JP5019687B2 - 地上増強された衛星航法システム用の解分離方法および装置 - Google Patents

地上増強された衛星航法システム用の解分離方法および装置 Download PDF

Info

Publication number
JP5019687B2
JP5019687B2 JP2001523891A JP2001523891A JP5019687B2 JP 5019687 B2 JP5019687 B2 JP 5019687B2 JP 2001523891 A JP2001523891 A JP 2001523891A JP 2001523891 A JP2001523891 A JP 2001523891A JP 5019687 B2 JP5019687 B2 JP 5019687B2
Authority
JP
Japan
Prior art keywords
receiver
correction
solution
satellite signals
terrestrial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001523891A
Other languages
English (en)
Other versions
JP2003509697A5 (ja
JP2003509697A (ja
Inventor
ブレナー,ナッツ・エイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of JP2003509697A publication Critical patent/JP2003509697A/ja
Publication of JP2003509697A5 publication Critical patent/JP2003509697A5/ja
Application granted granted Critical
Publication of JP5019687B2 publication Critical patent/JP5019687B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/15Aircraft landing systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/073Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations
    • G01S19/074Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations providing integrity data, e.g. WAAS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/009Transmission of differential positioning data to mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
[技術分野]
本発明は無線ナビゲーション・システムおよびガイダンス・システムの信頼性を改良する問題に関し、特に地上増強された、または差分衛星航法システムに関する。
[発明の背景]
衛星航法システム(GPS)は、無線受信機と多くの地球軌道衛星送信機間の距離を使用し、無線受信機の3次元衛星位置を測定する。商業上の飛行航空機のような通常は輸送手段に設けられた受信機は、衛星送信機からの信号を受信する。各信号はその送信機の位置とその送信時間の両方を指示し、自己のクロックで装備された受信機を動作可能にして信号遷移時間を近似しそして送信機までの距離を推定する。受信機に結合されたプロセッサは擬似レンジとして知られている少なくとも4つの距離を使用し、関連する輸送手段と受信機の位置を近似または推定する。これらの推定値または位置解は多くのファクタ、例えば変化する大気条件および個々の衛星受信機の性能に依存する。
【0002】
商業上の航空機ナビゲーションおよびガイダンスにおいて、衛星航法システム(GPS)は伝統的に、非危険部分の飛行中、即ち離陸と着陸間の航空機の位置を決定するためにのみ使用されてきた。しかし近年において、着陸中の使用のためにGPSを拡張することを開始した。
【0003】
これらの拡張システムは、地上増強または差分衛星航法システムの形を取り、典型的には2つから4つの地上ベースGPS受信機と地上ベース差分補正プロセッサ(DCP)および補正データ送信機、航空機着陸エリアの周りに置かれた全てを含む。(これらのシステムは、時々GPSベース・ローカルエリア増強システムまたはGPSベースLAASと呼ばれる)。地上ベースGPSは、各々既知の位置を持ち、少なくとも4つの地球軌道衛星送信機からの信号に基づく各組の擬似レンジを決定することにおいて通常のGPS受信機として働く。これらの擬似レンジは、擬似レンジを使用しそして地上受信機の既知の位置を使用して補正データを決定する地上ベースDCPへ供給される。それから補正データ送信機は着陸エリアに接近する航空機へ送信する。これらの接近する航空機は補正データを使用し搭載GPS受信機の位置推定を補正し、自らの搭載受信機を単独に使用する可能性よりもより良い位置解を与える。
【0004】
それから補正された位置は基準着陸路と比較され、航空機が基準着陸路に従うことを確認するために必要な航路偏差を決定する。航路偏差は自動着陸中の航空機を案内するオートパイロット・システムへの入力である。連邦航空局により設定された安全リミット内で機能するためにオートパイロット・システムに対し、位置推定は、垂直および水平の警戒リミットとして知られている最小精度制限範囲内に留まることを要求される。精度リミット範囲内に留まるための故障は、警戒の布告を生じ、自動着陸を中止して着陸プロセスを再開することをパイロットに通知する。
【0005】
不幸にも補正位置推定の精度を決定する従来の方法は、衛星信号受信または電離層の影響、意図していないジャム、衛星故障または補正データ伝送の変動から生じる補正データの喪失に対処する能力に欠ける。ひとつの結果として、その方法を使用するシステムは受容できるよりも多くの飛行中止着陸試行をしがちである。
【0006】
従って、地上増強または差分衛星航法システムにおける精度を決定するより良好な方法に対する必要性がある。
[発明の要約]
この必要性および他の必要性に取り組むために、本発明者は、位置解の精度を決定するための唯一の方法を組み込む地上増強(または差分)ナビゲーションおよびガイダンス・システムを設計した。第1の例示の実施形態において、システムは幾つかの衛星送信機および主位置解と1以上の位置副解を決定するプロセッサを含む。主位置解は、地上送信機からの全ての有効な補正データを使用して補正された1組の擬似レンジと、サブセットの有効な補正データに基づく各副解を包含する。主位置解と副解の間の差又は分離はそれから、主位置解に対する精度または保護リミットを決定するために使用される。
【0007】
第2の例示の実施形態において、ナビゲーション・システムはさらに、輸送手段運動データをプロセッサに与えるために慣性センサ、例えば加速度計およびジャイロスコープを含む。プロセッサはカルマン・フィルタを使用し、衛星の過去と現在値および/または補正データ信号と同様に運動データから主位置解、副解、保護リミットおよび航路偏差を決定する。
【0008】
運動データを加えることはさらに、位置解を計算するためのデータが不十分である時にプロセッサは短期間に保護リミットを計算できるので、信頼性を改善する。ある意味では、カルマン・フィルタと運動データは、喪失されたGPSまたは差分補正情報の期間を通して進行する「運動量」をプロセッサに確立するように作動させる。
[発明の実施の形態]
以下の詳細な説明において、図1〜図4を参照して、本発明の幾つかの特定の実施例を説明する。これら実施例は、本発明の内容を限定するものではなく例示的に説明するためのものであり、当業者が本発明を実施又は実現することができるように十分に詳細に説明されている。したがって、本発明を不明瞭にしないために、当業者にとって既知である情報を省略して説明している。
【0009】
本明細書において用いられる用語「擬似レンジ(A pseudorange)」は、平滑された擬似レンジ(smoothed pseudorange)及びキャリア伝搬された擬似レンジ(carrier-propagated pseudorange)を含んでいる。また、用語「擬似レンジ補正(A pseudorange corrections)」は、平滑された擬似レンジの補正及びキャリア伝搬された擬似レンジの補正を含んでいる。キャリア伝搬された擬似レンジは、コード測定を用いずにキャリア測定のみを用いて更新される擬似レンジである。例示的な実施例においては、平滑された擬似レンジを用いているが、他の実施例においては、差分キャリア補正(differential carrier correction)を用いるキャリア伝搬擬似レンジに置き換えられる。
【0010】
第1の例示的な実施例
図1は、本発明に組み込まれる差分無線ナビゲーション・システム100を示している。このシステムは、複数の移動体送信機1−Nと、複数のGPS地上受信機1−Mと、差分補正プロセッサ(DCP)110と、地上補正送信機120と、GPS輸送手段受信機130と、ランディング・ユニット140と、オートパイロット・システム150とを含んでいる。輸送手段受信機130、ランディング・ユニット140、及びオートパイロット・システム150は、航空機又は他の輸送手段(不図示)に搭載されている。
【0011】
送信機1−Nは、例示的な実施例においては、衛星送信機のNAVSTAR GPSコンステレーションのサブセットであり、各送信機は、地上受信機1−M及び輸送手段受信機130のそれぞれのアンテナから監視状態にある。送信機1−Nは、N個の信号を同報通信し、これら信号は、それぞれの送信機の位置、地上(又はローカル・エリア)受信機1−M及び輸送手段受信機130への信号送信回数を含んでおり、地上受信機及び輸送手段受信機に関するそれぞれの擬似レンジを判定するために、これら信号が用いられる。
【0012】
衛星が、自身の位置を1984(WGS−84)座標のワールド・ジオデチック・システム、デカルト地球中心-地球固定システム(Cartesian earth-centered earth-fixed system)に送信するが、本発明の実施例においては、ローカル基準フレームRLVにおける位置の解(解)を決定するが、これは、北東座標平面及び地球への接線に関するレベルである。このフレーム選択は、ランディング方向に平行な第1の方向(R)、横方向(ラテラル)すなわち第1の方向を横切る第2の方向(L)、及び第1及び第2の方向に垂直の第3の方向(V)を含んでいる。しかしながら、1つのフレームから他のフレームにどのようにして座標変換するかは極く知られていることであるから、、フレーム選択は決定的なものではない。
【0013】
差分補正プロセッサ110は、GPS地上受信機から擬似レンジを受け取って補正データを決定し、この補正データは、補正データ送信機130により、ランディング・ユニット140内の補正データ受信機142に送信される。ランディング・ユニット140はまた、プロセッサ144及びメモリ146を備えている。メモリ146は、本発明に従って、プロセッサ144の動作を管理する1又は複数のソフトウエア・モジュール146aを記憶する。(本発明においては、受信機、送信機、プロセッサ、又はメモリのフォーム、タイプ又は数のいずれもリミットしていない。)
プロセッサ144は、受信機120からの補正データと輸送手段受信機130からの擬似レンジとを用いて、1つの主位置解と1又は複数の位置副解とを決定する。主位置解は、総ての補正データを用いて差分的に補正され、位置副解は、補正データのサブセットに基づいて差分的に補正される。プロセッサ144は、主位置解及び位置副解を用いて、垂直及び横方向(すなわち水平方向)の保護リミットを計算する。この例示的な実施例は、Federal Aviation Administrationによって規定されているようなカテゴリ1、2又は3等の、特定の気候最小限に関する警報リミットを用いている。(これらリミットのより詳細については、本明細書に参考文献として組み入れられているRTCAパブリケーションD0−245を参照のこと。)何らかの保護リミットがそれぞれの警報リミットからはずれた場合、プロセッサは、航空機のコックピットに対して保全(integrity)障害を通知する。
【0014】
さらに、プロセッサは、主位置解を用いて、オートパイロット・システム150に対して、参照経路に関する角度及び/又は線形コースの偏倚又は補正を演算して出力する。次いでシステム150は、アクチュエータ(不図示)用の信号を生成して、航空機の飛行経路を修正する。
【0015】
図2は、例示的なフローチャート200を示しており、該フローチャートは、システム100及び特にプロセッサ144の、ソフトウエア・モジュールすなわちコンピュータ・プログラム146aによる動作を示している。該フローチャート200はブロック202−222からなり、これらブロックは、本発明の実施例において直列的又は並列的に実行される。幾つかの実施例においては、より以上又はより以下のブロック数によって処理するよう構成される。他の実施例においては、これらブロックを2以上の相互接続ハードウエア・モジュールとして実現し、制御信号及びデータ信号がこれらモジュール間で、及びモジュールを介して通信される。このように、例示的な処理フローは、ソフトウエア、ファームウエア、及びハードウエアによって実現可能である。殆どの場合、総てではないが、処理シーケンスを、図示し説明する順番のものから変更させることができる。
【0016】
ブロック202において、プロセッサ144が動作を開始すると、GPS輸送手段受信機130からN個の擬似レンジと、補正データ受信機142から補正データを取得する。補正データは、プロセッサが、1又は複数であるN個の擬似レンジを補正すなわち調整することができるものであれば、任意の形態を取ることができる。例えば、1つの実施例においては、このデータは、N×M個の擬似レンジと、M個の地上受信機の既知の位置とを含んでおり、これにより、プロセッサ144は、輸送手段受信機のN個の擬似レンジに関する差分補正を計算することができる。
【0017】
実施例においては、補正データ送信機120が、N個の衛星受信機の各々について、2回/秒の頻度で補正データを送信する。各補正データは、以下の表に示した形態である。
【0018】
【表1】
Figure 0005019687
【0019】
例示の実施形態に関しての特定の興味の対象は、擬似レンジ補正、B値(B1−BM)およびσpr_gndである。第nの衛星送信機の擬似レンジ補正は、Mの地上受信機に対する差分擬似レンジ補正の平均として定義され、数学的には以下のようである。
【0020】
【数1】
Figure 0005019687
【0021】
ここで、δρnは第nの衛星送信機の差分補正を示し、Mは地上受信機の数を示し、δρn,mは第mの地上受信機での第nの衛星送信機に対する差分擬似レンジ補正を示す。
【0022】
第nの衛星送信機に対するB値は以下の式で定義される。
【0023】
【数2】
Figure 0005019687
【0024】
ここで、Bn,kは第nの衛星送信機の第kのB値であり、加算はm=kを除いてのM全体のものであり、kは1からMの範囲である。σpr_gndはガウス分布を示し、これは、ブロードキャスト補正におけるエラーをオーバーバウンドするものであり、衛星の評価、観察された信号対ノイズ比(S/N0)、および収束ステータスに依存するものである。
【0025】
ブロック204において、プロセッサは、各地上受信機Mに対するNの差分補正の全セットに基づいて、M+1の異なるNエレメント補正ベクトルδρ0−δρMを定義する。Nの差分補正の全セットは、Nの衛星のそれぞれに対するMの異なるB値から導き出される。主補正ベクトルδρ0は以下のように定義される。
【0026】
【数3】
Figure 0005019687
【0027】
ここで、各エレメントδρnは、第nの衛星送信機に対してのすべての地上受信機1ないしMからの差分補正の均一または非均一の重み付けされた平均を示す。δρm(m=1〜Mに対して)は、以下のように定義される。
【0028】
【数4】
Figure 0005019687
【0029】
ここで、エレメントδρn,mは、第nの衛星送信機に対しての第mの差分補正を除くすべての均一または非均一の重み付けされた平均として定義される。即ち、各エレメントδρn,mは、第mの地上受信機からの補正情報を除く。数学的に、これは以下のように表される。
【0030】
【数5】
Figure 0005019687
【0031】
ここで、nは第nの衛星を示し、その範囲は1ないしNであり、kは1ないしMの範囲であり、ckはそれぞれの重みを示し、これはこの例では1である。
ブロック206は、輸送手段受信機130からの擬似レンジのNエレメント測定ベクトルρmeasの形成を必要とし、それを、位置の解の初期の概算および初期の受信機クロックのオフセットの概算のあたりに線形化する。Δρmeasと示される線形化された測定ベクトルは以下のように定義される。
【0032】
【数6】
Figure 0005019687
【0033】
ここで、ρestは、初期位置概算および初期クロック・オフセット概算から導き出された概算の擬似レンジのNエレメントのベクトルである。Δρmeasを決定するために初期概算のあたりの輸送手段擬似レンジを線形化した後に、プロセッサは、補正ベクトルδρ0−δρMを適用して、M+1のNエレメントの補正された測定(または擬似レンジ)ベクトルδρ0 meas−δρM measのセットを決定する。より正確には、Mの地上受信機全てからの補正情報を含む補正された主測定ベクトルΔρ0 measは以下のように定義される。
【0034】
【数7】
Figure 0005019687
【0035】
Δρm measは以下のように定義される。
【0036】
【数8】
Figure 0005019687
【0037】
ここで、Nエレメント補正ベクトルδρ0およびδρmは、式3、4、5の定義に従う。
ブロック208において、プロセッサは、補正された主測定ベクトルΔρ0 measを用いて主位置解Δr0を決定する。プロセッサは、多元決定(overdetermined)の数式のシステムを解くための任意の技術、例えば、重み付けした又は重み付けしない最小二乗法の概算を使うことができる。「多元決定」とは、冗長の擬似レンジの存在をいう。解Δr0が主位置解として定義される。なぜなら、これは、Mの地上受信機すべてからの補正情報を組み入れているからであり、以下のように定義される。
【0038】
【数9】
Figure 0005019687
【0039】
ここでS0は、4HNの重み付けされた又は重み付けされない最小二乗法の解のマトリクスである。
ブロック210は、幾つかの補正された副解(subsolution)Δr1、Δr2、・・・ΔrMの計算を必要とし、そのそれぞれは、Mの差分補正の個々のサブセットに基づくものである。例示的な実施形態では、各サブセットはM−1の差分補正のみを含み、第mのサブセットは、第mの地上受信機に基づく補正データを除く。即ち、第mの副解は、第mの差分補正を除く全てに基づく平均補正を含む。1つの地上基準受信機を除くことが好まれるのは、これらの受信機の1より多くの受信機が故障しない、又は着陸ユニットに対して異常補正環境を呈示しないということが起きる可能性が低いことに由来する。しかし、望ましい場合には、他の実施形態では、1より多くの地上受信機からの補正を除くことができる。主解Δr0と同様に、第mの副解Δrmは以下のゆうに定義される。
【0040】
【数10】
Figure 0005019687
【0041】
ここで、Smは、重み付けされた又は重み付けされない4HNの最小二乗法の副解のマトリクスである。
例示的な実施形態では、主解Δr0および副解Δr1−ΔrMは4エレメントのベクトル量であり、3つのエレメントは、それぞれ、走路座標、横座標、縦座標を表し、第4のエレメントcΔtは受信機のクロックのオフセットに関連する距離を表し、ここでcは光の速度であり、Δtは受信機のクロックのオフセットである。走路・横・縦(runway-lateral-vertical)(RLV)フレームの中心は、初期位置の概算である。(しかし、他の初期位置の概算を選択することもできる。)即ち、3つのRLV座標は、初期概算についての支配的な式の線形化がなされているので、初期位置概算に相対した位置を実際に表す。従って、絶対位置の解を得るために、RLV座標は、初期位置概算の対応する座標へ付加されねばならない。しかし、ここで用いられるように、位置の解は、任意の相対的位置や絶対位置の解を広く内包するものである。
【0042】
ブロック212において、プロセッサは、主位置解Δr0とそれぞれの副解Δr1−ΔrMとの間のそれぞれの数学的距離に基づき、横方向間隔bL1−bLMと垂直間隔bV1−bVMを計算する。この例示的実施形態は、間隔bL1−bLMを、主解Δr0とそれぞれの副解Δr1−ΔrMの間の各横方向距離として定める。航空機のグライドパスに対する横方向においては、副解Δrmと主解Δr0との間の距離bLmは、以下となる。
【0043】
【数11】
Figure 0005019687
【0044】
ここで、(L)は、位置解の横方向成分を示す。同様に、本例示的実施形態は、垂直間隔bV1−bVMを、主解Δr0とそれぞれの副解Δr1−ΔrMの間の実際の垂直距離として定める。航空機のグライドパスに対する垂直方向においては、副解Δrmと主解Δr0との間の距離bVmは、以下となる。
【0045】
【数12】
Figure 0005019687
【0046】
ここで、Vは、主解と第m副解の垂直成分を示す。次に、動作はステップ214に進む。
ブロック214は、各副解Δr1−ΔrMにおけるノイズにより誘起された誤差に基づき、横方向および垂直方向の誤差パラメータAL1−ALM,AV1−AVMを決定することを含んでいる。このノイズ誘起誤差は、各副解を、輸送手段受信機130の実際位置からずれる方向に強制する。
【0047】
この誤差パラメータの決定においては、プロセッサは、最初に、対応する副解Δr1−ΔrMのためのノイズ誘起誤差の統計を記述する誤差共分散マトリックスP1−PMを計算する。第m誤差共分散マトリックスPmは、以下のように定められる。
【0048】
【数13】
Figure 0005019687
【0049】
【数14】
Figure 0005019687
【0050】
ここで、δrmは、第m副解に対するノイズの影響を表しており、そしてこれは、以下のように定められる。
【0051】
【数15】
Figure 0005019687
【0052】
ここで、wは、M次元測定ノイズ誤差である。E[wwT]は、として定められ、ここで、σ2 pr_airは、航空機に依存し、そしてσ2 pr_gndは、補正データ送信機120からの補正データにおいて定められる。
【0053】
本例示的実施形態においては、プロセッサ144は、
【0054】
【数16】
Figure 0005019687
【0055】
からマトリックスP1−PMを計算する。本例示的実施形態では、それら誤差がガウス分布でゼロ平均であると仮定している。したがって、副解誤差は、RLV座標系における対応する楕円体体積に制限される。この領域内の各々の点は、互いに異なった可能性のある誤差に対応し、そしてその中心はゼロ誤差に対応し、最大誤差はそのいずれかの端にある。
【0056】
共分散マトリックスを決定した後、プロセッサは、横方向および垂直方向の誤差の分散を計算する。これら分散は、共分散マトリックスP1−PMの対角から得ることができる。これら分散は、平均誤差に対する誤差の広がりを定め、したがって第m副解Δrmと実際の位置との間の最大の横方向および垂直方向の誤差の大きさを制御する。
【0057】
この分散において、プロセッサは、横方向および垂直方向の誤差パラメータAL1−ALM,AV1−AVMを以下を使用して計算する。
【0058】
【数17】
Figure 0005019687
【0059】
【数18】
Figure 0005019687
【0060】
ここで、VARLmとVARVmは、第m共分散マトリックスからの横方向および垂直方向分散を示し、PMDは、検出脱落の所与の確率であり、Q-1は、周知の正規化累積分布関数の逆数である。
【0061】
【数19】
Figure 0005019687
【0062】
ある種の実施形態では、RTCA刊行物D0−245において連邦航空局により公布された検出脱落確率を使用する。
ブロック216においては、プロセッサは、横方向および垂直方向の保護リミットを決定し、これは、横方向および垂直方向の解間隔bL1−bLM,bV1−bVMのうちの1つあるいはそれ以上、および横方向および垂直方向の副解誤差パラメータAL1−ALM,AV1−AVMのうちの1つまたはそれ以上を使用して行う。例示的実施形態においては、このプロセスは、横方向保護リミット(LPL)を以下にしたがって決定する。
【0063】
【数20】
Figure 0005019687
【0064】
ここで、maxは、括弧内の量の最大を示し、LPLH0は、以下で定められ、
【0065】
【数21】
Figure 0005019687
【0066】
そして、LPLH1は、以下で定められる。
【0067】
【数22】
Figure 0005019687
【0068】
VARL0、すなわち主位置解における誤差の横方向分散は、主位置解に対する誤差共分散マトリックスから決定する。PffMDは、RTCA刊行物D0−245において規定されたもののような障害無し検出脱落の確率である。同様に、本例示的実施形態は、垂直方向保護リミット(VPL)を以下にしたがって決定する。
【0069】
【数23】
Figure 0005019687
【0070】
ここで、VPLH0は、以下で与えられ、
【0071】
【数24】
Figure 0005019687
【0072】
そしてVPLH1は以下で与えられる。
【0073】
【数25】
Figure 0005019687
【0074】
VARV0、すなわち主位置解における誤差の垂直方向分散は、この主位置解に対する誤差共分散マトリックスから決定される。
横方向及び垂直方向の保護リミットを決定した後で、プロセッサ144dはブロック218を実行し、その結果、それらを対応する所定の横方向及び垂直方向の警告リミットLAL及びVALと比較する。横方向の保護リミット又は垂直方向の保護リミットのどちらか一方がその警告リミットを超える場合には、プロセッサは、航空機のコックピットに信号を送り、パイロット又はそれ以外の所定のシステムに対して、横方向又は垂直方向の保護リミットが限界を超えていることを警告する。オプションではあるが、m番目の解Δrmと主位置の解Δr0との間の現実の横方向又は垂直方向の分離が故障検出の選択された確率に基づくスレショルドを超える場合には、プロセッサは、地上受信機の故障を示す故障フラグを立てる。しかし、従来のLAASでは、この故障検出は、差分補正(differential correction)プロセッサによって処理される。
【0075】
ブロック220では、保護リミットを計算した後で、プロセッサは、主位置解と自動パイロット・システム150への基準経路とに基づき、角及び/又は線形進路の逸脱を計算する。そして、ブロック222では、自動パイロット・システムは、航空機のグライド経路を自動的に補正又は調節する。
【0076】
まとめると、第1の実施例は、差分補正された位置解の保護リミットを決定するユニークな解分離技術を適用する。第1の実施例は、現在のGPS測定及び補正データにだけ明確にいわゆる「スナップショット」態様で作用するが、その主要な効果は、カルマン・フィルタとしての実現例に対するそのユニークな安定性である。カルマン・フィルタの使用を通じて、プロセッサは、現在の測定及び補正データだけでなく、過去の測定及び補正データもまた一体性モニタリング・プロセスの中に組み入れる。更に、カルマン・フィルタにより、プロセッサが、慣性センサ・データを位置解と保護リミットとの計算に組み入れることが可能になる。これについては、第2の実施例において見ることにする。
第2の実施例
図3は、慣性データをプロセッサ144に提供する慣性基準ユニット160を追加することにより、図1の無線ナビゲーション・システム100を拡張している無線ナビゲーション・システム300を示している。結果として得られる組合せは、ハイブリッド型のナビゲーション・システムを構成している。この実施例では、慣性基準ユニット160は、航空機(図示せず)に設置され、三次元的に加速度を測定する3つの加速度計162a−162cと、基準面に対する角度向きすなわち姿勢(attitude)を測定する3つのジャイロスコープ164a−164cとを含む。慣性基準ユニット160は、また、例えば地球に固定された基準座標系における3要素ベクトルとして慣性位置解riを決定する慣性プロセッサ166を含む。
【0077】
また、慣性プロセッサ166は、この実施例では、加速度データを生の加速度ベクトルarawに変換し、姿勢データを生の角速度ベクトルωrawに変換する。この例示的な角速度ベクトルは(航空機に固定されている)本体座標の三次元的な回転を定義し、この例示的な慣性加速度は本体座標において加速度の3つの成分を定義する。更に、慣性プロセッサ166は、本体座標系を局所的な垂直フレームLに変換する変換行列Cを決定する。その際に、地球ベースの慣性フレームIの回転を記述する3要素回転ベクトルωIEはLフレームに変換され、慣性フレームIに対する地球に固定されたフレームEの回転を記述する回転ベクトルωELはLフレームに変換される。この慣性処理の詳細は、この技術分野において広く知られている。
【0078】
例示的なカルマン・フィルタの実現例の核心には、(20+N)個のエラー状態をそれぞれが有するハイブリッド状態ベクトルΔX0−ΔXMが存在する。ΔX0は、M個の地上受信からのすべての差分補正を組み入れており、ΔXmは、m番目の地上受信機からm番目の差分補正を除外する。更に詳細には、m番目の状態ベクトルΔXmは、次の数式のようになる。
【0079】
【数26】
Figure 0005019687
【0080】
ただし、ここで、各記号の意味は次の通りである。
Ψ:3要素の姿勢エラー・ベクトル
Δv:3要素の速度エラー・ベクトル
Δr:m番目の差分補正を除いた3要素ハイブリッド位置解
Δrtc:距離として表された1要素受信機のクロック位相エラー(第1の実施例におけるcΔtと類似する)
Δvfc:速度として表された1要素受信機のクロック周波数エラー
Δω0:100時間の時定数を用いた1次マルコフ・プロセスとしてモデル化されたジャイロ・バイアスの3要素ベクトル
Δa0:100時間の時定数を用いた1次マルコフ・プロセスとしてモデル化された加速度計バイアスの3要素ベクトル
x:北東座標面の東方向の重力偏向
y:北東座標面の北方向の重力偏向
z:北東座標平面に対してz方向の重力アノマリ
ΔeN:搬送波平滑化の結果生じる補正データの補正を補償するN要素平滑化エラー状態
(明確にするために、「m」の添字はΔXmにおけるそれぞれの状態変数には示されていない)従って、ハイブリッド状態ベクトルΔX0−ΔXMは対応する位置解Δr0−ΔXsMを含むが、ここでは、添字が除外された差分補正データを定義している。この実施例では、Δrは3つの空間成分だけを含むが、他方、第1の実施例では、3つの空間成分と受信機クロック・オフセットに関連する距離であるcΔtとを含んでいた。状態ベクトルΔXは、この変数をΔrtcとして識別する。この実施例では示されている(20+N)個の状態変数に命令が発せられるが、他のより多数又は少数の状態変数と他の可変シーケンスとを用いることもできる。
【0081】
図4は、例示的なハイブリッド・ナビゲーション・システムの重要な動作的な側面を図解する流れ図である。この流れ図は、図2のものと類似しており、処理ブロック402−424を含む。これらのブロックは、命令を出されるだけでなく、ハードウェア、ファームウェア及びソフトウェアとしての実装にも等しく適用可能である。ある実施例では、プロセッサは、このプロセス・ループを毎1−10秒ごとに循環する。
【0082】
特に、動作は、プロセッサが慣性、車両受信機及び補正データを検索するブロック402において開始する。この実施例では、以下の慣性データが慣性基準ユニット160から検索される。
【0083】
慣性位置解ri
生の加速度ベクトルaraw
生の各速度ベクトルωraw
変換行列C
回転ベクトルωIE
回転ベクトルωEL
他の実施例では、評価された又は予測された慣性データなど、これ以外の形式の同等の生の又は処理済みの慣性データを用いる。
【0084】
【数27】
Figure 0005019687
【0085】
この慣性データを取り出した後、プロセッサは航空機の動作に基づき慣性エラー・ダイナミクスをモデル化する。これは、線形の慣性エラー・モデルのコンテキスト内で発生し、それはローカルな垂直座標フレームLに参照される。この慣性エラーモデルは、以下の3個の差分方程式の解からそれぞれ得られる姿勢エラー・ベクトルΨ、速度エラー・ベクトルΔv、ハイブリッド位置解Δrを定義している。
【0086】
【数28】
Figure 0005019687
【0087】
【数29】
Figure 0005019687
【0088】
ここで、Δω0は100時定数を持つ一次マルコフ・プロセスとしてモデル化されるジャイロ・バイアス、ΔωIBはΔω0+基準化因子および調整不良エラー、Δa0は100時定数を持つ一次マルコフ・プロセスとしてモデル化される加速度バイアス、ΔaIBはΔa0+基準化因子および調整不良エラー、Δgは重力の偏差およびずれ(vxg、vyg、Δgz)である。
Gは
【0089】
【数30】
Figure 0005019687
【0090】
で定義される3×3の行列であり、ここでRは、地球の半径、g(0)はゼロの高さにおける重力を表している。上付文字[1]、[2]は正確性に影響を与える特定の項を識別する。特に[1]は、シューラー・フィードバックに責任がある二つの重力の項を識別しており、[2]は、垂直フィードバックに責任がある重力の項を識別する。
【0091】
ブロック402では、プロセッサはさらに輸送手段の受信機130から擬似レンジを取り出し、受信機144から補正データを取り出す。擬似レンジおよび補正データを取りだした後、プロセッサはブロック404へ進行する前に擬似レンジの数Nおよび差分補正の数Mを決定する。
【0092】
ブロック404において、プロセッサはM+1個の異なるN要素補正ベクトルδρ0−δρMを、各地上受信機Mに対する全N組の差分補正に基づいて定義する。N個の差分補正の全セットは、M個の異なるB値およびN個の衛星の各々に対する平均差分補正(補正データ送信機から)から得られる。主補正ベクトルδρ0は、
【0093】
【数31】
Figure 0005019687
【0094】
として定義され、ここで各要素δρnはn番目の衛星送信機に対する全ての地上受信機1−Mからの差分補正の均一又は不均一な加重平均を表している。
δρM(m=1〜M)は
【0095】
【数32】
Figure 0005019687
【0096】
のように定義され、ここで要素δρnmは、n番目の衛星に対するm番目の差分補正を除く均一又は不均一な加重平均として定義される。このように、第1の実施の形態においては、各要素δρnmは、m番目の地上受信機からの補正情報を排除する。
【0097】
ブロック406において、プロセッサは補正ベクトルδρ0−δρMを適用して初期または以前の位置の推定の回りで線形化される(M+1)N要素の補正された測定(又は擬似レンジ)ベクトルΔρ0 meas(k)−ΔρM meas(k)の組を決定する。これは第1に(M+1)N要素の擬似レンジの残余ベクトルΔρ0(k)−ΔρM(k)を決定することを必要とし、ここでm番目の擬似レンジ残余ΔρM(k)は
【0098】
【数33】
Figure 0005019687
【0099】
のように定義される。
この方程式では、ρmeasは実際の擬似レンジ測定であり、ρm est(k)は以前のm番目の絶対ハイブリッド副解rm(k)および受信機のクロック・オフセットΔrtcmに基づき推定される擬似レンジであり、下付き文字mはベクトルからのm番目の擬似レンジ補正の除去を表している。m番目の絶対ハイブリッド副解rm(k)は、
【0100】
【数34】
Figure 0005019687
【0101】
により定義され、ここで下付き文字Eは、相対的なハイブリッド位置解Δrmが慣性位置解rjへの加算のためにLフレームから地上固定のフレームへ変換されていることを示している。簡単に述べると、ρm est(k)は位置解としてrm(k)を生じるであろう擬似レンジのNベクトルを意味している。さらにρm est(k)は慣性位置解riおよび測定されたρm measに依存しているので、Δρm meas(k)は慣性および擬似レンジの情報の両方を含んでいる。
【0102】
以前の解に対する擬似レンジの残余を定義することは、解に対するダイナミックなリファレンス軌線を確立する。この種の反復して更新された残余に依存するカルマン・フィルターは拡張カルマン・フィルターとして知られている。ρm est(k)の回りでベクトルを線形化した後に、プロセッサは補正ベクトルを擬似レンジ残余の各々に対して適用する。全てのM個の地上受信機からの補正情報を含んでいる主補正測定ベクトルΔρ0 meas
【0103】
【数35】
Figure 0005019687
【0104】
として定義され、
Δρm meas
【0105】
【数36】
Figure 0005019687
【0106】
のように定義され、ここでN要素補正ベクトルδρ0およびδρmは方程式3,4,5の定義に従う。
ブロック408および410は、それぞれ主解Δr0(k)および副解Δr1(k)−ΔrM(k)の計算を必要とする。カルマン実現において、これらの解はカルマン・ゲイン・ベクトルに依存している。従って、これらの解に対する計算の部分として、プロセッサは対応するハイブリッド状態ベクトルΔX0−ΔXMの全ての状態を更新するためにまずカルマン・ゲイン・ベクトルg0 n(k)−ΔgM n(k)(N個の衛星の各々に対して一つ)を決定する。これらの状態ベクトルを更新することは、対応した解Δr0(k)および副解Δr1(k)−ΔrM(k)をさらに更新する。m番目のカルマン・ゲイン・ベクトルgm n(k)は
【0107】
【数37】
Figure 0005019687
【0108】
のように定義される。
この関係において、Pm(k)は、第m番目の受信機のためのエラー共分散マトリクスであり、またhnは、1H(20+N)測定マトリクスであり、第m番目の測定に組み込まれるエラー状態の組合わせを選択する。hnは、以下のように定義される。
【0109】
【数38】
Figure 0005019687
【0110】
ここで、03は、3個のエレメント0のベクトルであり、Unは、第m番目の地上受信機から第n番目の衛星に対して指し示す、3個のエレメントの照準線または単位方向のベクトルである。(照準線ベクトルの成分は、古典的なナビゲーション幾何学では方向余弦と呼ばれる。)heは、(0,0,…,1,…,0)のようなN個のエレメントのベクトルであり、このベクトルは、0に対する第n番目の1セットを除く全てのエレメントにより、GPS測定において必要とされる関連の平滑化エラー状態を選択する。hの次元は、カルマン(Kalman)・フィルタにおける状態数に依存する。rは、キャリア測定ノイズ分散であり、主フィルタに対して以下のように定義される。
【0111】
【数39】
Figure 0005019687
【0112】
また、rは、サブフィルタに対して以下のように定義される。
【0113】
【数40】
Figure 0005019687
【0114】
カルマン・ゲイン方程式において、nは、各m=1ないしMに対して、1ないしNのレンジである。カルマン・ゲインを決定するための「nループ」の部分は、このカルマン・フィルタの実行が、バッチ処理のアプローチよりはむしろ、測定ごとのアプローチに追随することを示している。この2つのアプローチは数学的に等価であるが、測定ごとのアプローチは、カルマン・フィルタ演算に必要なプロセッサのオペレーションの数を低減する。
【0115】
カルマン・ゲイン・ベクトルにより、プロセッサは、ハイブリッド状態ベクトルΔX0−ΔXMを更新し、それによって、ブロック408及び409が示すように、位置の解Δr0(k)−ΔrM(k)を決定する。反復的更新は以下の通りである。
【0116】
【数41】
Figure 0005019687
【0117】
【数42】
Figure 0005019687
【0118】
ここで、Δρn m(k)は、Δρ1 m(k)=Δρm meas(k)により、連続的に更新される測定ベクトルである。更新は、n=1ないしNに対して、各反復におけるrm(k)の変化に由来する。
【0119】
対応の解 Δr0(k)−ΔrM(k)を含む、ハイブリッド状態ベクトルΔX0−ΔXMを更新した後、プロセッサは、横方向及び垂直方向の分離、エラー・パラメータ、及び保護リミットを決定する。図4に示されるように、これは実行ブロック412,414,416を伴う。
【0120】
特に、ブロック412において、プロセッサは、横方向の分離bL1(k)−bLM(k)及び垂直方向の分離bV1(k)−bVM(k)を計算する。実施例では、分離bL1(k)−bLM(k)を以下のように定義する。
【0121】
【数43】
Figure 0005019687
【0122】
ここで、(L)は位置の解の横方向成分を示し、便宜上、解の成分に対する時間の表記は省略された。同様に、実施例では、分離bV1(k)−bVM(k)を以下のように定義する。
【0123】
【数44】
Figure 0005019687
【0124】
ここで、(V)は主解及び第m番目の副解の垂直方向成分を示し、便宜上、その時間の表記も省略された。
次いでオペレーションはブロック414に進む。
【0125】
ブロック414において、プロセッサは、エラー共分散マトリクスP1(k)−PM(k)から、横方向及び垂直方向のエラー・パラメータAL1(k)−ALM(k)及びAV1(k)−AVM(k)を決定する。横方向及び垂直方向のパラメータは、以下のように定義される。
【0126】
【数45】
Figure 0005019687
【0127】
【数46】
Figure 0005019687
【0128】
ここで、VARLm及びVARVmは、第m番目の共分散マトリクスからの横方向及び垂直方向の分散を示し、PMDは、ミスした検出の所与の確率であり、Q-1は、周知の正規化累積分布関数Q(x)の逆数を示す。横方向及び垂直方向の分散を含む、対応の副解エラーの統計を定義するエラー共分散マトリクスP1(k)−PM(k)は、以下の反復の関係に従う。
【0129】
【数47】
Figure 0005019687
【0130】
ここで、mは、1ないしMのレンジである。
次いで、ブロック416において、プロセッサは、分離及びエラー・パラメータを使用して、次式に従って横方向及び垂直方向の保護リミットLPL(k)及びVPL(k)を計算する。
【0131】
【数48】
Figure 0005019687
【0132】
【数49】
Figure 0005019687
【0133】
上記の式は、反復表記を除いて、Eqns.20−25において第1の実施例で使用されたのと同じ形式と定義に従う。しかしながら、解の反復的偏差Δr0−ΔrM及び、特にエラー共分散マトリクスP1(k)−PM(k)のために、保護リミットは、慣性データのみならず、現在及び過去のGPS測定及び修正データをも組み入れる。
【0134】
横方向及び垂直方向の保護リミットを決定してしまうと、プロセッサ144は、それらをそれぞれ所定の横方向及び垂直方向の警報リミットLAL及びVALと比較することを生じるブロック418を実行する。横方向保護リミットか垂直方向保護リミットかのいずれかがその警報リミットを超える場合、プロセッサは、航空機のコックピットに信号を送り、パイロットに保全性故障を警告する。第m番目の解Δrmと主位置解Δr0との間の実際の横方向又は垂直方向の分離度が誤り検出の選択された確率に基づくあるスレッショルドを越える場合、プロセッサは、地上受信機障害を指示する故障フラグをセットすることは随意である。
【0135】
ブロック420において、プロセッサは、角度及び/又は直線コース偏差を主位置解及びオートパイロット・システム140に対する基準経路に基づいて計算する。これに応答して、オートパイロット・システムは、ブロック422に示されるように航空機のグライドパスを自動的に補正し又は調整する。
【0136】
k番目の繰返しを完了するため、プロセッサは、ステップ424において示されるように1つの繰返しの方へ進み(project)、又は伝搬(propagate)する。これは、
【0137】
【数50】
Figure 0005019687
【0138】
を用いて、次の、即ち(k+1)番目のハイブリッド状態ベクトルΔX0(k+1)からΔXM(k+1)までを決定し、そして
【0139】
【数51】
Figure 0005019687
【0140】
を用いて、(k+1)番目の誤差共分散マトリックスP0(k+1)からPM(k+1)までを推定することを生じる。これらの関係において、Φ(k)は、式27−29の線形化された慣性誤差モデルにより定義された慣性動力学に従って、k番目のハイブリッド状態ベクトルを次の(k+1)番目の推定値と関連付ける状態遷移マトリックスである。そして、Qmm(k)は、
【0141】
【数52】
Figure 0005019687
【0142】
により与えられた雑音共分散マトリックスであり、ここで、v(k)は、慣性測定値の中の雑音を定義するプロセス雑音ベクトルである。
キャリア平滑化を用いる実行においては、差分補正は、強力に相関させられ、従って観測値、即ち差分補正のような測定データが相関されない従来のカルマン・フィルタリング仮定と矛盾するであろう。従って、これらの実行に存在する相関を補償するため、代表的実施形態は、20個の状態誤差ベクトルをN個の追加の誤差状態Δenを用いて拡張し、該N個の追加の誤差状態Δenは、平滑化誤差を、即ち、キャリア平滑化の使用から生じる誤差を推定する。平滑化フィルタは、100秒の時定数を持つ1次の線形フィルタで白色雑音をフィルタリングすることにより得られる平滑化誤差Δenを加算されただけのキャリア雑音を正しい疑似範囲に与える信号ブロックと等価である。1つの複雑化は、M個の地上受信機の各々に対して1つ当て、且つランディング・ユニット内の補正データ受信機から1つ当てであるM+1個の独立雑音寄与分が存在することである。正常状態の下では、M個の雑音寄与分の全ては、それらがカルマン・フィルタで用いられる前に収束を保証するに十分な程長く(約200秒)フィルタリングされた。平滑化誤差状態に追加されるプロセス雑音qeは、受信されたσpr_grdに対応すべきである。
【0143】
代表的実施形態は、プロセス雑音qeを次のように導出する。
【0144】
【数53】
Figure 0005019687
【0145】
分散の更新は(qe=E[w2]で)次式のとおりである。
【0146】
【数54】
Figure 0005019687
【0147】
静止(又はゆっくり変化する)状態において、pe(k+1),pe(k)であり、そのためプロセス雑音qeは、次式により与えられる。
【0148】
【数55】
Figure 0005019687
【0149】
主フィルタに対して、雑音分散は次のとおりである。
【0150】
【数56】
Figure 0005019687
【0151】
そして、サブフィルタに対して、雑音分散は次のとおりである。
【0152】
【数57】
Figure 0005019687
【0153】
操作中のマスキング又は干渉のためランディング・ユニットが一時的に衛星を見失うとき、代表的実施形態は、平滑化フィルタを再開する。一般的に、衛星が標準LAAS内に収束する前に最高200秒かかるであろう。代表的実施形態のフィルタは、慣性伝搬された情報及び他の衛星測定を用いて、元の精度に復旧する。この機構は、見失った衛星の数に無関係に働く。全ての衛星が一時的に見失った場合、復旧は、全体的に、慣性伝搬された情報に基づく。更に、案内信号の保全性は、この期間全体にわたり有効のままである。
【0154】
ブロック428に示される更新を完了した後で、プロセスは、ブロック402に戻って、図4に示されるプロセス・ループ全体を繰り返す。
要するに、第2の実施形態は、第1の実施形態の単純なカルマン・フィルタ拡張を与え、それは、慣性データばかりでなく現在及び過去のGPS測定及び補正データをも位置解及び保護リミット計算に組み込む。過去のデータは、さもなければ保護リミットの計算を妨げるであろういずれの使用可能でない疑似範囲測定データに事実上取って代わり、プロセッサが中断なしに保護リミットを計算するのを可能にする。
【0155】
更に、サブフィルタにおける相関データ拡張機構は、少なくとも1つのサブフィルタ、即ち副解(subsolution)が地上受信機の故障又は停止に影響されないままであることを保証する。たとえ故障が長時間にわたり生じたとしても、サブフィルタは、相変わらず、保全性モニタリングに対して真の基準を与える。そして、慣性データをカルマン・フィルタに組み込むことにより、ランディング・ユニットは、不十分な衛星又は補正データから生じる、全てでは無いが大部分のものを介して動作し又は慣性飛行するのを可能にする。
[結論]
この分野の促進において、発明者はユニークな地上増強無線ナビゲーション・システム及び信頼性と一般的な地上増強GPSナビゲーション及びガイダンス・システムの連続性の欠点を解決する方法とを与えた。特に、一実施の形態はGPSに基づく位置解を計算し、地上受信機からの補正データを使用して1つ又はそれ以上の位置解を発達させた。位置解と副解との間の分離および相違と副解誤差変動は精度又は保護リミットを決定するのに使用された。他の実施の形態はカルマン・フィルタ技術を使用する類似の方法論に従って、過去および現在の慣性データおよび補正データを解答及び副解演算に組み込み、衛星または補正データの喪失中にシステムの継続的な信頼を容易にする。
【0156】
本願は好適な実施の形態を参照して記載されているが、当業者には本発明の真理および範囲から逸脱することなしに変更がされる得ることをみとめるであろう。特に、当業者は、単一のプロセッサが本発明の実施のために全ての動作を行うこと、又は多重プロセッサがこれらの動作を分担することを認めるであろう。更に、方法自身は、ここに記載されたもの以外に各々の機能ユニットに分割されえる。もちろん、形および詳細における他の変更は特許請求の範囲に記載された発明の真理及び範囲の中である。
【図面の簡単な説明】
【図1】 本発明を包含する第1の例示のナビゲーションおよびガイダンス・システム100のブロック図である。
【図2】 本発明による図1のシステムを動作する第1の例示の方法を示すフローチャートである。
【図3】 本発明を包含する第2の例示のナビゲーションおよびガイダンス・システム300のブロック図である。
【図4】 本発明による図3のシステムを動作する例示の方法を示すフローチャートである。

Claims (16)

  1. 複数の衛星送信機からの複数の衛星信号を各々追跡し、前記複数の衛星信号の各々に対する受信機特有の差分補正を得るために夫々既知の位置に設置される複数の地上受信機を含む差分測位システムによって与えられた測位解の精度を決定する方法であって、
    前記複数の地上受信機の全部から得られた前記受信機特有の差分補正の平均値に基づいて、前記複数の衛星信号の各々に対する補正データを決定するステップと、
    前記複数の地上受信機の全部ではない幾つかから得られた前記受信機特有の差分補正のサブセットの平均値に基づいて、前記複数の衛星信号の各々に対する補正データの1つ以上のサブセットを決定するステップと、
    前記複数の衛星信号と、前記複数の地上受信機の全部から得られた前記受信機特有の差分補正の平均値に基づく当該複数の衛星信号の各々に対する補正データとを用いて、前記測位解を生成するステップと、
    前記複数の衛星信号と、前記補正データの1つ以上のサブセットとを用いて、各々前記複数の衛星信号と前記複数の地上受信機の全部ではない幾つかから得られた前記受信機特有の差分補正のサブセットの平均値に基づく前記複数の衛星信号の各々に対する補正データのサブセットの各々に基づ、1つ以上の測位副解を生成するステップと、
    前記測位解と前記1つ以上の測位副解の各々との間の差の関数として、前記測位解の精度の表示を与える1つ以上の間隔を計算するステップと、
    から成る方法。
  2. 請求項1に記載の方法において、前記1つ以上の間隔が、前記測位解に対する保護限界を決定するために用いられることを特徴とする、測位解の精度を決定する方法。
  3. 請求項1に記載の方法において、前記複数の地上受信機の全部から得られた前記受信機特有の差分補正の平均値と、前記複数の地上受信機のサブセットの各々から得られた、前記受信機特有の差分補正のサブセット各々の平均値が、一様或いは否一様加重平均であることを特徴とする、測位解の精度を決定する方法。
  4. 請求項1に記載の方法において、前記測位解及び1つ以上の測位副解の各々が、最小二乗推定から得られることを特徴とする、測位解の精度を決定する方法。
  5. 請求項1に記載の方法において、前記複数の地上受信機のサブセットの各々が、別個の地上受信機と関連し、かつ当該別個の地上受信機以外の全てを含むことを特徴とする、測位解の精度を決定する方法。
  6. 請求項5に記載の方法において、前記複数の地上受信機のサブセットの各々から得られた、前記受信機特有の差分補正のサブセット各々が、前記個別の地上受信機から得られた前記受信機特有の差分補正を除外することを特徴とする、測位解の精度を決定する方法。
  7. 複数の衛星送信機からの複数の衛星信号を各々追跡し、前記複数の衛星信号の各々に対する受信機特有の差分補正を得るために夫々既知の位置に設置される複数の地上受信機を含む、輸送手段に対する測位解を与える差分航法システムで用いるための、前記測位解の精度を決定する方法であって、
    前記複数の地上受信機の全部から得られた前記受信機特有の差分補正の平均値に基づいて、前記複数の衛星信号の各々に対する補正データを決定するステップと、
    記複数の地上受信機の1つ以外の全てから得られた前記受信機特有の差分補正のサブセットの平均値に基づいて、前記複数の衛星信号の各々に対する補正データの複数のサブセットを決定するステップと、
    前記複数の衛星信号と、前記複数の地上受信機の全部から得られた前記受信機特有の差分補正の平均値に基づく当該複数の衛星信号の各々に対する補正データとを用いて、前記測位解を生成するステップと、
    前記複数の衛星信号と、前記補正データの複数のサブセットとを用いて、各々前記複数の衛星信号と前記複数の地上受信機の1つ以外の全てから得られた前記受信機特有の差分補正のサブセットの平均値に基づく前記複数の衛星信号の各々に対する補正データのサブセットの各々に基づ、複数の測位副解を生成するステップと、
    前記測位解と前記複数の測位副解の各々との間の差に基づいて、複数の間隔を計算するステップと、
    前記複数の間隔の少なくとも1つに基づいて、前記輸送手段に対する前記測位解の保護限界を決定するステップと、
    から成る方法。
  8. 請求項7に記載の方法において、前記複数の地上受信機のサブセットの各々から得られた、前記受信機特有の差分補正のサブセット各々が、前記個別の地上受信機から得られた前記受信機特有の差分補正を除外することを特徴とする、測位解の精度を決定する方法。
  9. 請求項7に記載の方法において、前記輸送手段上に設置されたプロセッサによって実行される機械語命令として実装されることを特徴とする、測位解の精度を決定する方法。
  10. 請求項7に記載の方法において、前記保護限界が、水平成分及び垂直成分を含むことを特徴とする、測位解の精度を決定する方法。
  11. 請求項7に記載の方法において、前記輸送手段が、航空機であることを特徴とする、測位解の精度を決定する方法。
  12. 請求項11に記載の方法において、前記システムがローカルエリア増強システム(LAAS)であり、前記受信機特有の差分補正のサブセット各々の平均値に基づく、前記補正データの複数のサブセットが前記衛星信号の各々に対する複数のB値から決定され、前記補正データの複数のサブセットの各々が前記複数のB値の個別のものから決定されることを特徴とする、測位解の精度を決定する方法。
  13. 請求項12に記載の方法において、前記複数のB値の個別のものが、前記別個の地上受信機の1つと関連し、前記受信機特有の差分補正のサブセット各々が、前記個別の地上受信機から得られた前記受信機特有の差分補正を除外することを特徴とする、測位解の精度を決定する方法。
  14. 請求項7に記載の方法において、前記測位解及び測位副解の各々が、カルマン・フィルタ法を用いて計算されることを特徴とする、測位解の精度を決定する方法。
  15. 請求項14に記載の方法において、前記カルマン・フィルタ法が、前記測位解及び複数の測位副解の各々の計算に輸送手段の運動データを与える慣性センサ・データを組み込むことを特徴とする、測位解の精度を決定する方法。
  16. 請求項7に記載の方法において、更に、
    前記保護限界と警告限界とを比較するステップと、
    もし前記保護限界が前記警告限界を超える場合完全性不足を信号するステップと、
    を含むことを特徴とする、測位解の精度を決定する方法。
JP2001523891A 1999-09-14 2000-09-14 地上増強された衛星航法システム用の解分離方法および装置 Expired - Lifetime JP5019687B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/396,193 US6760663B2 (en) 1999-09-14 1999-09-14 Solution separation method and apparatus for ground-augmented global positioning system
US09/396,193 1999-09-14
PCT/US2000/025274 WO2001020360A1 (en) 1999-09-14 2000-09-14 Solution separation method and apparatus for ground-augmented global positioning system

Publications (3)

Publication Number Publication Date
JP2003509697A JP2003509697A (ja) 2003-03-11
JP2003509697A5 JP2003509697A5 (ja) 2007-08-09
JP5019687B2 true JP5019687B2 (ja) 2012-09-05

Family

ID=23566245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001523891A Expired - Lifetime JP5019687B2 (ja) 1999-09-14 2000-09-14 地上増強された衛星航法システム用の解分離方法および装置

Country Status (7)

Country Link
US (1) US6760663B2 (ja)
EP (1) EP1212634B1 (ja)
JP (1) JP5019687B2 (ja)
AT (1) ATE390638T1 (ja)
CA (1) CA2384965A1 (ja)
DE (1) DE60038453T2 (ja)
WO (1) WO2001020360A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985812B2 (en) * 2001-04-13 2006-01-10 General Dynamics Advanced Information Systems, Inc. System and method for detecting interference in global positioning satellite signals
US7512492B2 (en) * 2001-04-13 2009-03-31 General Dynamics Advanced Information Systems, Inc. System and method for detecting interference in global positioning satellite signals
US6549829B1 (en) * 2001-10-31 2003-04-15 The Boeing Company Skipping filter for inertially augmented landing system
US6809683B2 (en) * 2002-11-18 2004-10-26 Honeywell International Inc. Portable tester for LAAS ground facility
US6904377B2 (en) * 2003-03-17 2005-06-07 Northrop Grumman Corporation Method for measuring force-dependent gyroscope sensitivity
US20060234641A1 (en) * 2005-02-03 2006-10-19 Lucent Technologies Inc. System for using an existing cellular network to detect incidents of GPS jaming
US7479922B2 (en) * 2005-03-31 2009-01-20 Deere & Company Method and system for determining the location of a vehicle
US7647177B2 (en) * 2005-03-31 2010-01-12 Deere & Company System and method for determining a position of a vehicle
US7720598B2 (en) 2005-03-31 2010-05-18 Deere & Company System and method for determining a position of a vehicle with compensation for noise or measurement error
US7593811B2 (en) * 2005-03-31 2009-09-22 Deere & Company Method and system for following a lead vehicle
US7653483B2 (en) 2005-03-31 2010-01-26 Deere & Company System and method for determining a position of a vehicle
US7609204B2 (en) * 2005-08-30 2009-10-27 Honeywell International Inc. System and method for dynamically estimating output variances for carrier-smoothing filters
FR2896073B1 (fr) * 2006-01-11 2008-02-08 Airbus France Sas Systeme de pilotage d'un aeronef, au moins pour piloter l'aeronef lors d'une approche autonome en vue d'un atterrissage.
DE102006003308A1 (de) * 2006-01-23 2007-07-26 Eads Astrium Gmbh Verfahren und Vorrichtung zur Bestimmung von Protection-Levels für Satellitennavigationssysteme
FR2906894B1 (fr) * 2006-10-09 2013-09-06 Sagem Defense Securite Procede de localisation d'un vehicule par satellites et garantie d'integrite avec selection d'un sous-groupe de satellites
US8014948B2 (en) * 2007-12-07 2011-09-06 Honeywell International Inc. Navigation system with apparatus for detecting accuracy failures
US20090182493A1 (en) * 2008-01-15 2009-07-16 Honeywell International, Inc. Navigation system with apparatus for detecting accuracy failures
US20090182494A1 (en) * 2008-01-15 2009-07-16 Honeywell International, Inc. Navigation system with apparatus for detecting accuracy failures
US20090182495A1 (en) * 2008-01-15 2009-07-16 Honeywell International, Inc. Navigation system with apparatus for detecting accuracy failures
US8600671B2 (en) * 2008-04-04 2013-12-03 The Boeing Company Low authority GPS aiding of navigation system for anti-spoofing
FR2949852B1 (fr) * 2009-09-07 2011-12-16 Sagem Defense Securite Procede et systeme de determination de limites de protection avec extrapolation integre sur un horizon temporel donne
US8976064B2 (en) 2012-09-06 2015-03-10 Honeywell International Inc. Systems and methods for solution separation for ground-augmented multi-constellation terminal area navigation and precision approach guidance
US9341718B2 (en) 2012-09-07 2016-05-17 Honeywell International Inc. Method and system for providing integrity for hybrid attitude and true heading
FR3002032B1 (fr) * 2013-02-08 2016-02-12 Dassault Aviat Systeme et procede d'aide a la navigation d'un aeronef
US9547086B2 (en) * 2013-03-26 2017-01-17 Honeywell International Inc. Selected aspects of advanced receiver autonomous integrity monitoring application to kalman filter based navigation filter
US9488732B1 (en) * 2013-07-24 2016-11-08 Rockwell Collins, Inc. GPS optimization for limited data
CN104749582B (zh) * 2013-12-27 2017-11-21 中国移动通信集团公司 差分数据的发送方法、gps定位数据的确定方法及装置
US9746562B2 (en) 2014-06-30 2017-08-29 The Boeing Company Portable ground based augmentation system
US9939532B2 (en) 2015-01-09 2018-04-10 Honeywell International Inc. Heading for a hybrid navigation solution based on magnetically calibrated measurements
US11126947B2 (en) * 2016-06-30 2021-09-21 Honeywell International Inc. Devices, methods, and systems for airside performance analysis
US10955261B2 (en) * 2017-04-17 2021-03-23 Rosemount Aerospace Inc. Air data attitude reference system
US10284326B2 (en) * 2017-05-10 2019-05-07 Talen-X, Inc. Penalty-based environment monitoring
US11662472B2 (en) 2020-04-20 2023-05-30 Honeywell International Inc. Integrity monitoring of odometry measurements within a navigation system
US11892544B2 (en) * 2020-05-01 2024-02-06 Honeywell International Inc. GNSS data integrity monitoring as a connected service
CN111913203B (zh) * 2020-07-08 2023-01-10 北京航空航天大学 一种动态基线定位域监测方法
DE102020119803A1 (de) * 2020-07-28 2022-02-03 Airbus Defence and Space GmbH Präzisionsanflug- und Landesystem für Luftfahrzeuge
CN112526549B (zh) * 2020-12-01 2022-03-15 北京航空航天大学 一种地基增强系统完好性故障识别方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224697A (ja) * 1991-02-08 1994-08-12 Rockwell Internatl Corp 航空機統合誘導システム
JPH08297158A (ja) * 1995-04-26 1996-11-12 Furuno Electric Co Ltd 測位装置および測位用衛星の異常検知方法
JP2000314770A (ja) * 1999-04-30 2000-11-14 Toshiba Corp ローカルエリア統合測位システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600329A (en) * 1995-06-30 1997-02-04 Honeywell Inc. Differential satellite positioning system ground station with integrity monitoring
US5884220A (en) 1996-07-16 1999-03-16 Trimble Navigation Limited Method and apparatus to improve overall performance of a DGPS receiver
US5760737A (en) * 1996-09-11 1998-06-02 Honeywell Inc. Navigation system with solution separation apparatus for detecting accuracy failures
US5786773A (en) 1996-10-02 1998-07-28 The Boeing Company Local-area augmentation system for satellite navigation precision-approach system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224697A (ja) * 1991-02-08 1994-08-12 Rockwell Internatl Corp 航空機統合誘導システム
JPH08297158A (ja) * 1995-04-26 1996-11-12 Furuno Electric Co Ltd 測位装置および測位用衛星の異常検知方法
JP2000314770A (ja) * 1999-04-30 2000-11-14 Toshiba Corp ローカルエリア統合測位システム

Also Published As

Publication number Publication date
WO2001020360A1 (en) 2001-03-22
EP1212634A1 (en) 2002-06-12
US6760663B2 (en) 2004-07-06
DE60038453D1 (de) 2008-05-08
DE60038453T2 (de) 2009-08-27
US20010020214A1 (en) 2001-09-06
ATE390638T1 (de) 2008-04-15
JP2003509697A (ja) 2003-03-11
WO2001020360A9 (en) 2002-09-26
EP1212634B1 (en) 2008-03-26
CA2384965A1 (en) 2001-03-22

Similar Documents

Publication Publication Date Title
JP5019687B2 (ja) 地上増強された衛星航法システム用の解分離方法および装置
US5923286A (en) GPS/IRS global position determination method and apparatus with integrity loss provisions
US6424914B1 (en) Fully-coupled vehicle positioning method and system thereof
US6401036B1 (en) Heading and position error-correction method and apparatus for vehicle navigation systems
US6205400B1 (en) Vehicle positioning and data integrating method and system thereof
US6496778B1 (en) Real-time integrated vehicle positioning method and system with differential GPS
US7248964B2 (en) System and method for using multiple aiding sensors in a deeply integrated navigation system
US8600660B2 (en) Multipath modeling for deep integration
US8204677B2 (en) Tracking method
US8497798B2 (en) Device and method for three-dimensional positioning
US5557284A (en) Spoofing detection system for a satellite positioning system
US8082099B2 (en) Aircraft navigation using the global positioning system and an attitude and heading reference system
US8909471B1 (en) Voting system and method using doppler aided navigation
US20090182493A1 (en) Navigation system with apparatus for detecting accuracy failures
WO2003054571A2 (en) Fault detection and exclusion for global position systems
US20200150279A1 (en) Positioning device
US20100106416A1 (en) Aircraft navigation using the global positioning system, inertial reference system, and distance measurements
US6845304B1 (en) Method of and system for deriving inertial-aided deviations for autoland systems during GPS signal interruptions
US20090182495A1 (en) Navigation system with apparatus for detecting accuracy failures
WO2002091014A2 (en) A gps based terrain referenced navigation system
US9562788B1 (en) System and method for doppler aided navigation using weather radar
KR20230004103A (ko) 센서 고장 및 동적 환경에 강건한 레이다 항법 교정 방법 및 그를 위한 장치
US20240183933A1 (en) Method for locating a navigation unit
Fasano et al. An advanced system for performance evaluation of integrated navigation systems
Toledo et al. Development and testing of a relative GPS based system for guidance in precision approach and landing on aircraft carriers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101022

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5019687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term