JP5021412B2 - BGA solder ball height measuring device - Google Patents

BGA solder ball height measuring device Download PDF

Info

Publication number
JP5021412B2
JP5021412B2 JP2007255222A JP2007255222A JP5021412B2 JP 5021412 B2 JP5021412 B2 JP 5021412B2 JP 2007255222 A JP2007255222 A JP 2007255222A JP 2007255222 A JP2007255222 A JP 2007255222A JP 5021412 B2 JP5021412 B2 JP 5021412B2
Authority
JP
Japan
Prior art keywords
bga solder
solder ball
light
height
bga
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007255222A
Other languages
Japanese (ja)
Other versions
JP2009085745A (en
Inventor
敦郎 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Panasonic Electric Works SUNX Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works SUNX Co Ltd filed Critical Panasonic Electric Works SUNX Co Ltd
Priority to JP2007255222A priority Critical patent/JP5021412B2/en
Publication of JP2009085745A publication Critical patent/JP2009085745A/en
Application granted granted Critical
Publication of JP5021412B2 publication Critical patent/JP5021412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、BGA半田ボールの高さ測定装置に関し、詳しくは、レーザ光を用いてBGA半田ボールの高さを測定する装置に関する。   The present invention relates to an apparatus for measuring the height of a BGA solder ball, and more particularly to an apparatus for measuring the height of a BGA solder ball using a laser beam.

従来より、測定対象物に向けてレーザ光を照射すると共に、測定対象物からの反射光をイメージセンサにて受光し、そのイメージセンサから出力される検出信号(受光信号)に基づいて測定対象物に係る変位を測定する変位センサが提供されている。例えば下記特許文献1には、光源からの光を測定対象物に照射し、その反射光をイメージセンサで受光して、当該反射光のイメージセンサにおける受光位置に基づき光源及びイメージセンサから測定対象物までの距離を測定する変位センサが開示されている。   Conventionally, a laser beam is irradiated toward a measurement object, and reflected light from the measurement object is received by an image sensor, and the measurement object is based on a detection signal (light reception signal) output from the image sensor. There is provided a displacement sensor for measuring the displacement according to the above. For example, in Patent Document 1 below, a measurement object is irradiated with light from a light source, the reflected light is received by an image sensor, and the measurement object is received from the light source and the image sensor based on the light reception position of the reflected light in the image sensor. Displacement sensors that measure the distance to are disclosed.

そのような変位センサは、図5に示すような、BGA(Ball Grid Array)基板W上の測定対象物であるBGA半田ボール31の高さの変位あるいは高さを測定して、BGA半田ボール31の高さ不良を検出するために、使用される。ここで、BGA半田ボール31は、列方向にピッチP1、行方向にピッチP2を有して、マトリクス状に配置されている。その際、図5に示されるように、通常、小円形の照射スポットSが、BGA半田ボール31の頂点付近に形成されるように、従来の半田ボールの高さ測定装置のレーザ光が該頂点に照射される(R1行L1列を参照)。次いで、例えば、BGA基板Wあるいは同測定装を列方向Mに相対的に移動(スキャン)して、R2行L1列に位置するBGA半田ボール31の測定が行われ、続いてL2列からL4列までの測定が順次行われる。
特開2007−121175公報
Such a displacement sensor measures the displacement or height of the height of a BGA solder ball 31 as a measurement object on a BGA (Ball Grid Array) substrate W as shown in FIG. Used to detect height defects. Here, the BGA solder balls 31 have a pitch P1 in the column direction and a pitch P2 in the row direction, and are arranged in a matrix. At that time, as shown in FIG. 5, the laser beam of the conventional solder ball height measuring device is usually arranged so that a small circular irradiation spot S is formed near the vertex of the BGA solder ball 31. (See R1 row L1 column). Next, for example, the BGA substrate W or the same measuring device is relatively moved (scanned) in the column direction M to measure the BGA solder balls 31 positioned in the R2 row and the L1 column, and then the L2 column to the L4 column. Measurements up to are sequentially performed.
JP 2007-121175 A

ところで、BGA基板W上に形成されたBGA半田ボール31が、図5の一点鎖線で囲まれたL4列のBGA半田ボール31Aのように、正規の位置から測定の移動方向(列方向)Mと直交する方向に位置ずれを有する場合がある。このような位置ずれを有するBGA半田ボール(以下「位置ずれBGA半田ボール」と言う)31Aを含んでマトリクス状に配置されたBGA半田ボール31の高さの変位を、上記のような従来の半田ボールの高さ測定装置を用いて測定しようとする場合、以下のような不具合が生じる。   By the way, the BGA solder balls 31 formed on the BGA substrate W are moved from the normal position to the measurement moving direction (column direction) M like the L4 rows of BGA solder balls 31A surrounded by the one-dot chain line in FIG. There may be a positional shift in the orthogonal direction. The displacement of the height of the BGA solder balls 31 arranged in a matrix including the BGA solder balls 31A having such misalignment (hereinafter referred to as “misaligned BGA solder balls”) is converted into the conventional solder as described above. When attempting to measure using a ball height measuring device, the following problems occur.

すなわち、位置ずれBGA半田ボール31Aの測定の際に、その位置ずれに起因して、レーザ光の照射スポットSが位置ずれBGA半田ボール31Aの頂点に適正に照射されず、BGA半田ボール31Aの高さの変位測定が好適に行われない場合がある。そのため、そのような位置ずれBGA半田ボール31Aの測定を確実に行うために、BGA基板Wあるいは測定装置の位置調整を行った後に再度位置ずれBGA半田ボール31Aの測定を行う必要があった。そのため、測定作業に余分な時間を要し、作業効率が低下するという不具合があった。   That is, when measuring the misaligned BGA solder ball 31A, due to the misalignment, the irradiation spot S of the laser beam is not properly irradiated to the apex of the misaligned BGA solder ball 31A, and the height of the BGA solder ball 31A is high. In some cases, the displacement measurement is not suitably performed. Therefore, in order to reliably measure such a misaligned BGA solder ball 31A, it is necessary to measure the misaligned BGA solder ball 31A again after adjusting the position of the BGA substrate W or the measuring device. Therefore, there is a problem that extra time is required for the measurement work and work efficiency is lowered.

本発明は上記のような事情に基づいて完成されたものであって、基板上に列を成して配置されたBGA半田ボールの高さに係る測定の作業効率を向上するBGA半田ボールの高さ測定装置を提供することを目的とする。   The present invention has been completed based on the above situation, and the height of the BGA solder ball for improving the working efficiency of the measurement related to the height of the BGA solder balls arranged in a row on the substrate. An object of the present invention is to provide a measuring device.

上記の目的を達成するための手段として、本発明によるBGA半田ボールの高さ測定装置は、基板上に列を成して配置される複数のBGA半田ボールの各々の高さを測定する装置であって、前記複数のBGA半田ボールに対して光を照射する投光手段と、複数の画素からなる受光面を有し、前記光照射されたBGA半田ボールからの反射光を該BGA半田ボールからの距離に応じた受光面上の位置で受光し、その受光位置に応じた受光信号を生成するリニアイメージセンサと、前記リニアイメージセンサの受光信号に基づいて前記BGA半田ボールの高さの変位を測定する測定手段とを備えた装置において、前記投光手段から照射される光は、前記列の方向と直交する方向であるとともに前記リニアイメージセンサの幅方向において、幅広なスポットを有するように形成されてなり、前記投光手段は、前記列方向に沿った、前記複数のBGA半田ボールとの相対的な移動によって、前記複数のBGA半田ボールの各々に対して前記幅広なスポットを有する光を順次照射し、前記幅広なスポットの長手方向の長さは、前記列の方向と直交する方向において許容されるBGA半田ボールの位置ずれ寸法の少なくとも2倍以上であることを特徴とする。 As a means for achieving the above object, a BGA solder ball height measuring device according to the present invention is a device for measuring the height of each of a plurality of BGA solder balls arranged in a row on a substrate. And a light projecting means for irradiating the plurality of BGA solder balls with light and a light receiving surface comprising a plurality of pixels, and the reflected light from the light irradiated BGA solder balls is transmitted from the BGA solder balls. A linear image sensor that receives light at a position on the light receiving surface according to the distance of the light and generates a light reception signal according to the light receiving position, and a displacement of the height of the BGA solder ball based on the light reception signal of the linear image sensor. In the apparatus comprising the measuring means for measuring, the light emitted from the light projecting means is wide in the width direction of the linear image sensor and in a direction orthogonal to the direction of the row. The light projecting means is formed to have a pot, and the light projecting means moves relative to each of the plurality of BGA solder balls along the row direction with respect to each of the plurality of BGA solder balls. The length of the wide spot in the longitudinal direction is sequentially irradiated with light having various spots, and the length in the longitudinal direction of the wide spot is at least twice as large as the positional deviation dimension of the BGA solder ball allowed in the direction orthogonal to the direction of the row. Features.

この構成によれば、投光手段から照射される光は、基板上に列を成して配置される複数のBGA半田ボールの列の方向と直交する方向であるとともにリニアイメージセンサの幅方向において幅広なスポットを有するように形成されている。そのため、BGA基板上に例えばマトリクス状に配置されたBGA半田ボールの高さの変位を測定する場合において、たとえ一部のBGA半田ボールが、測定する列の方向から直交する方向にずれて配置されていても、スポットの長手方向の寸法をその位置ずれに関連して適宜設定することにより、位置ずれしたBGA半田ボールの高さの変位測定を一回の測定で行うことができる。すなわち、そのような位置ずれBGA半田ボールの測定を確実に行うために、BGA基板あるいは測定装置の位置調整を行い、再度位置ずれBGA半田ボールに係る測定を行う必要はない。その結果、基板上に列を成して配置されたBGA半田ボールの高さに係る測定の作業効率を向上させることができる。   According to this configuration, the light emitted from the light projecting means is in a direction orthogonal to the direction of the plurality of BGA solder balls arranged in a row on the substrate and in the width direction of the linear image sensor. It is formed so as to have a wide spot. Therefore, when measuring the displacement of the height of BGA solder balls arranged in a matrix on the BGA substrate, for example, some of the BGA solder balls are arranged so as to be shifted in a direction orthogonal to the direction of the column to be measured. Even so, by appropriately setting the dimension in the longitudinal direction of the spot in relation to the positional deviation, the displacement measurement of the height of the BGA solder ball which has been displaced can be performed in a single measurement. That is, in order to reliably measure such a misaligned BGA solder ball, it is not necessary to adjust the position of the BGA substrate or the measuring apparatus and perform measurement related to the misaligned BGA solder ball again. As a result, it is possible to improve the working efficiency of the measurement related to the height of the BGA solder balls arranged in rows on the substrate.

ここで、「幅広なスポット」の意味は、BGA半田ボールの列方向の寸法に比べて、それと直交する方向の寸法が長い形状の光の断面を意味し、その形状は、例えば、長方形、楕円形、扁平な円形、扁平な楕円形等を含む。また「高さ測定」の意味には、基準となる高さからの変位を測定し、その変位を用いて高さを決定することも含まれる。   Here, the meaning of “wide spot” means a cross section of light having a shape whose dimension in the direction perpendicular to the row direction of the BGA solder balls is longer than that in the row direction. Shapes, flat circles, flat ellipses, etc. Further, the meaning of “height measurement” includes measuring a displacement from a reference height and determining the height using the displacement.

なお、本発明の特異性は、本来、幅広照射スポット(あるいは線状照射スポット)は、もっぱら、測定対象物が板状であって、その平面の平坦度の検出等に使用されるものであるが、球面形状を有するBGA半田ボールの高さに係る測定(変位測定を含む)にその適用性を見出した点にある。   The peculiarity of the present invention is that a wide irradiation spot (or a linear irradiation spot) is originally used for detecting the flatness of a flat surface when the object to be measured has a plate shape. However, it is the point of finding the applicability to the measurement (including displacement measurement) related to the height of the BGA solder ball having a spherical shape.

また、上記構成において、前記幅広なスポットの長手方向の長さは、前記列の方向と直交する方向におけるBGA半田ボールの配置ピッチ以下であることが好ましい。   In the above configuration, the length of the wide spot in the longitudinal direction is preferably equal to or less than the arrangement pitch of the BGA solder balls in the direction orthogonal to the direction of the row.

本発明によれば、基板上に列を成して配置されたBGA半田ボールの高さに係る測定の作業効率を向上することができる。   According to the present invention, it is possible to improve the working efficiency of measurement related to the height of BGA solder balls arranged in rows on a substrate.

<実施形態>
本発明の実施形態を図面を参照しつつ説明する。図1は、本実施形態のBGA半田ボールの高さ測定装置1の全体概要図である。この半田ボールの高さ測定装置1は、センサヘッド部11と、コントローラ部12とが信号ケーブルを介して接続された構成をなしている。なお、センサヘッド部11とコントローラ部12とは、一体として構成されてもよい。
<Embodiment>
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall schematic diagram of a BGA solder ball height measuring apparatus 1 according to the present embodiment. The solder ball height measuring device 1 has a configuration in which a sensor head unit 11 and a controller unit 12 are connected via a signal cable. In addition, the sensor head part 11 and the controller part 12 may be comprised integrally.

センサヘッド部11は、投光素子としてのレーザダイオード(LD)15と、そのレーザダイオード15を駆動するためのLD駆動回路14と、レーザダイオード15から発せられたレーザ光L1をBGA半田ボール31の表面上に照射させる投光レンズ16と、レーザ光L1の照射スポットを幅広に形成するスポット整形手段17とを備えている。スポット整形手段17は、例えば光学スリットである。これらのLD駆動回路14、レーザダイオード15、投光レンズ16およびスポット整形手段17が本発明の「投光手段」に相当する。なお、本実施形態において、レーザ光L1は幅広の照射スポット(以下「幅広照射スポット」)LSとしてBGA半田ボール31の表面に照射される。   The sensor head unit 11 includes a laser diode (LD) 15 as a light projecting element, an LD drive circuit 14 for driving the laser diode 15, and a laser beam L 1 emitted from the laser diode 15 on the BGA solder ball 31. A projection lens 16 for irradiating the surface and spot shaping means 17 for forming a wide irradiation spot of the laser beam L1 are provided. The spot shaping means 17 is, for example, an optical slit. The LD driving circuit 14, the laser diode 15, the light projecting lens 16, and the spot shaping means 17 correspond to the “light projecting means” of the present invention. In the present embodiment, the laser beam L1 is irradiated on the surface of the BGA solder ball 31 as a wide irradiation spot (hereinafter, “wide irradiation spot”) LS.

更に、センサヘッド部11は、受光レンズ18と、その受光レンズ18を透過したレーザ光L2を受光するCCDリニアセンサ19と、そのCCDリニアセンサ19を駆動するためのCCD駆動回路20とを備えている。受光レンズ18、CCDリニアセンサ19及びCCD駆動回路20は、位置検出手段として機能する。CCDリニアセンサ19は、受光面19aを形成する複数の細長い画素19bを備える。   The sensor head unit 11 further includes a light receiving lens 18, a CCD linear sensor 19 that receives the laser light L 2 that has passed through the light receiving lens 18, and a CCD drive circuit 20 that drives the CCD linear sensor 19. Yes. The light receiving lens 18, the CCD linear sensor 19, and the CCD drive circuit 20 function as position detecting means. The CCD linear sensor 19 includes a plurality of elongated pixels 19b that form a light receiving surface 19a.

レーザダイオード15から発せられたレーザ光L1は、投光レンズ16及びスポット整形手段17を透過してBGA基板W上のBGA半田ボール31に照射される。そして、このBGA半田ボール31の表面上の拡散反射光L2は、受光レンズ18を透過してCCDリニアセンサ19に入射する。このCCDリニアセンサ19において、受光量とBGA半田ボール31との相対位置に応じて蓄積された電荷は、受光信号としてCCD駆動回路20によって読み出され、受光信号は時系列の電圧信号S1に変換される。   The laser light L 1 emitted from the laser diode 15 passes through the light projecting lens 16 and the spot shaping means 17 and is irradiated on the BGA solder ball 31 on the BGA substrate W. The diffuse reflected light L2 on the surface of the BGA solder ball 31 passes through the light receiving lens 18 and enters the CCD linear sensor 19. In this CCD linear sensor 19, the charge accumulated according to the amount of light received and the relative position of the BGA solder ball 31 is read as a light receiving signal by the CCD drive circuit 20, and the light receiving signal is converted into a time-series voltage signal S1. Is done.

CCD駆動回路20が所定の転送用クロックをCCDリニアセンサ19に与えることにより、CCDリニアセンサ19は、各画素19bに蓄積された電荷を1画素ずつ順番に転送する。そして、CCD駆動回路20は、全画素の蓄積電荷に対応する時系列の電圧信号S1を生成し、電圧信号S1をコントローラ部12に供給する。   When the CCD drive circuit 20 gives a predetermined transfer clock to the CCD linear sensor 19, the CCD linear sensor 19 sequentially transfers the charges accumulated in each pixel 19b one pixel at a time. Then, the CCD drive circuit 20 generates a time-series voltage signal S1 corresponding to the accumulated charges of all the pixels, and supplies the voltage signal S1 to the controller unit 12.

コントローラ部12は、CPU41、メモリ42、操作キー43及び表示部44等を備えている。CPU41は、LD駆動回路14に駆動信号を与えてレーザダイオード15に投光動作をさせる。さらに、CPU41は、制御信号S2によって、所定周期でCCD駆動回路20を駆動させてCCDリニアセンサ19の各画素19bの蓄積電荷を転送させる受光動作を実行させて、CCD駆動回路20からの電圧信号S1を受け取る。   The controller unit 12 includes a CPU 41, a memory 42, operation keys 43, a display unit 44, and the like. The CPU 41 gives a drive signal to the LD drive circuit 14 to cause the laser diode 15 to perform a light projecting operation. Further, the CPU 41 drives the CCD drive circuit 20 at a predetermined cycle by the control signal S2 to execute a light receiving operation for transferring the accumulated charge of each pixel 19b of the CCD linear sensor 19, and the voltage signal from the CCD drive circuit 20 is executed. Receive S1.

以上の構成により、センサヘッド部11では、CCDリニアセンサ19の受光面19a上における拡散反射光L2の受光位置Pが、CCDリニアセンサ19からBGA半田ボール31の頂点までの距離によって移動する。そして、CPU41は、CCDリニアセンサ19の受光面19a上における拡散反射光L2の受光位置Pを、電圧信号S1を解析して検出することによりBGA半田ボール31の高さの変位を測定することができる。   With the above configuration, in the sensor head unit 11, the light receiving position P of the diffuse reflected light L <b> 2 on the light receiving surface 19 a of the CCD linear sensor 19 moves according to the distance from the CCD linear sensor 19 to the apex of the BGA solder ball 31. Then, the CPU 41 can measure the height displacement of the BGA solder ball 31 by detecting the light receiving position P of the diffuse reflected light L2 on the light receiving surface 19a of the CCD linear sensor 19 by analyzing the voltage signal S1. it can.

より詳細には、CPU41は、CCD駆動回路20からの電圧信号S1を受け取って、CCDリニアセンサ19の受光面19a上の全画素19bから最大受光量の画素を検出し、メモリ42の測定データ記憶領域に時系列で格納する。このとき、CPU41は本発明の「測定手段」として機能する。   More specifically, the CPU 41 receives the voltage signal S1 from the CCD drive circuit 20, detects the pixels with the maximum light reception amount from all the pixels 19b on the light receiving surface 19a of the CCD linear sensor 19, and stores the measurement data in the memory 42. Store time-sequentially in the area. At this time, the CPU 41 functions as “measuring means” of the present invention.

次に図2から図4を参照して、BGA半田ボールの高さ測定装置1によるBGA半田ボール31の高さhに係る測定機能を説明する。なお、図5に示された従来と同一の構成の説明は省略する。図2は、BGA半田ボール31に照射される幅広の照射スポットLSとCCDリニアセンサ19との位置関係を示す。図3は、本実施形態による測定の際の、BGA基板Wの平面図であり、図4は、図3の4−4線に沿った拡大断面の一部を示す。   Next, with reference to FIG. 2 to FIG. 4, a measurement function related to the height h of the BGA solder ball 31 by the BGA solder ball height measuring apparatus 1 will be described. The description of the same configuration as the conventional one shown in FIG. 5 is omitted. FIG. 2 shows a positional relationship between the wide irradiation spot LS irradiated to the BGA solder ball 31 and the CCD linear sensor 19. FIG. 3 is a plan view of the BGA substrate W at the time of measurement according to the present embodiment, and FIG. 4 shows a part of an enlarged cross section along line 4-4 of FIG.

図2〜図4において、矢印Aで示される方向(以下「方向A」)は、幅広照射スポットLSの幅広に形成される方向を示すとともに、CCDリニアセンサ19の幅方向(画素19bの長手方向)を示す。すなわち、BGA半田ボール31の高さhに係る測定の際に、幅広照射スポットLSの幅広に形成される方向Aと、CCDリニアセンサ19の幅方向(画素19bの長手方向)Bとは同一方向となる。ここで、幅広照射スポットLSは、例えば図2に示されるような陸上トラック形状を有する。また、図3に示されるように、方向Aは、BGA半田ボール31の配置の列方向であって、測定方向である矢印Mで示される方向(以下「方向M」)に対して直交する方向である。なお、測定の際に、BGA基板が固定される場合には、センサヘッド部11が方向Mに移動され、一方、センサヘッド部11が固定される場合には、BGA基板Wが方向Mと反対方向に移動される。   2 to 4, a direction indicated by an arrow A (hereinafter, “direction A”) indicates a direction in which the wide irradiation spot LS is formed wide, and the width direction of the CCD linear sensor 19 (longitudinal direction of the pixel 19b). ). That is, in the measurement relating to the height h of the BGA solder ball 31, the direction A in which the wide irradiation spot LS is formed wide and the width direction B (longitudinal direction of the pixel 19b) B of the CCD linear sensor 19 are the same direction. It becomes. Here, the wide irradiation spot LS has a land track shape as shown in FIG. Further, as shown in FIG. 3, the direction A is a row direction of the arrangement of the BGA solder balls 31 and is a direction orthogonal to a direction indicated by an arrow M that is a measurement direction (hereinafter referred to as “direction M”). It is. In the measurement, when the BGA substrate is fixed, the sensor head portion 11 is moved in the direction M. On the other hand, when the sensor head portion 11 is fixed, the BGA substrate W is opposite to the direction M. Moved in the direction.

さて、測定の際には、図2に示されるように、センサヘッド部11は、上記したように、照射スポットLSの幅広方向AがCCDリニアセンサ19の幅方向(画素19bの長手方向)Bと同一方向となるように、BGA基板Wに対して配置される。ここで、CCDリニアセンサ19の幅(画素19bの長手方向の長さ)d2は、少なくとも照射スポットLSの幅広方向の長さd1を有する。   In the measurement, as shown in FIG. 2, the sensor head unit 11 is configured such that the wide direction A of the irradiation spot LS is the width direction of the CCD linear sensor 19 (longitudinal direction of the pixel 19b) B as described above. Are arranged with respect to the BGA substrate W so as to be in the same direction. Here, the width (length in the longitudinal direction of the pixel 19b) d2 of the CCD linear sensor 19 has at least the width d1 in the wide direction of the irradiation spot LS.

このように照射スポットLSとCCDリニアセンサ19とが配置及び構成されることで、幅広照射スポットLSを有するレーザ光L1によるBGA半田ボール表面での拡散反射光L2が、好適に画素19bによって受光される。すなわち、幅広照射スポットLS内に存在するBGA半田ボール31の頂点からの拡散反射光L2が対応する画素19bによって受光される。その際、関連する拡散反射光L2の画素19b内での受光位置は、位置ずれBGA半田ボール31AのA方向(図3参照)への位置ずれに応じて、図2に示す画素19bの長手方向(CCDリニアセンサ19の幅方向)Bに移動する。   By arranging and configuring the irradiation spot LS and the CCD linear sensor 19 in this way, the diffuse reflected light L2 on the surface of the BGA solder ball by the laser light L1 having the wide irradiation spot LS is preferably received by the pixel 19b. The That is, the diffuse reflected light L2 from the apex of the BGA solder ball 31 existing in the wide irradiation spot LS is received by the corresponding pixel 19b. At that time, the light receiving position of the related diffuse reflected light L2 in the pixel 19b is the longitudinal direction of the pixel 19b shown in FIG. It moves to B (in the width direction of the CCD linear sensor 19).

また、BGA半田ボール31の高さの変位に応じて、BGA半田ボール31の頂点からの拡散反射光L2の受光位置Pが、図2に示すCCDリニアセンサ19の長手方向(画素19bの配列方向)Cにずれる。そのため、BGA半田ボール31の高さの変位の測定は、具体的には、所定の基準高さに対応する受光位置Pstからの受光位置Pのずれを検出し、その受光位置Pのずれを利用して行われる。すなわち、CPU41は、CCDリニアセンサ19の受光面19a上の全画素から最大受光量の画素19bの受光位置Pと、基準受光位置Pstとのずれに応じてBGA半田ボール31の高さの変位を測定する。CPU41は、全ての半田ボール31に対し順次、測定する。また、CPU41は、その変位と所定の基準とを比較して、BGA半田ボール31の高さhの良否を判定する。さらにCPU41は、基準となる高さと測定された変位から、BGA半田ボール31の高さhを決定することもできる。   Further, according to the displacement of the height of the BGA solder ball 31, the light receiving position P of the diffuse reflected light L2 from the apex of the BGA solder ball 31 is the longitudinal direction of the CCD linear sensor 19 shown in FIG. ) Shift to C. Therefore, the measurement of the displacement of the height of the BGA solder ball 31 specifically detects the shift of the light receiving position P from the light receiving position Pst corresponding to a predetermined reference height, and uses the shift of the light receiving position P. Done. That is, the CPU 41 changes the height of the BGA solder ball 31 according to the deviation between the light receiving position P of the pixel 19b having the maximum light receiving amount and the reference light receiving position Pst from all the pixels on the light receiving surface 19a of the CCD linear sensor 19. taking measurement. The CPU 41 sequentially measures all the solder balls 31. Further, the CPU 41 compares the displacement with a predetermined reference to determine whether the height h of the BGA solder ball 31 is good. Further, the CPU 41 can determine the height h of the BGA solder ball 31 from the reference height and the measured displacement.

その際、図3の点線で囲まれた位置ずれBGA半田ボール31Aの高さの変位を測定する場合であっても、本実施形態においては、図4に示されるように、幅広照射スポットLSのレーザ光L1が位置ずれBGA半田ボール31Aの頂点Tpを含むように照射され、その高さの変位測定が可能となる。そのため、マトリクス状に配置された複数のBGA半田ボールの高さの変位測定が、一回のスキャン測定によって可能となる。   At that time, even when measuring the displacement of the height of the misaligned BGA solder ball 31A surrounded by the dotted line in FIG. 3, in this embodiment, as shown in FIG. The laser beam L1 is irradiated so as to include the apex Tp of the misaligned BGA solder ball 31A, and the displacement of the height can be measured. Therefore, it is possible to measure the displacement of the heights of a plurality of BGA solder balls arranged in a matrix by a single scan measurement.

なお、幅広照射スポットLSの長手方向Aの長さd1は、BGA半田ボール31Aの最大径寸法、BGA半田ボール31Aの配置ピッチP2、及びBGA半田ボール31Aの位置ずれ許容度等に応じて、適宜設定される。ここでは、長さd1は、例えば、図4の2点鎖線で示されるBGA半田ボール31の正常の位置(L4)からのBGA半田ボール31Aの許容される位置ずれ寸法Dの2倍を超える長さを有している。すなわち、幅広照射スポットLSの長手方向Aの長さd1は、少なくとも2D以上の長さを有する(図4参照)。そのため、この場合、図4に示されるように、レーザ光L1は、位置ずれBGA半田ボール31Aの頂点Tpを確実に含んで照射される。なお、許容される位置ずれ寸法Dは、通常、BGA基板に要求される条件に応じて異なる。   The length d1 of the wide irradiation spot LS in the longitudinal direction A is appropriately determined according to the maximum diameter size of the BGA solder balls 31A, the arrangement pitch P2 of the BGA solder balls 31A, the positional deviation tolerance of the BGA solder balls 31A, and the like. Is set. Here, the length d1 is, for example, a length that exceeds twice the allowable misalignment dimension D of the BGA solder ball 31A from the normal position (L4) of the BGA solder ball 31 shown by a two-dot chain line in FIG. Have That is, the length d1 of the wide irradiation spot LS in the longitudinal direction A has a length of at least 2D (see FIG. 4). Therefore, in this case, as shown in FIG. 4, the laser beam L1 is irradiated so as to reliably include the apex Tp of the misaligned BGA solder ball 31A. The allowable misalignment dimension D usually varies depending on the conditions required for the BGA substrate.

以上説明したように、本実施形態の構成によれば、球面形状であるBGA半田ボール31の高さの変位測定が、BGA半田ボール31の列方向Mと直交する方向Aにおいて幅広な照射スポットLSを用いて行われる。そのため、BGA半田ボール31が列方向Mと直交する方向Aに位置ずれして配置された場合においても、その位置ずれしたBGA半田ボール31Aの高さの変位測定が、BGA基板Wまたはセンサヘッド部11の一回の移動(スキャン)によって可能となる。その結果、位置ずれBGA半田ボール31Aを測定するために、BGA基板Wまたはセンサヘッド部11を再度移動する必要がなくなり、作業効率が向上される。   As described above, according to the configuration of the present embodiment, the measurement of the displacement of the height of the BGA solder ball 31 having a spherical shape is performed with a wide irradiation spot LS in the direction A perpendicular to the column direction M of the BGA solder ball 31. It is done using. Therefore, even when the BGA solder balls 31 are displaced in the direction A perpendicular to the column direction M, the displacement measurement of the height of the displaced BGA solder balls 31A is performed by the BGA substrate W or the sensor head unit. 11 is possible by one movement (scan). As a result, it is not necessary to move the BGA substrate W or the sensor head unit 11 again in order to measure the misaligned BGA solder ball 31A, and the working efficiency is improved.

また、幅広照射スポットLSの長手方向Aの長さd1は、位置ずれBGA半田ボール31Aの許容される位置ずれ寸法Dの少なくとも2倍を超える長さを有している。そのため、許容される位置ずれ寸法D範囲内にある位置ずれBGA半田ボール31Aの高さの変位測定が、確実に実行される。さらに、幅広照射スポットLSの長さd1を適宜設定することにより、本発明によるBGA半田ボールの高さ測定装置1を、BGA半田ボール31の長手方向Aの位置ずれが許容範囲であるがどうかの検出にも使用できる。   Further, the length d1 in the longitudinal direction A of the wide irradiation spot LS has a length that exceeds at least twice the allowable displacement D of the displacement BGA solder ball 31A. Therefore, the displacement measurement of the height of the misalignment BGA solder ball 31A within the allowable misalignment dimension D range is reliably executed. Further, by appropriately setting the length d1 of the wide irradiation spot LS, the BGA solder ball height measuring device 1 according to the present invention can determine whether the positional deviation in the longitudinal direction A of the BGA solder ball 31 is within an allowable range. Can also be used for detection.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では、BGA基板W上にマトリクス状に配置されたBGA半田ボール31の高さに係る測定をする例を示したが、これに限定されない。例えば、BGA半田ボール31の配置はマトリクス状でなくてもよく、単に一列に配置されたものであってもよい。本発明による装置は、特にBGA半田ボールに限られず、例えば、球状の金属、チョコレート、薬剤等の高さに係る測定にも適用可能である。   (1) In the above-described embodiment, an example of measuring the height of the BGA solder balls 31 arranged in a matrix on the BGA substrate W has been shown, but the present invention is not limited to this. For example, the BGA solder balls 31 may not be arranged in a matrix, but may be simply arranged in a row. The apparatus according to the present invention is not limited to a BGA solder ball, and can also be applied to measurements related to the height of, for example, a spherical metal, chocolate, or medicine.

(2)上記実施形態では、幅広照射スポットLSの長手方向Aの長さd1は、少なくとも2D(許容される位置ずれ寸法Dの2倍)以上の長さを有する例を示したが、特にこれに限定されない。例えば、幅広照射スポットLSの長手方向Aの長さd1は、列の方向Mと直交する方向AにおけるBGA半田ボールの配置ピッチP2以下の長さを有してもよいし、あるいは、少なくとも2D以上であって配置ピッチP2以下の長さを有しもよい。要は、幅広照射スポットLSの長手方向Aの長さd1が、幅広照射スポットLSの、列方向Mの寸法に比べて、大きければよい。   (2) In the above embodiment, an example in which the length d1 in the longitudinal direction A of the wide irradiation spot LS has a length of at least 2D (twice the allowable misalignment dimension D) is shown. It is not limited to. For example, the length d1 in the longitudinal direction A of the wide irradiation spot LS may have a length equal to or less than the arrangement pitch P2 of the BGA solder balls in the direction A orthogonal to the row direction M, or at least 2D or more. Further, it may have a length equal to or less than the arrangement pitch P2. In short, the length d1 in the longitudinal direction A of the wide irradiation spot LS only needs to be larger than the dimension in the column direction M of the wide irradiation spot LS.

(3)上記実施形態では、センサヘッド部11は、BGA半田ボール31から拡散反射光を受光する、いわゆる拡散反射型のものであったが、これに限られない。本発明は、レーザダイオード15からのレーザ光L1をBGA半田ボール31に対して斜め上方から照射し、その正反射光を受光する、いわゆる正反射型のセンサヘッド部にも、適用できる。   (3) In the above embodiment, the sensor head unit 11 is a so-called diffuse reflection type that receives diffuse reflection light from the BGA solder ball 31, but is not limited thereto. The present invention can also be applied to a so-called specular reflection type sensor head unit that irradiates the BGA solder ball 31 with laser light L1 from the laser diode 15 obliquely from above and receives the specular reflection light.

(4)上記実施形態では、CCDリニアセンサ19とCCD駆動回路20とを個別とする構成を示したが、CCDリニアセンサ19とCCD駆動回路20とを一体とする構成してもよい。また、リニアイメージセンサとしてCMOSリニアセンサを用いてもよい。さらに、リニアメージセンサに代えて、位置検出素子(PSD)を用いてもよい。   (4) In the above embodiment, the configuration in which the CCD linear sensor 19 and the CCD drive circuit 20 are separated is shown. However, the CCD linear sensor 19 and the CCD drive circuit 20 may be integrated. A CMOS linear sensor may be used as the linear image sensor. Further, a position detection element (PSD) may be used instead of the linear image sensor.

本発明の実施形態に係るBGA半田ボールの高さ測定装置の全体概要図1 is an overall schematic diagram of a BGA solder ball height measuring device according to an embodiment of the present invention. 本発明によるBGA半田ボールの高さに係る測定態様を示す概略的な斜視図Schematic perspective view showing a measurement mode related to the height of a BGA solder ball according to the present invention. 本発明によるBGA半田ボールの高さに係る測定態様を示す平面図The top view which shows the measurement aspect which concerns on the height of the BGA solder ball by this invention 本発明によるBGA半田ボールの高さに係る測定態様を示す断面図Sectional drawing which shows the measurement aspect which concerns on the height of the BGA solder ball by this invention 従来のBGA半田ボールの高さに係る測定態様を示す平面図A plan view showing a measurement mode related to the height of a conventional BGA solder ball

符号の説明Explanation of symbols

1…BGA半田ボールの高さ測定装置
11…センサヘッド部
12…コントローラ部
14…LD駆動回路(投光手段)
15…レーザダイオード(投光手段)
16…投光レンズ(投光手段)
17…スポット整形手段(投光手段)
18…受光レンズ
19…CCDリニアセンサ
20…CCD駆動回路
31…BGA半田ボール
31A…位置ずれBGA半田ボール
41…CPU(測定手段)
42…メモリ
LS…幅広照射スポット
S1…電圧信号(受光信号)
W…BGA基板
DESCRIPTION OF SYMBOLS 1 ... BGA solder ball height measuring device 11 ... Sensor head part 12 ... Controller part 14 ... LD drive circuit (light projection means)
15 ... Laser diode (light projection means)
16 ... Projection lens (projection means)
17 ... Spot shaping means (light projection means)
DESCRIPTION OF SYMBOLS 18 ... Light receiving lens 19 ... CCD linear sensor 20 ... CCD drive circuit 31 ... BGA solder ball 31A ... Misalignment BGA solder ball 41 ... CPU (measuring means)
42 ... Memory LS ... Wide irradiation spot S1 ... Voltage signal (light reception signal)
W ... BGA substrate

Claims (2)

基板上に列を成して配置される複数のBGA半田ボールの各々の高さを測定する装置であって、前記複数のBGA半田ボールに対して光を照射する投光手段と、複数の画素からなる受光面を有し、前記光照射されたBGA半田ボールからの反射光を該BGA半田ボールからの距離に応じた受光面上の位置で受光し、その受光位置に応じた受光信号を生成するリニアイメージセンサと、前記リニアイメージセンサの受光信号に基づいて前記BGA半田ボールの高さの変位を測定する測定手段とを備えた装置において、
前記投光手段から照射される光は、前記列の方向と直交する方向であるとともに前記リニアイメージセンサの幅方向において、幅広なスポットを有するように形成されてなり、
前記投光手段は、前記列方向に沿った、前記複数のBGA半田ボールとの相対的な移動によって、前記複数のBGA半田ボールの各々に対して前記幅広なスポットを有する光を順次照射し、
前記幅広なスポットの長手方向の長さは、前記列の方向と直交する方向において許容されるBGA半田ボールの位置ずれ寸法の少なくとも2倍以上であることを特徴とするBGA半田ボールの高さ測定装置。
An apparatus for measuring the height of each of a plurality of BGA solder balls arranged in a row on a substrate, the light projecting means for irradiating the plurality of BGA solder balls with light, and a plurality of pixels The light receiving surface is made of, and the reflected light from the irradiated BGA solder ball is received at a position on the light receiving surface corresponding to the distance from the BGA solder ball, and a light receiving signal corresponding to the light receiving position is generated. An apparatus comprising: a linear image sensor that measures the height of the BGA solder ball based on a light reception signal of the linear image sensor;
The light emitted from the light projecting means is formed so as to have a wide spot in the width direction of the linear image sensor in a direction orthogonal to the direction of the row.
The light projecting means sequentially irradiates each of the plurality of BGA solder balls with light having the wide spot by relative movement with the plurality of BGA solder balls along the column direction ,
BGA solder ball height measurement characterized in that the length of the wide spot in the longitudinal direction is at least twice as large as the misalignment dimension of the BGA solder ball allowed in the direction orthogonal to the direction of the row apparatus.
前記幅広なスポットの長手方向の長さは、前記列の方向と直交する方向におけるBGA半田ボールの配置ピッチ以下であることを特徴とする請求項1記載のBGA半田ボールの高さ測定装置。   2. The BGA solder ball height measuring device according to claim 1, wherein a length of the wide spot in a longitudinal direction is equal to or less than a pitch of the BGA solder balls in a direction orthogonal to the direction of the row.
JP2007255222A 2007-09-28 2007-09-28 BGA solder ball height measuring device Expired - Fee Related JP5021412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255222A JP5021412B2 (en) 2007-09-28 2007-09-28 BGA solder ball height measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255222A JP5021412B2 (en) 2007-09-28 2007-09-28 BGA solder ball height measuring device

Publications (2)

Publication Number Publication Date
JP2009085745A JP2009085745A (en) 2009-04-23
JP5021412B2 true JP5021412B2 (en) 2012-09-05

Family

ID=40659360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255222A Expired - Fee Related JP5021412B2 (en) 2007-09-28 2007-09-28 BGA solder ball height measuring device

Country Status (1)

Country Link
JP (1) JP5021412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022138590A (en) * 2021-03-10 2022-09-26 オムロン株式会社 Triangular ranging displacement sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717250B2 (en) * 1988-01-20 1998-02-18 トヨタ自動車株式会社 Optical measuring method
JP3144661B2 (en) * 1992-09-29 2001-03-12 富士通株式会社 Three-dimensional electrode appearance inspection device
JP2002333308A (en) * 2001-05-09 2002-11-22 Ibiden Co Ltd Bump height inspection method and inspection apparatus

Also Published As

Publication number Publication date
JP2009085745A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US7643159B2 (en) Three-dimensional shape measuring system, and three-dimensional shape measuring method
US7641099B2 (en) Solder joint determination method, solder inspection method, and solder inspection device
JP3967518B2 (en) Offset measurement method, tool position detection method, and bonding apparatus
EP2086213A1 (en) Image reading apparatus, and image forming apparatus
JP2015059825A (en) Three-dimensional measuring apparatus
JP4533785B2 (en) Alignment sensor position calibration method, reference pattern calibration method, exposure position correction method, calibration pattern, and alignment apparatus
CN111432144B (en) Imaging system and related electronic device and operating method of imaging system
JP2009540287A (en) Method and apparatus for position detection of optical elements in an imaging system
JP2009085775A (en) Measuring apparatus
US20110025823A1 (en) Three-dimensional measuring apparatus
JP5021412B2 (en) BGA solder ball height measuring device
US20120098963A1 (en) Image measuring apparatus
JP2017032297A (en) Measurement board and profilometer
JP2010190812A (en) Three-dimensional shape measuring device and three-dimensional shape measuring method
JP2009085739A (en) Shape measuring instrument and shape measuring method
JP6215822B2 (en) Digital mobile measuring device
JP6774929B2 (en) Three-dimensional measuring device
JP5200774B2 (en) Inspection apparatus and method
JPH08304040A (en) Three-dimensional shape measuring apparatus
KR102413894B1 (en) Exposure device
JP2000097635A (en) Optical sensor
JP4294229B2 (en) Scanning optical system beam measuring apparatus and scanning optical system beam measuring method
JPH08327337A (en) Three dimensional shape measuring apparatus
JPH08327336A (en) Three dimensional shape-measuring apparatus
JP2003333248A (en) Method and apparatus for inspecting image reader and member for inspection

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees