol and water with respect to the total amount of the lubricant is preferably 95% by mass or more.

上述の場合、潤滑剤25,31は水溶性であるので、第1及び第2の研磨工程後におけるGaN基板1や、定盤101等の研磨装置100の洗浄が容易になる。GaNは水と反応しないので、水溶性の潤滑剤を用いることができる。これにより、洗浄の作業性が向上し、洗浄コストも低減できる。また、潤滑剤25,31がエチレングリコール、ポリエチレンアルコール、グリセリン、ラクチトール又はソルビトールを含有すると、第1及び第2の研磨工程において潤滑剤25,31の蒸発を抑制でき、定盤101の防錆を実現できる。   In the above case, since the lubricants 25 and 31 are water-soluble, it becomes easy to clean the polishing apparatus 100 such as the GaN substrate 1 and the surface plate 101 after the first and second polishing steps. Since GaN does not react with water, a water-soluble lubricant can be used. Thereby, the workability | operativity of washing | cleaning improves and washing | cleaning cost can also be reduced. Further, when the lubricants 25 and 31 contain ethylene glycol, polyethylene alcohol, glycerin, lactitol or sorbitol, the evaporation of the lubricants 25 and 31 can be suppressed in the first and second polishing steps, and the rust prevention of the surface plate 101 can be prevented. realizable.

また、本実施形態では、第2の研磨工程で使用される定盤として、第1の研磨工程で使用された定盤101を用いるので、定盤の個体差(例えば表面形状の相違等)を考慮する必要がない。よって、第1の研磨工程において定盤101上で研磨されたGaN基板1を第2の研磨工程において定盤101上で研磨する際に、GaN基板1の表面1aの形状と定盤101の表面101aの形状とが適合する。このため、第2の研磨工程後におけるスクラッチの発生を抑制できる。   In the present embodiment, since the surface plate 101 used in the first polishing step is used as the surface plate used in the second polishing step, individual differences (for example, differences in surface shape, etc.) of the surface plate are taken. There is no need to consider. Therefore, when the GaN substrate 1 polished on the surface plate 101 in the first polishing step is polished on the surface plate 101 in the second polishing step, the shape of the surface 1a of the GaN substrate 1 and the surface of the surface plate 101 are determined. The shape of 101a fits. For this reason, generation | occurrence | production of the scratch after a 2nd grinding | polishing process can be suppressed.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されない。   As mentioned above, although preferred embodiment of this invention was described in detail, this invention is not limited to the said embodiment.

例えば、上記実施形態において、フェーシング工程、チャージング工程及びクリーニング工程のうち1以上の工程を省略するとしてもよい。チャージング工程を省略した場合、第1の研磨工程において研磨材21が定盤101に埋め込まれていない。このとき、第1の研磨工程において研磨を行うと研磨材23が徐々に定盤101に埋め込まれるので、埋め込まれた研磨材23が固定砥粒となる。この固定砥粒が第2の研磨工程において研磨材29となる。   For example, in the above embodiment, one or more of the facing process, the charging process, and the cleaning process may be omitted. When the charging step is omitted, the abrasive 21 is not embedded in the surface plate 101 in the first polishing step. At this time, if polishing is performed in the first polishing step, the abrasive 23 is gradually embedded in the surface plate 101, so that the embedded abrasive 23 becomes fixed abrasive grains. This fixed abrasive becomes the abrasive 29 in the second polishing step.

また、第1の研磨工程の後、第2の研磨工程の前に、フェーシング工程及びチャージング工程を実施するとしてもよい。また、第1の研磨工程の前にフェーシング工程を実施し、第1の研磨工程の後、第2の研磨工程の前に、チャージング工程を実施するとしてもよい。いずれの場合であっても上記実施形態と同様の作用効果が得られる。また、これらの場合、研磨材21が研磨材29となる。   Further, the facing process and the charging process may be performed after the first polishing process and before the second polishing process. Further, the facing process may be performed before the first polishing process, and the charging process may be performed after the first polishing process and before the second polishing process. In either case, the same effect as the above embodiment can be obtained. In these cases, the abrasive 21 becomes the abrasive 29.

また、上記実施形態では、第2の研磨工程で使用される定盤として、第1の研磨工程で使用される定盤101を用いるとしたが、第1の研磨工程に用いる定盤(第1の定盤)と第2の研磨工程に用いる定盤(第2の定盤)とが異なるとしてもよい。この場合、フェーシング工程及びチャージング工程は、第1の研磨工程の前に第1の定盤に対して実施されるとしてもよいし、第2の研磨工程の前に第2の定盤に対して実施されるとしてもよい。いずれの場合であっても上記実施形態と同様の作用効果が得られる。   In the above embodiment, the surface plate 101 used in the first polishing step is used as the surface plate used in the second polishing step. However, the surface plate (first surface) used in the first polishing step is used. The surface plate) and the surface plate (second surface plate) used in the second polishing step may be different. In this case, the facing step and the charging step may be performed on the first platen before the first polishing step, or on the second platen before the second polishing step. May be implemented. In either case, the same effect as the above embodiment can be obtained.

1…GaN基板、21…第3の研磨材、23…第1の研磨材、25…第1の潤滑剤、27…研磨液、29…第2の研磨材、31…第2の潤滑剤、101…第1及び第2の定盤。   DESCRIPTION OF SYMBOLS 1 ... GaN substrate, 21 ... 3rd abrasive | polishing material, 23 ... 1st abrasive | polishing material, 25 ... 1st lubricant, 27 ... Polishing liquid, 29 ... 2nd abrasive | polishing material, 31 ... 2nd lubricant, 101: First and second surface plates.

Claims (7)

研磨材と潤滑剤とを含む研磨液を定盤上に供給しながら、前記定盤及び前記研磨液を用いてGaN基板を研磨する方法であって、
前記研磨材を前記定盤に埋め込むチャージング工程と、
前記研磨材が埋め込まれた定盤を用いて、固定砥粒と遊離砥粒とによって前記GaN基板を研磨する研磨工程と、
を含み、
前記遊離砥粒の最大粒径が1μm以下である、GaN基板の研磨方法。
A method for polishing a GaN substrate using the surface plate and the polishing liquid while supplying a polishing liquid containing an abrasive and a lubricant onto the surface plate,
A charging step of embedding the abrasive in the surface plate;
A polishing step of polishing the GaN substrate with fixed abrasive grains and free abrasive grains using a surface plate in which the abrasive is embedded,
Only including,
A method for polishing a GaN substrate, wherein the loose abrasive has a maximum particle size of 1 μm or less .
前記定盤の周速度は、7m/min以上57m/min以下である、請求項1に記載のGaN基板の研磨方法。   The method for polishing a GaN substrate according to claim 1, wherein the peripheral speed of the surface plate is 7 m / min or more and 57 m / min or less. 前記研磨材は、ダイヤモンド砥粒である、請求項1又は2に記載のGaN基板の研磨方法。   The method for polishing a GaN substrate according to claim 1, wherein the abrasive is diamond abrasive grains. 前記定盤の構成材料は、錫を50質量%以上含有する合金である、請求項1〜3のいずれか一項に記載のGaN基板の研磨方法。   The constituent material of the said surface plate is a grinding | polishing method of the GaN substrate as described in any one of Claims 1-3 which is an alloy containing 50 mass% or more of tin. 前記チャージング工程の前に、平坦度が10μm以下となるように前記定盤を切削加工するフェーシング工程を更に含む、請求項1〜4のいずれか一項に記載のGaN基板の研磨方法。   The method for polishing a GaN substrate according to any one of claims 1 to 4, further comprising a facing step of cutting the surface plate so that the flatness is 10 μm or less before the charging step. 前記潤滑剤は、エチレングリコール及び水を主成分とする、請求項1〜5のいずれか一項に記載のGaN基板の研磨方法。   The method for polishing a GaN substrate according to claim 1, wherein the lubricant contains ethylene glycol and water as main components. 前記チャージング工程において、前記研磨液を前記定盤上に供給してGaN基板を研磨することにより、前記研磨材を前記定盤に埋め込んで前記研磨材を固定砥粒とする、請求項1〜のいずれか一項に記載のGaN基板の研磨方法。 In the charging step, by supplying the polishing liquid onto the surface plate and polishing the GaN substrate, the polishing material is embedded in the surface plate and the abrasive is used as fixed abrasive grains. The method for polishing a GaN substrate according to claim 6 .
JP2009023660A 2009-02-04 2009-02-04 Polishing method of GaN substrate Expired - Fee Related JP5024305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023660A JP5024305B2 (en) 2009-02-04 2009-02-04 Polishing method of GaN substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023660A JP5024305B2 (en) 2009-02-04 2009-02-04 Polishing method of GaN substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005005497A Division JP5065574B2 (en) 2005-01-12 2005-01-12 Polishing method of GaN substrate

Publications (2)

Publication Number Publication Date
JP2009105440A JP2009105440A (en) 2009-05-14
JP5024305B2 true JP5024305B2 (en) 2012-09-12

Family

ID=40706765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023660A Expired - Fee Related JP5024305B2 (en) 2009-02-04 2009-02-04 Polishing method of GaN substrate

Country Status (1)

Country Link
JP (1) JP5024305B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808201B2 (en) * 2011-09-01 2015-11-10 株式会社ディスコ Abrasive grain embedding device, lapping device, and lapping method
CN115091354B (en) * 2019-12-17 2023-09-26 深圳硅基仿生科技股份有限公司 Abrasive article for abrading ceramic surfaces

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261386A (en) * 1985-05-15 1986-11-19 Paresu Kagaku Kk Adhesive grain-dispersed slurry lapping-polishing lubricant
JPH10249714A (en) * 1997-03-12 1998-09-22 Fujitsu Ltd Polishing device and method, magnetic head and magnetic recording and reproducing device
JP3775176B2 (en) * 2000-06-29 2006-05-17 株式会社Sumco Semiconductor wafer manufacturing method and manufacturing apparatus
JP4122800B2 (en) * 2002-03-05 2008-07-23 株式会社Sumco Semiconductor wafer polishing method
JP2003305638A (en) * 2002-04-12 2003-10-28 Fujitsu Ltd Polishing device and polishing method
AU2003242004A1 (en) * 2002-06-04 2003-12-19 Disco Corporation Polishing material and method of polishing therewith
JP2004335646A (en) * 2003-05-06 2004-11-25 Sumitomo Electric Ind Ltd GaN SUBSTRATE
JP4155872B2 (en) * 2003-05-26 2008-09-24 一正 大西 Lapping machine manufacturing method

Also Published As

Publication number Publication date
JP2009105440A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP5065574B2 (en) Polishing method of GaN substrate
JP5412397B2 (en) Method for grinding a semiconductor wafer
JP4667263B2 (en) Silicon wafer manufacturing method
WO2019146336A1 (en) Seed crystal for 4h-sic single-crystal growth, and method for processing said seed crystal
JP5620300B2 (en) Polishing machine for polishing an object to be polished made of a crystal material, a manufacturing method thereof, and a polishing method
US20090090066A1 (en) Grinding tool and manufacturing method thereof
JP6106419B2 (en) Method for manufacturing SiC substrate
JP5024305B2 (en) Polishing method of GaN substrate
JP5697368B2 (en) Method of chemically grinding a semiconductor wafer on both sides
WO2014126174A1 (en) SURFACE-PROCESSING METHOD FOR MONOCRYSTALLINE SiC SUBSTRATES, MANUFACTURING METHOD THEREFOR, AND GRINDING PLATE FOR SURFACE-PROCESSING OF MONOCRYSTALLINE SiC SUBSTRATES
JP2009136926A (en) Conditioner and conditioning method
JP4905238B2 (en) Polishing method of glass substrate for magnetic recording medium
JP2013099831A (en) Grinding stone
JP2007061961A (en) Manufacturing method of lapping plate and mechanical lapping method
JP5195966B2 (en) Polishing method of GaN substrate
JP2006210488A (en) Method and device for mechanochemical polishing
JP6131749B2 (en) Method for polishing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium
JP2013032503A (en) Polishing liquid for electronic material
RU2295798C2 (en) Method for polishing semiconductor materials
JP2011067934A (en) Fixed abrasive grain wire and method of manufacturing the same
Zabasajja et al. Microreplicated pad conditioner for copper barrier CMP applications
JP2006159379A (en) High-speed machining method using coagulated fine particles
JP2018537844A (en) Method for processing a semiconductor wafer having a polycrystalline finish
JP2004050354A (en) Resin bonded grinding wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5024305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees