JP5018226B2 - Conductive film forming ink - Google Patents

Conductive film forming ink Download PDF

Info

Publication number
JP5018226B2
JP5018226B2 JP2007127866A JP2007127866A JP5018226B2 JP 5018226 B2 JP5018226 B2 JP 5018226B2 JP 2007127866 A JP2007127866 A JP 2007127866A JP 2007127866 A JP2007127866 A JP 2007127866A JP 5018226 B2 JP5018226 B2 JP 5018226B2
Authority
JP
Japan
Prior art keywords
conductive film
fine particles
ink
mgkoh
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007127866A
Other languages
Japanese (ja)
Other versions
JP2008034358A (en
Inventor
啓 中西
英之 平社
啓介 阿部
恭宏 真田
一志 小林
潤子 安齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007127866A priority Critical patent/JP5018226B2/en
Publication of JP2008034358A publication Critical patent/JP2008034358A/en
Application granted granted Critical
Publication of JP5018226B2 publication Critical patent/JP5018226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、導電膜形成用インクおよびプリント配線板の製造方法に関する。   The present invention relates to a conductive film forming ink and a method for producing a printed wiring board.

近年、エレクトロニクス製品の発展に伴い、絶縁性の樹脂を含浸したプリント配線板の需要は増加の一途をたどっている。中でも、フレキシブルプリント配線板の需要増加は著しい。プリント配線板は、電気絶縁体層上に所望の配線パターンの導電膜が形成されたものである。電気絶縁体層としては、フェノール樹脂、エポキシ樹脂、ポリエステル、ポリイミド等の樹脂基材、またはそれらのいずれかを含浸したガラス布または紙系の基材、金属系の基材、セラミック系の基材が用いられている。   In recent years, with the development of electronic products, the demand for printed wiring boards impregnated with an insulating resin continues to increase. Above all, the increase in demand for flexible printed wiring boards is remarkable. The printed wiring board is obtained by forming a conductive film having a desired wiring pattern on an electrical insulator layer. As the electrical insulator layer, a resin base material such as phenol resin, epoxy resin, polyester, polyimide, or a glass cloth or paper base material impregnated with any of them, a metal base material, a ceramic base material Is used.

プリント配線板は、通常、下記工程を有する製造方法にて製造される。
(i)電気絶縁体層の全面に導電膜を形成する工程。
(ii)導電層の全面にレジスト液を塗布し、レジスト膜を形成する工程。
(iii)所望の配線パターンのフォトマスクを通してレジスト膜を露光する工程。
(iv)レジスト膜を現像処理し、所望の配線パターンのレジストを形成する工程。
(v)エッチング液により導電膜をエッチングする工程。
(vi)レジストを除去する工程。
A printed wiring board is usually manufactured by a manufacturing method having the following steps.
(I) A step of forming a conductive film on the entire surface of the electrical insulator layer.
(Ii) A step of applying a resist solution to the entire surface of the conductive layer to form a resist film.
(Iii) A step of exposing the resist film through a photomask having a desired wiring pattern.
(Iv) A step of developing the resist film to form a resist having a desired wiring pattern.
(V) A step of etching the conductive film with an etching solution.
(Vi) A step of removing the resist.

しかし、該方法は、下記の問題を有する。
工程が多い。
廃棄物が多い。
パターンごとに高価なフォトマスクが必要となる。
However, this method has the following problems.
There are many processes.
There is a lot of waste.
An expensive photomask is required for each pattern.

該問題を解決する方法としては、電気絶縁体層の表面に金属微粒子分散液を所望の配線パターン状に塗布して、所望の配線パターンの導電膜を形成する方法が提案されている(たとえば、特許文献1)。しかし、該方法にて形成された導電膜は、電気絶縁体層との密着性が不充分であるため、電気絶縁体層と導電膜との間に中間材料層を形成しなくてはならない。そのため、工程が増え、コストが上がる等の問題を有する。
特開2006−7135号公報
As a method for solving the problem, a method of forming a conductive film having a desired wiring pattern by applying a metal fine particle dispersion in a desired wiring pattern on the surface of an electrical insulator layer has been proposed (for example, Patent Document 1). However, since the conductive film formed by this method has insufficient adhesion to the electric insulator layer, an intermediate material layer must be formed between the electric insulator layer and the conductive film. Therefore, there are problems such as an increase in the number of processes and an increase in cost.
JP 2006-7135 A

本発明は、ポリイミドを含む電気絶縁体層との密着性に優れる導電膜を形成できる導電膜形成用インク、ポリイミドを含む電気絶縁体層との密着性に優れる導電膜を有するプリント配線板を、少ない工程で製造できるプリント配線板の製造方法を提供する。   The present invention provides a conductive film forming ink capable of forming a conductive film excellent in adhesion with an electrical insulator layer containing polyimide, a printed wiring board having a conductive film excellent in adhesion with an electrical insulator layer containing polyimide, Provided is a method for producing a printed wiring board which can be produced with a small number of processes.

本発明の導電膜形成用インクは、ポリイミドを含む電気絶縁体層の表面に導電膜を形成するための導電膜形成用インクであって、気圧0.1MPaの状態での沸点が150〜350℃である非水溶性有機溶媒と、該有機溶媒中に分散した金属微粒子および/または水素化金属微粒子と、JIS K7237の規定によるアミン価が40120mgKOH/gであるアミノ化合物とを含み、前記アミノ化合物の量が、金属微粒子および水素化金属微粒子の合計100質量部に対し、1〜50質量部であることを特徴とする The ink for forming a conductive film of the present invention is a conductive film forming ink for forming a conductive film on the surface of an electrical insulator layer containing polyimide, and has a boiling point of 150 to 350 ° C. at a pressure of 0.1 MPa. a water-insoluble organic solvent is, seen containing metal particles and / or metal hydride fine particles dispersed in the organic solvent, an amino compound is an amine value prescribed in JIS K7237 is 40 ~ 120 mg KOH / g, The amount of the amino compound is 1 to 50 parts by mass with respect to 100 parts by mass in total of the metal fine particles and metal hydride fine particles .

本発明の導電膜形成用インクによれば、ポリイミドを含む電気絶縁体層との密着性に優れる導電膜を形成できる。
本発明のプリント配線板の製造方法によれば、ポリイミドを含む電気絶縁体層との密着性に優れる導電膜を有するプリント配線板を、少ない工程で製造できる。
According to the conductive film forming ink of the present invention, it is possible to form a conductive film that is excellent in adhesion to an electrical insulator layer containing polyimide.
According to the method for producing a printed wiring board of the present invention, a printed wiring board having a conductive film excellent in adhesion to an electrical insulator layer containing polyimide can be produced in a small number of steps.

<導電膜形成用インク>
本発明の導電膜形成用インクは、気圧0.1MPaの状態での沸点が150〜350℃である非水溶性有機溶媒(以下、有機溶媒と記す。)と、該有機溶媒中に分散した金属微粒子および/または水素化金属微粒子(以下、金属微粒子および水素化金属微粒子をまとめて、本微粒子とも記す。)と、JIS K7237の規定によるアミン価が10〜190mgKOH/gであるアミノ化合物とを含む。
<Ink for forming conductive film>
The ink for forming a conductive film of the present invention includes a water-insoluble organic solvent (hereinafter referred to as an organic solvent) having a boiling point of 150 to 350 ° C. under a pressure of 0.1 MPa, and a metal dispersed in the organic solvent. Fine particles and / or metal hydride fine particles (hereinafter, metal fine particles and metal hydride fine particles are collectively referred to as “fine particles”) and an amino compound having an amine value of 10 to 190 mgKOH / g according to JIS K7237. .

(有機溶媒)
有機溶媒は、非水溶性である必要がある。非水溶性とは、室温(20℃)における水100gへの溶解度が0.5g以下であることを意味する。
有機溶媒としては、極性の少ないものが好ましい。極性の少ない有機溶媒は、本発明で分散剤として用いるアミノ化合物との親和性がよい。
有機溶媒としては、導電膜を形成する際、加熱によって熱分解を起こさないものが好ましい。
(Organic solvent)
The organic solvent needs to be water-insoluble. Water-insoluble means that the solubility in 100 g of water at room temperature (20 ° C.) is 0.5 g or less.
As an organic solvent, a thing with little polarity is preferable. An organic solvent having a small polarity has good affinity with an amino compound used as a dispersant in the present invention.
As the organic solvent, those which do not cause thermal decomposition by heating when the conductive film is formed are preferable.

有機溶媒の沸点は、気圧0.1MPaの状態で、150〜350℃であり、200〜280℃が好ましい。有機溶媒の沸点が150℃以上であれば、導電膜を形成する際、塗膜に有機溶媒が比較的長く留まることにより、導電膜形成用インクのアミノ化合物と電気絶縁体層のポリイミドとの反応が充分に起こり、その結果、導電膜と電気絶縁体層との密着性が良好となる。有機溶媒の沸点が350℃以下であれば、導電膜を形成する際の焼成時間を短くできる。   The boiling point of the organic solvent is 150 to 350 ° C. and preferably 200 to 280 ° C. at a pressure of 0.1 MPa. If the boiling point of the organic solvent is 150 ° C. or higher, the reaction between the amino compound of the conductive film forming ink and the polyimide of the electrical insulator layer is caused by the organic solvent remaining in the coating film for a relatively long time when the conductive film is formed. Occurs sufficiently, and as a result, the adhesion between the conductive film and the electrical insulator layer is improved. If the boiling point of the organic solvent is 350 ° C. or lower, the firing time for forming the conductive film can be shortened.

有機溶媒としては、デカン(沸点174℃、水に不溶。)、ドデカン(沸点216℃、水に不溶。)、テトラデカン(沸点253℃、水に不溶。)、デセン(沸点171℃、水に不溶。)、ドデセン(沸点216℃、水に不溶。)、テトラデセン(沸点234℃、水に不溶。)、ジペンテン(沸点177℃、水100gへの溶解度0.001g(20℃)。)、テルピネオール(沸点219℃、水100gへの溶解度0.5g(20℃)。)およびメシチレン(沸点165℃、水に不溶。)からなる群より選ばれる1種以上が挙げられる。沸点は、気圧0.1MPaの状態での値である。   Organic solvents include decane (boiling point 174 ° C., insoluble in water), dodecane (boiling point 216 ° C., insoluble in water), tetradecane (boiling point 253 ° C., insoluble in water), decene (boiling point 171 ° C., insoluble in water). ), Dodecene (boiling point 216 ° C., insoluble in water), tetradecene (boiling point 234 ° C., insoluble in water), dipentene (boiling point 177 ° C., solubility in 100 g of water 0.001 g (20 ° C.)), terpineol ( One or more selected from the group consisting of a boiling point of 219 ° C., a solubility of 0.5 g (20 ° C.) in 100 g of water, and mesitylene (boiling point of 165 ° C., insoluble in water). The boiling point is a value at a pressure of 0.1 MPa.

有機溶媒の量は、導電膜形成用インク中の本微粒子の濃度が後述の範囲を外れない量で、かつ本金属微粒子100質量部に対し、65〜500質量部が好ましく、125〜500質量部がより好ましい。有機溶媒の量が本微粒子100質量部に対し65質量部以上であれば、導電膜形成用インクの粘度、表面張力等のインク特性が良好となり、取り扱い性が向上する。有機溶媒の量が本微粒子100質量部に対し500質量部以下であれば、充分な厚さの導電膜を形成できる。   The amount of the organic solvent is such that the concentration of the fine particles in the conductive film forming ink does not deviate from the range described below, and is preferably 65 to 500 parts by weight, and 125 to 500 parts by weight with respect to 100 parts by weight of the metal fine particles. Is more preferable. When the amount of the organic solvent is 65 parts by mass or more with respect to 100 parts by mass of the fine particles, ink characteristics such as viscosity and surface tension of the conductive film forming ink are improved, and handling properties are improved. When the amount of the organic solvent is 500 parts by mass or less with respect to 100 parts by mass of the fine particles, a sufficiently thick conductive film can be formed.

(本微粒子)
本微粒子には、金属微粒子および/または水素化金属微粒子を、適宜用途に応じて使用できるが、安定性、保存性の面から、水素化金属微粒子が好ましい。
金属微粒子としては、金属銅微粒子、金属ニッケル微粒子、金属パラジウム微粒子が挙げられ、導電性に優れた導電膜が形成できる点から、金属銅微粒子または金属ニッケル微粒子が好ましく、金属銅微粒子がより好ましい。
金属微粒子は、後述の湿式還元法により製造することが好ましい。
(Fine particles)
As the fine particles, metal fine particles and / or metal hydride fine particles can be appropriately used depending on the intended use, but metal hydride fine particles are preferable from the viewpoint of stability and storage stability.
Examples of the metal fine particles include metal copper fine particles, metal nickel fine particles, and metal palladium fine particles. From the viewpoint that a conductive film having excellent conductivity can be formed, metal copper fine particles or metal nickel fine particles are preferable, and metal copper fine particles are more preferable.
The metal fine particles are preferably produced by a wet reduction method described later.

水素化金属微粒子は、金属原子と水素原子とが結合した金属水素化物の微粒子である。水素化金属微粒子は、空気雰囲気中において金属微粒子に比べて酸化されにくく、安定であり、保存性に優れている。水素化金属微粒子は、60〜100℃で金属と水素に分解する性質を有するため、導電膜を形成する際に、加熱によって微粒子表面に金属酸化物皮膜が形成されることがほとんどなく、分解によって生成した金属微粒子同士がすみやかに表面溶融現象の性質により溶融、結合して、導電性に優れた導電膜を形成する。   The metal hydride fine particles are metal hydride fine particles in which metal atoms and hydrogen atoms are bonded. The metal hydride fine particles are less oxidized in the air atmosphere than the metal fine particles, are stable, and have excellent storage stability. Since metal hydride fine particles have the property of decomposing into metal and hydrogen at 60 to 100 ° C., when forming a conductive film, a metal oxide film is hardly formed on the surface of the fine particles by heating. The generated metal fine particles are immediately melted and bonded by the property of the surface melting phenomenon to form a conductive film having excellent conductivity.

水素化金属微粒子としては、水素化銅微粒子、水素化ニッケル微粒子、水素化パラジウム微粒子が挙げられ、導電性に優れた導電膜が形成できる点から、水素化銅微粒子または水素化ニッケル微粒子が好ましく、水素化銅微粒子がより好ましい。
水素化金属微粒子は、後述の湿式還元法により製造することが好ましい。
Examples of the metal hydride fine particles include copper hydride fine particles, nickel hydride fine particles, and palladium hydride fine particles. From the viewpoint that a conductive film having excellent conductivity can be formed, copper hydride fine particles or nickel hydride fine particles are preferable. Copper hydride fine particles are more preferable.
The metal hydride fine particles are preferably produced by a wet reduction method described later.

本微粒子の平均粒子径は、50nm以下が好ましく、5〜30nmがより好ましい。本微粒子の平均粒子径が50nm以下であれば、微細な配線パターンを形成できる。また、表面溶融温度が低下するため表面融着が起こりやすくなる。また、緻密な導電膜が形成でき、導電性が向上する。
本微粒子の平均粒子径は、無作為に抽出した100個の本微粒子の粒子径を、透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)を用いて測定し、該粒子径を平均した値である。
The average particle size of the fine particles is preferably 50 nm or less, and more preferably 5 to 30 nm. If the average particle diameter of the fine particles is 50 nm or less, a fine wiring pattern can be formed. Further, since the surface melting temperature is lowered, surface fusion is likely to occur. In addition, a dense conductive film can be formed, and conductivity is improved.
The average particle size of the fine particles was determined by measuring the particle size of 100 randomly extracted fine particles using a transmission electron microscope (TEM) or a scanning electron microscope (SEM), and averaging the particle sizes. Value.

本微粒子の濃度は、導電膜形成用インク100質量%中、5〜60質量%が好ましく、10〜50質量%がより好ましい。本微粒子の濃度が5質量%以上であれば、充分な厚さの導電膜を形成でき、導電膜が向上する。本微粒子の濃度が60質量%以下であれば、導電膜形成用インクの粘度、表面張力等のインク特性が良好となり、取り扱い性が向上する。   The concentration of the fine particles is preferably 5 to 60% by mass and more preferably 10 to 50% by mass in 100% by mass of the conductive film forming ink. When the concentration of the fine particles is 5% by mass or more, a conductive film having a sufficient thickness can be formed, and the conductive film is improved. When the concentration of the fine particles is 60% by mass or less, ink properties such as viscosity and surface tension of the conductive film forming ink are improved, and handling properties are improved.

(アミノ化合物)
アミノ化合物は、アミノ基を有する有機化合物またはその塩である。アミノ化合物は、一級アミンまたは二級アミンであり、電気絶縁体層のポリイミドとの反応が起こりやすい点から、一級アミンが好ましい。
(Amino compound)
The amino compound is an organic compound having an amino group or a salt thereof. The amino compound is a primary amine or a secondary amine, and a primary amine is preferable from the viewpoint that a reaction with the polyimide of the electrical insulator layer easily occurs.

アミノ化合物としては、高分子アミノ化合物が好ましい。高分子アミノ化合物としては、下記市販品が好ましい。
ビックケミー・ジャパン社製:Anti−Terra−U(長鎖ポリアミノアマイドと酸ポリマーとの塩、アミン価19mgKOH/g)、Anti−Terra−204(ポリアミノアマイドのポリカルボン酸塩、アミン価36mgKOH/g)、Disperbyk−101(長鎖ポリアミノアマイドと極性酸エステルとの塩、アミン価14mgKOH/g)、Disperbyk−106(酸性基を有するポリマー塩、アミン価74mgKOH/g)、Disperbyk−108(水酸基含有カルボン酸エステル、アミン価71mgKOH/g)、Disperbyk−109(アルキロールアミノアマイド、アミン価140mgKOH/g)、Disperbyk−112(顔料に親和性のあるアクリル系共重合物、アミン価36mgKOH/g)、Disperbyk−116(顔料に親和性のあるアクリル系共重合物、アミン価65mgKOH/g)、Disperbyk−130(不飽和ポリカルボン酸ポリアミノアマイド、アミン価190mgKOH/g)、Disperbyk−140(酸性ポリマーのアルキルアンモニウム塩、アミン価76mgKOH/g)、Disperbyk−142(顔料に親和性のある共重合物のリン酸エステル塩、アミン価43mgKOH/g)、Disperbyk−145(顔料に親和性のある共重合物のリン酸エステル塩、アミン価71mgKOH/g)、Disperbyk−161(顔料に親和性のあるブロック共重合物、アミン価11mgKOH/g)、Disperbyk−162(顔料に親和性のあるブロック共重合物、アミン価13mgKOH/g)、Disperbyk−164(顔料に親和性のあるブロック共重合物、アミン価18mgKOH/g)、Disperbyk−166(顔料に親和性のあるブロック共重合物、アミン価20mgKOH/g)、Disperbyk−167(顔料に親和性のあるブロック共重合物、アミン価13mgKOH/g)、Disperbyk−168(顔料に親和性のあるブロック共重合物、アミン価10mgKOH/g)、Disperbyk−2000(変性アクリル系ブロック共重合物、アミン価4mgKOH/g)、Disperbyk−2001(変性アクリル系ブロック共重合物、アミン価29mgKOH/g)、Disperbyk−2020(変性アクリル系ブロック共重合物、アミン価38mgKOH/g)、Disperbyk−2050(顔料に親和性のあるアクリル系共重合物、アミン価30mgKOH/g)、Disperbyk−2070(顔料に親和性のあるアクリル系共重合物、アミン価20mgKOH/g)、Disperbyk−2150(顔料に親和性のあるブロック共重合物、アミン価57mgKOH/g)。
As the amino compound, a high molecular amino compound is preferable. As the polymer amino compound, the following commercially available products are preferable.
Big Chemie Japan, Inc .: Anti-Terra-U (a salt of a long-chain polyaminoamide and an acid polymer, amine value 19 mgKOH / g), Anti-Terra-204 (polyaminoamide polycarboxylate, amine value 36 mgKOH / g) Disperbyk-101 (salt of long-chain polyaminoamide and polar acid ester, amine value 14 mgKOH / g), Disperbyk-106 (polymer salt having an acidic group, amine value 74 mgKOH / g), Disperbyk-108 (hydroxyl group-containing carboxylic acid) Ester, amine value 71 mgKOH / g), Disperbyk-109 (alkylol aminoamide, amine value 140 mgKOH / g), Disperbyk-112 (acrylic copolymer having affinity for pigment, amine value 36 gKOH / g), Disperbyk-116 (acrylic copolymer having an affinity for pigment, amine value 65 mgKOH / g), Disperbyk-130 (unsaturated polycarboxylic acid polyaminoamide, amine value 190 mgKOH / g), Disperbyk-140 (Ammonium salt of acidic polymer, amine value 76 mgKOH / g), Disperbyk-142 (phosphate ester salt of copolymer having affinity for pigment, amine value 43 mgKOH / g), Disperbyk-145 (affinity to pigment) Phosphate ester salt of a certain copolymer, amine value 71 mgKOH / g), Disperbyk-161 (block copolymer having affinity for pigment, amine value 11 mgKOH / g), Disperbyk-162 (block having affinity for pigment) Polymer, amine value 13 mgKOH / g), Disperbyk-164 (block copolymer having affinity for pigment, amine value 18 mgKOH / g), Disperbyk-166 (block copolymer having affinity for pigment, amine value 20 mgKOH / G), Disperbyk-167 (block copolymer having affinity for pigment, amine value 13 mgKOH / g), Disperbyk-168 (block copolymer having affinity for pigment, amine value 10 mgKOH / g), Disperbyk- 2000 (modified acrylic block copolymer, amine value 4 mgKOH / g), Disperbyk-2001 (modified acrylic block copolymer, amine value 29 mgKOH / g), Disperbyk-2020 (modified acrylic block copolymer, amine value) 38 mgKOH / g), Disperbyk-2050 (acrylic copolymer having affinity for pigment, amine value 30 mgKOH / g), Disperbyk-2070 (acrylic copolymer having affinity for pigment, amine value 20 mgKOH / g) Disperbyk-2150 (block copolymer having affinity for pigment, amine value 57 mgKOH / g).

川研ファインケミカル社製:ヒノアクトKF1500(カチオン系界面活性剤シングルアンカー型、アミン価7mgKOH/g)、ヒノアクトKF1700(カチオン系界面活性剤シングルアンカー型、アミン価2mgKOH/g)。
味の素ファインテクノ社製:アジスパーPB821(塩基性高分子分散剤、アミン価9mgKOH/g)、アジスパーPB822(塩基性高分子分散剤、アミン価13mgKOH/g)、アジスパーPB711(塩基性高分子分散剤、アミン価45mgKOH/g)。
楠本化成社製:ディスパロン1860(長鎖ポリアミノアマイドと高分子ポリエステル酸との塩。アミン価11mgKOH/g)、ディスパロンKS873N(ポリエステルのアミン塩、アミン価120mgKOH/g)、ディスパロンDA703−50(高分子量ポリエステル酸のアマイドアミン塩、アミン価40mgKOH/g)、ディスパロンDA7400(高分子量ポリエステル酸のアマイドアミン塩、アミン価40mgKOH/g)。
チバスペシャリティーケミカル社製:EFKA−4401(変性ポリアクリル系高分子分散剤、アミン価50mgKOH/g)、EFKA−5044(不飽和ポリエステルポリアマイド、アミン価16mgKOH/g)、EFKA−5207(水酸基を含む不飽和カルボン酸、アミン価85mgKOH/g)、EFKA−6225(脂肪酸変性ポリエステル、アミン価47mgKOH/g)、EFKA−4330(アクリルブロックコポリマー系高分子分散剤、アミン価28mgKOH/g)、EFKA−4047(変性ポリウレタン系高分子分散剤、アミン価17mgKOH/g)、EFKA−4060(変性ポリウレタン系高分子分散剤、アミン価8mgKOH/g)。
Kawaken Fine Chemicals: Hinoact KF1500 (cationic surfactant single anchor type, amine value 7 mgKOH / g), Hinoact KF1700 (cationic surfactant single anchor type, amine value 2 mgKOH / g).
Ajinomoto Fine Techno Co., Ltd .: Ajisper PB821 (basic polymer dispersant, amine value 9 mgKOH / g), Azisper PB822 (basic polymer dispersant, amine value 13 mgKOH / g), Azisper PB711 (basic polymer dispersant, Amine value 45 mg KOH / g).
Made by Enomoto Kasei Co., Ltd .: Disparon 1860 (Salt of long-chain polyaminoamide and high molecular polyester acid; amine value 11 mgKOH / g), Disparon KS873N (Amine salt of polyester, amine value 120 mgKOH / g), Disparon DA703-50 (high molecular weight) Polyamide acid amide amine salt, amine value 40 mgKOH / g), Disparon DA7400 (high molecular weight polyester acid amide amine salt, amine value 40 mgKOH / g).
Ciba Specialty Chemicals: EFKA-4401 (modified polyacrylic polymer dispersant, amine value 50 mgKOH / g), EFKA-5044 (unsaturated polyester polyamide, amine value 16 mgKOH / g), EFKA-5207 (hydroxyl group) Unsaturated carboxylic acid containing, amine value 85 mgKOH / g), EFKA-6225 (fatty acid-modified polyester, amine value 47 mgKOH / g), EFKA-4330 (acrylic block copolymer polymer dispersant, amine value 28 mgKOH / g), EFKA- 4047 (modified polyurethane polymer dispersant, amine value 17 mgKOH / g), EFKA-4060 (modified polyurethane polymer dispersant, amine value 8 mgKOH / g).

アミノ化合物のアミン価は、10〜190mgKOH/gであり、40〜120mgKOH/gが好ましい。アミノ化合物のアミン価が10mgKOH/g以上であれば、導電膜形成用インクのアミノ化合物と電気絶縁体層のポリイミドとの充分な反応が起こる。アミノ化合物のアミン価が190mgKOH/g以下であれば、電気絶縁体層の機械的強度の低下がなく、また、電気絶縁体層との密着性に優れる導電膜を形成できる。
アミン価の測定は、JIS K7237に基づき以下のように行う。
アミノ化合物をo−ニトロトルエンおよび酢酸の混合溶剤に溶かし、クリスタルバイオレットを指示薬として0.1モル/Lの過塩素酸酢酸溶液で滴定する。消費した0.1モル/Lの過塩素酸酢酸溶液の量によって全アミン価を算出する。
The amine value of the amino compound is 10 to 190 mgKOH / g, preferably 40 to 120 mgKOH / g. When the amine value of the amino compound is 10 mgKOH / g or more, sufficient reaction between the amino compound of the conductive film forming ink and the polyimide of the electrical insulator layer occurs. When the amine value of the amino compound is 190 mgKOH / g or less, there is no reduction in mechanical strength of the electrical insulator layer, and a conductive film having excellent adhesion to the electrical insulator layer can be formed.
The amine value is measured based on JIS K7237 as follows.
An amino compound is dissolved in a mixed solvent of o-nitrotoluene and acetic acid, and titrated with a 0.1 mol / L perchloric acid acetic acid solution using crystal violet as an indicator. The total amine number is calculated by the amount of 0.1 mol / L perchloric acid acetic acid solution consumed.

アミノ化合物の量は、導電膜形成用インク中の本微粒子の濃度が前記範囲を外れない量で、かつ本微粒子100質量部に対し、1〜50質量部が好ましく、1〜10質量部がより好ましい。アミノ化合物の量が本微粒子100質量部に対し1質量部以上であれば、密着性に優れた導電膜を形成できる。アミノ化合物の量が本微粒子100質量部に対し50質量部以下であれば、導電性が良好な導電膜を形成できる。   The amount of the amino compound is such that the concentration of the fine particles in the conductive film forming ink does not deviate from the above range, and is preferably 1 to 50 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the fine particles. preferable. When the amount of the amino compound is 1 part by mass or more with respect to 100 parts by mass of the fine particles, a conductive film having excellent adhesion can be formed. When the amount of the amino compound is 50 parts by mass or less with respect to 100 parts by mass of the fine particles, a conductive film having good conductivity can be formed.

(他の成分)
導電膜形成用インクは、必要に応じて公知の添加剤、有機バインダ等を含有していてもよい。
(Other ingredients)
The ink for forming a conductive film may contain a known additive, an organic binder, or the like as necessary.

(導電膜形成用インクの製造方法)
導電膜形成用インクは、たとえば、(α)市販の本微粒子を用意し、アミノ化合物の存在下に本微粒子を有機溶媒中に分散させる方法、(β)湿式還元法により、アミノ化合物を含む、本微粒子の分散液を製造する方法等により製造できる。(β)の方法としては、たとえば、下記工程を有する方法が挙げられる。
(a)水溶性金属化合物を水に溶解して金属イオンを含有する水溶液を調製する工程。
(b)該水溶液に酸を加えてpHを3以下に調整する工程。
(c)該水溶液に、有機溶媒およびアミノ化合物を加えた後、これらを撹拌して懸濁液を得る工程。
(d)懸濁液を撹拌しながら、懸濁液に還元剤を加えて金属イオンを還元し、水素化金属微粒子を生成させる工程(湿式還元法)。
(e)懸濁液を水層と油層とに分離させた後、油層を水素化金属微粒子の分散液として回収する工程。
(f)必要に応じて、水素化金属微粒子の分散液を金属微粒子の分散液とする工程。
(Method for producing conductive film forming ink)
The conductive film forming ink includes, for example, (α) a method of preparing commercially available fine particles and dispersing the fine particles in an organic solvent in the presence of an amino compound, and (β) a wet reduction method that includes an amino compound. It can be produced by a method for producing a dispersion of the fine particles. Examples of the method (β) include a method having the following steps.
(A) A step of preparing an aqueous solution containing metal ions by dissolving a water-soluble metal compound in water.
(B) A step of adjusting the pH to 3 or less by adding an acid to the aqueous solution.
(C) A step of adding an organic solvent and an amino compound to the aqueous solution and then stirring them to obtain a suspension.
(D) While stirring the suspension, a step of adding a reducing agent to the suspension to reduce metal ions to produce metal hydride fine particles (wet reduction method).
(E) A step of separating the suspension into an aqueous layer and an oil layer, and then collecting the oil layer as a dispersion of metal hydride fine particles.
(F) A step of using a dispersion of metal hydride fine particles as a dispersion of metal fine particles as necessary.

(a)工程:
水溶性金属銅化合物としては、金属(銅、ニッケル、パラジウム。)の硫酸塩、硝酸塩、酢酸塩、塩化物、臭化物、ヨウ化物等が挙げられる。
水溶性金属化合物の濃度は、水溶液100質量%中、0.1〜30質量%が好ましい。水溶液中の水溶性金属化合物の濃度が0.1質量%以上であれば、水の量が抑えられ、また、本微粒子の生産効率が向上する。水溶液中の水溶性金属化合物の濃度が30質量%以下であれば、本微粒子の凝集安定性が良好となる。
(A) Process:
Examples of the water-soluble metal copper compound include sulfates, nitrates, acetates, chlorides, bromides, iodides of metals (copper, nickel, palladium).
The concentration of the water-soluble metal compound is preferably 0.1 to 30% by mass in 100% by mass of the aqueous solution. When the concentration of the water-soluble metal compound in the aqueous solution is 0.1% by mass or more, the amount of water can be suppressed, and the production efficiency of the fine particles can be improved. When the concentration of the water-soluble metal compound in the aqueous solution is 30% by mass or less, the aggregation stability of the fine particles is good.

(b)工程:
酸としては、クエン酸、マレイン酸、マロン酸、酢酸、プロピオン酸、硫酸、硝酸、塩酸等が挙げられ、金属イオンと安定な錯体を形成して金属イオンへの水和水の吸着を防止する点から、クエン酸、マレイン酸、マロン酸が好ましい。
水溶液のpHを3以下に調整することにより、水溶液中の金属イオンが還元剤によって還元されやすくなり、水素化金属微粒子が生成しやすくなる。すなわち、金属微粒子が生成しにくくなる。水溶液のpHは、水素化金属微粒子を短時間で生成できる点から、1〜2に調整されることが好ましい。
(B) Process:
Examples of acids include citric acid, maleic acid, malonic acid, acetic acid, propionic acid, sulfuric acid, nitric acid, hydrochloric acid, etc., and form a stable complex with metal ions to prevent adsorption of hydration water to metal ions. From the viewpoint, citric acid, maleic acid, and malonic acid are preferable.
By adjusting the pH of the aqueous solution to 3 or less, metal ions in the aqueous solution are easily reduced by the reducing agent, and metal hydride fine particles are easily generated. That is, it becomes difficult to produce fine metal particles. The pH of the aqueous solution is preferably adjusted to 1 to 2 because metal hydride fine particles can be generated in a short time.

(c)工程:
(b)工程で得られた水溶液に、有機溶媒およびアミノ化合物を加える。金属イオンを含有する水溶液からなる水層と、アミノ化合物を含有する有機溶媒からなる油層とを撹拌することにより、懸濁液を得る。
(C) Process:
(B) An organic solvent and an amino compound are added to the aqueous solution obtained in the step. A suspension is obtained by stirring an aqueous layer composed of an aqueous solution containing metal ions and an oil layer composed of an organic solvent containing an amino compound.

(d)工程:
(c)工程で得られた懸濁液に還元剤を加えることにより、水層において金属イオンが酸性下で還元剤により還元され、徐々に水素化金属微粒子が成長する。水素化金属微粒子はすぐに、油層に溶け込んでいるアミノ化合物により表面を覆われ、油層に取り込まれて安定化する。すなわち、生成した水素化金属微粒子の表面にアミノ化合物が配位し、水素化金属微粒子がアミノ化合物で被覆される。その結果、導電膜形成用インク中の水素化金属微粒子が酸化されにくくなり、また、水素化金属微粒子同士の凝集が抑えられる。
(D) Process:
By adding a reducing agent to the suspension obtained in step (c), metal ions are reduced by the reducing agent under acidic conditions in the aqueous layer, and metal hydride fine particles grow gradually. The metal hydride fine particles are immediately covered with an amino compound dissolved in the oil layer, and taken into the oil layer and stabilized. That is, the amino compound is coordinated on the surface of the generated metal hydride fine particles, and the metal hydride fine particles are coated with the amino compound. As a result, the metal hydride fine particles in the conductive film forming ink are hardly oxidized, and aggregation of the metal hydride fine particles is suppressed.

還元剤としては、大きな還元作用があることから金属水素化物が好ましい。金属水素化物としては、水素化リチウムアルミニウム、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化リチウム、水素化カリウム、水素化カルシウム等が挙げられ、水素化リチウムアルミニウム、水素化ホウ素リチウム、水素化ホウ素ナトリウムが好ましい。   As the reducing agent, a metal hydride is preferable because it has a large reducing action. Examples of metal hydrides include lithium aluminum hydride, lithium borohydride, sodium borohydride, lithium hydride, potassium hydride, calcium hydride, and the like. Lithium aluminum hydride, lithium borohydride, borohydride Sodium is preferred.

還元剤の添加量は、金属イオンに対して1.5〜10倍当量数が好ましい。還元剤の添加量が金属イオンに対して1.5倍当量数以上であれば、還元作用が充分となる。還元剤の添加量が10倍当量数以下であれば、水素化金属微粒子の凝集安定性が良好となる。
還元剤を懸濁液に加える際の温度は、5〜60℃が好ましく、10〜40℃が特に好ましい。該温度が60℃以下であれば、水素化金属微粒子の分解が抑えられる。
The amount of the reducing agent added is preferably 1.5 to 10 times the number of metal ions. If the addition amount of the reducing agent is 1.5 times the number of equivalents or more with respect to the metal ions, the reducing action is sufficient. When the addition amount of the reducing agent is 10 times or less, the aggregation stability of the metal hydride fine particles becomes good.
5-60 degreeC is preferable and, as for the temperature at the time of adding a reducing agent to suspension, 10-40 degreeC is especially preferable. When the temperature is 60 ° C. or lower, decomposition of the metal hydride fine particles can be suppressed.

(e)工程:
水素化金属微粒子が生成した後、懸濁液を放置すると、水層と油層とに分離する。該油層を回収することにより、有機溶媒に水素化金属微粒子が分散した分散液が得られる。該分散液は、そのまま導電膜形成用インクとして用いてもよく、添加剤等を加えた後に導電膜形成用インクとして用いてもよい。
(E) Process:
After the metal hydride fine particles are generated, if the suspension is allowed to stand, it is separated into an aqueous layer and an oil layer. By collecting the oil layer, a dispersion liquid in which metal hydride fine particles are dispersed in an organic solvent is obtained. The dispersion may be used as it is as an ink for forming a conductive film, or may be used as an ink for forming a conductive film after adding an additive or the like.

(f)工程:
(e)工程にて得られた水素化金属微粒の分散液を、60〜200℃で10分〜2時間窒素還流すると、金属微粒子の分散液が得られる。該分散液は、そのまま導電膜形成用インクとして用いてもよく、添加剤等を加えた後に導電膜形成用インクとして用いてもよい。
(F) Process:
When the dispersion of metal hydride fine particles obtained in the step (e) is refluxed with nitrogen at 60 to 200 ° C. for 10 minutes to 2 hours, a dispersion of metal fine particles is obtained. The dispersion may be used as it is as an ink for forming a conductive film, or may be used as an ink for forming a conductive film after adding an additive or the like.

<プリント配線板>
図1は、プリント配線板の一例を示す断面図である。プリント配線板10は、電気絶縁体層12と、電気絶縁体層12に直接接する導電膜14とを有する。
<Printed wiring board>
FIG. 1 is a cross-sectional view showing an example of a printed wiring board. The printed wiring board 10 includes an electrical insulator layer 12 and a conductive film 14 that is in direct contact with the electrical insulator layer 12.

電気絶縁体層12は、ポリイミドを含む層である。電気絶縁体層12としては、ポリイミドフィルム、積層フィルムの最表層として形成されたポリイミド層、積層基板の最表層として形成されたポリイミド層、マトリックス樹脂がポリイミドであるガラス繊維強化複合材料、マトリックス樹脂がポリイミドであるシリカ複合フィルム等が挙げられる。電気絶縁体層12として可とう性を有するポリイミドフィルムを用いた場合、プリント配線板10はフレキシブルプリント配線板となる。
電気絶縁体層12の厚さは、10〜300μmが好ましく、10〜200μmがより好ましい。
The electrical insulator layer 12 is a layer containing polyimide. The electrical insulator layer 12 includes a polyimide film, a polyimide layer formed as the outermost layer of the laminated film, a polyimide layer formed as the outermost layer of the laminated substrate, a glass fiber reinforced composite material in which the matrix resin is polyimide, and a matrix resin. Examples thereof include a silica composite film that is polyimide. When a flexible polyimide film is used as the electrical insulator layer 12, the printed wiring board 10 is a flexible printed wiring board.
10-300 micrometers is preferable and, as for the thickness of the electrical insulator layer 12, 10-200 micrometers is more preferable.

ポリイミドとしては、芳香族テトラカルボン酸二無水物と芳香族ジアミンとの反応物が挙げられる。芳香族テトラカルボン酸二無水物としては、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物等が挙げられる。芳香族ジアミンとしては、パラフェニレンジアミン、4,4’−ジアミノジフェニルエーテル等が挙げられる。
ポリイミドは、無機フィラー、無機蛍光体、有機蛍光体等の公知の添加剤を含有していてもよい。
Examples of the polyimide include a reaction product of an aromatic tetracarboxylic dianhydride and an aromatic diamine. Examples of the aromatic tetracarboxylic dianhydride include 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride. Examples of the aromatic diamine include paraphenylene diamine and 4,4′-diaminodiphenyl ether.
The polyimide may contain known additives such as inorganic fillers, inorganic phosphors, and organic phosphors.

導電膜14は、本発明の導電膜形成用インクを用いて形成された金属膜である。導電膜14は、電気絶縁体層12の表面全体を覆う連続した膜であってもよく、所望の配線パターンの膜であってもよい。
導電膜14の体積抵抗率は、500μΩcm以下が好ましく、100μΩcm以下がより好ましい。
導電膜14の厚さは、0.5〜10μmが好ましく、0.5〜5μmがより好ましい。
The conductive film 14 is a metal film formed using the conductive film forming ink of the present invention. The conductive film 14 may be a continuous film covering the entire surface of the electrical insulator layer 12 or a film having a desired wiring pattern.
The volume resistivity of the conductive film 14 is preferably 500 μΩcm or less, and more preferably 100 μΩcm or less.
0.5-10 micrometers is preferable and, as for the thickness of the electrically conductive film 14, 0.5-5 micrometers is more preferable.

プリント配線板は、図1に示すような、電気絶縁体層の片面のみに導電膜が設けられた片面プリント配線板に限定されず、電気絶縁体層の両面に導電膜が設けられた両面プリント配線板であってもよく、片面プリント配線板を複数積層した多層プリント配線板であってもよい。   The printed wiring board is not limited to a single-sided printed wiring board in which a conductive film is provided only on one side of the electrical insulator layer, as shown in FIG. 1, and double-sided printing in which a conductive film is provided on both sides of the electrical insulator layer. A wiring board may be sufficient and the multilayer printed wiring board which laminated | stacked the single-sided printed wiring board may be sufficient.

プリント配線板10は、下記工程を経て製造される。
(I)本発明の導電膜形成用インクを電気絶縁体層12の表面に塗布して塗膜を形成する工程。
(II)該塗膜を焼成して導電膜14を形成する工程。
(III)必要に応じて、導電膜上にメッキを施す工程。
The printed wiring board 10 is manufactured through the following steps.
(I) A step of applying the ink for forming a conductive film of the present invention to the surface of the electrical insulator layer 12 to form a coating film.
(II) A step of baking the coating film to form the conductive film 14.
(III) A step of plating on the conductive film as necessary.

(I)工程:
該工程においては、電気絶縁体層12の表面全体を覆うように本発明の導電膜形成用インクを塗布してよく、電気絶縁体層12の表面に本発明の導電膜形成用インクを所望の配線パターン状に塗布してもよい。
(I) Process:
In this step, the conductive film forming ink of the present invention may be applied so as to cover the entire surface of the electrical insulator layer 12, and the conductive film forming ink of the present invention is applied to the surface of the electrical insulator layer 12 as desired. It may be applied in a wiring pattern.

塗布方法としては、インクジェット印刷法、ディスペンス法、スクリーン印刷法、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スプレーコート法、スライドコート等の公知の方法が挙げられ、所望の配線パターン状に塗布しやすい点から、インクジェット印刷法が好ましい。   As the coating method, known methods such as inkjet printing method, dispensing method, screen printing method, roll coating method, air knife coating method, blade coating method, bar coating method, gravure coating method, die coating method, spray coating method, slide coating method, etc. In view of easy application to a desired wiring pattern, inkjet printing is preferred.

インクジェット印刷法は、インクジェットプリンタを用いる方法である。インクジェットプリンタにおけるインク吐出孔は、通常1〜50μmである。
インク液滴径は、インク吐出孔から吐出された後、空間飛翔時に変化し、電気絶縁体層12の表面に付着した後、電気絶縁体層12の表面で広がる。吐出直後のインクの径は、インク吐出孔径と同程度であり、電気絶縁体層12に付着した後には、インクの直径は5〜100μmまで広がる。したがって、導電膜形成用インク中の本微粒子は、インク粘性等に影響を与えない限り凝集していてもよく、その凝集径としては2μm以下が好ましい。
The ink jet printing method is a method using an ink jet printer. The ink discharge hole in the ink jet printer is usually 1 to 50 μm.
The ink droplet diameter is changed when flying in space after being ejected from the ink ejection holes, and is spread on the surface of the electrical insulator layer 12 after adhering to the surface of the electrical insulator layer 12. The diameter of the ink immediately after ejection is about the same as the diameter of the ink ejection hole, and after adhering to the electrical insulator layer 12, the diameter of the ink expands to 5 to 100 μm. Therefore, the fine particles in the conductive film forming ink may be aggregated as long as the ink viscosity is not affected, and the aggregate diameter is preferably 2 μm or less.

(II)工程:
塗膜が形成された電気絶縁体層12を焼成炉内に入れ、窒素ガス等の不活性ガス雰囲気下にて焼成炉内の温度を10℃/分の速度で焼成温度まで昇温し、該温度を所定時間(以下、保持時間と記す。)保持して焼成を行う。該焼成により、本微粒子の融着が進行し、金属からなる導電膜が形成される。
(II) Process:
The electrical insulator layer 12 on which the coating film is formed is placed in a firing furnace, and the temperature in the firing furnace is increased to a firing temperature at a rate of 10 ° C./min in an inert gas atmosphere such as nitrogen gas. Firing is carried out while holding the temperature for a predetermined time (hereinafter referred to as holding time). By the firing, fusion of the fine particles proceeds, and a conductive film made of metal is formed.

焼成温度は、250〜450℃が好ましく、300〜400℃がより好ましく、300〜350℃が特に好ましい。焼成温度が250℃以上であれば、導電膜形成用インクのアミノ化合物と電気絶縁体層のポリイミドとの反応が充分に起こり、その結果、導電膜と電気絶縁体層との密着性が良好となる。焼成温度が450℃以下であれば、ポリイミドのイミド環の不必要な開環反応が抑えられ、ポリイミドの劣化が抑えられ、プリント配線板の機械的強度の低下が抑えられる。   The firing temperature is preferably 250 to 450 ° C, more preferably 300 to 400 ° C, and particularly preferably 300 to 350 ° C. When the firing temperature is 250 ° C. or higher, the reaction between the amino compound of the conductive film forming ink and the polyimide of the electrical insulator layer occurs sufficiently, and as a result, the adhesion between the conductive film and the electrical insulator layer is good. Become. When the firing temperature is 450 ° C. or lower, unnecessary ring-opening reaction of the polyimide imide ring is suppressed, deterioration of the polyimide is suppressed, and a decrease in mechanical strength of the printed wiring board is suppressed.

保持時間は、0.5〜4時間が好ましく、0.5〜2時間がより好ましい。保持時間が0.5時間以上であれば、導電膜形成用インクのアミノ化合物と電気絶縁体層のポリイミドとの反応が充分に起こり、その結果、導電膜と電気絶縁体層との密着性が良好となる。保持時間が4時間以下であれば、ポリイミドのイミド環の不必要な開環反応が抑えられ、ポリイミドの劣化が抑えられ、プリント配線板の機械的強度の低下が抑えられる。   The holding time is preferably 0.5 to 4 hours, and more preferably 0.5 to 2 hours. If the holding time is 0.5 hours or more, the reaction between the amino compound of the conductive film forming ink and the polyimide of the electrical insulator layer occurs sufficiently, and as a result, the adhesion between the conductive film and the electrical insulator layer is improved. It becomes good. If holding time is 4 hours or less, the unnecessary ring-opening reaction of the imide ring of a polyimide is suppressed, the deterioration of a polyimide is suppressed, and the fall of the mechanical strength of a printed wiring board is suppressed.

(III)工程:
導電膜上にメッキを施す場合、公知の方法を用いればよい。たとえば、金属が溶けてイオン化している水溶液(メッキ浴)中に、陰極として処理物を、陽極としてめっきと同一の金属をそれぞれ浸し、両極間に電流を流す。これによりめっき浴中の金属イオンは陰極へと移動し、処理物表面で電子を交換して元の金属に還元され、析出し、めっき層が生成される。
(III) Process:
When plating is performed on the conductive film, a known method may be used. For example, in the aqueous solution (plating bath) in which the metal is melted and ionized, the treatment object is immersed as the cathode, and the same metal as the plating is immersed as the anode, and a current flows between both electrodes. As a result, the metal ions in the plating bath move to the cathode, exchange electrons on the surface of the treatment object, are reduced to the original metal, and are deposited to form a plating layer.

以上説明した本発明の導電膜形成用インクにあっては、気圧0.1MPaの状態での沸点が150〜350℃である非水溶性有機溶媒と、該有機溶媒中に分散した本微粒子と、JIS K7237の規定によるアミン価が10〜190mgKOH/gであるアミノ化合物とを含むため、ポリイミドを含む電気絶縁体層との密着性に優れる導電膜を形成できる。
また、本発明のプリント配線板の製造方法にあっては、本発明の導電膜形成用インクを電気絶縁体層の表面に塗布して塗膜を形成し、該塗膜を焼成して導電膜を形成するため、ポリイミドを含む電気絶縁体層との密着性に優れる導電膜を有するプリント配線板を、少ない工程で製造できる。
この理由は以下の通りである。
In the ink for forming a conductive film of the present invention described above, a water-insoluble organic solvent having a boiling point of 150 to 350 ° C. at a pressure of 0.1 MPa, the fine particles dispersed in the organic solvent, Since it contains an amino compound having an amine value of 10 to 190 mgKOH / g according to JIS K7237, a conductive film having excellent adhesion to an electrical insulator layer containing polyimide can be formed.
In the method for producing a printed wiring board of the present invention, the conductive film-forming ink of the present invention is applied to the surface of the electrical insulator layer to form a coating film, and the coating film is baked to form a conductive film. Therefore, a printed wiring board having a conductive film with excellent adhesion to an electrical insulator layer containing polyimide can be manufactured with a small number of steps.
The reason is as follows.

アミノ化合物が一級アミンの場合、下記反応式(A)に示すように、有機溶媒の存在下、電気絶縁体層の表層に存在するポリイミドのイミド環の一部とアミノ化合物のアミノ基とが、焼成温度において反応を起こし、2つのアミド結合が形成される。ついで、下記反応式(B)に示すように、再度イミド環が形成されることにより、ポリイミドの主鎖が分断され、ポリイミドの低分子量化が起こる。低分子量化したポリイミドは、低分子量化前のポリイミドに比べガラス転移点が低いため、軟化が起こり易い。そのため、本微粒子が、電気絶縁体層の表層にて軟化したポリイミドに沈み込むことが可能となる。このように電気絶縁体層の表層に本微粒子が沈み込むため、アンカリング効果で導電膜と電気絶縁体層との密着性が向上する。   When the amino compound is a primary amine, as shown in the following reaction formula (A), in the presence of an organic solvent, a part of the polyimide imide ring present in the surface layer of the electrical insulator layer and the amino group of the amino compound are: Reaction occurs at the calcination temperature, and two amide bonds are formed. Next, as shown in the following reaction formula (B), when the imide ring is formed again, the main chain of the polyimide is divided, and the molecular weight of the polyimide is lowered. Since the low molecular weight polyimide has a lower glass transition point than the polyimide before the low molecular weight reduction, softening easily occurs. Therefore, the fine particles can sink into the polyimide softened in the surface layer of the electrical insulator layer. Thus, since the fine particles sink into the surface layer of the electrical insulator layer, the adhesion between the conductive film and the electrical insulator layer is improved by the anchoring effect.

Figure 0005018226
Figure 0005018226

アミノ化合物が二級アミンの場合、下記反応式(A)に示すように、有機溶媒の存在下、電気絶縁体層の表層に存在するポリイミドのイミド環の一部とアミノ化合物のアミノ基とが、焼成温度において反応を起こし、2つのアミド結合が形成される。イミド環の一部がアミド結合となったポリイミドもまた、反応前のポリイミドに比べイミド結合が減少するため、ガラス転移点が低いため、軟化が起こり易い。そのため、本微粒子が、電気絶縁体層の表層にて軟化したポリイミドに沈み込むことが可能となる。このように電気絶縁体層の表層に本微粒子が沈み込むため、アンカリング効果で導電膜と電気絶縁体層との密着性が向上する。   When the amino compound is a secondary amine, as shown in the following reaction formula (A), in the presence of an organic solvent, a part of the polyimide imide ring present in the surface layer of the electrical insulator layer and the amino group of the amino compound are The reaction occurs at the firing temperature to form two amide bonds. A polyimide in which a part of the imide ring is an amide bond also has a low glass transition point because the imide bond is reduced as compared with the polyimide before the reaction, and thus is easily softened. Therefore, the fine particles can sink into the polyimide softened in the surface layer of the electrical insulator layer. Thus, since the fine particles sink into the surface layer of the electrical insulator layer, the adhesion between the conductive film and the electrical insulator layer is improved by the anchoring effect.

Figure 0005018226
Figure 0005018226

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。
は実施例であり、例1、2、4〜8は比較例である。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Example 3 is an example, and examples 1, 2, 4 to 8 are comparative examples.

(本微粒子の同定)
本微粒子の同定は、リガク機器社製のRINT2500を用いて行った。
(Identification of the fine particles)
The identification of the fine particles was performed using RINT2500 manufactured by Rigaku Equipment Co., Ltd.

(本微粒子の平均粒子径)
本微粒子の平均粒子径は、無作為に抽出した100個の本微粒子の粒子径を、透過型電子顕微鏡(日立製作所社製、H−9000)または走査型電子顕微鏡(日立製作所社製、S−900)を用いて測定し、該粒子径を平均して求めた。
(Average particle size of the fine particles)
The average particle size of the present fine particles is the same as the particle size of 100 randomly extracted fine particles, a transmission electron microscope (Hitachi Ltd., H-9000) or a scanning electron microscope (Hitachi Ltd., S-). 900), and the average particle size was determined.

(導電膜、銅メッキの厚さ)
導電膜の厚さは、DEKTAK3(Veeco metrology Group社製)を用いて測定した。
また、引き剥がし強さを測定する際に、導電膜上に形成した銅メッキの厚さは、デジマチック標準外側マイクロメータ(ミツトヨ社製)を用いて測定した。
(Thickness of conductive film and copper plating)
The thickness of the conductive film was measured by using DEKTAK3 (manufactured by Veeco metrology group).
Moreover, when measuring peeling strength, the thickness of the copper plating formed on the electrically conductive film was measured using the Digimatic standard outside micrometer (made by Mitutoyo Corporation).

(導電膜の体積抵抗率)
導電膜の体積抵抗率は、四探針式抵抗計(型式:lorestaIP MCP−T250、三菱油化社製)を用いて測定した。
(Volume resistivity of conductive film)
The volume resistivity of the conductive film was measured using a four-probe resistance meter (model: lorestaIP MCP-T250, manufactured by Mitsubishi Yuka Co., Ltd.).

(密着性)
導電膜とポリイミドフィルムとの密着性は、引き剥がし強さにより判定した。
引き剥がし強さの測定は、島津製作所社製の小型卓上試験機EZTestシリーズを用い、JIS C6471に規定された方法により行った。
(Adhesion)
The adhesion between the conductive film and the polyimide film was determined by the peel strength.
The peel strength was measured by a method specified in JIS C6471 using a small tabletop testing machine EZTest series manufactured by Shimadzu Corporation.

〔例1〕
ガラス容器内にて、塩化銅(II)二水和物5gを蒸留水150gで溶解して、銅イオンを含有する水溶液を得た。該水溶液のpHは3.4であった。
該水溶液に、40質量%クエン酸水溶液90gを加え、しばらく撹拌し、水溶液のpHを1.7とした。
該水溶液に、アミノ化合物(楠本化成株式会社製、ディスパロン1860、アミン価11mgKOH/g。)5gおよびテルピネオール(沸点219℃、水100gに対する溶解度0.5g(20℃)。)10gを混合した溶液を加え、これらを激しく撹拌し懸濁液とした。
[Example 1]
In a glass container, 5 g of copper (II) chloride dihydrate was dissolved with 150 g of distilled water to obtain an aqueous solution containing copper ions. The pH of the aqueous solution was 3.4.
To this aqueous solution, 90 g of 40% by mass citric acid aqueous solution was added and stirred for a while to adjust the pH of the aqueous solution to 1.7.
A solution prepared by mixing 5 g of an amino compound (manufactured by Enomoto Kasei Co., Ltd., Disparon 1860, amine value 11 mgKOH / g) and 10 g of terpineol (boiling point 219 ° C., solubility 0.5 g (20 ° C.) in 100 g of water) with the aqueous solution. In addition, they were vigorously stirred to form a suspension.

該懸濁液を撹拌しながら、該懸濁液に3質量%水素化ホウ素ナトリウム水溶液150gをゆっくり滴下した。
滴下終了後、該懸濁液を1時間静置して、水層と油層とに分離させた後、油層のみを回収した。微粒子がテルピネオールに分散した黒色の導電膜形成用インクが得られた。該インクを1日放置したところ、該インクは黒色のままであった。
While stirring the suspension, 150 g of a 3% by mass aqueous sodium borohydride solution was slowly added dropwise to the suspension.
After completion of dropping, the suspension was allowed to stand for 1 hour to separate into an aqueous layer and an oil layer, and then only the oil layer was recovered. A black conductive film forming ink in which fine particles were dispersed in terpineol was obtained. When the ink was left for 1 day, the ink remained black.

該インク中の微粒子を回収してX線回折で同定を行ったところ、水素化銅微粒子であることが確認された。
該インクを乾燥して得られた微粒子粉末について粒子径を測定した。平均粒子径は、10nmであった。
該インク中の水素化銅微粒子の濃度は20質量%であった。
When the fine particles in the ink were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles.
The particle diameter of the fine particle powder obtained by drying the ink was measured. The average particle size was 10 nm.
The concentration of copper hydride fine particles in the ink was 20% by mass.

武蔵エンジニアリング社製のSHOTMASTER300を用いて、1日放置したインク0.5gを、厚さ125μmのポリイミドフィルムの表面に、ディスペンス法にて所望の配線パターン状に塗布し、塗膜を形成した。
塗膜が形成されたポリイミドフィルムを焼成炉内に入れ、酸素濃度が40ppmの窒素ガス雰囲気下にて、350℃で1時間焼成を行い、所望の配線パターンの導電膜が形成されたプリント配線板を得た。導電膜の厚さは、1μmであった。導電膜の体積抵抗率を測定した。結果を表1に示す。
Using a SHOTMASTER 300 manufactured by Musashi Engineering Co., Ltd., 0.5 g of ink left for one day was applied to the surface of a polyimide film having a thickness of 125 μm in a desired wiring pattern by a dispensing method to form a coating film.
A printed wiring board on which a conductive film having a desired wiring pattern is formed by placing a polyimide film with a coating film in a baking furnace and baking at 350 ° C. for 1 hour in a nitrogen gas atmosphere having an oxygen concentration of 40 ppm. Got. The thickness of the conductive film was 1 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.

該プリント配線板の導電膜上に、硫酸銅メッキ液を用いて銅メッキを施した。メッキ条件は、電圧1.1V、電流密度3.5A/dm2 であった。銅メッキの厚さは、20μmであった。メッキ付き導電膜の体積抵抗率、およびメッキ付き導電膜とポリイミドフィルムとの間の引き剥がし強度を測定した。結果を表1に示す。 Copper plating was performed on the conductive film of the printed wiring board using a copper sulfate plating solution. Plating conditions, voltage 1.1V, it was a current density of 3.5A / dm 2. The thickness of the copper plating was 20 μm. The volume resistivity of the conductive film with plating and the peel strength between the conductive film with plating and the polyimide film were measured. The results are shown in Table 1.

〔例2〕
例1で得られた導電膜形成用インクを150℃で1時間ほど窒素還流した。1時間後、該分散液を冷やし、25℃以下になったところで回収した。該分散液中の微粒子を回収してX線回折で同定を行ったところ、金属銅微粒子であることが確認された。
該インクを乾燥して得られた微粒子粉末について粒子径を測定した。平均粒子径は、11nmであった。
該インク中の金属銅微粒子の濃度は22質量%であった。
[Example 2]
The ink for forming a conductive film obtained in Example 1 was refluxed with nitrogen at 150 ° C. for about 1 hour. After 1 hour, the dispersion was cooled and recovered when the temperature reached 25 ° C. or lower. When the fine particles in the dispersion were collected and identified by X-ray diffraction, it was confirmed to be metallic copper fine particles.
The particle diameter of the fine particle powder obtained by drying the ink was measured. The average particle size was 11 nm.
The concentration of metal copper fine particles in the ink was 22% by mass.

該インクを用いた以外は、例1と同様にしてプリント配線板を得た。導電膜の厚さは、1μmであった。導電膜の体積抵抗率を測定した。結果を表1に示す。
該プリント配線板の導電膜上に、例1と同様にして銅メッキを施した。銅メッキの厚さは、20μmであった。メッキ付き導電膜の体積抵抗率、およびメッキ付き導電膜とポリイミドフィルムとの間の引き剥がし強度を測定した。結果を表1に示す。
A printed wiring board was obtained in the same manner as in Example 1 except that the ink was used. The thickness of the conductive film was 1 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
Copper plating was performed on the conductive film of the printed wiring board in the same manner as in Example 1. The thickness of the copper plating was 20 μm. The volume resistivity of the conductive film with plating and the peel strength between the conductive film with plating and the polyimide film were measured. The results are shown in Table 1.

〔例3〕
楠本化成社製のディスパロン1860(アミン価11mgKOH/g)の代わりに、楠本化成社製のディスパロンKS873N(アミン価120mgKOH/g)を用いた以外は、例1と同様にして導電膜形成用インクを得た。該インク中の微粒子を回収してX線回折で同定を行ったところ、水素化銅微粒子であることが確認された。該水素化銅微粒子の平均粒子径は、11nmであった。
[Example 3]
The ink for forming a conductive film was prepared in the same manner as in Example 1 except that Disparon KS873N (amine value 120 mgKOH / g) manufactured by Enomoto Kasei was used instead of Disparon 1860 (amine value 11 mgKOH / g) manufactured by Enomoto Chemical. Obtained. When the fine particles in the ink were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles. The average particle diameter of the copper hydride fine particles was 11 nm.

該インクを用いた以外は、例1と同様にしてプリント配線板を得た。導電膜の厚さは、1μmであった。導電膜の体積抵抗率を測定した。結果を表1に示す。
該プリント配線板の導電膜上に、例1と同様にして銅メッキを施した。銅メッキの厚さは、20μmであった。メッキ付き導電膜の体積抵抗率、およびメッキ付き導電膜とポリイミドフィルムとの間の引き剥がし強度を測定した。結果を表1に示す。
A printed wiring board was obtained in the same manner as in Example 1 except that the ink was used. The thickness of the conductive film was 1 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
Copper plating was performed on the conductive film of the printed wiring board in the same manner as in Example 1. The thickness of the copper plating was 20 μm. The volume resistivity of the conductive film with plating and the peel strength between the conductive film with plating and the polyimide film were measured. The results are shown in Table 1.

〔例4〕
楠本化成社製のディスパロン1860(アミン価11mgKOH/g)の代わりに、ビックケミー・ジャパン社製のDisperbyk−130(不飽和ポリカルボン酸ポリアミノアマイド、アミン価190mgKOH/g)を用いた以外は、例1と同様にして導電膜形成用インクを得た。該インク中の微粒子を回収してX線回折で同定を行ったところ、水素化銅微粒子であることが確認された。該水素化銅微粒子の平均粒子径は、11nmであった。
[Example 4]
Example 1 except that Disperbyk-130 (unsaturated polycarboxylic acid polyaminoamide, amine value 190 mgKOH / g) manufactured by Big Chemie Japan was used in place of Disparon 1860 (amine value 11 mgKOH / g) manufactured by Enomoto Kasei Co., Ltd. In the same manner, an ink for forming a conductive film was obtained. When the fine particles in the ink were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles. The average particle diameter of the copper hydride fine particles was 11 nm.

該インクを用いた以外は、例1と同様にしてプリント配線板を得た。導電膜の厚さは、1μmであった。導電膜の体積抵抗率を測定した。結果を表1に示す。
該プリント配線板の導電膜上に、例1と同様にして銅メッキを施した。銅メッキの厚さは、20μmであった。メッキ付き導電膜の体積抵抗率、およびメッキ付き導電膜とポリイミドフィルムとの間の引き剥がし強度を測定した。結果を表1に示す。
A printed wiring board was obtained in the same manner as in Example 1 except that the ink was used. The thickness of the conductive film was 1 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
Copper plating was performed on the conductive film of the printed wiring board in the same manner as in Example 1. The thickness of the copper plating was 20 μm. The volume resistivity of the conductive film with plating and the peel strength between the conductive film with plating and the polyimide film were measured. The results are shown in Table 1.

〔例5〕
テルピネオール(沸点219℃、水100gに対する溶解度0.5g(20℃)。)の代わりに、テトラデカン(沸点253℃、水に不溶。)を用いた以外は、例1と同様にして導電膜形成用インクを得た。該インク中の微粒子を回収してX線回折で同定を行ったところ、水素化銅微粒子であることが確認された。該水素化銅微粒子の平均粒子径は、10nmであった。
[Example 5]
For forming a conductive film in the same manner as in Example 1 except that tetradecane (boiling point 253 ° C., insoluble in water) was used instead of terpineol (boiling point 219 ° C., solubility in water 100 g (20 ° C.)). Ink was obtained. When the fine particles in the ink were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles. The average particle diameter of the copper hydride fine particles was 10 nm.

該インクを用いた以外は、例1と同様にしてプリント配線板を得た。導電膜の厚さは、1μmであった。導電膜の体積抵抗率を測定した。結果を表1に示す。
該プリント配線板の導電膜上に、例1と同様にして銅メッキを施した。銅メッキの厚さは、20μmであった。メッキ付き導電膜の体積抵抗率、およびメッキ付き導電膜とポリイミドフィルムとの間の引き剥がし強度を測定した。結果を表1に示す。
A printed wiring board was obtained in the same manner as in Example 1 except that the ink was used. The thickness of the conductive film was 1 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
Copper plating was performed on the conductive film of the printed wiring board in the same manner as in Example 1. The thickness of the copper plating was 20 μm. The volume resistivity of the conductive film with plating and the peel strength between the conductive film with plating and the polyimide film were measured. The results are shown in Table 1.

〔例6(比較例)〕
楠本化成社製のディスパロン1860(アミン価11mgKOH/g)の代わりに、川研ファインケミカル社製のヒノアクトKF1000(アミン価0mgKOH/g)を用いた以外は、例1と同様にして導電膜形成用インクを得た。該インク中の微粒子を回収してX線回折で同定を行ったところ、水素化銅微粒子であることが確認された。該微粒子の平均粒子径は、10nmであった。
[Example 6 (comparative example)]
Ink for forming a conductive film in the same manner as in Example 1 except that Hinoact KF1000 (amine value 0 mgKOH / g) manufactured by Kawaken Fine Chemical Co., Ltd. was used instead of Disparon 1860 (amine value 11 mgKOH / g) manufactured by Enomoto Kasei Co., Ltd. Got. When the fine particles in the ink were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles. The average particle diameter of the fine particles was 10 nm.

該インクを用いた以外は、例1と同様にしてプリント配線板を得た。導電膜の厚さは、1μmであった。導電膜の体積抵抗率を測定した。結果を表1に示す。
該プリント配線板の導電膜上に、例1と同様にして銅メッキを施した。銅メッキの厚さは、20μmであった。メッキ付き導電膜の体積抵抗率、およびメッキ付き導電膜とポリイミドフィルムとの間の引き剥がし強度を測定した。結果を表1に示す。
A printed wiring board was obtained in the same manner as in Example 1 except that the ink was used. The thickness of the conductive film was 1 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
Copper plating was performed on the conductive film of the printed wiring board in the same manner as in Example 1. The thickness of the copper plating was 20 μm. The volume resistivity of the conductive film with plating and the peel strength between the conductive film with plating and the polyimide film were measured. The results are shown in Table 1.

〔例7(比較例)〕
テルピネオール(沸点219℃、水100gに対する溶解度0.5g(20℃)。)の代わりに、キシレン(沸点139℃(m−キシレン)、水100gに対する溶解度0.02g(20℃)。)を用いた以外は、例1と同様にして導電膜形成用インクを得た。該インク中の微粒子を回収してX線回折で同定を行ったところ、水素化銅微粒子であることが確認された。該水素化銅微粒子の平均粒子径は、10nmであった。
[Example 7 (comparative example)]
Instead of terpineol (boiling point 219 ° C., solubility 0.5 g (20 ° C.) in 100 g of water), xylene (boiling point 139 ° C. (m-xylene), solubility in 100 g of water 0.02 g (20 ° C.)) was used. Except for the above, an ink for forming a conductive film was obtained in the same manner as in Example 1. When the fine particles in the ink were collected and identified by X-ray diffraction, it was confirmed to be copper hydride fine particles. The average particle diameter of the copper hydride fine particles was 10 nm.

該インクを用いた以外は、例1と同様にしてプリント配線板を得た。導電膜の厚さは、1μmであった。導電膜の体積抵抗率を測定した。結果を表1に示す。
該プリント配線板の導電膜上に、例1と同様にして銅メッキを施した。銅メッキの厚さは、20μmであった。メッキ付き導電膜の体積抵抗率、およびメッキ付き導電膜とポリイミドフィルムとの間の引き剥がし強度を測定した。結果を表1に示す。
A printed wiring board was obtained in the same manner as in Example 1 except that the ink was used. The thickness of the conductive film was 1 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
Copper plating was performed on the conductive film of the printed wiring board in the same manner as in Example 1. The thickness of the copper plating was 20 μm. The volume resistivity of the conductive film with plating and the peel strength between the conductive film with plating and the polyimide film were measured. The results are shown in Table 1.

〔例8〕
ポリイミドフィルムの代わりに、ガラス基板を用いた以外は、例1と同様にしてプリント配線板を得た。導電膜の厚さは、1μmであった。導電膜の体積抵抗率を測定した。結果を表1に示す。
該プリント配線板の導電膜上に、例1と同様にして銅メッキを施した。銅メッキの厚さは、20μmであった。メッキ付き導電膜の体積抵抗率、およびメッキ付き導電膜とガラス基板との間の引き剥がし強度を測定した。結果を表1に示す。
[Example 8]
A printed wiring board was obtained in the same manner as in Example 1 except that a glass substrate was used instead of the polyimide film. The thickness of the conductive film was 1 μm. The volume resistivity of the conductive film was measured. The results are shown in Table 1.
Copper plating was performed on the conductive film of the printed wiring board in the same manner as in Example 1. The thickness of the copper plating was 20 μm. The volume resistivity of the plated conductive film and the peel strength between the plated conductive film and the glass substrate were measured. The results are shown in Table 1.

Figure 0005018226
Figure 0005018226

本発明の導電膜形成用インクによれば、マスクフィルムを用いることなく所望の配線パターンの導電膜を形成でき、プリント配線板を少ない工程で製造できる。また、本発明の導電膜形成用インクによれば、ポリイミドを含む電気絶縁体層との密着性に優れる導電膜を有するプリント配線板を製造できる。   According to the conductive film forming ink of the present invention, a conductive film having a desired wiring pattern can be formed without using a mask film, and a printed wiring board can be manufactured with few steps. Moreover, according to the ink for forming a conductive film of the present invention, a printed wiring board having a conductive film excellent in adhesion to an electrical insulator layer containing polyimide can be produced.

プリント配線板の一例を示す断面図である。It is sectional drawing which shows an example of a printed wiring board.

符号の説明Explanation of symbols

10 プリント配線板
12 電気絶縁体層
14 導電膜
10 Printed Wiring Board 12 Electrical Insulator Layer 14 Conductive Film

Claims (1)

ポリイミドを含む電気絶縁体層の表面に導電膜を形成するための導電膜形成用インクであって、
気圧0.1MPaの状態での沸点が150〜350℃である非水溶性有機溶媒と、
該有機溶媒中に分散した金属微粒子および/または水素化金属微粒子と、
JIS K7237の規定によるアミン価が40120mgKOH/gであるアミノ化合物と
を含み、
前記アミノ化合物の量が、金属微粒子および水素化金属微粒子の合計100質量部に対し、1〜50質量部である、導電膜形成用インク。
A conductive film forming ink for forming a conductive film on the surface of an electrical insulator layer containing polyimide,
A water-insoluble organic solvent having a boiling point of 150 to 350 ° C. at a pressure of 0.1 MPa;
Metal fine particles and / or metal hydride fine particles dispersed in the organic solvent;
An amino compound amine value according to the provisions of JIS K7237 is 40 ~ 120 mgKOH / g seen including,
The ink for forming a conductive film, wherein the amount of the amino compound is 1 to 50 parts by mass with respect to 100 parts by mass of the total of metal fine particles and metal hydride fine particles .
JP2007127866A 2006-06-30 2007-05-14 Conductive film forming ink Expired - Fee Related JP5018226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007127866A JP5018226B2 (en) 2006-06-30 2007-05-14 Conductive film forming ink

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006181193 2006-06-30
JP2006181193 2006-06-30
JP2007127866A JP5018226B2 (en) 2006-06-30 2007-05-14 Conductive film forming ink

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011184545A Division JP2011254103A (en) 2006-06-30 2011-08-26 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2008034358A JP2008034358A (en) 2008-02-14
JP5018226B2 true JP5018226B2 (en) 2012-09-05

Family

ID=39123531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007127866A Expired - Fee Related JP5018226B2 (en) 2006-06-30 2007-05-14 Conductive film forming ink

Country Status (1)

Country Link
JP (1) JP5018226B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066396A1 (en) * 2007-11-22 2009-05-28 Asahi Glass Company, Limited Ink for conductive film formation and process for producing printed wiring board
US8506849B2 (en) * 2008-03-05 2013-08-13 Applied Nanotech Holdings, Inc. Additives and modifiers for solvent- and water-based metallic conductive inks
JP2010013557A (en) * 2008-07-03 2010-01-21 Konica Minolta Ij Technologies Inc Cationic polymerizable inkjet ink composition and its manufacturing method
US8716867B2 (en) * 2010-05-12 2014-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Forming interconnect structures using pre-ink-printed sheets
WO2015152162A1 (en) 2014-03-31 2015-10-08 三菱瓦斯化学株式会社 Entry sheet for drilling
CN106462058B (en) 2014-04-16 2019-08-13 东丽株式会社 Photosensitive polymer combination, the manufacturing method of conductive pattern, substrate, element and touch panel
JP6869954B2 (en) 2016-03-15 2021-05-12 住友電気工業株式会社 Coating liquid for forming a conductive layer, manufacturing method of the conductive layer, and the conductive layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064333A (en) * 1996-08-21 1998-03-06 Taiyo Ink Mfg Ltd Conductive copper paste composite and manufacture of printed circuit board by use of it

Also Published As

Publication number Publication date
JP2008034358A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP5018226B2 (en) Conductive film forming ink
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP5594449B2 (en) Conductive material and manufacturing method thereof
JP5982033B2 (en) Metal fine particle dispersion, copper fine particle dispersion, method for producing copper fine particle dispersion, and method for producing conductive substrate
JP4449676B2 (en) Method for producing copper fine particles
JP2009158727A (en) Printed wiring board
US20090136770A1 (en) Dispersion containing metal fine particles, process for producing it, and article having metal film
KR20120003458A (en) Substrate for printed wiring board, printed wiring board, and methods for producing same
US10076032B2 (en) Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
CN101232963A (en) Copper fine particle dispersion liquid and method for producing same
WO2006109410A1 (en) Ink composition and metallic material
US20090246357A1 (en) Method of forming circuits on circuit board
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP2013067854A (en) Copper composite particle, composite metallic copper particle, method for producing copper composite particle, metallic paste, article having metallic conductor and method for producing article having metallic conductor
KR20130124490A (en) Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor
JP6466110B2 (en) Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
CN102918937A (en) Printed circuit board and method for producing printed circuit board
JP2011254103A (en) Method for manufacturing printed wiring board
KR20140050534A (en) Conductive paste printed circuit board having plating layer and method for manufacturing the same
JP5267487B2 (en) Printed wiring board substrate and method for manufacturing printed wiring board substrate
KR20140049632A (en) Conductive paste printed circuit board having plating layer and method for manufacturing the same
JP2010285678A (en) Method for producing copper composite particle, method for producing composite metal copper particle, copper paste and method for producing metal copper conductor
CN111213437A (en) Substrate for printed wiring board and printed wiring board
JP2009176605A (en) Method of manufacturing substrate with conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5018226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees