JP5017782B2 - Steel with excellent toughness in weld heat affected zone - Google Patents

Steel with excellent toughness in weld heat affected zone Download PDF

Info

Publication number
JP5017782B2
JP5017782B2 JP2005061894A JP2005061894A JP5017782B2 JP 5017782 B2 JP5017782 B2 JP 5017782B2 JP 2005061894 A JP2005061894 A JP 2005061894A JP 2005061894 A JP2005061894 A JP 2005061894A JP 5017782 B2 JP5017782 B2 JP 5017782B2
Authority
JP
Japan
Prior art keywords
mass
rem
steel material
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005061894A
Other languages
Japanese (ja)
Other versions
JP2006241565A (en
Inventor
孝子 山下
隆二 村岡
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005061894A priority Critical patent/JP5017782B2/en
Publication of JP2006241565A publication Critical patent/JP2006241565A/en
Application granted granted Critical
Publication of JP5017782B2 publication Critical patent/JP5017782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶接熱影響部の靭性に優れた鋼材に関し、詳しくは、溶接熱影響部の靭性劣化を抑制する析出物を有し、造船、建築、橋梁、海洋構造物、ラインパイプなど溶接構造物の使途に好適な、溶接熱影響部の靭性に優れた鋼材に関する。   The present invention relates to a steel material excellent in toughness of a weld heat-affected zone, and in particular, has a precipitate that suppresses toughness deterioration of the weld heat-affected zone, and has a welded structure such as shipbuilding, building, bridge, offshore structure, line pipe, etc. The present invention relates to a steel material excellent in toughness of a welding heat-affected zone, which is suitable for use of an object.

近年、鋼構造物や船舶の大型化が進むにつれて、使用する鋼材の高強度化および厚肉化のニーズが高まってきている。厚肉鋼材の溶接においては、溶接能率を高めるためにサブマージドアーク溶接、エレクトロガス溶接、エレクトロスラグ溶接などの、入熱を大きくとりうる溶接が適用されることが多く、その場合、溶接熱影響部(Heat affected Zone:以下、HAZとも記す。)では、入熱の増加に伴う組織の粗大化により靭性が劣化する問題があり、溶接熱影響部の靭性(以下、HAZ靭性とも記す。)を改善した鋼材が要望されている。この要望に応じ、従来、種々の提案がなされている。   In recent years, as steel structures and ships are becoming larger, there is an increasing need for higher strength and thicker steel materials to be used. In the welding of thick-walled steel materials, in order to increase the welding efficiency, welding that can take a large amount of heat, such as submerged arc welding, electrogas welding, and electroslag welding, is often applied. In the heat affected zone (hereinafter also referred to as HAZ), there is a problem that the toughness deteriorates due to the coarsening of the structure accompanying the increase in heat input, and the toughness of the weld heat affected zone (hereinafter also referred to as HAZ toughness). There is a need for improved steel. Various proposals have been made according to this demand.

例えば、特許文献1には、TiNなどの窒化物を利用してオーステナイト結晶粒の粗大化を抑制することによってHAZ靭性を向上させる技術が提案されている。しかし、HAZ内でも、ボンド(:HAZと溶接金属との境界)近傍のような、1300℃以上の高温まで加熱される部位では、TiNなどの窒化物は溶解してオーステナイト結晶粒の粗大化を抑制する能力を失う。さらには、TiNなどの窒化物を利用した方法では、Nの添加が必須であるため、鋼中のN含有量増加による靭性劣化あるいは溶接金属への悪影響などにより、TiNなどの窒化物によるHAZ靭性向上が減殺され、その効果に限界がある。   For example, Patent Document 1 proposes a technique for improving the HAZ toughness by suppressing the coarsening of austenite crystal grains using a nitride such as TiN. However, even in the HAZ, at a portion heated to a high temperature of 1300 ° C. or higher, such as in the vicinity of the bond (the boundary between the HAZ and the weld metal), nitrides such as TiN dissolve and the austenite crystal grains become coarse. Lose ability to suppress. Furthermore, in the method using nitride such as TiN, addition of N is essential, so that HAZ toughness due to nitride such as TiN due to deterioration of toughness due to increase of N content in steel or adverse effect on weld metal. The improvement is diminished and its effect is limited.

これに対して、特許文献2には、Ti酸化物あるいはこれとTiNとの複合体を利用して粒内フェライトの析出を促進させ、HAZ靭性を高める方法が提案されている。この方法によれば、1300℃以上の高温でも溶解しないTi酸化物のピンニング効果によりオーステナイト結晶粒の粗大化を抑制できる。しかしながら、Ti酸化物を鋼中に均一に分散させるためには高度の製鋼技術を必要とし、例えば特許文献3に開示されているように、分散剤としてMgなどを新たに添加する必要もある。
特開昭58-31065号公報 特開昭60-245768号公報 特開平6-179942号公報
On the other hand, Patent Document 2 proposes a method of increasing the HAZ toughness by promoting precipitation of intragranular ferrite using a Ti oxide or a composite of TiN and TiN. According to this method, coarsening of austenite crystal grains can be suppressed by the pinning effect of Ti oxide that does not dissolve even at a high temperature of 1300 ° C. or higher. However, in order to uniformly disperse Ti oxide in steel, a high steelmaking technique is required. For example, as disclosed in Patent Document 3, it is necessary to newly add Mg or the like as a dispersant.
JP 58-31065 A JP 60-245768 A Japanese Patent Laid-Open No. 6-179842

上述のように、優れたHAZ靭性を必要とする溶接構造物用鋼材については、種々の析出物によるピンニング効果を活用することが提案されているものの、TiNなどの従来用いられている析出物では、種々の溶接技術に対してHAZ靭性の向上が得られないうえ、酸化物系では析出物を分散させにくいなどの問題があった。
本発明は、この問題を解決し、鋼中に均一に分散し大入熱溶接のボンド近傍でもピンニング効果を発揮しうる析出物を有する、溶接熱影響部の靭性に優れた鋼材を提供することを目的とする。
As described above, for steel materials for welded structures that require excellent HAZ toughness, it has been proposed to utilize the pinning effect due to various precipitates, but with precipitates conventionally used such as TiN However, the HAZ toughness cannot be improved with respect to various welding techniques, and oxides have problems such as difficulty in dispersing precipitates.
The present invention solves this problem, and provides a steel material having a weld heat-affected zone excellent in toughness having precipitates that are uniformly dispersed in steel and can exhibit a pinning effect even in the vicinity of a bond of high heat input welding. With the goal.

なお、以下では、「高温」とは、特に断らない限り1300℃以上を指し、実質的に上限は1450℃程度である。   In the following, “high temperature” means 1300 ° C. or higher unless otherwise specified, and the upper limit is substantially about 1450 ° C.

本発明者らは、鋼中に均一に微細分散し、HAZのオーステナイト結晶粒の粗大化を安定して抑制する析出物について種々検討した。その結果、Alを添加せずにSiあるいはさらにMnのみで脱酸することにより、溶接入熱が800kJ/cmを超えるような超大入熱溶接時でも鋼中の酸化物を残存させうること、さらには、HAZのオーステナイト結晶粒が微細になるREM(Rare Earth Metal:希土類元素)含有量の最適範囲が存在することを見出した(特願2003-122618号)。この最適範囲は、REM含有量が0.0010〜0.0100質量%でかつMn含有量×O含有量×(0.2〜1.2)に等しい範囲であった。   The present inventors have made various studies on precipitates that are uniformly finely dispersed in steel and stably suppress coarsening of HAZ austenite crystal grains. As a result, by deoxidizing only Si or Mn without adding Al, it is possible to leave oxides in the steel even during super-high heat input welding where the welding heat input exceeds 800 kJ / cm, Found that there is an optimum range of REM (Rare Earth Metal) content in which HAZ austenite crystal grains become fine (Japanese Patent Application No. 2003-122618). This optimum range was a range in which the REM content was 0.0010 to 0.0100% by mass and equal to Mn content × O content × (0.2 to 1.2).

REM含有量を上記最適範囲に制限することにより形成した(REM,Mn)酸硫化物(:REMおよびMnを含んだ酸硫化物)によるHAZ靭性向上効果は、Al含有量を0.01質量%以下に制限した組成範囲で発現した。
そこで、さらにAl含有量が0.01質量%超の範囲でAlを添加した場合について検討し、その結果、Alを添加した鋼材では(REM,Mn,Al)酸硫化物(:REM、MnおよびAlを含んだ酸硫化物)が形成し、これらも(REM,Mn)酸硫化物と同様に少しずつREM酸化物とMnSに分離し高温で硫化物を析出させ、HAZのオーステナイト結晶粒を微細化する効果を有することが判明した。
The effect of improving HAZ toughness by (REM, Mn) oxysulfide (: oxysulfide containing REM and Mn) formed by limiting the REM content to the above optimal range is that Al content is 0.01% by mass. It was expressed in the composition range limited to the following.
Therefore, the case where Al is further added in the range of Al content exceeding 0.01% by mass is examined, and as a result, (REM, Mn, Al) oxysulfide (: REM, Mn and Oxysulfide containing Al) is formed, and these are separated into REM oxide and MnS little by little like (REM, Mn) oxysulfide to precipitate sulfide at high temperature, and fine austenite grains of HAZ It was found to have the effect of

この検討では、REM含有量を0〜0.02質量%、Al含有量を0.01〜0.08質量%の範囲で種々変えたREM-Al添加鋼材に入熱10〜800kJ/cmのHAZルート近傍相当の熱サイクルを付与する再現熱サイクル試験を行い、試験後のオーステナイト結晶粒の粒径(オーステナイト粒径)を測定した。この熱サイクルは、試験片を常温(25℃)から最高加熱温度(1300〜1450℃)まで35秒(昇温速度36〜41℃/s)で昇温させ、該最高加熱温度に10秒保持後、1000℃まで冷却し、次いで水冷するものである。なお、最高加熱温度から1000℃までの冷却は、水冷よりも遅い冷却速度(例えば100℃/s)とする。得られた結果から、オーステナイト粒径、Al含有量、REM含有量の関係を整理すると、図1に示すような相関が得られた。   In this study, a REM-Al-added steel material having various REM contents in the range of 0 to 0.02 mass% and Al content in the range of 0.01 to 0.08 mass% was applied to HAZ having a heat input of 10 to 800 kJ / cm. A reproducible thermal cycle test for applying a thermal cycle corresponding to the vicinity of the route was performed, and the grain size (austenite grain size) of the austenite crystal grains after the test was measured. In this thermal cycle, the test piece is heated from room temperature (25 ° C.) to the maximum heating temperature (1300 to 1450 ° C.) at a rate of 35 seconds (temperature increase rate 36 to 41 ° C./s) and held at the maximum heating temperature for 10 seconds. Then, it cools to 1000 degreeC and then water-cools. The cooling from the maximum heating temperature to 1000 ° C. is set to a cooling rate (for example, 100 ° C./s) slower than the water cooling. When the relationship among the austenite grain size, Al content, and REM content was arranged from the obtained results, a correlation as shown in FIG. 1 was obtained.

Alは非常に強い脱酸剤であることから、従来、製鋼プロセスではAl脱酸が行われている。また、Alは比較的大きな介在物を形成することが知られており、その形態は酸化物が主体であるとされていた。しかしながら、Alを添加した鋼材も適量のREMが添加されると図1に示すように微細なオーステナイト結晶粒が得られ、それらの鋼材の析出物を詳細に調べたところ、次のことが明らかとなった。
(1)Al含有量を0.02質量%以下とした鋼材(例えば図1のA)においても、(REM,Mn,Al)酸硫化物を形成する。
(2)(REM,Mn,Al)酸硫化物は(REM,Al)酸化物およびMnSに分離する。
Since Al is a very strong deoxidizer, Al deoxidation is conventionally performed in the steelmaking process. Moreover, Al is known to form relatively large inclusions, and its form has been mainly composed of oxides. However, when an appropriate amount of REM is added to a steel material to which Al is added, fine austenite crystal grains are obtained as shown in FIG. 1, and when the precipitates of these steel materials are examined in detail, the following is clear. became.
(1) (REM, Mn, Al) oxysulfide is formed even in a steel material (for example, A in FIG. 1) having an Al content of 0.02% by mass or less.
(2) (REM, Mn, Al) oxysulfide is separated into (REM, Al) oxide and MnS.

さらに、Alと同様の効果を発揮する元素としてSiが考えられるが、Al量と同様にSi量もある範囲で含有するのであれば、HAZ靭性向上効果は発現されることを確認した。
すなわち、本発明者は、REMの添加量を調整すればREM、MnおよびAlまたはSiを含んだ酸硫化物が形成して、MnSに分離析出し、分離したMnSは高温においても析出状態を維持し、MnSのピンニング効果によりオーステナイト結晶粒の粗大化が抑制されることに想到したのである。
Furthermore, although Si can be considered as an element that exhibits the same effect as Al, it has been confirmed that the effect of improving HAZ toughness is exhibited if the Si content is within a certain range as well as the Al content.
That is, the present inventor forms an oxysulfide containing REM, Mn and Al or Si if the amount of REM added is adjusted, and separates and precipitates into MnS, and the separated MnS maintains a precipitated state even at high temperatures. And it came to the mind that the austenite crystal grain coarsening is suppressed by the pinning effect of MnS.

このことは、従来より用いられているAl,Siによる脱酸鋼においても、本発明によるHAZ靭性向上効果が発現されることを意味し、工業的に適用範囲が広がる。
本発明は、これらの知見に基づいてなされたものであり、その要旨は以下のとおりである。
(発明項1)C:0.001〜0.15質量%、Si:0.05〜0.5質量%、Mn:0.5〜2.0質量%、Al:0.010質量%超0.08質量%以下、O:0.0005〜0.0100質量%、S:0.0005〜0.0100質量%、REM:0.0010〜0.0200質量%を、下記式(1)〜(3)の成立範囲内で含有し、残部Feおよび不可避的不純物からなることを特徴とする、溶接熱影響部の−20℃におけるシャルピー吸収エネルギーが207J以上である、溶接熱影響部の靭性に優れた鋼材。
This means that the effect of improving the HAZ toughness according to the present invention is exhibited even in the conventionally used deoxidized steels of Al and Si, and the applicable range is expanded industrially.
The present invention has been made based on these findings, and the gist thereof is as follows.
(Invention Item 1) C: 0.001 to 0.15% by mass, Si: 0.05 to 0.5% by mass, Mn: 0.5 to 2.0% by mass, Al: more than 0.010% by mass 0 0.08 mass% or less, O: 0.0005-0.0100 mass%, S: 0.0005-0.0100 mass%, REM: 0.0010-0.0200 mass%, the following formulas (1) to ( 3) It is contained within the formation range, and consists of the balance Fe and inevitable impurities . The Charpy absorbed energy at −20 ° C. of the welding heat-affected zone is 207 J or more, and the toughness of the welding heat-affected zone is excellent. Steel material.


0.2≦REM/(Mn×O)≦1.20 ……(1)
REM/(Al+Si)≧0.012 ……(2)
Mn×S≧0.00294 ……(3)
上式中のMn,O,REM,Al,Si,Sは、鋼材中の同号元素の含有量(質量%)を表す。
0.2 ≦ REM / (Mn × O) ≦ 1.20 (1)
REM / (Al + Si) ≧ 0.012 (2)
Mn × S ≧ 0.0000294 (3)
Mn, O, REM, Al, Si, and S in the above formula represent the content (mass%) of the same element in the steel material.

(発明項2)前記REMとして、Y:0.0010〜0.0200質量%を含有することを特徴とする発明項1記載の溶接熱影響部の靭性に優れた鋼材。
(発明項3)Feの一部に代えて、Cu:0.01〜1質量%、Ni:0.01〜2質量%のうち1種または2種を含有することを特徴とする発明項1または2記載の溶接熱影響部の靭性に優れた鋼材。
(Invention Item 2) A steel material excellent in toughness of the weld heat affected zone according to Invention Item 1, wherein Y: 0.0010 to 0.0200 mass% is contained as the REM.
(Invention Item 3) Invention Item 1 containing one or two of Cu: 0.01 to 1% by mass and Ni: 0.01 to 2% by mass in place of part of Fe Or the steel material excellent in the toughness of the welding heat affected zone of 2 description.

本発明によれば、鋼中に均一に分散し大入熱溶接のボンド近傍でもピンニング効果を発揮しうる析出物を有する、溶接熱影響部の靭性に優れた鋼材が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the steel material excellent in the toughness of a welding heat affected zone which has the precipitate which can disperse | distribute uniformly in steel and can exhibit the pinning effect also in the bond vicinity of a high heat input welding is obtained.

まず、発明項1〜4に記載した鋼材(本発明鋼材)の化学組成の限定理由を説明する。
C:0.001〜0.15質量%
Cは、0.001質量%未満に低減しようとすると、大量生産工程においては生産性の低下が著しく、一方、0.15質量%を超えると鋼材の加工性や溶接作業性を損ね、HAZ靭性も低下するため、0.001〜0.15質量%とする。なお、母材(溶接前の鋼材)およびHAZの組織は、ベイナイト組織、フェライト/パーライト組織、マルテンサイト組織のいずれであってもよいが、ベイナイトの場合はベイナイト単相とするために、Cは0.001〜0.03質量%が好ましい。一方、ベイナイト以外の組織においては、Cは鋼材の強度を増加させる元素であり、構造部材としての強度を確保するためには0.01質量%以上が好ましい。
First, the reasons for limiting the chemical composition of the steel materials (present invention steel materials) described in Invention Items 1 to 4 will be described.
C: 0.001 to 0.15% by mass
If C is reduced to less than 0.001% by mass, the productivity is significantly reduced in the mass production process. On the other hand, if it exceeds 0.15% by mass, the workability and welding workability of the steel are impaired, and the HAZ toughness is reduced. Therefore, 0.001 to 0.15 mass% is set. The base material (steel material before welding) and the HAZ structure may be any of a bainite structure, a ferrite / pearlite structure, and a martensite structure. In the case of bainite, C is 0.001 to 0.03 mass% is preferable. On the other hand, in the structure other than bainite, C is an element that increases the strength of the steel material, and is preferably 0.01% by mass or more in order to ensure the strength as a structural member.

Si:0.05〜0.5質量%
Siは、脱酸作用を有するとともに鋼材の強度を向上させる元素であるが、0.05質量%未満では構造用鋼材として十分な強度が得られず、また、脱酸作用も不十分になり、一方、0.5質量%を超えるとSiおよびMnの酸化物あるいは酸硫化物を形成し、REMを含む酸硫化物の量を低下させる原因となり、ピンニング効果が発現しなくなってオーステナイト結晶粒が粗大化するため、0.05〜0.5質量%とする。
Si: 0.05-0.5 mass%
Si is an element that has a deoxidizing action and improves the strength of the steel material, but if it is less than 0.05% by mass, sufficient strength cannot be obtained as a structural steel material, and the deoxidizing action becomes insufficient. On the other hand, if it exceeds 0.5% by mass, an oxide or oxysulfide of Si and Mn is formed and the amount of oxysulfide containing REM is reduced, and the pinning effect is not manifested and the austenite crystal grains are coarse. Therefore, the content is set to 0.05 to 0.5% by mass.

Mn:0.5〜2.0質量%、
Mnは、Siと同様に鋼材の強度を向上させる元素であるが、0.5質量%未満では、構造用鋼材として要求される強度が得られず、一方、2.0質量%を超えるとHAZ靭性を劣化させるため、0.5〜2.0質量%とする。
Al:0.010質量%超0.08質量%以下
Alは、非常に強い脱酸作用を有する元素である。したがって、高温で安定な酸化物を鋼材中に確保するためには不要であるが、REMとの共存下では0.08質量%を超えるとREMおよびMnの酸硫化物数が減少してオーステナイト結晶粒を粗大化し、HAZ靭性を低下させる。一方、Alが0.010質量%以下では十分な脱酸が行えないため、Si、Mn等による脱酸が必要になり製造コストが上昇する。よって、Alは0.010質量%超0.08質量%以下とする。
Mn: 0.5 to 2.0% by mass,
Mn is an element that improves the strength of a steel material, similar to Si. However, if it is less than 0.5% by mass, the strength required as a structural steel material cannot be obtained, whereas if it exceeds 2.0% by mass, HAZ In order to deteriorate toughness, the content is set to 0.5 to 2.0 mass%.
Al: more than 0.010 mass% and 0.08 mass% or less Al is an element having a very strong deoxidizing action. Therefore, it is not necessary to secure a stable oxide at high temperature in the steel material. However, in the presence of REM, if it exceeds 0.08% by mass, the number of oxysulfides of REM and Mn decreases, and austenite crystals. Coarse grains and reduce HAZ toughness. On the other hand, when Al is 0.010% by mass or less, sufficient deoxidation cannot be performed. Therefore, deoxidation with Si, Mn, or the like is required, and the manufacturing cost increases. Therefore, Al is made more than 0.010 mass% and 0.08 mass% or less.

O:0.0005〜0.0100質量%
Oは、通常は不可避的不純物とされるが、本発明ではREMあるいはMnを含んだ酸化物や酸硫化物の形成に関与する重要な元素であり、0.0005質量%未満では、製鋼段階において晶出する酸化物あるいは酸硫化物の量が非常に少なくなるため、オーステナイト結晶粒が粗大化する要因となる。一方、0.0100質量%を超えると、凝固の初期段階の晶出による粗大な介在物が生成し、鋼材の清浄度が低下する。この粗大な介在物はオーステナイト結晶粒の微細化になんら寄与しない。よって、Oは0.0005〜0.0100質量%とする。
O: 0.0005-0.0100 mass%
O is usually an unavoidable impurity, but in the present invention, O is an important element involved in the formation of oxides and oxysulfides containing REM or Mn. Since the amount of crystallized oxide or oxysulfide is very small, the austenite crystal grains become coarse. On the other hand, if it exceeds 0.0100% by mass, coarse inclusions are generated due to crystallization in the initial stage of solidification, and the cleanliness of the steel material is lowered. This coarse inclusion does not contribute to the refinement of austenite crystal grains. Therefore, O is set to 0.0005 to 0.0100 mass%.

S:0.0005〜0.0100質量%
Sは、本発明のポイントとなるMnS、あるいは(REM,Mn,Al)酸硫化物を析出させて、オーステナイト結晶粒の成長を抑制するために必要な元素であり、0.0005質量%未満では、MnSの析出が起こらず、オーステナイト結晶粒が粗大化する。一方、0.0100質量%を超えると、(REM,Mn,Al)酸硫化物以外に粗大なMnSが析出し、鋼材の靭性が低下する。よって、Sは0.0005〜0.0100質量%とする。
S: 0.0005-0.0100 mass%
S is an element required for precipitating MnS or (REM, Mn, Al) oxysulfide, which is the point of the present invention, to suppress the growth of austenite crystal grains, and less than 0.0005 mass%. , MnS does not precipitate and austenite crystal grains become coarse. On the other hand, when it exceeds 0.0100 mass%, coarse MnS precipitates in addition to (REM, Mn, Al) oxysulfide, and the toughness of the steel material decreases. Therefore, S is set to 0.0005 to 0.0100 mass%.

REM:0.0010〜0.0200質量%
REMは、(REM,Mn,Al,Si)酸硫化物を形成しやすくし、オーステナイト結晶粒の成長を成長を抑制するために必要な元素であり、0.0010質量%未満ではREMの酸硫化物あるいは酸化物が形成せず、オーステナイト結晶粒が粗大化するので、HAZ靭性が低下する。一方、0.0200質量%を超えると、凝固時に高温より晶出するために粗大な介在物となり、オーステナイト結晶粒が粗大化し、また、鋼材内部に種々の欠陥が発生する原因となる。よって、REMは0.0010〜0.0200質量%とする。
REM: 0.0010 to 0.0200 mass%
REM is an element necessary for facilitating the formation of (REM, Mn, Al, Si) oxysulfide and suppressing the growth of austenite crystal grains. Since no austenite or oxide is formed and the austenite crystal grains become coarse, the HAZ toughness decreases. On the other hand, if it exceeds 0.0200% by mass, it will crystallize from a high temperature during solidification, resulting in coarse inclusions, coarsening of austenite crystal grains, and occurrence of various defects inside the steel material. Accordingly, the REM is set to 0.0010 to 0.0200 mass%.

なお、REMは、Sc、Y、原子番号でLaからLuに到る元素を指すが、入手のし易さからは、Ce(セリウム)、La(ランタン)、Nd(ネオジム)のうち1種または2種以上である。
さらに、本発明では、O、Mn、REMの含有量が式(1)を満足し、REM、Al、Siの含有量が式(2)を満足し、S、Mnの含有量が式(3)を満足する必要がある。
0.2≦REM/(Mn×O)≦1.20 ……(1)
REM/(Al+Si)≧0.012 ……(2)
Mn×S≧0.00294 ……(3)
上式中のMn,O,REM,Al,Si,Sは、鋼材中の同号元素の含有量(質量%)を表す。
Note that REM refers to an element from Sc to Y and La to Lu by atomic number. From the viewpoint of availability, one of Ce (cerium), La (lanthanum), and Nd (neodymium) or 2 or more types.
Furthermore, in this invention, content of O, Mn, and REM satisfies Formula (1), content of REM, Al, and Si satisfies Formula (2), and content of S and Mn is Formula (3). ) Must be satisfied.
0.2 ≦ REM / (Mn × O) ≦ 1.20 (1)
REM / (Al + Si) ≧ 0.012 (2)
Mn × S ≧ 0.0000294 (3)
Mn, O, REM, Al, Si, and S in the above formula represent the content (mass%) of the same element in the steel material.

(REM,Mn)酸硫化物あるいは(REM,Mn,Al,Si)酸硫化物を生成するためには、REM/(Mn×O)が0.2〜1.20の範囲内に納まるようにMn、O、REMの含有量を調整する必要がある。REM/(Mn×O)が0.2未満では、REMを含む酸硫化物は生成されず、オーステナイト結晶粒が粗大化する。一方、REM/(Mn×O)が1.20超では、酸硫化物中にMnが固溶せずREM単独の酸硫化物となり、熱サイクルを受けたときにREM酸化物とMnSとへの分離による析出が起こらず、同じくオーステナイト結晶粒が粗大化する。   In order to produce (REM, Mn) oxysulfide or (REM, Mn, Al, Si) oxysulfide, REM / (Mn × O) should be within the range of 0.2 to 1.20. It is necessary to adjust the contents of Mn, O, and REM. When REM / (Mn × O) is less than 0.2, oxysulfide containing REM is not generated and austenite crystal grains become coarse. On the other hand, when REM / (Mn × O) exceeds 1.20, Mn does not form a solid solution in the oxysulfide and becomes REM sulfide alone, and when subjected to a thermal cycle, the REM / (Mn × O) is converted into REM oxide and MnS. Precipitation due to separation does not occur, and austenite crystal grains are also coarsened.

さらに、REM含有量はAl含有量およびSi含有量によっても限定され、Alを0.01質量%超と多く含有する本発明では、REM/(Al+Si)が0.010以上となるようにREMおよびAl,Siの含有量を調整する必要がある。REM/(Al+Si)が0.010未満では、REM含有量に対してAl,Si含有量が多いためにREMを含む酸硫化物は生成されず、オーステナイト結晶粒が粗大化する。   Furthermore, the REM content is also limited by the Al content and the Si content, and in the present invention containing a large amount of Al exceeding 0.01% by mass, REM and (Al + Si) are set to 0.010 or more. It is necessary to adjust the contents of Al and Si. When REM / (Al + Si) is less than 0.010, since the Al and Si contents are larger than the REM content, oxysulfides containing REM are not generated, and austenite crystal grains become coarse.

また、高温においてもMnSの析出状態を確保するために、Mn×Sが0.00294以上となるようにMnおよびSの含有量を調整する必要がある。Mn×Sが0.00294未満であると、高温でのMnSの析出量が不足し、ピンニング効果に乏しく、オーステナイト結晶粒が粗大化する。
以上の元素に加えて、必要に応じて鋼材のさらなる高張力化および厚肉化を達成するために、以下の元素を添加するのが好ましい。
Moreover, in order to ensure the precipitation state of MnS even at high temperatures, it is necessary to adjust the contents of Mn and S so that Mn × S is 0.00044 or more. When Mn × S is less than 0.0000294, the amount of MnS precipitated at high temperature is insufficient, the pinning effect is poor, and austenite crystal grains are coarsened.
In addition to the above elements, it is preferable to add the following elements in order to achieve further increase in tension and thickness of the steel material as necessary.

Y:0.0010〜0.0200質量%
YはREMの一種であり、Ce、La、Ndに次ぐ、入手し易いREM元素であり、製鋼段階での凝固時にYおよびMnの酸硫化物((Y,Mn)酸硫化物)を生成し、熱サイクル試験時に分離してMnSを高温で存在させる。しかし、Yが0.0010質量%未満では(Y,Mn)酸硫化物が生成せず、それによるオーステナイト結晶粒微細化効果は得られない。一方、0.0200質量%を超えて添加されると、鋼材ならびにHAZの靭性が低下する。したがって、Yは0.0010〜0.0200質量%とするのが好ましい。
Y: 0.0010-0.0200 mass%
Y is a kind of REM and is an easily available REM element after Ce, La and Nd, and generates oxysulfide ((Y, Mn) oxysulfide) of Y and Mn during solidification in the steelmaking stage. Separated during the thermal cycle test, MnS is present at a high temperature. However, when Y is less than 0.0010 mass%, (Y, Mn) oxysulfide is not generated, and the effect of refining austenite crystal grains cannot be obtained. On the other hand, when it exceeds 0.0200 mass%, the toughness of steel material and HAZ will fall. Therefore, Y is preferably 0.0010 to 0.0200% by mass.

Cu:0.01〜1質量%、Ni:0.01〜2質量%のうち1種または2種
Cu、Niはいずれも鋼材の強度と靭性を向上させる元素であり、また、特に、CuはMnと同じく硫化物を形成する元素であり、REM、Mnと同様にオーステナイト結晶粒微細化に寄与するが、Cu、Niとも0.01質量%未満ではその効果に乏しい。一方、Cuが1質量%を超え、またはNiが2質量%を超えると、鋼材あるいはHAZの靭性が低下する。したがって、Cuは0.01〜1質量%、Niは0.01〜2質量%とするのが好ましい。
Cu: 0.01 to 1% by mass, Ni: 0.01 to 2% by mass One or two of Cu and Ni are elements that improve the strength and toughness of the steel material. Like Mn, it is an element that forms sulfides, and contributes to austenite grain refinement like REM and Mn. However, both Cu and Ni are less effective at less than 0.01% by mass. On the other hand, if Cu exceeds 1% by mass or Ni exceeds 2% by mass, the toughness of the steel material or HAZ decreases. Accordingly, Cu is preferably 0.01 to 1% by mass, and Ni is preferably 0.01 to 2% by mass.

上述のようにして、OおよびMn、AlおよびSiの含有量に応じて、SおよびREMの含有量を適正に調整することにより、オーステナイト結晶粒の粗大化を抑制することができる。オーステナイト結晶粒の粗大化を抑制するには、十分な析出物数が必要であるが、析出物数は次のようにして確認できる。すなわち試料となる鋼材を、25℃から41℃/sで1450℃まで昇温し、この温度で10秒間保持した後、1000℃まで100℃/sで冷却し、次いで水冷する熱サイクル付与後の鋼材の断面1mm2あたりの析出物数を電子顕微鏡で数えるのである。表2に示すように、本発明の鋼材は全て、析出物数が20個以上になっている。 As described above, coarsening of austenite crystal grains can be suppressed by appropriately adjusting the contents of S and REM according to the contents of O, Mn, Al, and Si. In order to suppress the coarsening of the austenite crystal grains, a sufficient number of precipitates is necessary, but the number of precipitates can be confirmed as follows. That is, the steel material used as a sample was heated from 25 ° C. to 1450 ° C. at 41 ° C./s, held at this temperature for 10 seconds, cooled to 1000 ° C. at 100 ° C./s, and then water-cooled. The number of precipitates per 1 mm 2 of the cross section of the steel material is counted with an electron microscope. As shown in Table 2, all the steel materials of the present invention have 20 or more precipitates.

表1に示す組成になる鋼を溶製後、連続鋳造により鋼片とし、これを熱間圧延して鋼板(厚さ40〜60mm)を製造した。これら鋼板から切り出した熱サイクル試験片について、25℃から1450℃まで35秒で昇温し、次いで1450℃で10秒間保持し、次いで1000℃まで100℃/sで冷却し、次いで水冷する熱サイクル試験を行った。この試験後にピクリン酸腐食にてオーステナイト結晶粒界を現出させた観察面を光学顕微鏡観察して、JIS G 0551に準拠してオーステナイト粒径を測定した。また、電子顕微鏡観察により析出物数を測定した。また、同熱サイクル試験片よりシャルピー衝撃試験片(JIS Z 2202 Vノッチ標準寸法)を採取し、HAZのボンド近傍について、JIS Z 2242に従って試験温度−20℃でHAZのシャルピー衝撃試験を行い、吸収エネルギーを測定した。結果をまとめて表2に示す。なお、オーステナイト粒径は最大のオーステナイト粒径を示す。   After melting the steel having the composition shown in Table 1, it was made into a slab by continuous casting, and this was hot-rolled to produce a steel plate (thickness 40-60 mm). Thermal cycle test pieces cut out from these steel plates were heated from 25 ° C. to 1450 ° C. in 35 seconds, then held at 1450 ° C. for 10 seconds, then cooled to 1000 ° C. at 100 ° C./s, and then water-cooled thermal cycle A test was conducted. After this test, the observation surface on which the austenite grain boundary appeared by picric acid corrosion was observed with an optical microscope, and the austenite grain size was measured according to JIS G 0551. Moreover, the number of precipitates was measured by electron microscope observation. In addition, a Charpy impact test piece (JIS Z 2202 V notch standard size) was taken from the same heat cycle test piece, and a HAZ Charpy impact test was performed at a test temperature of −20 ° C. according to JIS Z 2242 in the vicinity of the HAZ bond. Energy was measured. The results are summarized in Table 2. The austenite particle size indicates the maximum austenite particle size.

Figure 0005017782
Figure 0005017782

Figure 0005017782
Figure 0005017782

発明例(鋼材1〜9,17)では、オーステナイト粒径が300μm以下と小さく、シャルピー吸収エネルギーは207J以上と大きく、優れたHAZ靭性を示すことが確かめられた。
一方、比較例(鋼材10〜16,18〜22)について言及すると、鋼材10はREM/(Mn×O)が1.20を超えたため、REM酸化物とMnSとへの分離析出が起こらず、オーステナイト結晶粒が粗大化して、HAZ靭性が低下した。また、鋼材11はS過少のため、酸硫化物が形成されず、熱サイクルによりオーステナイト結晶粒が粗大化した。また、鋼材12はS過多のため多くの酸硫化物あるいは硫化物が析出し、熱サイクル後のオーステナイト粒径は小さかったものの、清浄度が低下したためHAZ靭性は低下した。
In invention examples (steel materials 1 to 9, 17), the austenite grain size was as small as 300 μm or less, the Charpy absorbed energy was as large as 207 J or more, and it was confirmed that excellent HAZ toughness was exhibited.
On the other hand, referring to the comparative examples (steel materials 10 to 16, 18 to 22), since the REM / (Mn × O) of the steel material 10 exceeded 1.20, separation and precipitation into REM oxide and MnS did not occur. The austenite crystal grains coarsened and the HAZ toughness decreased. In addition, since the steel material 11 has too little S, no oxysulfide was formed, and austenite crystal grains became coarse due to thermal cycling. Further, since the steel material 12 contained excessive S, a large amount of oxysulfide or sulfide was precipitated, and although the austenite particle size after the thermal cycle was small, the HAZ toughness was lowered because the cleanliness was lowered.

鋼材13はO過多のため清浄度が低下し、それにREM/(Mn×O)も0.2を下回るため、REMを含む酸硫化物は生成せず、オーステナイト結晶粒が粗大化し、HAZ靭性が低下した。鋼材14はREM/(Mn×O)が0.2を下回るため、REMを含む酸硫化物は生成せず、オーステナイト結晶粒が粗大化し、HAZ靭性が低下した。
鋼材15はREM過少、鋼材16はREM過多のため、いずれもオーステナイト結晶粒が粗大化し、HAZ靭性が低下した。鋼材18はMn×Sが0.00294未満のため、高温においてMnSの析出量が不足し、オーステナイト結晶粒が粗大化しHAZ靭性が低下した。
Since the steel 13 has an excess of O, the cleanliness is lowered, and REM / (Mn × O) is also less than 0.2. Therefore, oxysulfide containing REM is not generated, austenite crystal grains are coarsened, and HAZ toughness is reduced. Declined. Since REM / (Mn × O) of steel material 14 is less than 0.2, oxysulfide containing REM was not generated, austenite crystal grains were coarsened, and HAZ toughness was reduced.
Since the steel material 15 is too REM and the steel material 16 is too REM, the austenite crystal grains are coarsened and the HAZ toughness is lowered. Since the steel material 18 had a Mn × S of less than 0.000029, the precipitation amount of MnS was insufficient at a high temperature, the austenite crystal grains were coarsened, and the HAZ toughness was lowered.

鋼材19はSi過多のため、SiおよびMnの酸化物あるいは酸硫化物が形成し、REMを含む酸硫化物の量が減少して、オーステナイト結晶粒が粗大化しHAZ靭性が低下した。鋼材20はAlが過多のためREMを含む酸硫化物が形成されず、オーステナイト結晶粒が粗大化しHAZ靭性が低下した。
鋼材21,22は、Si,Al,REMの含有量は適正であるが、REM/(Al+Si)が0.010未満のため、REMを含む酸硫化物が形成されず、オーステナイト結晶粒が粗大化しHAZ靭性が低下した。
Since the steel material 19 was excessive in Si, oxides or oxysulfides of Si and Mn were formed, the amount of oxysulfide containing REM was reduced, austenite crystal grains were coarsened, and HAZ toughness was reduced. Since the steel material 20 has an excessive amount of Al, an oxysulfide containing REM was not formed, the austenite crystal grains were coarsened, and the HAZ toughness was lowered.
The steel materials 21 and 22 have appropriate contents of Si, Al, and REM, but because REM / (Al + Si) is less than 0.010, oxysulfide containing REM is not formed, and austenite crystal grains are coarsened. HAZ toughness decreased.

本発明は、鋼構造物や船舶などを建造する産業分野に利用することができる。   The present invention can be used in the industrial field of building steel structures and ships.

Al、REMの含有量と再現熱サイクル試験後のオーステナイト粒径との関係を示すグラフである。It is a graph which shows the relationship between content of Al and REM, and the austenite particle size after a reproduction thermal cycle test.

Claims (3)

C:0.001〜0.15質量%、Si:0.05〜0.5質量%、Mn:0.5〜2.0質量%、Al:0.010質量%超0.08質量%以下、O:0.0005〜0.0100質量%、S:0.0005〜0.0100質量%、REM:0.0010〜0.0200質量%を、下記式(1)〜(3)の成立範囲内で含有し、残部Feおよび不可避的不純物からなることを特徴とする、溶接熱影響部の−20℃におけるシャルピー吸収エネルギーが207J以上である、溶接熱影響部の靭性に優れた鋼材。

0.2≦REM/(Mn×O)≦1.20 ……(1)
REM/(Al+Si)≧0.012 ……(2)
Mn×S≧0.00294 ……(3)
上式中のMn,O,REM,Al,Si,Sは、鋼材中の同号元素の含有量(質量%)を表す。
C: 0.001 to 0.15% by mass, Si: 0.05 to 0.5% by mass, Mn: 0.5 to 2.0% by mass, Al: more than 0.010% by mass and 0.08% by mass or less , O: 0.0005 to 0.0100 mass%, S: 0.0005 to 0.0100 mass%, REM: 0.0010 to 0.0200 mass%, and the establishment range of the following formulas (1) to (3) A steel material excellent in toughness of the weld heat affected zone , wherein the Charpy absorbed energy at −20 ° C. of the weld heat affected zone is 207 J or more .
0.2 ≦ REM / (Mn × O) ≦ 1.20 (1)
REM / (Al + Si) ≧ 0.012 (2)
Mn × S ≧ 0.0000294 (3)
Mn, O, REM, Al, Si, and S in the above formula represent the content (mass%) of the same element in the steel material.
前記REMとして、Y:0.0010〜0.0200質量%を含有することを特徴とする請求項1記載の溶接熱影響部の靭性に優れた鋼材。   The steel material excellent in toughness of the weld heat affected zone according to claim 1, characterized in that Y: 0.0010 to 0.0200 mass% is contained as the REM. Feの一部に代えて、Cu:0.01〜1質量%、Ni:0.01〜2質量%のうち1種または2種を含有することを特徴とする請求項1または2記載の溶接熱影響部の靭性に優れた鋼材。   3. The welding according to claim 1, wherein one or two of Cu: 0.01 to 1 mass% and Ni: 0.01 to 2 mass% are contained instead of a part of Fe. Steel material with excellent heat-affected zone toughness.
JP2005061894A 2005-03-07 2005-03-07 Steel with excellent toughness in weld heat affected zone Expired - Fee Related JP5017782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061894A JP5017782B2 (en) 2005-03-07 2005-03-07 Steel with excellent toughness in weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061894A JP5017782B2 (en) 2005-03-07 2005-03-07 Steel with excellent toughness in weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2006241565A JP2006241565A (en) 2006-09-14
JP5017782B2 true JP5017782B2 (en) 2012-09-05

Family

ID=37048257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061894A Expired - Fee Related JP5017782B2 (en) 2005-03-07 2005-03-07 Steel with excellent toughness in weld heat affected zone

Country Status (1)

Country Link
JP (1) JP5017782B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025423A (en) * 1973-07-09 1975-03-18
JP3984567B2 (en) * 2003-06-12 2007-10-03 新日本製鐵株式会社 Manufacturing method of steel material with few alumina clusters

Also Published As

Publication number Publication date
JP2006241565A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP5076658B2 (en) Steel material for large heat input welding
JP4946092B2 (en) High-strength steel and manufacturing method thereof
WO2010134220A1 (en) Steel material for high heat input welding
KR20200086737A (en) Hot rolled steel sheet and manufacturing method thereof
JP5394785B2 (en) Thick steel plate with excellent weld heat affected zone toughness and low temperature base metal toughness
US20190352749A1 (en) Steel material for high heat input welding
JP5958428B2 (en) Manufacturing method of steel plates for high heat input welding
WO2004022807A1 (en) Steel product for high heat input welding and method for production thereof
KR101608239B1 (en) Steel material for high-heat-input welding
TWI526545B (en) Steel material for welding
JP2008280573A (en) Steel sheet having excellent toughness in weld heat-affected zone in high heat input welding
JP6048627B2 (en) Manufacturing method of steel plates for high heat input welding
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP5849892B2 (en) Steel material for large heat input welding
US11326238B2 (en) Steel material for high heat input welding
JP4066879B2 (en) Manufacturing method of thick-walled high-tensile steel plate with excellent weld heat affected zone CTOD characteristics
JP3644398B2 (en) Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness
JP5017782B2 (en) Steel with excellent toughness in weld heat affected zone
JP2003221643A (en) Steel product showing excellent toughness of heat- affected zone in ultra-high heat input welding
JP4039223B2 (en) Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same
JP2002371338A (en) Steel superior in toughness at laser weld
JP2004315902A (en) High strength hot rolled steel sheet excellent in fatigue property of blanking edge face and stretch-flanging property, and its production method
JP7272471B2 (en) steel plate
JP2005206910A (en) Steel having excellent toughness in heat affected zone
JP2005029841A (en) High strength steel for welded structure having excellent low temperature toughness in high heat input weld part haz, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees