JP5020267B2 - Steel structural material - Google Patents

Steel structural material Download PDF

Info

Publication number
JP5020267B2
JP5020267B2 JP2009012313A JP2009012313A JP5020267B2 JP 5020267 B2 JP5020267 B2 JP 5020267B2 JP 2009012313 A JP2009012313 A JP 2009012313A JP 2009012313 A JP2009012313 A JP 2009012313A JP 5020267 B2 JP5020267 B2 JP 5020267B2
Authority
JP
Japan
Prior art keywords
steel
structural material
steel structural
web portion
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009012313A
Other languages
Japanese (ja)
Other versions
JP2010168805A (en
Inventor
万由佳 川上
数典 岩田
友一 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009012313A priority Critical patent/JP5020267B2/en
Publication of JP2010168805A publication Critical patent/JP2010168805A/en
Application granted granted Critical
Publication of JP5020267B2 publication Critical patent/JP5020267B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

本発明は、鋼製構造材に関するものであり、具体的には、鋼製の構造材における水の滞留を抑止して確実な排水を可能とし、ひいては構造材の腐食を防止する技術に関する。   The present invention relates to a steel structural material, and specifically relates to a technique for preventing water from staying in a steel structural material to enable reliable drainage and thus preventing corrosion of the structural material.

水門や橋梁等にはH型鋼など鋼製の構造材が多く使用されている。こうした構造材を組み合わせて橋梁や水門等を構築する場合、構造材自体の形状や他部材との取付関係などにより、雨水等が溜まりやすい箇所が生じることがある。そこで、こうした箇所に溜まる水を排水するための技術が提案されている。   Steel structures such as H-shaped steel are often used for sluices and bridges. When a bridge, a sluice, or the like is constructed by combining such structural materials, there may be a place where rainwater or the like is likely to accumulate depending on the shape of the structural material itself or the mounting relationship with other members. Therefore, a technique for draining water accumulated in such a place has been proposed.

例えば、鋼箱の滞水防止用水抜き構造を提供することを課題として、板材に形成された排水用の貫通孔に取り付けられた水抜きボルトとその水抜きボルトに螺設された水抜きナットからなり、その水抜きボルトと水抜きナットに一連の水抜き流路が形成されたものであることを特徴とする水抜きボルト・ナット(特許文献1参照)などが提案されている。   For example, with the object of providing a water drainage prevention structure for steel boxes, a drainage bolt attached to a drainage through hole formed in a plate and a drainage nut screwed to the drainage bolt Thus, a drain bolt / nut (see Patent Document 1), in which a series of drain channels are formed in the drain bolt and drain nut, has been proposed.

また、水抜き孔や排水枡構造等を考慮した技術として、壁部下方から上方にかけて複数の排水窓を開口した上桝部と、壁部上方外側に突出した排水誘導片と上桝部の高さ調整スペーサーを形成した下桝部とを、下桝部に形成した高さ調整スペーサーに上桝部を載置してなる排水桝からなることを特徴とする道路構造物の排水装置(特許文献2参照)なども提案されている。   In addition, as a technology that considers drain holes and drainage dredging structures, etc., the upper collar part that opens a plurality of drainage windows from the bottom of the wall part to the top, A drainage device for a road structure comprising a drainage basin formed by placing an upper collar part on a height adjustment spacer formed on a lower collar part and a lower collar part formed with a height adjustment spacer (Patent Document) 2) is also proposed.

特開2006−299750号公報JP 2006-299750 A 特開2005−248426号公報JP 2005-248426 A

従来技術にもあるように、構造材のうち応力的に影響の少ない部分に水抜き孔や各種排水装置を設けることがあるが、肝心の水抜用の開口が落ち葉などのごみで詰まってしまうことが多かったり、そもそも開口の設置場所が不適切で水抜き孔として機能せずに水が滞留していることが多い。   As in the prior art, water drainage holes and various drainage devices may be provided in parts of the structural material that are less affected by stress, but the essential drainage openings are clogged with fallen leaves and other debris. In many cases, the location of the opening is inappropriate and water does not function as a drain hole.

水が溜まった箇所については、日照に伴う乾湿が繰り返されることとなり、構造材の塗膜が劣化して鋼材自体の腐食が生じやすい。また、前記水抜き孔にごみ等が詰まることで、構造材上への土砂堆積を促進することもある。この土砂堆積により構造材上に草や苔などが着生し、それらが保水性を有して構造材に水分を浸透させ、ひいては構造材の塗膜を劣化させることもある。   As for the location where the water has accumulated, the wet and dry with sunshine is repeated, and the coating film of the structural material is deteriorated and the steel material itself is likely to be corroded. Moreover, dirt or the like may be promoted on the structural material by clogging the drainage hole with dirt or the like. This sediment accumulation causes grass, moss, etc. to grow on the structural material, which has water retention properties and allows moisture to permeate into the structural material, thereby degrading the coating film of the structural material.

一方、水門や橋梁等は高所や急傾斜地など人員が容易に近づけない場所に設置されている場合も多く、上記の水抜き孔等の排水機構を容易に清掃することもできない。   On the other hand, sluices, bridges, and the like are often installed in places where personnel cannot easily approach such as high places and steep slopes, and the drainage mechanism such as the drain hole cannot be easily cleaned.

そこで本発明は上記課題を鑑みてなされたものであり、鋼製の構造材における水の滞留を抑止して確実な排水を可能とし、ひいては構造材の腐食を防止する技術の提供を主たる目的とする。   Therefore, the present invention has been made in view of the above problems, and it is a main object to provide a technique for suppressing the retention of water in a steel structural material and enabling reliable drainage, and thus preventing the corrosion of the structural material. To do.

上記課題を解決する本発明の鋼製構造材は、例えば、水門や橋梁の桁に用いられるH型鋼の代替物として利用できるものであり、大まかな形状としてはH型鋼に類似している。ただし前記鋼製構造材は、従来のH型鋼におけるウェブ部分に本願発明特有の構造を有している。すなわち、前記鋼製構造材は、断面が山型ないし円弧型である所定長の鋼材を、前記断面における凸方向の向きで揃え、所定間隔で並列配置したウェブ部と、前記ウェブ部をなす前記各鋼材の端面と固定されたフランジ部とからなっている。   The steel structural material of the present invention that solves the above problems can be used as an alternative to H-shaped steel used for, for example, sluices and bridge girders, and is roughly similar to H-shaped steel in shape. However, the steel structural material has a structure peculiar to the present invention in the web portion of the conventional H-shaped steel. That is, the steel structural material has a web portion in which a predetermined length of steel material having a cross-section of a mountain shape or an arc shape is aligned in a convex direction in the cross section and arranged in parallel at a predetermined interval, and the web portion It consists of an end face of each steel material and a fixed flange portion.

前記鋼製構造材において、所定間隔をもって並列配置された一組の鋼材間におけるスリット(=前記所定間隔に対応する幅を持つ)は、前記鋼材の各端面に固定されたフランジ部間の対向距離分の長さを有する。従って前記スリット上のいずれかの箇所に枯れ葉など閉塞物が付着しても、当該スリットの他の箇所からの排水は妨げられず、鋼製構造材上に水が滞留することを抑止できる。勿論、前記スリットは、並列配置された鋼材の間ごとに存在することになるから、たとえ1つのスリットが完全に閉塞されてしまったとしても、他のスリットからの排水は維持され、水の滞留が鋼製構造材の広範囲に及ぶことも抑止できる。   In the steel structural material, a slit (= having a width corresponding to the predetermined interval) between a pair of steel members arranged in parallel at a predetermined interval is a facing distance between flange portions fixed to each end surface of the steel material Has a length of minutes. Therefore, even if obstructions such as dead leaves adhere to any part of the slit, drainage from other parts of the slit is not hindered, and water can be prevented from staying on the steel structural material. Of course, since the slit exists between the steel materials arranged in parallel, even if one slit is completely closed, the drainage from the other slit is maintained, and the water stays. Can also be prevented from spreading over a wide range of steel structural materials.

また、前記鋼製構造材は、前記断面における凸方向の向きをウェブ部外方に向けて揃えた鋼材を、所定間隔で並列配置したウェブ部を備えるとしてもよい。   Moreover, the said steel structure material is good also as providing the web part which arranged in parallel the steel material which aligned the direction of the convex direction in the said cross section toward the web part outer side at predetermined intervals.

また、本発明の鋼製構造材は、断面が山型ないし円弧型である所定長の鋼材を、前記断面における凸方向が互いに対向する向きに所定間隔で配置して一組をなし、当該一組の鋼材を鋼製構造材の延長方向に並列配置してなるウェブ部と、前記ウェブ部をなす前記各鋼材の端面と固定されたフランジ部とからなることを特徴とする。   Further, the steel structural material of the present invention comprises a set of steel materials having a predetermined length with a cross-section of a mountain shape or an arc shape, with the convex directions in the cross-section facing each other at predetermined intervals. It is characterized by comprising a web part formed by arranging a set of steel materials in parallel in the extending direction of the steel structural material, and a flange part fixed to the end face of each steel material constituting the web part.

本発明によれば、鋼製の構造材における水の滞留を抑止して確実な排水が可能となり、ひいては構造材の腐食を防止できる。   ADVANTAGE OF THE INVENTION According to this invention, staying of the water in a steel structure material is suppressed, reliable drainage is attained, and the corrosion of a structure material can be prevented by extension.

本実施形態の鋼製構造材の例1を示す図である。It is a figure which shows Example 1 of the steel structure material of this embodiment. 本実施形態の鋼製構造材の例2を示す図である。It is a figure which shows Example 2 of the steel structural materials of this embodiment. 本実施形態における変位および応力の解析結果1を示す図である。It is a figure which shows the analysis result 1 of the displacement and stress in this embodiment. 本実施形態における変位および応力の解析結果2を示す図である。It is a figure which shows the analysis result 2 of the displacement and stress in this embodiment. 本実施形態における変位および応力の解析結果3を示す図である。It is a figure which shows the analysis result 3 of the displacement and stress in this embodiment. 本実施形態における変位および応力の解析結果4を示す図である。It is a figure which shows the analysis result 4 of the displacement and stress in this embodiment.

以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態の鋼製構造材100の例1を示す図である。前記鋼製構造材100は、H型鋼と同様にウェブ部50とフランジ部60とから構成されている。そのうち、前記ウェブ部50は、断面が山型ないし円弧型である所定長(鋼製構造材におけるウェブ高さに相当する長さ)の鋼材51を、前記断面における凸方向の向きで揃え、所定間隔で並列配置したものとなっている。前記鋼材51としては、例えば、断面が山型の山形鋼、或いは断面円形の鋼管を半割したもの(図1(b)参照)を想定できる。なお、前記鋼材51の断面における凸方向の向きを、図1に示すようにウェブ部50の外方に向けて揃えると好適である。   Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram illustrating Example 1 of the steel structural member 100 of the present embodiment. The steel structural member 100 includes a web portion 50 and a flange portion 60 in the same manner as the H-shaped steel. Among them, the web portion 50 has a predetermined length (a length corresponding to the web height in the steel structural material) having a cross section of a mountain shape or an arc shape, and is aligned in a convex direction in the cross section. They are arranged in parallel at intervals. As the steel material 51, for example, an angle steel having a mountain-shaped cross section or a steel pipe having a circular cross section (see FIG. 1B) can be assumed. In addition, it is suitable if the direction of the convex direction in the cross section of the said steel material 51 is aligned toward the outer side of the web part 50, as shown in FIG.

前記鋼製構造材100において、所定間隔をもって並列配置された一組の鋼材間におけるスリット70(=前記所定間隔に対応する幅を持つ)は、前記鋼材51の各端面52に固定されたフランジ部60の間の対向距離分(=ウェブ高さ)の長さを有する。従って前記スリット70上のいずれかの箇所に枯れ葉など閉塞物が付着しても、当該スリット70の他の箇所からの排水は妨げられず、鋼製構造材100上に水が滞留することを抑止できる。勿論、前記スリット70は、並列配置された鋼材51の間ごとに存在することになるから(図1の鋼製構造材100の例では計5箇所のスリット)、たとえ1つのスリットが完全に閉塞されてしまったとしても、他のスリットからの排水は維持され、水の滞留が鋼製構造材100の広範囲に及ぶことも抑止できる。   In the steel structural member 100, a slit 70 (= having a width corresponding to the predetermined interval) between a pair of steel members arranged in parallel at a predetermined interval is a flange portion fixed to each end face 52 of the steel member 51. It has a length corresponding to an opposing distance between 60 (= web height). Therefore, even if obstructions such as dead leaves adhere to any part of the slit 70, drainage from other parts of the slit 70 is not hindered and water is prevented from staying on the steel structural member 100. it can. Of course, the slit 70 exists between the steel members 51 arranged in parallel (in the example of the steel structural member 100 in FIG. 1, a total of five slits), so even one slit is completely closed. Even if it has been done, drainage from other slits is maintained, and it is possible to prevent water from staying over a wide area of the steel structural member 100.

また、前記ウェブ部50をなす前記各鋼材51の端面52は、フランジ部60と固定されている。例えば、前記鋼材51としての山形鋼を、前記ウェブ高さ(例:鋼製構造材が必要な強度に応じて設計される)に合わせて切断し、その端面52を前記フランジ部60を構成する鋼板に溶接(サブマージアーク溶接等)して固定する。   Further, the end surface 52 of each steel material 51 constituting the web portion 50 is fixed to the flange portion 60. For example, the angle steel as the steel material 51 is cut according to the web height (for example, a steel structural material is designed according to the required strength), and the end surface 52 of the flange portion 60 is configured. Fix to the steel plate by welding (submerged arc welding, etc.).

上述した形態の鋼製構造材100の他に、図2に示す鋼製構造材100を想定することもできる。図2は本実施形態の鋼製構造材100の例2を示す図である。この例の場合、鋼製構造材100の前記ウェブ部50は、断面が山型ないし円弧型である所定長の鋼材51を、前記断面における凸方向が互いに対向する向きに所定間隔で配置して一組をなし、当該一組の鋼材51を鋼製構造材100の延長方向に並列配置してなる。なお、前記鋼材51としては、例えば、断面が山型の山形鋼(図2(a)の場合)、或いは断面円形の鋼管(図2(b)の場合)を想定できる。前記ウェブ部50をなす前記各鋼材51の端面52は、図1の場合と同様に前記フランジ部60と固定されている。   In addition to the steel structural material 100 of the above-described form, a steel structural material 100 shown in FIG. 2 can be assumed. FIG. 2 is a view showing Example 2 of the steel structural member 100 of the present embodiment. In the case of this example, the web portion 50 of the steel structural member 100 is formed by arranging steel members 51 having a predetermined length whose cross section is a mountain shape or an arc shape at predetermined intervals in such a direction that the convex directions in the cross section face each other. One set is formed, and the one set of steel materials 51 is arranged in parallel in the extending direction of the steel structural material 100. In addition, as the said steel material 51, the cross-section angle steel (in the case of FIG. 2 (a)) or the steel pipe with a circular cross section (in the case of FIG. 2 (b)) can be assumed, for example. The end surface 52 of each steel material 51 constituting the web portion 50 is fixed to the flange portion 60 as in the case of FIG.

図2(a)に例示する鋼製構造材100の場合、前記鋼材51が山形鋼であり、いわゆる「く」の字型で対向しあって配置され、鋼材51の各間にはスリット70が設けられている。また、鋼材51の「く」の字型の背面同士においてもスリット71を設けるとしてもよい。このようなスリット配置とすれば、鋼製構造材100における排水経路(=スリット)が更に分散化され、スリットをふさぐ閉塞物による水の滞留を抑制し、排水を確実ならしめることにつながる。   In the case of the steel structural material 100 illustrated in FIG. 2A, the steel material 51 is an angle steel, and is arranged so as to face each other in a so-called “<” shape, and a slit 70 is provided between each steel material 51. Is provided. Further, the slits 71 may be provided between the backs of the “<” shape of the steel material 51. With such a slit arrangement, the drainage paths (= slits) in the steel structural member 100 are further dispersed, and the retention of water due to the obstructions that block the slits is suppressed, leading to reliable drainage.

一方、通常のH型鋼とは異なるウェブ形状を有する前記鋼製構造材100であるので、構造材として必要な強度を担保できるか解析を行って検証した。図3は本実施形態における変位および応力の解析結果1を示す図である。ここでは、比較対象となるH型鋼(サイズ:ウェブ高=300mm、フランジ幅=300mm)、第1の鋼製構造材100(サイズ:フランジ部60のフランジ幅=300mm、ウェブ部50を構成する山形鋼200mm×200mmのもの)、および第2の鋼製構造材100(サイズ:フランジ部60のフランジ幅=300mm、ウェブ部50を構成する山形鋼100mm×100mmのもの)、の3種類を解析対象とした。   On the other hand, since it is the said steel structural material 100 which has a web shape different from normal H-shaped steel, it analyzed and verified whether the intensity | strength required as a structural material could be ensured. FIG. 3 is a diagram showing the analysis result 1 of displacement and stress in the present embodiment. Here, H-shaped steel (size: web height = 300 mm, flange width = 300 mm), first steel structural material 100 (size: flange width of the flange portion 60 = 300 mm, chevron forming the web portion 50, which is a comparison target 3 types of analysis target: steel 200 mm × 200 mm) and second steel structural member 100 (size: flange width of flange portion 60 = 300 mm, angle steel 100 mm × 100 mm constituting web portion 50) It was.

解析は、図1(a)に示すように、鋼製構造材100のフランジ部60の長さ方向の中心点に100kNの負荷を加えた場合の、前記フランジ部60のA−A線上のB点(フランジ部60の長さ方向の中心点)における変位量と応力値とを、FEM解析プログラムなど変位量や応力値の解析プログラム(既存のもの)を用いて算定する。   As shown in FIG. 1 (a), the analysis is performed on the AA line of the flange portion 60 when a load of 100 kN is applied to the longitudinal center point of the flange portion 60 of the steel structural member 100. The displacement amount and the stress value at the point (the center point in the length direction of the flange portion 60) are calculated using an analysis program (existing one) of the displacement amount and the stress value such as an FEM analysis program.

こうした解析の結果、前記第1の鋼製構造材100は、前記H型鋼と比較して、最大変位量(mm)で1.26倍、前記B点の応力値で1.18倍となった。また、前記第2の鋼製構造材100は、前記H型鋼と比較して、最大変位量(mm)で1.36倍、前記B点の応力値で1.23倍となった。構造材として必要な設計強度にもよるが、前記鋼製構造材100をH型鋼に代えて採用しても問題ない強度を、前記鋼製構造材100は備えていると言える。   As a result of such analysis, the first steel structural member 100 has a maximum displacement (mm) of 1.26 times and a stress value of point B of 1.18 times compared to the H-shaped steel. . Further, the second steel structural member 100 was 1.36 times the maximum displacement (mm) and 1.23 times the stress value at the point B, compared with the H-shaped steel. Although it depends on the design strength required for the structural material, it can be said that the steel structural material 100 has a strength that does not cause any problem even if the steel structural material 100 is employed instead of H-shaped steel.

また、他の解析例として、鋼材51における鋼板の板厚条件を代えて上記同様の解析をおこなった。図4は本実施形態における変位および応力の解析結果2を示す図である。ここでは、比較対象となるH型鋼(サイズ:ウェブ高=300mm、フランジ幅=300mm)、第1の鋼製構造材100(サイズ:フランジ部60のフランジ幅=300mm、ウェブ部50を構成する山形鋼200mm×200mm、板厚t=15mmのもの)、および第2の鋼製構造材100(サイズ:フランジ部60のフランジ幅=300mm、ウェブ部50を構成する山形鋼200mm×200mm、板厚t=20mmのもの)、の3種類を解析対象とした。   As another analysis example, the same analysis as described above was performed by changing the plate thickness condition of the steel plate in the steel material 51. FIG. 4 is a diagram showing the analysis result 2 of displacement and stress in the present embodiment. Here, H-shaped steel (size: web height = 300 mm, flange width = 300 mm), first steel structural material 100 (size: flange width of the flange portion 60 = 300 mm, chevron forming the web portion 50, which is a comparison target Steel 200 mm × 200 mm, plate thickness t = 15 mm) and second steel structural member 100 (size: flange width of flange portion 60 = 300 mm, angle iron 200 mm × 200 mm constituting web portion 50, plate thickness t) = 20 mm)) was the analysis target.

この条件下での解析の結果、前記第1の鋼製構造材100は、前記H型鋼と比較して、最大変位量(mm)で1.26倍、前記B点の応力値で1.18倍となった。また、前記第2の鋼製構造材100は、前記H型鋼と比較して、最大変位量(mm)で0.95倍、前記B点の応力値で0.88倍となった。この結果から、構造材として必要な設計強度を達成するために、前記鋼製構造材100における前記ウェブ部50の鋼材51の板厚を適宜厚いものとすれば、従来のH型鋼に代えて採用しても問題ないかそれ以上の強度を、前記鋼製構造材100は備えると言える。   As a result of analysis under this condition, the first steel structural member 100 has a maximum displacement (mm) of 1.26 times that of the H-shaped steel, and a stress value at the point B of 1.18. Doubled. Further, the second steel structural member 100 was 0.95 times the maximum displacement (mm) and 0.88 times the stress value at the point B, compared with the H-shaped steel. From this result, in order to achieve the design strength required as a structural material, if the plate thickness of the steel material 51 of the web portion 50 in the steel structural material 100 is appropriately increased, it is used instead of the conventional H-shaped steel. Even so, it can be said that the steel structural material 100 has sufficient strength or higher.

また、他の解析例として、鋼材51におけるウェブ部50のウェブ高さ(=鋼材51の長さ)の条件を代えて上記同様の解析をおこなった。図5は本実施形態における変位および応力の解析結果3を示す図である。ここでは、比較対象となるH型鋼(サイズ:ウェブ高=300mm、フランジ幅=300mm)、第1の鋼製構造材100(サイズ:フランジ部60のフランジ幅=300mm、ウェブ部50を構成する山形鋼200mm×200mm、山形鋼の長さ300mmのもの)、および第2の鋼製構造材100(サイズ:フランジ部60のフランジ幅=300mm、ウェブ部50を構成する山形鋼200mm×200mm、山形鋼の長さ350mmのもの)、の3種類を解析対象とした。   Further, as another analysis example, the same analysis as described above was performed by changing the condition of the web height of the web portion 50 (= the length of the steel material 51) in the steel material 51. FIG. 5 is a diagram showing an analysis result 3 of displacement and stress in the present embodiment. Here, H-shaped steel (size: web height = 300 mm, flange width = 300 mm), first steel structural material 100 (size: flange width of the flange portion 60 = 300 mm, chevron forming the web portion 50, which is a comparison target Steel 200 mm × 200 mm, angle steel 300 mm long) and second steel structural member 100 (size: flange width of flange portion 60 = 300 mm, angle steel 200 mm × 200 mm constituting web portion 50, angle steel) Of 350 mm in length) were analyzed.

この条件下での解析の結果、前記第1の鋼製構造材100は、前記H型鋼と比較して、最大変位量(mm)で1.26倍、前記B点の応力値で1.18倍となった。また、前記第2の鋼製構造材100は、前記H型鋼と比較して、最大変位量(mm)で1.02倍、前記B点の応力値で1.01倍となった。この結果から、構造材として必要な設計強度を達成するために、前記鋼製構造材100における前記ウェブ部50のウェブ高さ、つまり鋼材51の長さを適宜長いものとすれば、従来のH型鋼とほとんど同等の強度を、前記鋼製構造材100は備えると言える。   As a result of analysis under this condition, the first steel structural member 100 has a maximum displacement (mm) of 1.26 times that of the H-shaped steel, and a stress value at the point B of 1.18. Doubled. In addition, the second steel structural member 100 was 1.02 times the maximum displacement (mm) and 1.01 times the stress value at the point B, compared with the H-shaped steel. From this result, in order to achieve the design strength required as a structural material, if the web height of the web portion 50 in the steel structural material 100, that is, the length of the steel material 51 is appropriately long, the conventional H It can be said that the steel structural material 100 has almost the same strength as that of the mold steel.

更に、他の解析例として、図2(a)で例示したいわゆる「く」の字型に山形鋼を対向配置してウェブ部50を構成した鋼製構造材100について上記同様の解析をおこなった。図6は本実施形態における変位および応力の解析結果4を示す図である。ここでは、比較対象となるH型鋼(サイズ:ウェブ高=300mm、フランジ幅=300mm)、鋼製構造材100(サイズ:フランジ部60のフランジ幅=300mm、ウェブ部50を構成する山形鋼200mm×200mm)、の2種類を解析対象とした。   Furthermore, as another analysis example, the same analysis as described above was performed on the steel structural member 100 in which the web portion 50 was configured by arranging the angle steels so as to face each other in the so-called “ku” shape illustrated in FIG. . FIG. 6 is a diagram showing the analysis result 4 of displacement and stress in the present embodiment. Here, H-shaped steel (size: web height = 300 mm, flange width = 300 mm), steel structural material 100 (size: flange width of flange portion 60 = 300 mm, angle iron 200 mm constituting the web portion 50) 200 mm), were the analysis targets.

この条件下での解析の結果、前記鋼製構造材100は、前記H型鋼と比較して、最大変位量(mm)で1.04倍、前記B点の応力値で1.06倍となった。この結果から、前記鋼製構造材100は、従来のH型鋼とほとんど同等の強度を備えると言える。   As a result of analysis under this condition, the steel structural member 100 is 1.04 times the maximum displacement (mm) and 1.06 times the stress value at the point B as compared with the H-shaped steel. It was. From this result, it can be said that the steel structural member 100 has almost the same strength as the conventional H-shaped steel.

以上のように、従来のH型鋼と同等の強度を備える鋼製構造材100を用いて水門や橋梁等を構築するとすれば、必要な強度を十分に担保した上で、前記スリット70、71上のいずれかの箇所に枯れ葉など閉塞物が付着しても、当該スリットの他の箇所からの排水は妨げられず、鋼製構造材上に水が滞留することを抑止できる。前記スリットらは、並列配置された鋼材51の間ごとに存在することになるから、たとえ1つのスリットが完全に閉塞されてしまったとしても、他のスリットからの排水は維持され、水の滞留が鋼製構造材100の広範囲に及ぶことも抑止できる。つまり、従前の技術では必要であった水抜き孔や排水装置の清掃作業が長期間にわたって不要となり、高所や急傾斜地などでの危険な作業を人員に強いることが少なくなる。また上述のように、前記鋼製構造材100では前記スリットを介して自然排水を継続することができ、鋼製構造材自身の鋼材腐食を抑制し、板厚の減少を防ぐことができる。   As described above, if a sluice, a bridge, or the like is constructed using the steel structural member 100 having the same strength as that of the conventional H-shaped steel, the required strength is sufficiently secured and the slits 70 and 71 are formed. Even if obstructions such as dead leaves adhere to any part of the above, drainage from other parts of the slit is not hindered and water can be prevented from staying on the steel structural material. Since the slits exist between the steel members 51 arranged in parallel, even if one slit is completely blocked, the drainage from the other slit is maintained and the water is retained. However, it is possible to prevent the steel structural member 100 from reaching a wide range. That is, the cleaning work of drain holes and drainage devices, which was necessary in the prior art, is unnecessary for a long period of time, and it is less likely to force personnel to perform dangerous work in high places or steep slopes. Further, as described above, the steel structure material 100 can continue the natural drainage through the slits, and can suppress the steel material corrosion of the steel structure material itself and prevent the thickness of the steel structure material from decreasing.

したがって本実施形態によれば、鋼製の構造材における水の滞留を抑止して確実な排水が可能となり、ひいては構造材の腐食を防止できる。   Therefore, according to the present embodiment, water can be prevented from staying in the steel structural material and reliable drainage can be performed, and thus corrosion of the structural material can be prevented.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

50 ウェブ部
51 鋼材
52 (鋼材の)端面
60 フランジ部
70 スリット
100 鋼製構造材
50 Web part 51 Steel material 52 End face 60 (of steel material) Flange part 70 Slit 100 Steel structure material

Claims (3)

断面が山型ないし円弧型である所定長の鋼材を、前記断面における凸方向の向きで揃え、所定間隔で並列配置したウェブ部と、前記ウェブ部をなす前記各鋼材の端面と固定されたフランジ部とからなる鋼製構造材。   A web portion in which a predetermined length of steel material having a cross-section of a mountain shape or an arc shape is aligned in a convex direction in the cross section and arranged in parallel at a predetermined interval, and a flange fixed to an end surface of each steel material forming the web portion Steel structural material consisting of parts. 前記断面における凸方向の向きをウェブ部外方に向けて揃えた鋼材を、所定間隔で並列配置したウェブ部を備えることを特徴とする請求項1に記載の鋼製構造材。   The steel structure material according to claim 1, further comprising a web portion in which steel materials in which the convex direction in the cross section is aligned toward the outside of the web portion are arranged in parallel at a predetermined interval. 断面が山型ないし円弧型である所定長の鋼材を、前記断面における凸方向が互いに対向する向きに所定間隔で配置して一組をなし、当該一組の鋼材を鋼製構造材の延長方向に並列配置してなるウェブ部と、前記ウェブ部をなす前記各鋼材の端面と固定されたフランジ部とからなることを特徴とする鋼製構造材。   A steel material of a predetermined length whose cross section is a mountain shape or a circular arc shape is arranged at a predetermined interval in a direction in which the convex directions in the cross section face each other, forming a set, and the set of steel materials is an extension direction of the steel structural material A steel structural material comprising: a web portion arranged in parallel to each other; and an end face of each steel material forming the web portion and a fixed flange portion.
JP2009012313A 2009-01-22 2009-01-22 Steel structural material Expired - Fee Related JP5020267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012313A JP5020267B2 (en) 2009-01-22 2009-01-22 Steel structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012313A JP5020267B2 (en) 2009-01-22 2009-01-22 Steel structural material

Publications (2)

Publication Number Publication Date
JP2010168805A JP2010168805A (en) 2010-08-05
JP5020267B2 true JP5020267B2 (en) 2012-09-05

Family

ID=42701196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009012313A Expired - Fee Related JP5020267B2 (en) 2009-01-22 2009-01-22 Steel structural material

Country Status (1)

Country Link
JP (1) JP5020267B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103276848B (en) * 2013-06-09 2016-04-27 中冶建筑研究总院有限公司 Open-web flat beam, steel concrete flitch girder and construction method thereof
CN113417406A (en) * 2021-06-18 2021-09-21 湖南湘投金天科技集团有限责任公司 Beam structure and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302397A (en) * 1992-04-24 1993-11-16 Toshiro Suzuki Reinforcing structure of beam

Also Published As

Publication number Publication date
JP2010168805A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
US7144185B2 (en) Street grid for surface drainage
US20090014371A1 (en) Storm drain filter for erosion control
KR101088163B1 (en) Drain-pipe for bridge and construction process thereof
JP7118709B2 (en) Weirs and traps
JP5020267B2 (en) Steel structural material
JP6165938B1 (en) Drainage unit
JP3943114B2 (en) Waterway laying method
KR200361078Y1 (en) Current reduction water canal structure of slope for road
JP3130944U (en) Cross-type side gutter unit and side drainage type grating lid that do not require iron frame and iron receiving frame
KR101574701B1 (en) Rail type open channel for forest road and its constructing method
JP2013117136A (en) Steel material and steel structure
JP5374347B2 (en) Drainage structure of road bridge joints
KR101486487B1 (en) The bridge that prevevtion of corrosion of the supporting beam is possible
JP3125818U (en) Side groove unit and grating lid structure
KR102609204B1 (en) Bridge drainage apparatus
JP2019183539A (en) Dam and capturing body
KR0130916Y1 (en) Covers for drainage ditch
JP6970473B1 (en) Gutter underdrain pipe connection joint and its connection structure
JP6856849B2 (en) Drainage basin
JP3208952U (en) Steel tower rain water splash prevention device
JP2007308954A (en) Gully unit for drainage and grating lid used therefor
KR100471003B1 (en) Drainage structure of road for appartment house
JP6615010B2 (en) Free slope side groove block
US20140138298A1 (en) Grate filtration system
DE202023101537U1 (en) Drainage system for traffic areas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5020267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees