JP5021831B1 - 2-axis tracking solar concentrator - Google Patents

2-axis tracking solar concentrator Download PDF

Info

Publication number
JP5021831B1
JP5021831B1 JP2011227691A JP2011227691A JP5021831B1 JP 5021831 B1 JP5021831 B1 JP 5021831B1 JP 2011227691 A JP2011227691 A JP 2011227691A JP 2011227691 A JP2011227691 A JP 2011227691A JP 5021831 B1 JP5021831 B1 JP 5021831B1
Authority
JP
Japan
Prior art keywords
axis
mirror
crank
axis angle
mirrors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011227691A
Other languages
Japanese (ja)
Other versions
JP2013088000A (en
Inventor
浩光 久野
Original Assignee
浩光 久野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩光 久野 filed Critical 浩光 久野
Priority to JP2011227691A priority Critical patent/JP5021831B1/en
Application granted granted Critical
Publication of JP5021831B1 publication Critical patent/JP5021831B1/en
Publication of JP2013088000A publication Critical patent/JP2013088000A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Abstract

【課題】多数の鏡を2軸追尾する太陽光集光器において、鏡を簡単な機械機構で一括制御することが課題である。簡単な機械機構を言いかえれば、駆動装置の数が鏡の数よりずっと少ない構成である。
【解決手段】入射光と反射光と収束点を1平面内に収める事が、解決手段の要旨である。多数の鏡を直線に並べると共に、集光域を可動にして入射光と反射光が1平面内に収まるように制御する。1平面内の光学系とする事により、簡単な機械機構での一括制御が可能になる。
【選択図】図1
An object of the present invention is to collectively control mirrors with a simple mechanical mechanism in a solar concentrator that tracks many mirrors in two axes. In other words, the number of driving devices is much smaller than the number of mirrors.
The gist of the solving means is to make incident light, reflected light, and a convergence point within one plane. A large number of mirrors are arranged in a straight line, and the condensing area is made movable so that the incident light and the reflected light are controlled within one plane. By using an optical system in one plane, collective control with a simple mechanical mechanism becomes possible.
[Selection] Figure 1

Description

本発明は、複数枚の鏡で太陽光を反射させて集光する太陽光集光器に関する。もしくはへリオスタットとも云われる。さらに詳しくは2軸追尾方式、点集光系の集光器である。
ここでいう鏡とは、太陽光,日光,日射を反射する物全般である。鏡には、反射板,平面鏡,凹面鏡,パラボラ鏡,多面鏡を含む。
集光器の利用形態は、発電機,スターリングエンジン原動機,空調機,蒸留器,温水貯湯供給器,調理器等である。
明細書を読むにあたり、表1を参照して頂きたい。本発明の要旨は単純である。入射光と反射光と集光点を平面内に収める事である。しかし実施形態は多種多様になる。それら多種多様な構成を網羅する為に、特許請求の項での部材名称は上位概念で表記している。実施例での部材は下位概念で表記している。また1つの部材が2つの構成要件を兼ねる形態も構成し得る。ゆえに特許請求の項と実施例で表記の異なる部材名称の対照表を示した。

Figure 0005021831
ちなみに入射光と反射光と集光点を平面内に収めるといっても、幾何学上の厳密な平面や点ではない。鏡に平面鏡を用いるならば、反射光の集束する所もおよそ鏡の幅をもつ集束域となる。 The present invention relates to a solar collector that reflects and collects sunlight with a plurality of mirrors. Or heliostat. More specifically, it is a two-axis tracking type, point condensing system concentrator.
The mirror here refers to all objects that reflect sunlight, sunlight, and sunlight. The mirror includes a reflector, a plane mirror, a concave mirror, a parabolic mirror, and a polygon mirror.
The usage forms of the concentrator are a generator, a Stirling engine prime mover, an air conditioner, a distiller, a hot water hot water supply device, a cooking device, and the like.
Please refer to Table 1 when reading the specification. The gist of the present invention is simple. The incident light, the reflected light, and the condensing point are within a plane. However, there are many different embodiments. In order to cover these various configurations, the member names in the claims are expressed by a superordinate concept. The member in an Example is described with the subordinate concept. Moreover, the form in which one member serves as two structural requirements can also be comprised. Therefore, a comparison table of member names having different notations in the claims and the examples is shown.
Figure 0005021831
By the way, even if incident light, reflected light, and a condensing point are contained in a plane, it is not a strict geometric plane or point. If a plane mirror is used as the mirror, the spot where the reflected light is focused also becomes a focusing area having a mirror width.

太陽光を鏡で反射させて集光するには、太陽を追尾して鏡の角度を制御する必要がある。追尾方法はたくさんある。1軸追尾方法は簡単な装置で済む。だが1軸追尾は、反射光の集束域が分散し、集光率は下がる。2軸追尾方法は、反射光が1点に収束し、集光率は上がる。だが2軸追尾は、各鏡毎に追尾装置を要しコストがかさむ。そこで簡単な機械機構で、多数の鏡を一括2軸追尾させることが課題となっていた。同課題の先願がいくつか出願された。しかしながらそれら特許文献には、誤りと問題点が含まれていた。
先願の誤りとは、特定日の特定位置の鏡でのみ成立つが、それ以外では集光が成立たない事である。集光塔を建て、この集光点が春分の日に影を落とす位置から東西方向へ一列に鏡を並べ、これら鏡を一括操作する機構を構成する。この集光器は、春分秋分以外は成立たないし、集光塔との位置関係がズレた鏡では常に成立たない。特許文献1〜3ともすべてに当てはまる誤りである。
先願の問題点とは、熱膨張で支障が生じる事である。集光器は屋外に設置されるので、外気温の影響を受ける。物体は熱により膨張収縮する。長尺になるほど、熱膨張の影響を受ける。特許文献1〜3はいずれも長尺部材を含んでおり、かつ熱膨張の悪影響を回避できない構成である。
In order to collect sunlight by reflecting it with a mirror, it is necessary to track the sun and control the angle of the mirror. There are many tracking methods. The single axis tracking method requires a simple device. However, with single-axis tracking, the focusing area of reflected light is dispersed, and the light collection rate decreases. In the biaxial tracking method, the reflected light converges to one point and the light collection rate increases. However, the two-axis tracking requires a tracking device for each mirror and is expensive. Therefore, it has been a problem to track a large number of mirrors in two axes with a simple mechanical mechanism. Several prior applications for this subject were filed. However, these patent documents contained errors and problems.
The error of the prior application is that it is established only with a mirror at a specific position on a specific day, but no other light is collected. A condensing tower is built, and mirrors are arranged in a row in the east-west direction from the position where this condensing point casts a shadow on Equinox, and a mechanism for collectively operating these mirrors is constructed. This concentrator is not established except for the equinox and for the equinox, and is not always established for a mirror whose positional relationship with the concentrator is shifted. All of Patent Documents 1 to 3 are errors that apply to all.
The problem with the prior application is that there is a problem with thermal expansion. Since the condenser is installed outdoors, it is affected by the outside air temperature. The object expands and contracts due to heat. The longer it is, the more affected by thermal expansion. Each of Patent Documents 1 to 3 includes a long member and has a configuration in which the adverse effects of thermal expansion cannot be avoided.

特許登録第4473332号公報Patent Registration No. 4473332 特許登録第4527803号公報Patent Registration No. 4527803 国際出願WO2011/055719号公報International Application WO2011 / 055719

本発明の課題は、多数の鏡の2軸追尾を簡単な機械機構で一括制御することである。簡単な機械機構を言いかえれば、駆動装置の数が鏡の数よりずっと少ない構成である。また集光器を大きく構築する場合には、熱膨張の影響を受けるので熱膨張への配慮を要する。   An object of the present invention is to collectively control the two-axis tracking of a large number of mirrors with a simple mechanical mechanism. In other words, the number of driving devices is much smaller than the number of mirrors. In addition, when a condenser is constructed in a large size, it needs to be considered for thermal expansion because it is affected by thermal expansion.

簡単な機械機構で多数の鏡の姿勢を制御するならば、鏡は直線上に並べるのが有利である。そして簡単な機械機構での一括操作方法が成立つには、全光路が同一平面に収まる条件を満たす場合だけである。これら条件を成立たせるには、集光域も追尾に応じて移動させるしかない。ゆえに集光域を太陽と鏡の列を含む平面上に位置させ続けることが解決手段の要旨である。従来は固定していた集光域を移動させるという不利益を代償にして、簡単な機械機構での2軸追尾の実現という利益を得ている訳である。   If the posture of a large number of mirrors is controlled with a simple mechanical mechanism, it is advantageous to arrange the mirrors in a straight line. A collective operation method using a simple mechanical mechanism can be established only when the condition that all the optical paths are in the same plane is satisfied. The only way to satisfy these conditions is to move the condensing area according to the tracking. Therefore, it is the gist of the solution means to keep the condensing area on a plane including the sun and mirror rows. At the cost of moving the condensing area, which has been fixed in the past, it has gained the benefit of realizing two-axis tracking with a simple mechanical mechanism.

具体的な解決手段は、XYZ直交座標のXY座標面上のX座標軸に沿って複数の鏡を並べ、すべての鏡と接する長さの鏡支持部材を形成し、それぞれの鏡はY方向で回転するY軸受機構を介して鏡支持部材と接続し、この鏡支持部材にはX座標軸を軸心とするX軸受機構を介して支柱を接続し、この鏡支持部材の任意位置にX座標軸を軸心とするX軸角伝達部材を固定接続し、Z座標軸線上の任意位置に集光域を想定し、この集光域に光熱利用手段を位置させ、この光熱利用手段は竿を介して鏡支持部材に固定接続し、全ての鏡は想定太陽光を光熱利用手段へ反射するように鏡のY軸角を初期Y軸角の姿勢にし、全ての鏡のY軸回転する部材にはY軸クランクを固定接続し、すべてのY軸クランクにはY軸クランクを等角で連動させるクランク連動機構を軸接続し、このクランク連動機構にはクランク運動によって鏡のY軸角を制御するY軸角制御手段を接続し、前記までのすべての構成を1つのユニットとし、このユニットの支柱を集光器設置平面に固定し、このユニットを1つ以上平行に並べ、すべてのユニットのX軸角伝達部材をX軸角制御手段に連結し、X軸角制御手段とY軸角制御手段で太陽追尾する太陽光集光器を構成することを解決手段とする。
また集光器を大規模化する上では、熱膨張への配慮が必要になってくる。大規模化は単なる設計要素の一つに過ぎないが、光学系で屋外構築物となると熱膨張対処は必須条件となる。熱膨張への対処は、熱膨張によって伸縮する変位量を許容する接続構成にする。
A specific solution is to arrange a plurality of mirrors along the X coordinate axis on the XY coordinate plane of the XYZ orthogonal coordinates to form a mirror support member having a length in contact with all the mirrors, and each mirror rotates in the Y direction. connected to the Y bearing mechanism via a mirror support member, connecting the strut to the mirror supporting member through the X bearing mechanism and the axis of the X coordinate axis, the X axis to an arbitrary position of the mirror support member axes the X-axis angle transmission member to mind fixed connection, assuming a condensing zone at any position in the Z-axis line, the condenser region of the photothermal utilization means is located, the photothermal utilization means a mirror supported by a rod It is fixedly connected to the member , all mirrors are set to the initial Y-axis angle so that the assumed sunlight is reflected to the light heat utilization means, and the Y-axis crank is used for the members that rotate the Y-axis of all mirrors. Are fixedly connected, and all Y-axis cranks are connected to the Y-axis cranks at equal angles. An interlocking mechanism is connected to the shaft, and this crank interlocking mechanism is connected to a Y-axis angle control means for controlling the Y-axis angle of the mirror by crank motion. It is fixed to the collector installation plane, and one or more of these units are arranged in parallel. The X-axis angle transmission members of all units are connected to the X-axis angle control means, and the X-axis angle control means and the Y-axis angle control means The solution is to configure a solar concentrator that tracks the sun.
In addition, consideration for thermal expansion is necessary to increase the size of the condenser. Larger scale is just one of the design elements, but when it comes to outdoor structures in optical systems, it is essential to deal with thermal expansion. To cope with the thermal expansion, a connection configuration that allows a displacement amount that expands and contracts due to the thermal expansion is adopted.

ここでいうXYZ直交座標は、本発明の主要部の構成を理解し易くする為の表現である。主要部は装置の操作により可動である。Y座標軸線,Z座標軸線も不動ではなく、操作で動くこととなる。
ここでいう鏡支持部材とは、鏡を保持する部材である。鏡支持部材は、鏡の全周を囲む枠でもよいし、鏡の一辺に沿う枠でもよい。メガネレンズとメガネ枠の関係と同様である。実施例以外の例として、特許文献3も参照して頂きたい。
ここでX軸受機構およびY軸受機構を軸受機構と表記する理由は、軸棒と軸受の位置関係が逆でも成立つからである。固定側と可動側で、どちらが軸棒で、どちらが軸受でもよい為である。
ここで鏡の裏面とY軸角クランクの接続の技術的均等な構成として、Y軸受,鏡補強部材も構成し得る。
The XYZ orthogonal coordinates here are expressions for facilitating understanding of the configuration of the main part of the present invention. The main part is movable by operating the device. The Y-coordinate axis and the Z-coordinate axis are not fixed and move by operation.
The mirror support member here is a member that holds the mirror. The mirror support member may be a frame surrounding the entire circumference of the mirror or a frame along one side of the mirror. This is the same as the relationship between the spectacle lens and the spectacle frame. As an example other than the embodiment, please also refer to Patent Document 3.
Here, the reason why the X bearing mechanism and the Y bearing mechanism are referred to as a bearing mechanism is that the positional relationship between the shaft rod and the bearing is established even in the reverse direction. This is because either the fixed side or the movable side can be a shaft rod and either can be a bearing.
Here, a Y bearing and a mirror reinforcing member can also be configured as a technically equivalent configuration for connecting the back surface of the mirror and the Y-axis angle crank.

X軸角伝達部材とX軸角制御手段について説明する。X軸角伝達部材とは、X軸棒に回転を伝達する部材である。具体的なX軸角伝達部材と連結部材を列記すれば、スプロケットとチェーン、ギア歯車と歯車の連結機構、プーリとベルト、クランクとクランク連結部材などである。枠角伝達部材は連結部材によって枠角制御手段と接続され、適宜の動力源で駆動される。動力源は、電動モーター、リニアモーター、油圧シリンダなどである。あるいはX軸で回転するクランクを人力で操作する構成も成立つ。
ここでいう集光域とは、太陽光集光器として集光させようと設計段階で目標とする区域である。鏡からの反射光が結果的に集束する区域は、集束域というものとする。
光熱利用手段は、太陽熱発電、太陽熱動力機、太陽熱蒸留器,温水供給器,調理器,照明器等である。またはそれら光熱利用手段へ熱を伝達する為の熱媒体の循環流路である。
ここでいうクランク連動機構とは、多くのY軸クランクを連動させる機構である。Y軸クランク同士は平行かつ直列に並んでいる。ゆえにY軸クランク他端を直線部材で軸接続すれば、すべてのY軸クランクの連動が可能となる。クランク連動機構は、クランク運動で等しい角度だけY軸回転すればよい。ゆえにY軸クランクの形状や向きは様々に構成し得る。具体例は特許文献3を参照して頂きたい。
The X axis angle transmission member and the X axis angle control means will be described. The X-axis angle transmission member is a member that transmits rotation to the X-axis bar. Specific X-axis angle transmission members and connection members are listed as sprockets and chains, gear gears and gear connection mechanisms, pulleys and belts, cranks and crank connection members, and the like. The frame angle transmission member is connected to the frame angle control means by a connecting member, and is driven by an appropriate power source. The power source is an electric motor, a linear motor, a hydraulic cylinder, or the like. Or the structure which operates the crank which rotates with an X-axis by human power is also materialized.
A condensing area here is an area targeted at the design stage to collect light as a solar concentrator. The area where the reflected light from the mirror is eventually focused is referred to as the focusing area.
The light heat utilization means includes solar thermal power generation, solar thermal power machine, solar distiller, hot water feeder, cooker, illuminator, and the like. Or it is a circulation path of the heat medium for transferring heat to these light heat utilization means.
The crank interlocking mechanism here is a mechanism for interlocking many Y-axis cranks. The Y-axis cranks are arranged in parallel and in series. Therefore, if the other end of the Y-axis crank is connected by a linear member, all the Y-axis cranks can be linked. The crank interlocking mechanism only needs to rotate the Y axis by an equal angle in the crank motion. Therefore, the shape and direction of the Y-axis crank can be variously configured. See Patent Document 3 for a specific example.

ここでいう径差解消クランクとは、クランク連動機構とX軸心との距離の差を解消するクランクである。クランク連動機構をクランク運動させると、X軸心からクランク連動機構東端の径距離は変化する。そこでX軸とクランク連動機構東端の間に径差解消クランクを介在させる訳である。
ここでいうX軸角制御手段およびY軸角制御手段の制御とは、2軸太陽追尾手段のことである。適宜、太陽追尾の従来技術を用いる。太陽軌道座標の方位と仰角からX軸角とY軸角に換算したデータをコンピュータに蓄積しておき、月日と時刻に合せて制御するカレンダー制御方法などである。月齢も織り込めばより高精度になる。センサーによるフィードバック制御でも構わない。
ここでいう支柱を集光器設置平面に固定する事の意味は、集光器の設置方向が限定されないことを意味している。地理的な制約が無いならば東西向きユニットが最適である。理由は集光効率や追尾のし易さである。平面でさえあれば斜面も垂直面も設置可能である。壁面設置の場合は、垂直壁面のほうが望ましい。理由は、X軸角を操作しても集光部の高低差がなく、X軸角制御に要する力が一定で済むからである。
ここでいうユニットを1つ以上平行に並べるとは、隣りに平行にユニットを増設していくという事である。またユニット1つだけの構成も含んでいるという意味である。ユニット1つでも、集光器として充分に作用効果を発揮する。
The diameter difference eliminating crank referred to here is a crank that eliminates a difference in distance between the crank interlocking mechanism and the X axis. When the crank interlock mechanism is cranked, the radial distance from the X axis center to the east end of the crank interlock mechanism changes. Therefore, a diameter difference eliminating crank is interposed between the X axis and the east end of the crank interlocking mechanism.
Here, the control of the X-axis angle control means and the Y-axis angle control means is a biaxial sun tracking means. Where appropriate, conventional techniques of solar tracking are used. For example, a calendar control method in which data converted from the azimuth and elevation angle of the solar orbit coordinates to the X-axis angle and the Y-axis angle is stored in a computer and controlled according to the date and time. If we incorporate the age of the moon, it becomes more accurate. Feedback control by a sensor may be used.
The meaning of fixing the column to the collector installation plane here means that the installation direction of the collector is not limited. If there are no geographical restrictions, the east-west unit is the best. The reason is the light collection efficiency and the ease of tracking. As long as it is flat, both slopes and vertical surfaces can be installed. In the case of wall installation, a vertical wall is preferred. The reason is that even if the X-axis angle is manipulated, there is no difference in height of the condensing part, and the force required for the X-axis angle control is constant.
Arranging one or more units in parallel here means adding units in parallel next to each other. It also means that it includes a single unit configuration. Even a single unit is sufficiently effective as a condenser.

本発明の効果は、多数の鏡の2軸追尾を簡単な機械機構で実現したことである。従来であれば、多数の鏡を2軸追尾させる為には鏡1枚1枚に2軸追尾の為の駆動装置やセンサーや配管や配線を要していた。本発明では、集光器全体の中で駆動装置が1組か数組で済む。仮に鏡30枚の集光器で見積もるとしても、この駆動装置の削減効果は大きい。
もう一つの効果は、光熱利用手段のメンテナンスや暴風退避が行い易いことである。タワー式集光器では、タワー頂上の光熱利用手段をメンテナンスする手間が負担となっている。本発明では、光熱利用手段を低い位置へ操作することでメンテナンス等の作業はし易くなる。台風など暴風が気象予報された場合にも、光熱利用手段を低姿勢にすることで被害回避できる。また請求項4,5の構成は、熱膨張の弊害を防いでいる。
The effect of the present invention is that two-axis tracking of a large number of mirrors is realized by a simple mechanical mechanism. Conventionally, in order to track a large number of mirrors in two axes, each mirror requires a driving device, sensors, piping, and wiring for tracking in two axes. In the present invention, only one set or several sets of drive devices are required in the entire concentrator. Even if the estimation is made with 30 mirrors, the reduction effect of this driving device is great.
Another effect is that it is easy to perform maintenance and storm evacuation of the means for utilizing light heat. In the tower type concentrator, the trouble of maintaining the light heat utilization means at the top of the tower is a burden. In the present invention, the operation such as maintenance is facilitated by operating the light heat utilization means to a low position. Even when storms such as typhoons are forecasted by weather, damage can be avoided by lowering the light heat utilization means. Moreover, the structure of Claims 4 and 5 prevents the harmful effects of thermal expansion.

図1は実施例1の全体の斜視図である。FIG. 1 is an overall perspective view of the first embodiment. 図2は実施例1の全体の斜視図で、鏡を南傾,西傾させた図である。FIG. 2 is an overall perspective view of the first embodiment, in which the mirror is tilted southward and westward. 図3は実施例2の全体の斜視図である。FIG. 3 is an overall perspective view of the second embodiment. 図4は実施例2の鏡周辺部の側面図である。FIG. 4 is a side view of the periphery of the mirror according to the second embodiment. 図5は実施例2の鏡周辺部の側面図で、鏡を傾けた図である。FIG. 5 is a side view of the peripheral portion of the mirror according to the second embodiment, in which the mirror is tilted. 図6は実施例2の光熱利用手段周辺部の正面図である。FIG. 6 is a front view of the periphery of the light heat utilization means of the second embodiment. 図7は図6の状態から竿を垂直に立てた図である。FIG. 7 is a view in which the ridges are set up vertically from the state of FIG. 図8は図7の状態から竿を南に傾けた図である。FIG. 8 is a view in which the kite is tilted south from the state of FIG. 図9は実施例3を西から見た側面図である。 上部の途中部分は破断線で省略している。FIG. 9 is a side view of the third embodiment viewed from the west. The middle part of the upper part is omitted from the broken line. 図10は図9の断面AAの正面図である。上部は破断線で省略している。FIG. 10 is a front view of a cross section AA of FIG. The upper part is omitted from the broken line.

集光器は様々な利用目的に活用できる。集光器の設計要素はたくさんある。ゆえに集光器の実施形態は多種多様になる。実施例は基本的な例しか紹介できないが、実際にはとても多様性があると捉えて頂きたい。特に鏡とユニットは増設余地が大きい。鏡30枚で30ユニットも構成し得る。そしてその様な大規模な集光器を構成した場合に、熱膨張への配慮が必要になってくる。図示困難なので実施例では鏡3枚,3ユニットとしている。3枚目の鏡であっても、30枚目の鏡相当の熱膨張変位が生じるとして見て頂きたい。
特許請求項と実施例では、該当する部材名称は異なってくる。その対照は表1に示したので参照願いたい。
The concentrator can be used for various purposes. There are many design elements for concentrators. Therefore, there are a wide variety of concentrator embodiments. Although only basic examples can be introduced, it should be understood that the examples are very diverse. In particular, mirrors and units have a lot of room for expansion. 30 units can be constituted by 30 mirrors. When such a large-scale concentrator is constructed, consideration for thermal expansion becomes necessary. Since it is difficult to illustrate, in the embodiment, three mirrors and three units are used. Even if it is a 3rd mirror, please see that thermal expansion displacement equivalent to the 30th mirror occurs.
Corresponding member names differ between the claims and the embodiments. The comparison is shown in Table 1, so please refer to it.

実施例1は請求項1,4に対応する。図1,2を参照に説明する。図2は北側の鏡を省略している。北東端の鏡のみ、想像線で示した。北西端部分はY軸受6とY軸クランク7も省略している。X軸棒2を東西向きとし、4つのX軸受3を係合する。X軸受3には支柱4を接続し、支柱4を地面に固定する。このX軸棒2に3本のY軸棒5を南北向きに固定する。Y軸棒5にはY軸受6を係合する。Y軸受6に鏡1を接続する。Y軸受6にはY軸クランク7を固定接続する。2本の長棒に直交して接する3本の横棒8からなるクランク連動機構9を形成する。クランク連動機構9を鏡1の列の真下に位置させる。Y軸クランク7の下端をクランク連動機構9と軸接続する。横棒8はY軸クランク7の下端との軸接続の軸棒を兼ねる。この時、すべてのY軸クランク7は同じ方向姿勢であるが、各鏡1はそれぞれの初期Y軸角の姿勢である。
クランク連動機構9の東端は径差解消クランク10を軸接続する。径差解消クランク10は対称形であり、他端は南側のクランク連動機構9の東端と軸接続する。径差解消クランク10の東端は摺動管11と回動自在に係合する。摺動管11はX軸棒2と係合している。摺動管11はY軸制御シリンダ12のピストンと接続する。Y軸制御シリンダ12は固定具13によりX軸棒2に固定接続する。
The first embodiment corresponds to claims 1 and 4. A description will be given with reference to FIGS. FIG. 2 omits the north mirror. Only the mirror at the northeastern end is shown with an imaginary line. The northwest end portion also omits the Y bearing 6 and the Y-axis crank 7. The X-axis rod 2 faces east and west, and the four X bearings 3 are engaged. A column 4 is connected to the X bearing 3, and the column 4 is fixed to the ground. Three Y-axis rods 5 are fixed to the X-axis rod 2 in the north-south direction. A Y bearing 6 is engaged with the Y axis rod 5. The mirror 1 is connected to the Y bearing 6. A Y-axis crank 7 is fixedly connected to the Y bearing 6. A crank interlocking mechanism 9 comprising three horizontal bars 8 that are in contact with two long bars at right angles is formed. The crank interlocking mechanism 9 is positioned directly under the mirror 1 row. The lower end of the Y-axis crank 7 is axially connected to the crank interlocking mechanism 9. The horizontal bar 8 also serves as a shaft bar connected to the lower end of the Y-axis crank 7. At this time, all the Y-axis cranks 7 are in the same direction and posture, but each mirror 1 is in the posture of the initial Y-axis angle.
The east end of the crank interlocking mechanism 9 is axially connected to a diameter difference eliminating crank 10. The diameter difference canceling crank 10 is symmetrical, and the other end is connected to the east end of the crank interlocking mechanism 9 on the south side. The east end of the diameter difference eliminating crank 10 is rotatably engaged with the sliding tube 11. The sliding tube 11 is engaged with the X-axis bar 2. The sliding tube 11 is connected to the piston of the Y-axis control cylinder 12. The Y-axis control cylinder 12 is fixedly connected to the X-axis rod 2 by a fixture 13.

X軸棒2の西端はF字状に2本の竿14を直交させて固定接続する。竿14と竿14の間のX軸棒2には集光部支持台15を係合し、集光部支持台15を地面に固定する。竿14の上端には光熱利用手段16を固定接続する。竿14の上部には竿軸棒17を固定接続する。竿軸棒17にはX軸制御シリンダ18のピストンと接続する。X軸制御シリンダ18の下端は地面に軸接続する。
追尾制御の説明をする。太陽のX軸基準での仰角に竿14の角度を合せる。それはX軸制御シリンダ18の伸縮によって行なわれる。次に鏡1のY軸角を操作して、反射光の集束域を集光域に合せる。それはY軸制御シリンダ12の伸縮によって行なわれる。図2の状態からX軸制御シリンダ18を縮めると、図1に示すようにX軸棒2が回転し、鏡1は北傾きになる。図1の状態からY軸制御シリンダ12を伸ばすと、図2に示すようにY軸受6が回転し、鏡1が西傾きになる。
X軸棒2と係合する集光部支持台15は、摺動不能な軸受機構となる。それゆえ熱膨張によってX軸棒2が伸縮しても、X軸受3とX軸棒2が摺動するだけであり、支障ない。X軸棒2が縮んでも脱落しないように、東端は余分に長くしてある。熱膨張によってY軸棒5間隔も伸縮するが、クランク連動機構9も等しく伸縮するので、支障ない。長大なX軸制御シリンダ18を図示したが、構成を見易くする為である。実際にはクレーン車のアーム駆動シリンダのように、竿14の根元付近から短いシリンダを接続する構成でもよい。
The west end of the X-axis bar 2 is fixedly connected in the shape of an F-shape by making two ridges 14 orthogonal. The light collecting unit support 15 is engaged with the X-axis rod 2 between the reeds 14 and 14, and the light collecting unit support 15 is fixed to the ground. The light heat utilization means 16 is fixedly connected to the upper end of the flange 14. A shaft rod 17 is fixedly connected to the upper portion of the shaft 14. The shaft rod 17 is connected to the piston of the X-axis control cylinder 18. The lower end of the X-axis control cylinder 18 is axially connected to the ground.
The tracking control will be described. The angle of 竿 14 is adjusted to the elevation angle of the sun based on the X axis. This is done by extending and contracting the X-axis control cylinder 18. Next, the Y-axis angle of the mirror 1 is manipulated so that the reflected light converges the focusing area. This is done by extending and contracting the Y-axis control cylinder 12. When the X-axis control cylinder 18 is contracted from the state shown in FIG. 2, the X-axis bar 2 rotates as shown in FIG. 1, and the mirror 1 is tilted northward. When the Y-axis control cylinder 12 is extended from the state shown in FIG. 1, the Y bearing 6 rotates as shown in FIG.
The condensing unit support 15 that engages with the X-axis rod 2 is a non-slidable bearing mechanism. Therefore, even if the X-axis rod 2 expands and contracts due to thermal expansion, only the X bearing 3 and the X-axis rod 2 slide, and there is no problem. The east end is made extra long so that it does not fall off even if the X-axis rod 2 shrinks. Although the space between the Y-axis rods 5 expands and contracts due to thermal expansion, the crank interlocking mechanism 9 also expands and contracts equally, so there is no problem. Although the long X-axis control cylinder 18 is illustrated, it is for making the configuration easy to see. In practice, a configuration may be used in which a short cylinder is connected from the vicinity of the base of the rod 14 like an arm drive cylinder of a crane truck.

実施例2は請求項2,4,5に対応する。図3〜8を参照に説明する。実施例2の特徴は、鏡支持部材と、ユニット複数化と、集光部を別制御とした点である。東西方向に3枚の鏡20を並べる。すべての鏡20に接する東西向きの東西棒21を南側と北側に位置させる。この東西棒21を南北向きのY軸棒22で連結してハシゴ形状のシーソー枠23を形成する。すべてのY軸棒22中央下部に共通の東西方向直線を軸心とするX軸受機構24を介して支柱25を接続する。すべての支柱25を集光器設置面上に固定する。さらにY軸棒22にY軸受26を係合し、このY軸受26に鏡20を接続する。シーソー枠23の西端にはX軸クランク27を固定接続する。X軸受機構24とY軸棒22の部分を詳しく示したのが図4,5である。X軸受28はX軸棒29より短いので、その差だけ摺動可能となる。X軸受28の上にY軸棒22を固定接続する。Y軸受26にはY軸クランク31を固定接続する。図4では理解し易いように初期Y角を仮に0度とし、Y軸クランク31は鏡に対して垂直下向きとしている。Y軸クランク31下端はクランク連動棒32と軸接続する。
シーソー枠23の東端を越えたX軸心延長上に隣接軸棒33を設ける。この隣接軸棒33の両端は隣接支柱34で固定支持する。この隣接軸棒33に摺動軸受35を係合する。この摺動軸受35は隣接軸棒33に沿って摺動可能であり、かつ隣接軸棒33を軸心として回転可能である。摺動軸受35にはV字形の径差解消クランク36の中央部を軸接続し、径差解消クランク36の他端はクランク連動棒32の東端と軸接続する。
The second embodiment corresponds to claims 2, 4 and 5. This will be described with reference to FIGS. The feature of the second embodiment is that the mirror support member , the unit pluralization, and the light collecting unit are separately controlled. Three mirrors 20 are arranged in the east-west direction. An east-west bar 21 facing all mirrors 20 is located on the south side and the north side. This east-west bar 21 is connected by a north-south-facing Y-axis bar 22 to form a ladder-shaped seesaw frame 23. A support column 25 is connected to the central lower part of all Y-axis rods 22 via an X bearing mechanism 24 having a common east-west straight line as an axis. All the columns 25 are fixed on the collector installation surface. Further, a Y bearing 26 is engaged with the Y axis rod 22, and the mirror 20 is connected to the Y bearing 26. An X-axis crank 27 is fixedly connected to the west end of the seesaw frame 23. 4 and 5 show the portions of the X bearing mechanism 24 and the Y axis rod 22 in detail. Since the X bearing 28 is shorter than the X axis rod 29, it can slide by the difference. A Y-axis rod 22 is fixedly connected on the X bearing 28. A Y-axis crank 31 is fixedly connected to the Y bearing 26. In FIG. 4, for easy understanding, the initial Y angle is assumed to be 0 degree, and the Y-axis crank 31 is vertically downward with respect to the mirror. The lower end of the Y-axis crank 31 is connected to the crank interlocking rod 32.
An adjacent shaft rod 33 is provided on the X axis extension beyond the east end of the seesaw frame 23. Both ends of the adjacent shaft rod 33 are fixedly supported by adjacent struts 34. A sliding bearing 35 is engaged with the adjacent shaft rod 33. The sliding bearing 35 is slidable along the adjacent shaft rod 33 and is rotatable about the adjacent shaft rod 33 as an axis. The center portion of the V-shaped diameter difference eliminating crank 36 is connected to the sliding bearing 35 as a shaft, and the other end of the diameter difference eliminating crank 36 is connected to the east end of the crank interlocking rod 32.

以上までのすべての構成が1単位のユニットである。このユニットにもう2つのユニットを平行に並べて設ける。各ユニットの摺動軸受35の上部には溝があり、ユニット連動棒37と摺動可能に係合する。ユニット連動棒37はY軸制御シリンダ38のピストンと係合する。Y軸制御シリンダ38は架台40で固定する。
隣接ユニットとのX軸クランク27同士間は弾性素材のバネ41で連結する。端のX軸クランク27の外側には釣合いクランク42を支持台43で固定する。この釣合いクランク42とX軸クランク27もバネ41で連結する。北の釣合いクランク42は、モータ44と軸接続する。各部分のバネ張力は等しくなるように設定する。X軸クランク27では隣合うバネ同士の張力が相殺されるので、バネ張力の負荷は無い。モータ44の回転によって釣合いクランク42の角度が制御され、すべてのX軸クランク27も連動し、全ユニットのX軸角が一括制御できる。熱膨張による伸縮はバネ41に吸収されるので、誤差は生じない。
続いて図6〜8を参照として、集光部を駆動制御する可動構築物の説明をする。図6〜8は西から見た図である。見易くする為にユニット側は鏡20と支柱25と支持台43だけ図示し、それ以外は略している。集光器の集光域下方の地面に2つの竿支持台45を設け、それぞれの竿支持台45に竿46を軸接続し、竿46の上端には梁47を軸接続する。梁47の集光域の位置に光熱利用手段48を固定する。梁47の上面の両端にはワイヤー50を接続する。竿支持台46の外側には鉄塔51を建てる。鉄塔51上端には滑車52を設ける。鉄塔51根元の外側には巻取り滑車53とワイヤー制御手段54を設ける。梁47に接続したワイヤー50は鉄塔51上端の滑車52に通し、巻取り滑車53にまで接続する。
All the configurations described above are one unit. Two other units are arranged in parallel in this unit. There is a groove in the upper part of the sliding bearing 35 of each unit, and the unit interlocking rod 37 is slidably engaged. The unit interlocking rod 37 is engaged with the piston of the Y-axis control cylinder 38. The Y-axis control cylinder 38 is fixed by a gantry 40.
The X-axis cranks 27 between adjacent units are connected by a spring 41 made of an elastic material . On the outside of the X-axis crank 27 at the end, a counterbalance crank 42 is fixed by a support base 43. The balance crank 42 and the X-axis crank 27 are also connected by a spring 41. The north balancing crank 42 is axially connected to the motor 44. The spring tension of each part is set to be equal. In the X-axis crank 27, the tension between adjacent springs cancels out, so there is no spring tension load. The angle of the counter crank 42 is controlled by the rotation of the motor 44, and all the X axis cranks 27 are also interlocked so that the X axis angles of all the units can be collectively controlled. Since expansion and contraction due to thermal expansion is absorbed by the spring 41, no error occurs.
Next, with reference to FIGS. 6 to 8, the movable structure that drives and controls the light collecting unit will be described. 6 to 8 are views seen from the west. In order to make it easy to see, only the mirror 20, the support column 25 and the support base 43 are shown on the unit side, and the rest are omitted. Two gutter support bases 45 are provided on the ground below the light condensing area of the concentrator. A gutter 46 is axially connected to each gutter support base 45, and a beam 47 is axially connected to the upper end of the gutter 46. The light heat utilization means 48 is fixed at the position of the condensing area of the beam 47. Wires 50 are connected to both ends of the upper surface of the beam 47. A steel tower 51 is built outside the heel support 46. A pulley 52 is provided at the upper end of the steel tower 51. A winding pulley 53 and wire control means 54 are provided outside the base of the steel tower 51. The wire 50 connected to the beam 47 passes through the pulley 52 at the upper end of the steel tower 51 and is connected to the winding pulley 53.

集光部の操作説明をする。鏡20の姿勢制御と集光部の姿勢制御は、別々の機械機構であり、制御も別々である。太陽光を垂直に受けるように鏡20の向きを制御する。同時に鏡20の反射光の光路に光熱利用手段48が位置するように竿46を北傾斜姿勢に制御する。その状態が図6である。竿46の姿勢制御は左右のワイヤー50を引くことでなされる。北ワイヤー50を弛め、南ワイヤー50を引くと、図7のように竿46が垂直姿勢になる。さらにワイヤー50を操作すると図8のように竿46は南傾斜になる。
実施例2の集光部を駆動制御する可動構築物は大掛かりで非効率的である。だが連結するユニット数が30,50と増える場合には効率的構成となる。また可動構築物は他の方式でも構わない。例えば2本の鉄塔の間を梁が垂直に上下動し、光熱利用手段が梁を左右移動する構成でもよい。ユニット部分はバネで保持しているので、必要があれば共振予防措置を施す。
The operation of the light collecting unit will be described. The attitude control of the mirror 20 and the attitude control of the light collecting unit are separate mechanical mechanisms, and the controls are also separate. The direction of the mirror 20 is controlled so as to receive sunlight vertically. At the same time, the rod 46 is controlled to the north inclined posture so that the photothermal utilization means 48 is positioned in the optical path of the reflected light of the mirror 20. This state is shown in FIG. The posture of the heel 46 is controlled by pulling the left and right wires 50. When the north wire 50 is loosened and the south wire 50 is pulled, the reed 46 is in a vertical posture as shown in FIG. When the wire 50 is further operated, the ridge 46 is inclined southward as shown in FIG.
The movable structure for driving and controlling the condensing unit of Example 2 is large and inefficient. However, when the number of units to be connected increases to 30, 50, an efficient configuration is obtained. The movable structure may be another method. For example, the beam may move vertically between two steel towers, and the light heat utilization means may move left and right along the beam. Since the unit part is held by a spring, resonance prevention measures are taken if necessary.

請求項1,3に対応する。図9,10を参照として説明する。ユニット姿勢を垂直にし、制御駆動を手動とした例である。おおよそ南向きで垂直なビル壁面60に沿って基準となる基準垂直線を想定する。この基準垂直線と交差するように水平向きの支柱61を固定接続する。この支柱61先端上面には垂直に屹立する短いX軸棒を固定接続する。このX軸棒に小スラスト軸受63を係合する。平行垂直な2本の棒を3本の東西棒64でつなげてシーソー枠65を形成し、この東西棒64と小スラスト軸受63を係合する。シーソー枠65は、2マスのハシゴのような形状となる。シーソー枠65の下端には基準垂直線に軸心をそろえた円柱台座66を固定接続し、この円柱台座66下面と地面との間に大スラスト軸受67を係合する。
シーソー枠65の東西棒64からマス目半分上の位置にY軸棒68を固定接続し、このY軸棒68にY軸受70を介して鏡71を接続する。このY軸受70に仰角クランク72を固定接続し、これら仰角クランク72他端をクランク連動棒73に軸接続する。上端のX軸棒の基準垂直線上には、隣接X軸棒74を位置させ、この隣接X軸棒74に隣接X軸受75を係合する。この隣接X軸受75は隣接支柱76によってビル壁面60に固定する。この隣接X軸棒74の下端には連結管77を固定接続し、この連結管77に径差解消クランク78を軸接続し、径差解消クランク78下端をクランク連動棒73の上端と軸接続する。X軸棒,小スラスト軸受63,円柱台座66,大スラスト軸受67,隣接X軸棒74,隣接X軸受75は、基準垂直線に軸心を合せている。
This corresponds to claims 1 and 3. Description will be made with reference to FIGS. This is an example in which the unit posture is vertical and the control drive is manual. A reference vertical line is assumed along the building wall 60 that is generally south-facing and vertical. A horizontal support 61 is fixedly connected so as to intersect with the reference vertical line. A short X-axis bar standing upright is fixedly connected to the upper surface of the tip of the column 61. A small thrust bearing 63 is engaged with the X-axis rod. The seesaw frame 65 is formed by connecting two parallel and vertical bars with three east and west bars 64, and the east and west bars 64 and the small thrust bearing 63 are engaged. The seesaw frame 65 is shaped like a two-square ladder. A cylindrical pedestal 66 having an axial center aligned with a reference vertical line is fixedly connected to the lower end of the seesaw frame 65, and a large thrust bearing 67 is engaged between the lower surface of the cylindrical pedestal 66 and the ground.
A Y-axis bar 68 is fixedly connected to a position half above the grid from the east-west bar 64 of the seesaw frame 65, and a mirror 71 is connected to the Y-axis bar 68 via a Y bearing 70. An elevation crank 72 is fixedly connected to the Y bearing 70, and the other end of the elevation crank 72 is axially connected to a crank interlocking rod 73. The adjacent X-axis rod 74 is positioned on the reference vertical line of the X-axis rod at the upper end, and the adjacent X-bearing 75 is engaged with the adjacent X-axis rod 74. The adjacent X bearing 75 is fixed to the building wall surface 60 by the adjacent support column 76. A connecting pipe 77 is fixedly connected to the lower end of the adjacent X-axis rod 74, a diameter difference eliminating crank 78 is axially connected to the connecting pipe 77, and the lower end of the diameter difference eliminating crank 78 is axially connected to the upper end of the crank interlocking rod 73. . The X axis rod, the small thrust bearing 63, the cylindrical pedestal 66, the large thrust bearing 67, the adjacent X axis rod 74, and the adjacent X bearing 75 are aligned with the reference vertical line.

前記の隣接X軸棒74の上端をワイヤー80に接続する。ワイヤー80はビル壁面60に設置した滑車81に架ける。ワイヤー80他端には釣合い錘82を吊るす。釣合い錘82の重量はクランク連動棒73側と釣合わせる。釣合い錘82の下端には紐83を繋げる。紐83は適当な高さで折り返して滑車81に架けて、ワイヤー80と繋げる。紐83を引けばワイヤー80が引かれ、クランク連動棒73が上がり、鏡71は前傾になる。逆側の紐83を引けば、ワイヤー80が緩み、自重でクランク連動棒73が下がり、鏡71は逆側に傾く。
前記の円柱台座66に梁84を接続する。梁84の先端には台車85を接続する。台車85の車輪86の向きは梁84と直交する向きである。台車85の上には加熱台87を設ける。加熱台87の側面には握り手88を設ける。加熱台87上が集光域となるように、鏡の初期仰角を設定する。加熱台87上に鍋90を置く。太陽光の方角と梁84を一致させる。太陽光の集束域が加熱台87に来るように紐83で鏡71の角度を操作すれば、太陽熱調理器として稼動する。方角追尾は握り手88で太陽光と梁84の一致が保つように台車85を動かす。仰角追尾は、紐83で鏡71角度を操作する。
以上3つの実施例を紹介したが、本発明の集光器はこれら以外の形態をとり得る。実施例では図示しやすいように鏡を3枚にしたが、実際には高温を得る為にも鏡の枚数は増やすこととなる。また実施例1の構成で、竿を中心に西側にも鏡を設置する構成も考えられる。
The upper end of the adjacent X axis rod 74 is connected to the wire 80. The wire 80 is placed on a pulley 81 installed on the building wall 60. A counterweight 82 is suspended from the other end of the wire 80. The weight of the counterweight 82 is balanced with the crank interlocking rod 73 side. A string 83 is connected to the lower end of the counterweight 82. The string 83 is folded back at an appropriate height, hung on the pulley 81, and connected to the wire 80. When the string 83 is pulled, the wire 80 is pulled, the crank interlocking rod 73 is raised, and the mirror 71 is tilted forward. If the reverse side string 83 is pulled, the wire 80 is loosened, the crank interlocking rod 73 is lowered by its own weight, and the mirror 71 is inclined to the opposite side.
A beam 84 is connected to the cylindrical pedestal 66. A carriage 85 is connected to the tip of the beam 84. The direction of the wheel 86 of the carriage 85 is the direction orthogonal to the beam 84. A heating table 87 is provided on the carriage 85. A grip 88 is provided on the side surface of the heating table 87. The initial elevation angle of the mirror is set so that the heating table 87 is in the condensing region. Place the pan 90 on the heating table 87. The direction of sunlight and the beam 84 are matched. If the angle of the mirror 71 is operated with the string 83 so that the sunlight converging area comes to the heating table 87, it operates as a solar cooker. In the direction tracking, the carriage 85 is moved by the grip 88 so that the sunlight and the beam 84 coincide with each other. In elevation tracking, the angle of the mirror 71 is operated with the string 83.
Although three embodiments have been introduced above, the concentrator of the present invention can take other forms. In the embodiment, the number of mirrors is three for easy illustration, but the number of mirrors is actually increased in order to obtain a high temperature. In addition, in the configuration of the first embodiment, a configuration in which a mirror is also installed on the west side around the ridge is also conceivable.

本発明は1ユニットに複数の集光域を設定することも可能である。鏡をグループ分けして、グループ毎にそれぞれの焦点座標へ集束するように初期Y軸角を設定すればよい。本発明は、様々なプラントの補助熱源,熱音響への熱源としても構成し得る。   In the present invention, it is possible to set a plurality of light condensing areas in one unit. The initial Y-axis angle may be set so that the mirrors are grouped and focused on the respective focal coordinates for each group. The present invention can also be configured as an auxiliary heat source for various plants and a heat source for thermoacoustics.

1.鏡 2.X軸棒 3.X軸受 5.Y軸棒 6.Y軸受 7.Y軸角クランク 9.クランク連動機構 10.径差解消クランク 12.Y軸角制御シリンダ 14.竿 16.光熱利用手段 18.X軸角制御シリンダ
20.鏡 46.竿 47.梁 48.光熱利用手段 54.ワイヤー制御手段 63.小スラスト軸受 67.大スラスト軸受 80.ワイヤー 82.釣合い錘
83.紐 87.加熱台 N.北方位
1. Mirror 2. X axis rod X bearing 5. Y axis bar 6. Y bearing 7. 8. Y-axis angle crank Crank interlocking mechanism 10. Diameter difference eliminating crank 12. Y axis angle control cylinder 14.竿 16. Photothermal utilization means 18. X-axis angle control cylinder 20. Mirror 46.竿 47. Beam 48. Photothermal utilization means 54. Wire control means 63. Small thrust bearing 67. Large thrust bearing 80. Wire 82. Counterweight 83. String 87. Heating table North

Claims (5)

XYZ直交座標のXY座標面上のX座標軸に沿って複数の鏡を並べ、すべての鏡に届きわたる長さの鏡支持部材を形成し、それぞれの鏡はY軸と平行な線で回転するY軸受機構を介して鏡支持部材と接続し、この鏡支持部材にはX座標軸を軸心とするX軸受機構を介して支柱を接続し、
この鏡支持部材の任意位置にX座標軸を軸心とするX軸角伝達部材を固定接続し、Z座標軸線上の任意位置に集光域を想定し、この集光域に光熱利用手段を位置させ、この光熱利用手段は竿を介して鏡支持部材に固定接続し、
全ての鏡は想定太陽光を光熱利用手段へ反射するように鏡のY軸角を初期Y軸角の姿勢にし、各鏡の裏面にはY軸クランクを固定接続し、すべてのY軸クランク他端にはY軸クランクを等角で連動させるクランク連動機構を軸接続し、このクランク連動機構にはクランク運動によって鏡のY軸角を制御するY軸角制御手段を接続し、
前記までのすべての構成を1つのユニットとし、このユニットの支柱を集光器設置平面に固定し、このユニットを1つ以上平行に並べ、すべてのユニットの竿(X軸角伝達部材)をX軸角制御手段に連結し、X軸角制御手段とY軸角制御手段の制御内容は太陽追尾である、太陽光集光器。
A plurality of mirrors are arranged along the X coordinate axis on the XY coordinate plane of the XYZ orthogonal coordinates to form a mirror support member having a length that reaches all the mirrors , and each mirror rotates on a line parallel to the Y axis. A mirror support member is connected via a bearing mechanism, and a support column is connected to the mirror support member via an X bearing mechanism having an X coordinate axis as an axis,
An X-axis angle transmission member having an X-coordinate axis as a center is fixedly connected to an arbitrary position of the mirror support member, a condensing area is assumed at an arbitrary position on the Z-coordinate axis, and the light heat utilization means is positioned in the condensing area. The light heat utilization means is fixedly connected to the mirror support member via a collar,
All mirrors have the Y-axis angle of the mirror set to the initial Y-axis angle so that the assumed sunlight is reflected to the light heat utilization means, and the Y-axis crank is fixedly connected to the back of each mirror. A crank interlocking mechanism that interlocks the Y-axis crank at an equal angle is connected to the end, and a Y-axis angle control means for controlling the Y-axis angle of the mirror by the crank motion is connected to the crank interlocking mechanism.
All the above configurations are made into one unit, the column of this unit is fixed to the concentrator installation plane, one or more of these units are arranged in parallel, and the ridges (X-axis angle transmission members) of all the units are arranged in X. A solar concentrator, which is connected to the axis angle control means, and the control content of the X axis angle control means and the Y axis angle control means is solar tracking.
XYZ直交座標のXY座標面上のX座標軸に沿って複数の鏡を並べ、すべての鏡に届きわたる長さの鏡支持部材を形成し、それぞれの鏡はY軸と平行な線で回転するY軸受機構を介して鏡支持部材と接続し、この鏡支持部材にはX座標軸を軸心とするX軸受機構を介して支柱を接続し、
この鏡支持部材の任意位置にX座標軸を軸心とするX軸角伝達部材を固定接続し、Z座標軸線上の任意位置に集光域を想定し、全ての鏡は想定太陽光を集光域へ反射するように鏡のY軸角を初期Y軸角の姿勢にし、各鏡の裏面にはY軸クランクを固定接続し、すべてのY軸クランク他端にはY軸クランクを等角で連動させるクランク連動機構を軸接続し、このクランク連動機構にはクランク運動によって鏡のY軸角を制御するY軸角制御手段を接続し、
前記までのすべての構成を1つのユニットとし、このユニットの支柱を集光器設置平面に固定し、このユニットを1つ以上平行に並べ、すべてのユニットのX軸角伝達部材をX軸角制御手段に連結し、X軸角制御手段とY軸角制御手段の制御内容は太陽追尾であり、
すべてのユニットの集光域座標にはユニットとは別の独立した可動構築物によって光熱利用手段を掲げ、この可動構築物には集光部制御手段を接続し、この集光部制御手段の制御内容は鏡支持部材の回転角に伴って移動する集光域座標に光熱利用手段の位置座標を追随して一致させる制御内容である、
太陽光集光器。
A plurality of mirrors are arranged along the X coordinate axis on the XY coordinate plane of the XYZ orthogonal coordinates to form a mirror support member having a length that reaches all the mirrors , and each mirror rotates on a line parallel to the Y axis. A mirror support member is connected via a bearing mechanism, and a support column is connected to the mirror support member via an X bearing mechanism having an X coordinate axis as an axis,
An X-axis angle transmission member centered on the X coordinate axis is fixedly connected to an arbitrary position of the mirror support member , and a condensing area is assumed at an arbitrary position on the Z coordinate axis, and all the mirrors collect the assumed sunlight. The Y-axis angle of the mirror is set to the initial Y-axis angle so that it reflects off the mirror, the Y-axis crank is fixedly connected to the back of each mirror, and the Y-axis crank is linked to the other end of each Y-axis crank at the same angle. A crank interlocking mechanism is connected to the shaft, and a Y-axis angle control means for controlling the Y-axis angle of the mirror by crank motion is connected to the crank interlocking mechanism.
All the above configurations are made into one unit, the column of this unit is fixed to the concentrator installation plane, one or more of these units are arranged in parallel, and the X-axis angle transmission members of all the units are controlled by the X-axis angle. Connected to the means, the control content of the X-axis angle control means and the Y-axis angle control means is solar tracking,
The light condensing area coordinates of all the units are provided with light heat utilization means by an independent movable structure separate from the unit, and a condensing unit control means is connected to this movable structure. The control content is to make the position coordinates of the light heat utilization means follow and coincide with the light collection area coordinates moving with the rotation angle of the mirror support member .
Solar collector.
請求項1の太陽光集光器において、X軸角制御手段は鏡支持部材を手動で回転させる構成であり、Y軸角制御手段はクランク連動機構を手動でクランク運動させる構成である、太陽光集光器。 2. The solar light collector according to claim 1, wherein the X-axis angle control means is configured to manually rotate the mirror support member , and the Y-axis angle control means is configured to manually crank the crank interlocking mechanism. Concentrator. 請求項1から3のうちのひとつの太陽光集光器において、ユニット内のX軸受機構の内の1つは摺動不能とし、他のX軸受機構は想定される熱膨張変位長さ以上にX軸棒がX軸受より長く形成し、X軸棒が摺動可能に構成された、太陽光集光器。   The solar concentrator according to any one of claims 1 to 3, wherein one of the X bearing mechanisms in the unit is not slidable, and the other X bearing mechanism is longer than an assumed thermal expansion displacement length. A solar concentrator in which the X-axis bar is formed longer than the X-bearing and the X-axis bar is slidable. 請求項1から3のうちのひとつの太陽光集光器において、X軸角伝達部材の連結部材は熱膨張を吸収し得る弾性素材を用いてなる、太陽光集光器。   4. The solar light collector according to claim 1, wherein the connecting member of the X-axis angle transmission member is made of an elastic material capable of absorbing thermal expansion.
JP2011227691A 2011-10-17 2011-10-17 2-axis tracking solar concentrator Expired - Fee Related JP5021831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011227691A JP5021831B1 (en) 2011-10-17 2011-10-17 2-axis tracking solar concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227691A JP5021831B1 (en) 2011-10-17 2011-10-17 2-axis tracking solar concentrator

Publications (2)

Publication Number Publication Date
JP5021831B1 true JP5021831B1 (en) 2012-09-12
JP2013088000A JP2013088000A (en) 2013-05-13

Family

ID=46980509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227691A Expired - Fee Related JP5021831B1 (en) 2011-10-17 2011-10-17 2-axis tracking solar concentrator

Country Status (1)

Country Link
JP (1) JP5021831B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278548A (en) * 2014-07-11 2016-01-27 王瑞峰 Tractive solar condensed light tracking device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039030A1 (en) * 2000-11-10 2002-05-16 Mikio Kinoshita Solar radiation concentrator and method of concentrating solar radiation
WO2002052204A1 (en) * 2000-12-25 2002-07-04 Mikio Kinoshita Solar radiation condensing device
JP2002228272A (en) * 2001-01-29 2002-08-14 Naoki Kubota Solar light reflection device
DE102004018151A1 (en) * 2004-04-08 2005-10-27 Neff, Siegfried Solar modules adjusting device for use in house, has power transmission linkages connected with solar modules and cooperating with connecting links, such that it drives solar modules when links are driven by drive motors
JP2010101594A (en) * 2008-10-27 2010-05-06 Mitsui Eng & Shipbuild Co Ltd Method and device of controlling heliostat for collecting sunlight
JP2011099627A (en) * 2009-11-06 2011-05-19 Hiromitsu Kuno Thin lightweight solar light collector easy in planar expansion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039030A1 (en) * 2000-11-10 2002-05-16 Mikio Kinoshita Solar radiation concentrator and method of concentrating solar radiation
WO2002052204A1 (en) * 2000-12-25 2002-07-04 Mikio Kinoshita Solar radiation condensing device
JP2002228272A (en) * 2001-01-29 2002-08-14 Naoki Kubota Solar light reflection device
DE102004018151A1 (en) * 2004-04-08 2005-10-27 Neff, Siegfried Solar modules adjusting device for use in house, has power transmission linkages connected with solar modules and cooperating with connecting links, such that it drives solar modules when links are driven by drive motors
JP2010101594A (en) * 2008-10-27 2010-05-06 Mitsui Eng & Shipbuild Co Ltd Method and device of controlling heliostat for collecting sunlight
JP2011099627A (en) * 2009-11-06 2011-05-19 Hiromitsu Kuno Thin lightweight solar light collector easy in planar expansion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278548A (en) * 2014-07-11 2016-01-27 王瑞峰 Tractive solar condensed light tracking device

Also Published As

Publication number Publication date
JP2013088000A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
WO2011055719A1 (en) Solar light collector for performing two-axis control for lines of reflective plates
US10584900B2 (en) Concentrating solar power with glasshouses
US7923624B2 (en) Solar concentrator system
EP2060928A1 (en) Light tracking device
US10148221B2 (en) Solar energy light collecting device and system thereof
US10514001B2 (en) Combined wind and solar power generating system
WO2015037230A1 (en) Heliostat device, solar thermal collection device, and solar concentrating photovoltaic device
JP2015014392A (en) Solar heat collection device
CN102792103A (en) Solar energy collection apparatus
JP6342632B2 (en) Solar concentrator
US9273672B2 (en) Solar energy collector with XY or XYZ sun tracking table
JP5021831B1 (en) 2-axis tracking solar concentrator
RU160476U1 (en) SOLAR POWER INSTALLATION
JP5869284B2 (en) Solar collector
JP2015118360A (en) Heliostat device, solar heat collection apparatus, and sunlight collection and power generation apparatus
KR102108220B1 (en) Photovoltaic power generation facility
US9239444B2 (en) Incident and reflective mirror array focusing by kinematic function control
JP2014135365A (en) Sunbeam condensation power generation device
JP6220520B2 (en) Solar thermal collector and solar thermal collection method
CN102053351B (en) Novel polar axis type solar condensation device
US11843348B2 (en) Dual axis solar array tracker
KR20130065934A (en) Structure for setting up solar power generator
CN103305279A (en) Moving point array solar-powered biomass gasification system
JP6231737B2 (en) Solar heat collector
BR102016001471A2 (en) HELIOTHERM CONCENTRATOR SYSTEM OF PARABOLIC MATRIX TYPE WITH TWO AXLES OF MOTORIZATION

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5021831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees