JP5017140B2 - Light guide for surface light source device and surface light source device - Google Patents

Light guide for surface light source device and surface light source device Download PDF

Info

Publication number
JP5017140B2
JP5017140B2 JP2008040175A JP2008040175A JP5017140B2 JP 5017140 B2 JP5017140 B2 JP 5017140B2 JP 2008040175 A JP2008040175 A JP 2008040175A JP 2008040175 A JP2008040175 A JP 2008040175A JP 5017140 B2 JP5017140 B2 JP 5017140B2
Authority
JP
Japan
Prior art keywords
light
light source
light guide
source device
core layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008040175A
Other languages
Japanese (ja)
Other versions
JP2008235264A (en
Inventor
朋也 吉村
忠 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2008040175A priority Critical patent/JP5017140B2/en
Publication of JP2008235264A publication Critical patent/JP2008235264A/en
Application granted granted Critical
Publication of JP5017140B2 publication Critical patent/JP5017140B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)

Description

本発明は,携帯電話,ノートパソコン,液晶テレビ,ビデオカメラ等に使用される液晶表示装置,携帯電話のバックライトテンキー,パソコンのバックライトキーボード,電気機器の表示スイッチ等の表示装置に使用する,クラッド付き導光体に関するものであり,さらに詳しくは,光出射面内で色斑の発生を制御することができる面光源装置および面光源装置用導光体に関するものである。   The present invention is used for a display device such as a liquid crystal display device used in a mobile phone, a notebook computer, a liquid crystal television, a video camera, a backlight numeric keypad of a mobile phone, a backlight keyboard of a personal computer, a display switch of an electric device, More particularly, the present invention relates to a surface light source device and a light source for a surface light source device capable of controlling the occurrence of color spots in a light emitting surface.

従来,液晶表示装置,表示装置等に使用されている背面光源装置としては,ハウジング内に蛍光灯等の線状光源や発光ダイオード等の点光源を複数個配置した直下方式と,板状の導光体の側端面に線状光源あるいは点光源を配置したエッジライト方式とがある。
しかし,直下方式の背面光源装置では,光源部の軽量化や薄型化を図ることが困難であるので,軽量で薄型化の可能な背面光源装置としてエッジライト方式のものが多用されてきている。
Conventionally, as a back light source device used in a liquid crystal display device, a display device, etc., there are a direct light system in which a plurality of linear light sources such as fluorescent lamps and point light sources such as light emitting diodes are arranged in a housing, and a plate-shaped light guide device. There is an edge light system in which a linear light source or a point light source is arranged on the side end face of the light body.
However, since it is difficult to reduce the weight and thickness of a light source unit in a direct-type rear light source device, an edge light type is widely used as a light source and a thin back light source device that can be thinned.

このようなエッジライト方式の背面光源装置とは,通常,アクリル樹脂板等の板状透明材料を導光体とし,この導光体の1つの側端面に対向して配置された光源からの光を、前記側端面(光入射面)より導光体中に入射させ,入射させた光を導光体のおもて面(光出射面)あるいは裏面に光散乱部を設けたり、あるいは導光体中に光拡散性微粒子を含有させる等の光出射機能を設けたりすることによって前記光出射面から出射させる面光源装置である。   Such an edge-light type rear light source device usually uses a plate-shaped transparent material such as an acrylic resin plate as a light guide, and light from a light source arranged facing one side end surface of the light guide. Is incident on the light guide from the side end surface (light incident surface), and the incident light is provided with a light scattering portion on the front surface (light emitting surface) or back surface of the light guide, or is guided. It is a surface light source device that emits light from the light emitting surface by providing a light emitting function such as containing light diffusing fine particles in the body.

ここで前記エッジライト方式の背面光源装置に使用される導光体としては,板状透明材料をコア層とし,そのコア層の周りにコア層の屈折率より低い屈折率の透明材料をクラッド層として形成したクラッド付き導光体が特許文献1において提案されている。
公開特許公報 特開平5−273414
Here, as the light guide used in the edge light type rear light source device, a plate-like transparent material is used as a core layer, and a transparent material having a refractive index lower than the refractive index of the core layer is provided around the core layer as a cladding layer. Patent Document 1 proposes a clad light guide formed as follows.
Japanese Patent Laid-Open No. 5-273414

しかしながら,このようなクラッド付き導光体を用いたエッジライト方式の面光源装置は,光出射面において光入射面近傍から導光体中心部にかけて青,緑,暗赤,白の順に色が変化して見えるカラーシフト現象が視認されるという問題を有している。
そこで本発明は,このような光出射面に発生するカラーシフト現象を簡易な方法で低減し,色斑の小さい面光源装置,およびそれに用いる導光体を提供することを目的とする。
However, the edge light type surface light source device using such a clad light guide changes in the order of blue, green, dark red, and white from the vicinity of the light incident surface to the center of the light guide on the light exit surface. The problem is that the color shift phenomenon that appears is visually recognized.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a surface light source device having a small color spot and a light guide used therefor, by reducing the color shift phenomenon occurring on the light exit surface by a simple method.

本発明は,コア層の少なくとも片面に,該コア層の屈折率より低い屈折率をもつクラッド層が形成されている導光体であって,前記導光体は,少なくとも一つの側端面を光入射面とし,これと略直交する光出射面とを有し,前記光出射面およびその裏面の少なくとも一方の表面の光入射面近傍側に,クラッドモードを消去させるための表面処理が施されていることを特徴とする面光源装置用導光体に関するものであり,この導光体を用いた面光源装置に関するものである。   The present invention is a light guide in which a cladding layer having a refractive index lower than the refractive index of the core layer is formed on at least one surface of the core layer, and the light guide has at least one side end face as a light guide. A light exit surface that is substantially orthogonal to the light entrance surface, and a surface treatment for erasing the cladding mode is applied to at least one surface of the light exit surface and the back surface of the light exit surface. The present invention relates to a light guide for a surface light source device, and relates to a surface light source device using the light guide.

本発明によれば,クラッド付き導光体の光出射面に発生するカラーシフトを簡易な方法で低減し,色斑の小さい面光源装置,それに用いる導光体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the color shift which generate | occur | produces on the light-projection surface of the light guide with a clad can be reduced with a simple method, and a surface light source device with small color spots and a light guide used therefor can be provided.

以下に,本発明を実施するための最良の形態について図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(第1の実施の形態)
図1は,第1の実施の形態に係る面光源装置用導光体10の構成例を示す斜視図である。すなわち,本発明の実施の形態に係る面光源装置用導光体10とは,コア層11の少なくとも片面に,コア層11の屈折率より低い屈折率をもつクラッド層12が形成されてなる導光体であり、さらに,面光源装置用導光体10は,光入射面となる少なくとも一つの側端面14および,これと略直交する光出射面15とを有し,光出射面15およびその裏面16の少なくとも一方の表面の光入射面14近傍に,クラッドモードを消去させるための表面処理が施された表面処理層17が施されている。
(First embodiment)
FIG. 1 is a perspective view illustrating a configuration example of a light guide body 10 for a surface light source device according to a first embodiment. That is, the surface light source device light guide 10 according to the embodiment of the present invention is a waveguide in which a clad layer 12 having a refractive index lower than the refractive index of the core layer 11 is formed on at least one surface of the core layer 11. Further, the surface light source device light guide 10 includes at least one side end surface 14 that serves as a light incident surface and a light emitting surface 15 that is substantially orthogonal to the light emitting surface 15. In the vicinity of the light incident surface 14 on at least one surface of the back surface 16, a surface treatment layer 17 subjected to a surface treatment for erasing the clad mode is applied.

ここで面光源装置用導光体10のクラッド層12は,コア層11の上下両面のうちの少なくとも片面に形成されていればよく,例えば,図1に示すように,コア層11の上面にクラッド層12が形成される場合や,変形例としては図2(1)に示すように、コア層11の下面にクラッド層12が形成されていてもよい。また、図2(2)に示すように,コア層11の上下両面にクラッド層12が形成される場合もある。さらに図2(3)に示すように,コア層11全体を覆うように,その上面,下面および側面にクラッド層12を形成する場合もある。   Here, the clad layer 12 of the light guide 10 for the surface light source device may be formed on at least one of the upper and lower surfaces of the core layer 11, for example, on the upper surface of the core layer 11 as shown in FIG. 1. When the clad layer 12 is formed, or as a modification, the clad layer 12 may be formed on the lower surface of the core layer 11 as shown in FIG. In addition, as shown in FIG. 2 (2), the cladding layer 12 may be formed on both upper and lower surfaces of the core layer 11. Further, as shown in FIG. 2 (3), the cladding layer 12 may be formed on the upper surface, the lower surface and the side surface so as to cover the entire core layer 11.

コア層11は,一般に透明性の高い光学材料であるアクリル樹脂やポリカーボネート樹脂からなり,厚さtとして光源の大きさにより0.1〜6mm程度のものが用いられる。   The core layer 11 is generally made of an acrylic resin or polycarbonate resin, which is an optical material with high transparency, and has a thickness t of about 0.1 to 6 mm depending on the size of the light source.

クラッド層12は,コア層11に光を閉じ込めるため,コア層11の屈折率より低い屈折率をもつ材料を用いる。例えば,コア層11がアクリル樹脂の場合,クラッド層12として,フッ化ビニリデン重合体,テトラフルオロエチレン重合体,六フッ化プロピレン重合体,フッ素化アクリレート,そしてこれらの共重合体などのフッ素系樹脂が使用される。中でも,アクリル樹脂との密着性の良さと透明性から,フッ化ビニリデン−テトラフルオロエチレン共重合体などが好ましく使用される。またコア層11がポリカーボネート樹脂の場合は,クラッド層12として,ポリカーボネート樹脂より低屈折率であるアクリル樹脂などが使用される。   The clad layer 12 is made of a material having a refractive index lower than that of the core layer 11 in order to confine light in the core layer 11. For example, when the core layer 11 is an acrylic resin, the clad layer 12 is a fluorine resin such as a vinylidene fluoride polymer, a tetrafluoroethylene polymer, a hexafluoropropylene polymer, a fluorinated acrylate, or a copolymer thereof. Is used. Among these, vinylidene fluoride-tetrafluoroethylene copolymer and the like are preferably used because of good adhesion to acrylic resin and transparency. When the core layer 11 is a polycarbonate resin, an acrylic resin having a lower refractive index than that of the polycarbonate resin is used as the cladding layer 12.

クラッド層12の厚みは,コア層11に光を閉じ込めるため,薄くとも可視光の波長の数倍以上は必要である.しかし,あまり厚くすると導光体が厚くなりコスト高になるため,3〜500μm程度が好ましい。   The thickness of the clad layer 12 is required to be several times the wavelength of visible light or less, even if it is thin in order to confine light in the core layer 11. However, if the thickness is too thick, the light guide becomes thick and the cost is high, so about 3 to 500 μm is preferable.

面光源装置用導光体10の製造方法としては,特に制限されないが,多層溶融押出しによりコア層とクラッド層を一体成型する方法や,コア層にあたる樹脂シート(またはフィルム)に,クラッド層にあたる樹脂をコーティング処理して製造する方法等がある。   The method of manufacturing the light guide 10 for the surface light source device is not particularly limited, but includes a method of integrally forming the core layer and the clad layer by multilayer melt extrusion, a resin sheet (or film) corresponding to the core layer, and a resin corresponding to the clad layer. There is a method of manufacturing by coating the material.

面光源装置用導光体10は,少なくとも一つの側端面を光入射面14とし,これと略直交する光出射面15とを有するが,図3(1)に示すように,コア層11の一つの側端面を光入射面14にし,発光ダイオード31などの光源の光を入射させる方法、また,図3(2)に示すように,コア層11の二つの側端面を光入射面14にし,両側から発光ダイオード31などの光源の光を入射させる方法がある。ここで前記光源として,冷陰極管などの蛍光灯を用いても良い。   The light source 10 for a surface light source device has at least one side end surface as a light incident surface 14 and a light exit surface 15 substantially orthogonal thereto, as shown in FIG. One side end face is used as a light incident face 14 and light from a light source such as a light emitting diode 31 is made incident thereon, and two side end faces of the core layer 11 are used as a light incident face 14 as shown in FIG. There is a method in which light from a light source such as the light emitting diode 31 is incident from both sides. Here, a fluorescent lamp such as a cold cathode tube may be used as the light source.

ここで,上記課題にて説明したような、光出射面15において光入射面近傍から導光体中心部にかけて青,緑,暗赤,白の順に色が変化して見えるカラーシフト現象が発生する理由として,発明者らは,以下に説明するように,クラッドモードのレイリー散乱を考えている。   Here, as described in the above problem, a color shift phenomenon occurs in which the color appears to change in the order of blue, green, dark red, and white from the vicinity of the light incident surface to the center of the light guide on the light exit surface 15. The reason is that the inventors consider Rayleigh scattering in the clad mode as described below.

クラッド付きの面光源装置用導光体には,その断面図である図4に示すように,クラッドモード42が発生する。クラッドモードとは,クラッド層12と空気44との界面で反射し,面光源装置用導光体10の内部に閉じ込められる光の成分で,面光源装置用導光体10の長手方向をz,面光源装置用導光体10の光出射面15に垂直な方向をxとし,zからx方向に張る角度をθとしたとき,(式2)の範囲となる光線をさす。

Figure 0005017140
ここに,ncoreはコア層11の屈折率,ncladdはクラッド層12の屈折率を示す。 As shown in FIG. 4 which is a cross-sectional view of a light guide for a surface light source device with a clad, a clad mode 42 is generated. The clad mode is a component of light that is reflected at the interface between the clad layer 12 and the air 44 and is confined inside the light guide 10 for the surface light source device. The longitudinal direction of the light guide 10 for the surface light source device is z, When the direction perpendicular to the light emitting surface 15 of the light guide for the surface light source device 10 is x and the angle extending from z to the x direction is θ, the light beam falls within the range of (Expression 2).
Figure 0005017140
Here, n core represents the refractive index of the core layer 11, and n cladd represents the refractive index of the cladding layer 12.

このクラッドモード42は,クラッド層を構成する樹脂の屈折率ゆらぎにより散乱し,散乱した一部が放射モード43に変換され,面光源装置用導光体10の光出射面15から出射する。この散乱はクラッド層の結晶性などの波長より小さい範囲での屈折率ゆらぎに基づくレイリー散乱であるため,散乱強度は波長の4乗に反比例する。したがって,光入射面近傍では,波長の短い青色成分が強く散乱すると同時にクラッドモードの青色成分が減衰する。さらに,光入射面近傍から離れるに従い,緑色成分,赤色成分が散乱しクラッドモードの緑色成分,赤色成分が減衰し,ついには,クラッドモードが消去し,伝送モード41が残る。   The clad mode 42 is scattered by the refractive index fluctuation of the resin constituting the clad layer, and a part of the scattered light is converted into the radiation mode 43 and emitted from the light emitting surface 15 of the light guide 10 for the surface light source device. Since this scattering is Rayleigh scattering based on refractive index fluctuation in a range smaller than the wavelength, such as the crystallinity of the cladding layer, the scattering intensity is inversely proportional to the fourth power of the wavelength. Therefore, in the vicinity of the light incident surface, the blue component having a short wavelength is strongly scattered, and at the same time, the blue component of the cladding mode is attenuated. Further, as the distance from the vicinity of the light incident surface increases, the green and red components are scattered and the green and red components of the cladding mode are attenuated. Finally, the cladding mode is erased and the transmission mode 41 remains.

伝送モード41は,通常の(クラッドの付いていない)面光源装置用導光体の光出射機構と同じで,導光体のおもて面(光出射面)あるいは裏面に形成した光散乱部や導光体中に光拡散性微粒子を含有させる等の光出射機能により,光の散乱強度に波長依存性のないミー散乱または幾何光学的な散乱を利用し,光出射面から白色で出射する。   The transmission mode 41 is the same as the light emission mechanism of a normal (without clad) light guide for a surface light source device, and is a light scattering portion formed on the front surface (light emission surface) or the back surface of the light guide. And light exiting function such as containing light diffusing fine particles in the light guide and using Mie scattering or geometrical optical scattering, which has no wavelength dependence on the light scattering intensity, and emits white light from the light exit surface .

以上の理由により,光出射面15において光入射面近傍から導光体中心部にかけて青,緑,暗赤,白の順に色が変化して見えるカラーシフト現象は発生すると考えられる。   For the above reasons, it is considered that a color shift phenomenon appears in which the color changes in the order of blue, green, dark red, and white from the vicinity of the light incident surface to the center of the light guide on the light exit surface 15.

本発明者の検討によれば,面光源装置用導光体10に,クラッドモードを消去させるための表面処理層17を,光出射面15およびその裏面16の少なくとも一方の表面の光入射面14近傍側に施すことにより,前記カラーシフトを防ぐことができる。   According to the study of the present inventors, the surface treatment layer 17 for erasing the clad mode is applied to the light source 10 for the surface light source device, and the light incident surface 14 on at least one of the light emitting surface 15 and the back surface 16 thereof. By applying it to the vicinity, the color shift can be prevented.

クラッドモードを消去させるための表面処理層17を形成するには,可視光を吸収する色の塗装を施す方法や,可視光を散乱させるための粗面化加工を施す方法がある。
可視光を吸収する塗装の色としては,特に制限されないが,黒色が好ましい。黒色の塗装を行うには,カーボンブラック含有の印刷用インクが入手しやすく、かつ効果的である。塗装の厚みとしては,特に制限されず,クラッドモードの光が塗装を透過して空気中へ漏れない程度の厚み以上があればよい。
また,粗面化加工を施す方法としては,特に制限されず,例えば,研磨紙,研磨粉による研磨加工や,サンドブラスト加工,金型による微小凹凸面のプレス加工、レーザーによるエッチング加工などの方法がある。
粗面化の程度としては,特に制限されず,クラッドモードの光が空気中へ漏れていく状態であればよく,深さはクラッド層厚未満が好ましい。
In order to form the surface treatment layer 17 for erasing the clad mode, there are a method of applying a color that absorbs visible light, and a method of performing a roughening process for scattering visible light.
The color of the paint that absorbs visible light is not particularly limited, but black is preferable. For black coating, carbon black-containing printing ink is easily available and effective. The thickness of the coating is not particularly limited as long as it has a thickness that does not allow cladding mode light to pass through the coating and leak into the air.
The surface roughening method is not particularly limited, and examples thereof include polishing paper, polishing with polishing powder, sand blasting, pressing of a minute uneven surface with a mold, and laser etching. is there.
The degree of roughening is not particularly limited as long as the cladding mode light leaks into the air, and the depth is preferably less than the thickness of the cladding layer.

この表面処理の範囲は,できる限り広くするとより効果的であるが,一方,有効な光出射面の面積を狭くしてしまう問題がある。そこで,少なくともクラッドモードを消去させるために最も効果のある範囲の光出射面近傍側に表面処理をすることが望ましい。つまり,光源部から出射した光が,面光源装置用導光体10の上面と下面に最初に到達する部分から,数回反射を繰り返す範囲に表面処理を施すことが好ましい。   Although it is more effective to make the surface treatment range as wide as possible, there is a problem that the area of the effective light exit surface is reduced. Therefore, it is desirable to perform a surface treatment on the side near the light emitting surface in the most effective range for erasing at least the cladding mode. That is, it is preferable to perform surface treatment in a range where the light emitted from the light source unit repeats reflection several times from the portion where the light source 10 for the surface light source device first reaches the upper surface and the lower surface.

具体的には、導光体のコア層の屈折率をncore ,コア層の厚さをt,光出射面およびその裏面における光入射面側端からの距離をaとしたとき,導光体の光出射面およびその裏面の少なくとも一方の表面の光入射面近傍に,(式1)で示される範囲aの範囲に亘って,クラッドモードを消去させるための表面処理が施すことが効果的である。表面処理の範囲は、少なくとも(式1)で示される範囲aの範囲に亘っていればよく、この範囲を超えて表面処理が施されていてもよい。

Figure 0005017140
Specifically, when the refractive index of the core layer of the light guide is n core , the thickness of the core layer is t, and the distance from the light incident surface side end on the light exit surface and its back surface is a, the light guide It is effective to apply a surface treatment for erasing the cladding mode in the vicinity of the light incident surface on at least one of the light exit surface and the back surface of the light source over the range a shown in (Equation 1). is there. The range of surface treatment should just be over the range of the range a shown by (Formula 1), and surface treatment may be performed exceeding this range.
Figure 0005017140

(第2の実施の形態)
図5は,第2の実施の形態に係る面光源装置用導光体50の構成例を示す斜視図である。第2の実施の形態に係る面光源装置用導光体50の構成は,第1の実施の形態に係る面光源装置用導光体10の光出射面およびその裏面の少なくとも一方の表面に,伝送モード41を放射モード43に変換する光出射機構51が形成されている。
(Second Embodiment)
FIG. 5 is a perspective view showing a configuration example of the light guide 50 for the surface light source device according to the second embodiment. The structure of the light source for surface light source device 50 according to the second embodiment is arranged on at least one surface of the light emitting surface and the back surface of the light source for surface light source device 10 according to the first embodiment. A light emitting mechanism 51 for converting the transmission mode 41 to the radiation mode 43 is formed.

伝送モード41とは,コア層11とクラッド層12の界面で反射し,面光源装置用導光体10のコア層11内部に閉じ込められる光の成分で,面光源装置用導光体10の長手方向をz,面光源装置用導光体10の光出射面15に垂直な方向をxとし,zからx方向に張る角度をθとしたとき,(式3)の範囲となる光線をさす。

Figure 0005017140
ここに,ncore はコア層11の屈折率,ncladdはクラッド層12の屈折率を示す。 The transmission mode 41 is a component of light reflected at the interface between the core layer 11 and the clad layer 12 and confined inside the core layer 11 of the light source 10 for the surface light source device. When the direction is z, the direction perpendicular to the light emitting surface 15 of the light guide for the surface light source device 10 is x, and the angle extending from z to the x direction is θ, the light beam falls within the range of (Expression 3).
Figure 0005017140
Here, n core represents the refractive index of the core layer 11, and n cladd represents the refractive index of the cladding layer 12.

放射モード43とは,面光源装置用導光体10の内部に閉じ込められない光の成分で,同様に,(式4)を満たす光線をさす。

Figure 0005017140
伝送モード41を放射モード43に変換する光出射機構51とは,伝送モードの光に対して,散乱強度に波長依存性のないミー散乱または幾何光学的な散乱を与える機構である。例えば,可視光の波長範囲380〜780nmよりも大きい傷または凹面形状をコア層まで到達する程度にクラッド層に形成することで,伝送モードの光に対して,散乱強度に波長依存性のないミー散乱または幾何光学的な散乱を与える機構を実現できる。(図4,図5)。一般に,光出射面での均斉度を高めるために,光入射面近傍では傷(凹面)の密度を低く,光入射面近傍から離れるに従い傷の密度を高く加工することを行う。 The radiation mode 43 is a component of light that is not confined inside the light guide 10 for the surface light source device, and similarly refers to a light beam that satisfies (Equation 4).
Figure 0005017140
The light emitting mechanism 51 that converts the transmission mode 41 to the radiation mode 43 is a mechanism that gives Mie scattering or geometric optical scattering whose wavelength is not dependent on the scattering intensity for light in the transmission mode. For example, by forming scratches or concave shapes larger than the visible light wavelength range of 380 to 780 nm on the cladding layer to the extent that they reach the core layer, the scattering intensity of the transmission mode light has no wavelength dependence. A mechanism for providing scattering or geometric optical scattering can be realized. (FIGS. 4 and 5). In general, in order to increase the uniformity on the light exit surface, the density of the scratches (concave surface) is low near the light incident surface, and the scratch density is increased as the distance from the light incident surface increases.

(カラーシフトの測定方法)
図6にカラーシフトの測定系の概略を示す。定電流電源65により20mAで駆動される光源61(日亜化学工業社製 NSSW020BT 3個使用)を被測定用の面光源装置用導光体60の側端面に配置する。面光源装置用導光体60の光出射面64から出射する光を,色度測定システム63(Radiant Imaging社製 ProMetric 8)で測光する。なお,面光源装置用導光体60の下面には反射シート62(恵和製 レイラ)を設置する。測光した面全体の色度xおよびyの最大値と最小値の差Δx,Δyを算出する。ΔxおよびΔyが小さいものがカラーシフトの小さい導光体である。
(Measurement method of color shift)
FIG. 6 shows an outline of a color shift measurement system. A light source 61 (using three NSSW020BT manufactured by Nichia Corporation) driven by a constant current power source 65 at 20 mA is disposed on the side end face of the light guide 60 for a surface light source device to be measured. The light emitted from the light emitting surface 64 of the light source for the surface light source device 60 is measured with a chromaticity measuring system 63 (ProMetric 8 manufactured by Radiant Imaging). A reflective sheet 62 (Eiwa made Leila) is installed on the lower surface of the light guide 60 for the surface light source device. Differences Δx and Δy between the maximum and minimum chromaticities x and y of the entire photometric surface are calculated. A light guide having a small Δx and Δy is a small color shift.

(実施例1)
幅600mmのTダイをもつ共押出シート製造機を用いて,クラッド層/コア層/クラッド層の3層構造の導光体シートを成型した。コア層にアクリル樹脂(三菱レイヨン製,アクリペットMF001,屈折率1.49)を,クラッド層にテトラフルオロエチレン−フッ化ビニリデン共重合体(ダイキン工業製,VP−50,屈折率1.40)を用い,幅約650mm,厚さ0.3mmの導光体シートを製造した。この導光体シートのクラッド層の厚みを膜厚計により測定したところ,上面側,下面側とも約15μmであった。この導光体シートから,幅170mm,長さ200mmの方形状のシートを4枚切り出し,導光体とした。
Example 1
A light guide sheet having a three-layer structure of clad layer / core layer / cladding layer was molded using a coextrusion sheet manufacturing machine having a T-die having a width of 600 mm. Acrylic resin (manufactured by Mitsubishi Rayon, Acrypet MF001, refractive index 1.49) for core layer, tetrafluoroethylene-vinylidene fluoride copolymer (made by Daikin Industries, VP-50, refractive index 1.40) for cladding layer A light guide sheet having a width of about 650 mm and a thickness of 0.3 mm was manufactured. When the thickness of the clad layer of the light guide sheet was measured with a film thickness meter, it was about 15 μm on both the upper surface side and the lower surface side. Four rectangular sheets having a width of 170 mm and a length of 200 mm were cut out from the light guide sheet to obtain a light guide.

4枚のシートのうち1枚について,この導光体の光出射面および裏面を、入射側の端面から5mmまでの範囲にわたってカーボンブラック入りのインク(寺西化学工業社製 マジックインキ(登録商標)No.500黒)で塗りつぶして表面処理加工を施した。この導光体の表面処理加工を施した側の側端面から,上記測定方法のとおり発光ダイオード光を入光し測光した。表1のとおりΔx,Δyともに小さく,目視においてもカラーシフトがほとんど検知できず,良好な結果を得た。   For one of the four sheets, the light exit surface and the back surface of the light guide are covered with carbon black ink (Magic Ink (registered trademark) No. .500 black) and was subjected to surface treatment. The light-emitting diode light was incident and measured from the side end face of the light guide on the surface-treated side as described above. As shown in Table 1, Δx and Δy were both small, and almost no color shift was detected visually, and good results were obtained.

(実施例2)
実施例1で製作した4枚のシートのうち1枚について,この導光体の光出射面および裏面を、入射側の端面から5mmまでの範囲にわたって#2000の紙やすりを使って粗面化し、表面処理加工を施した。この導光体の表面処理加工を施した側の側端面から,上記測定方法のとおり発光ダイオード光を入光し測光した。表1のとおりΔx,Δyともに小さく,目視においてもカラーシフトがほとんど検知できず,良好な結果を得た。
(Example 2)
For one of the four sheets produced in Example 1, the light exit surface and back surface of this light guide were roughened using # 2000 sandpaper over a range of 5 mm from the end surface on the incident side, Surface treatment was applied. The light-emitting diode light was incident and measured from the side end face of the light guide on the surface-treated side as described above. As shown in Table 1, Δx and Δy were both small, and almost no color shift was detected visually, and good results were obtained.

(実施例3)
実施例1で製作したシートのうち1枚について,この導光体の光出射面および裏面を、CO2レーザーマーカ(キーエンス(株)ML−Z9520T 出力20W 波長9.3μm)を使用し、入射側の端面から5mmまでの範囲を入射側の端面と平行に0.25mm間隔で合計20本の傷をつける、表面処理加工を施した。CO2レーザーマーカの出力は50%、スキャン速度500mm/secであった。この導光体の表面処理加工を施した側の側端面から,上記測定方法のとおり発光ダイオード光を入光し測光した。表1のとおりΔx,Δyともに小さく,目視においてもカラーシフトがほとんど検知できず,良好な結果を得た。
(比較例)
実施例1で製作した4枚のシートのうち1枚について,何ら表面処理加工を施さずに,そのまま導光体として用いて,上記測定方法のとおり発光ダイオード光を入光し測光した。表1のとおりΔx,Δyともに大きく,目視においても明瞭なカラーシフトが確認された。
(Example 3)
For one of the sheets produced in Example 1, the light emitting surface and the back surface of this light guide were formed using a CO2 laser marker (Keyence Corporation ML-Z9520T output 20 W, wavelength 9.3 μm). Surface treatment was performed in which a total of 20 scratches were made in a range from the end face to 5 mm in parallel with the end face on the incident side at intervals of 0.25 mm. The output of the CO2 laser marker was 50% and the scanning speed was 500 mm / sec. The light-emitting diode light was incident and measured from the side end face of the light guide on the surface-treated side as described above. As shown in Table 1, Δx and Δy were both small, and almost no color shift was detected visually, and good results were obtained.
(Comparative example)
One of the four sheets produced in Example 1 was used as it is as a light guide without any surface treatment, and light-emitting diode light was incident and measured as described above. As shown in Table 1, both Δx and Δy were large, and a clear color shift was confirmed visually.

Figure 0005017140
Figure 0005017140

第1の実施の形態に係る面光源装置要導光体の構成例を示す図である。It is a figure which shows the structural example of the surface light source device required light guide which concerns on 1st Embodiment. 第1の実施の形態に係る面光源装置要導光体の変形例を示す図である。It is a figure which shows the modification of the surface light source device required light guide which concerns on 1st Embodiment. 光入射位置を示す図である。It is a figure which shows a light incident position. 導光体内のモードを説明する図である。It is a figure explaining the mode in a light guide. 第2の実施の形態に係る面光源装置要導光体の構成例を示す図である。It is a figure which shows the structural example of the surface light source device light guide required based on 2nd Embodiment. カラーシフトの測定系を示す図である。It is a figure which shows the measurement system of a color shift.

符号の説明Explanation of symbols

10,50,60 面光源装置用導光体
11 コア層
12 クラッド層
14 側端面
15,54,64 光出射面
16 光出射面の裏面
17 クラッドモードを消去するための表面処理
31,61 発光ダイオード
41 伝送モード
42 クラッドモード
43 放射モード
44 空気
51 光出射機構
62 反射シート
63 色度測定システム
65 定電流電源
10, 50, 60 Light guide for surface light source device 11 Core layer 12 Cladding layer 14 Side end surfaces 15, 54, 64 Light exit surface 16 Back surface of light exit surface 17 Surface treatment 31, 61 for erasing clad mode Light emitting diode 41 Transmission Mode 42 Clad Mode 43 Radiation Mode 44 Air 51 Light Output Mechanism 62 Reflective Sheet 63 Chromaticity Measurement System 65 Constant Current Power Supply

Claims (6)

コア層の少なくとも片面に,該コア層の屈折率より低い屈折率をもつクラッド層が形成されている導光体であって,前記導光体は,少なくとも一つの側端面を光入射面とし,これと略直交する光出射面とを有し,前記光出射面およびその裏面の少なくとも一方の表面の光入射面近傍側に,クラッドモードを消去させるための表面処理が施されていることを特徴とする面光源装置用導光体。   A light guide body in which a clad layer having a refractive index lower than the refractive index of the core layer is formed on at least one surface of the core layer, wherein the light guide body has at least one side end surface as a light incident surface, A light exit surface substantially orthogonal to the light exit surface, and a surface treatment for erasing the clad mode is performed on the light exit surface near the light incident surface of at least one of the light exit surface and the back surface thereof. A light guide for a surface light source device. 前記クラッドモードを消去させるための表面処理が,可視光を吸収する色の塗装であることを特徴とする請求項1に記載の面光源装置用導光体。   2. The light guide for a surface light source device according to claim 1, wherein the surface treatment for erasing the cladding mode is painting with a color that absorbs visible light. 前記クラッドモードを消去させるための表面処理が,可視光を散乱させる粗面化加工であることを特徴とする請求項1に記載の面光源装置用導光体。   2. The light guide for a surface light source device according to claim 1, wherein the surface treatment for erasing the cladding mode is a roughening process for scattering visible light. 導光体のコア層の屈折率をncore,コア層の厚さをt,光出射面およびその裏面における光入射面側端からの距離をaとしたとき,前記導光体の光出射面およびその裏面の少なくとも一方の表面の光入射面近傍に,(式1)で示される範囲aの範囲に亘って,クラッドモードを消去させるための表面処理が施されていることを特徴とする請求項1〜3のいずれかに記載の面光源装置用導光体。
Figure 0005017140
When the refractive index of the core layer of the light guide is n core , the thickness of the core layer is t, and the distance from the light exit surface side end on the light exit surface and its back surface is a, the light exit surface of the light guide Further, a surface treatment for erasing the cladding mode is performed in the vicinity of the light incident surface on at least one surface of the rear surface over the range a shown in (Expression 1). Item 4. A light guide for a surface light source device according to any one of Items 1 to 3.
Figure 0005017140
前記導光体の光出射面およびその裏面の少なくとも一方の表面に,伝送モードを放射モードに変換する光出射機構が形成されていることを特徴とする請求項1〜4のいずれかに記載の面光源装置用導光体。   The light emission mechanism which converts a transmission mode into a radiation mode is formed in at least one surface of the light-projection surface of the said light guide, and its back surface, The Claim 1 characterized by the above-mentioned. A light guide for a surface light source device. 請求項1〜5のいずれかに記載の面光源装置用導光体を用いた面光源装置。   The surface light source device using the light guide for surface light source devices in any one of Claims 1-5.
JP2008040175A 2007-02-21 2008-02-21 Light guide for surface light source device and surface light source device Expired - Fee Related JP5017140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008040175A JP5017140B2 (en) 2007-02-21 2008-02-21 Light guide for surface light source device and surface light source device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007040635 2007-02-21
JP2007040635 2007-02-21
JP2008040175A JP5017140B2 (en) 2007-02-21 2008-02-21 Light guide for surface light source device and surface light source device

Publications (2)

Publication Number Publication Date
JP2008235264A JP2008235264A (en) 2008-10-02
JP5017140B2 true JP5017140B2 (en) 2012-09-05

Family

ID=39907805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008040175A Expired - Fee Related JP5017140B2 (en) 2007-02-21 2008-02-21 Light guide for surface light source device and surface light source device

Country Status (1)

Country Link
JP (1) JP5017140B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797480B2 (en) 2011-10-18 2014-08-05 Dai Nippon Printing Co., Ltd. Light guide plate, surface light source device, and display device
WO2013124895A1 (en) * 2012-02-22 2013-08-29 Empire Technology Development Llc Lighting device having a light guide structure
JP2014093264A (en) * 2012-11-06 2014-05-19 Toppan Printing Co Ltd Light guide body, manufacturing method thereof, backlight using light guide body and display device
JP5765647B2 (en) * 2014-03-11 2015-08-19 大日本印刷株式会社 Light guide plate, surface light source device and display device
JP6440670B2 (en) * 2015-12-24 2018-12-19 ミネベアミツミ株式会社 Surface lighting device
US10120119B2 (en) 2015-12-24 2018-11-06 Minebea Mitsumi Inc. Planar illumination apparatus with scattering unit by rayleigh scattering

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273414A (en) * 1992-03-26 1993-10-22 Toto Ltd Optical fiber lighting device
JP2002207130A (en) * 2001-01-12 2002-07-26 Ricoh Co Ltd Color image information transmitting method, color image transmitting device, its manufacturing method, color image output device, color image input device, color image magnifying display and color image reducing/reading device

Also Published As

Publication number Publication date
JP2008235264A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
US8676005B2 (en) Light guide for light source device and method for manufacturing the same
JP5017140B2 (en) Light guide for surface light source device and surface light source device
JP4544531B2 (en) Surface light source device
TWI444721B (en) Backlight module
EP0882930A1 (en) Surface light source element and liquid crystal display device, sign device and traffic control sign device using same
KR20100092757A (en) Backlight assembly and method of manufacruting light guiding plate
WO1995012827A1 (en) Surface light source device
US20120314449A1 (en) Lighting assembly
JP2016012540A (en) Planar luminaire and manufacturing method of the same
JP2007329007A (en) Point light source backlight, and liquid crystal display device
JP2012018917A (en) Plane light-emitting device and sheet switch module
JP5110875B2 (en) Surface lighting device
JPH11232918A (en) Surface light source device
JP2010134345A (en) Light uniforming element, and back light unit and display device using the same
WO2014203850A1 (en) Laminate, method for producing laminate, light guide body for light source devices, and light source device
TW202028826A (en) Light guide assembly, backlight module and display device
US20170285244A1 (en) Planar illumination device
WO2015020031A1 (en) Method for producing laminate, laminate, light guide body for light source devices, and light source device
WO2012099123A1 (en) Light guide plate, surface light source device, and transmissive image display device
JP5391798B2 (en) Backlight unit and display device
JP2005228718A (en) Light guide plate
JP4400845B2 (en) Light diffusing sheet, video display element using the same, and surface light source device
JP5078722B2 (en) Display device
JP2017123218A (en) Transparent material, process of manufacturing transparent material, and light source device
JP2015213051A (en) Manufacturing method of surface light source and surface light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5017140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees