JP2015213051A - Manufacturing method of surface light source and surface light source - Google Patents

Manufacturing method of surface light source and surface light source Download PDF

Info

Publication number
JP2015213051A
JP2015213051A JP2015061296A JP2015061296A JP2015213051A JP 2015213051 A JP2015213051 A JP 2015213051A JP 2015061296 A JP2015061296 A JP 2015061296A JP 2015061296 A JP2015061296 A JP 2015061296A JP 2015213051 A JP2015213051 A JP 2015213051A
Authority
JP
Japan
Prior art keywords
light
light source
luminance
light guide
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015061296A
Other languages
Japanese (ja)
Inventor
千葉 一清
Kazukiyo Chiba
一清 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015061296A priority Critical patent/JP2015213051A/en
Publication of JP2015213051A publication Critical patent/JP2015213051A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a surface light source capable of acquiring a surface light source having desired luminance, and a surface light source.SOLUTION: In a manufacturing method of a surface light source, light emission means is provided on a light emission surface of a tabular light guide body, and a light source is provided on a side surface. The light emission means uses a light guide body 10 equivalent to the light guide body. The light emission means 20 is provided with a uniform pattern on the light emission surface 14 of the light guide body 10. A light source 30 equivalent to the light source is provided on a light incident surface 15, and luminance emitting light from the light emission surface 14 of the light guide body 10 is measured, the pattern of the light emission means 20 is determined from the measured luminance, and the determined pattern is followed in the manufacturing method of a surface light source.

Description

本発明は、面光源の製造方法及び面光源に関する。   The present invention relates to a surface light source manufacturing method and a surface light source.

従来、携帯電話、ノートパソコン、液晶テレビ、ビデオカメラ等に用いられる液晶表示装置、携帯電話のバックライトキー、パソコンのバックライトキーボード、電気機器や車両の表示スイッチ等の表示装置、シーリングライト等の室内照明、照明看板等の照明装置等に用いられている光源装置としては、ハウジング内に蛍光灯等の線状光源や発光ダイオード等の点光源を複数個配置した直下方式、板状の導光体の側面に線状光源又は点光源を配置したエッジライト方式がある。   Conventionally, liquid crystal display devices used in mobile phones, notebook computers, liquid crystal televisions, video cameras, etc., backlight keys for mobile phones, backlight keyboards for personal computers, display devices such as display switches for electrical equipment and vehicles, ceiling lights, etc. Light source devices used in interior lighting, lighting devices such as lighting signs, etc., are directly below, plate-shaped light guides in which a plurality of linear light sources such as fluorescent lamps and point light sources such as light emitting diodes are arranged in a housing There is an edge light system in which a linear light source or a point light source is arranged on the side of the body.

エッジライト方式の光源装置は、通常、矩形状のアクリル樹脂板等の透明材料を導光体とし、その側面に配置された光源の光を側面(光入射面)から導光体に入射させ、導光体の表面(光出射面)又は裏面に光出射手段を設けたり、導光体中に光拡散性粒子を含有させたりすることにより、入射した光を光出射面から出射させる。   An edge light type light source device usually uses a transparent material such as a rectangular acrylic resin plate as a light guide, and makes light from a light source disposed on the side surface incident on the light guide from the side surface (light incident surface). Incident light is emitted from the light exit surface by providing light exit means on the front surface (light exit surface) or back surface of the light guide, or by incorporating light diffusing particles in the light guide.

例えば、特許文献1には、単層の樹脂板の表面にパターンを設けたエッジライト方式の面光源が提案されている。
また、特許文献2には、コア−クラッド構造からなる樹脂積層体の表面にパターンを設けたエッジライト方式の面光源が提案されている。
For example, Patent Document 1 proposes an edge light type surface light source in which a pattern is provided on the surface of a single-layer resin plate.
Patent Document 2 proposes an edge light type surface light source in which a pattern is provided on the surface of a resin laminate having a core-clad structure.

特開平5−196936号公報JP-A-5-196936 国際公開第2010/073726号International Publication No. 2010/073726

しかしながら、特許文献1や特許文献2に記載されている面光源は、輝度について改善されているものの、その改善効果は必ずしも十分ではなかった。特に、光出射面の場所ごとの輝度の最適化が十分でなく、所望の輝度の面光源を得ることが困難であった。   However, although the surface light sources described in Patent Document 1 and Patent Document 2 are improved in luminance, the improvement effect is not always sufficient. In particular, the optimization of the luminance for each location of the light emitting surface is not sufficient, and it is difficult to obtain a surface light source having a desired luminance.

そこで、本発明の目的は、所望の輝度を有する面光源を得ることができる面光源の製造方法及び面光源を提供することにある。   Accordingly, an object of the present invention is to provide a surface light source manufacturing method and a surface light source capable of obtaining a surface light source having desired luminance.

本発明は以下の態様を有する。
[1] 板状の導光体の光出射面に光出射手段を設け、側面に光源を設ける面光源の製造方法であって、前記光出射手段は、前記導光体と同等の導光体を用い、該導光体の光出射面に均一なパターンで光出射手段を設け、側面に前記光源と同等の光源を設けて導光体の光出射面から発光する輝度を測定し、測定した輝度から光出射手段のパターンを決定し、決定したパターンに従ったものである、面光源の製造方法。
[2] 前記光出射手段が凹部又は凸部の集合体であり、測定した輝度から光出射率Pを算出し、算出した光出射率Pと、光出射面の単位面積あたりの前記凹部又は凸部の表面積Sと、所望の輝度を出射させるための光出射率Pとから、光出射手段のパターンを決定する、[1]に記載の面光源の製造方法。
[3] 以下の工程A〜工程Gを含む、[1]又は[2]に記載の面光源の製造方法。
工程A:板状の導光体の光出射面に凹部又は凸部の集合体である光出射手段を均一なパターンで設け、導光体の側面に光源を設け、導光体の光出射面から発光する輝度を光源からの距離Lが異なる複数の位置で測定する。
工程B:工程Aで測定した各輝度のうち、最大値に対する各輝度の比率を算出して輝度比率とし、光源からの距離Lに対する輝度比率の対数の傾きIから、光出射率Pを算出する。
工程C:光出射手段を構成する凹部又は凸部の表面積Sが異なる導光体について、前記工程Aと工程Bとを行う。
工程D:光出射面の単位面積あたりの前記凹部又は凸部の表面積Sを算出して表面積率Sとし、前記光出射率Pと表面積率Sとの相関関数Fを作成する。
工程E:光源から導光体に入射させる全光量を分割し、光源からの距離Lごとに出射させたい輝度を決め、その輝度を出射させるための光出射率Pを光源からの距離Lごとに算出する。
工程F:相関関数Fと光出射率Pとから、光源からの距離Lで出射に必要な光出射手段のパターンを決定する。
工程G:工程Aにて輝度の測定に用いた、光出射手段を設ける前の導光体と同等の導光体を準備し、該導光体の光出射面に、側面から距離Lごとに工程Fで決定したパターンに従って光出射手段を設け、導光体の側面に工程Aにて用いた光源と同等の光源を設ける。
The present invention has the following aspects.
[1] A method of manufacturing a surface light source in which light emitting means is provided on a light emitting surface of a plate-like light guide, and a light source is provided on a side surface, wherein the light emitting means is a light guide equivalent to the light guide. The light emitting means is provided in a uniform pattern on the light emitting surface of the light guide, the light source equivalent to the light source is provided on the side surface, and the luminance emitted from the light emitting surface of the light guide is measured and measured. A method for manufacturing a surface light source, wherein a pattern of light emitting means is determined from luminance and the determined pattern is followed.
[2] The light emitting means is an aggregate of concave portions or convex portions, calculates a light emission rate P from the measured luminance, and calculates the light output rate P and the concave portions or convex portions per unit area of the light emitting surface. and the surface area S of the part, and a light emission ratio P L for emitting the desired luminance, to determine a pattern of light emitting means, a method of manufacturing the surface light source according to [1].
[3] The method for manufacturing a surface light source according to [1] or [2], including the following steps A to G.
Step A: The light emitting means, which is an assembly of concave or convex portions, is provided in a uniform pattern on the light emitting surface of the plate-shaped light guide, the light source is provided on the side surface of the light guide, and the light emitting surface of the light guide Are measured at a plurality of positions at different distances L from the light source.
Step B: Of each luminance measured in Step A, the ratio of each luminance to the maximum value is calculated as a luminance ratio, and the light emission rate P is calculated from the logarithmic slope I of the luminance ratio with respect to the distance L from the light source. .
Process C: The said process A and the process B are performed about the light guide from which the surface area S of the recessed part or convex part which comprises a light-projection means differs.
Step D: calculate the surface area S of the concave portions or convex portions per unit area of the light emission surface is the surface area ratio S P, to create a correlation function F of the light emitting rate P and the surface area ratio S P.
Step E: dividing the entire amount of light emitted from the light source to the light guide determines the brightness desired to be emitted for each distance L from the light source, each distance L of light emitting rate P L for emitting the luminance from the light source To calculate.
Step F: To determine the pattern of the correlation function F and the light emitting rate P L, the light emitting means necessary to exit at a distance L from the light source.
Step G: Prepare a light guide equivalent to the light guide before the light emitting means used for measuring the luminance in Step A, and at each distance L from the side to the light exit surface of the light guide A light emitting means is provided according to the pattern determined in step F, and a light source equivalent to the light source used in step A is provided on the side surface of the light guide.

[4] [1]〜[3]のいずれか1つに記載の面光源の製造方法により得られる、面光源。
[5] 導光体の側面に光源を有し、導光体の光出射面から光が出射する面光源であって、面光源の均斉度が50%以上である、面光源。
[6] 光源から出射される全光量100%に対し、導光体の光出射面から出射する光量が90%以上である、[5]に記載の面光源。
[4] A surface light source obtained by the method for manufacturing a surface light source according to any one of [1] to [3].
[5] A surface light source having a light source on the side surface of the light guide and emitting light from the light exit surface of the light guide, wherein the uniformity of the surface light source is 50% or more.
[6] The surface light source according to [5], wherein the amount of light emitted from the light exit surface of the light guide is 90% or more with respect to 100% of the total amount of light emitted from the light source.

本発明の面光源の製造方法によれば、所望の輝度を有する面光源を得ることができる。
また、本発明の面光源は、所望の輝度を有する。
According to the method for manufacturing a surface light source of the present invention, a surface light source having a desired luminance can be obtained.
The surface light source of the present invention has a desired luminance.

工程Aにおいて、導光体に光源と光出射手段を設けた面光源の一例を模式的に示す図であり、(a)は平面図であり、(b)は断面図である。It is a figure which shows typically an example of the surface light source which provided the light source and the light emission means in the light guide in the process A, (a) is a top view, (b) is sectional drawing. 実施例1で用いた導光体を模式的に示す図であり、(a)は平面図であり、(b)は断面図である。It is a figure which shows typically the light guide used in Example 1, (a) is a top view, (b) is sectional drawing. 実施例1で得られた面光源Aを模式的に示す図であり、(a)は平面図であり、(b)は断面図である。It is a figure which shows typically the surface light source A obtained in Example 1, (a) is a top view, (b) is sectional drawing. 実施例1で得られた面光源A、面光源B、面光源Cの輝度を示すグラフである。6 is a graph showing the luminance of the surface light source A, the surface light source B, and the surface light source C obtained in Example 1. 実施例1で得られた面光源A、面光源B、面光源Cの輝度比率の対数を示すグラフである。4 is a graph showing the logarithm of the luminance ratio of the surface light source A, the surface light source B, and the surface light source C obtained in Example 1. 実施例1で得られた面光源A、面光源B、面光源Cの相関関数Fを示すグラフである。4 is a graph showing a correlation function F of the surface light source A, the surface light source B, and the surface light source C obtained in Example 1. 実施例1において面光源Xを得るための光出射手段の設け方を模式的に示す平面図である。3 is a plan view schematically showing how to provide light emitting means for obtaining a surface light source X in Example 1. FIG. 実施例1で得られた面光源A、面光源B、面光源C、面光源Xの輝度を示すグラフである。3 is a graph showing the luminance of the surface light source A, surface light source B, surface light source C, and surface light source X obtained in Example 1. 実施例2で得られた面光源Dを模式的に示す図であり、(a)は平面図であり、(b)は断面図である。It is a figure which shows typically the surface light source D obtained in Example 2, (a) is a top view, (b) is sectional drawing. 実施例2で得られた面光源D、面光源E、面光源Fの輝度を示すグラフである。It is a graph which shows the brightness | luminance of the surface light source D obtained in Example 2, the surface light source E, and the surface light source F. FIG. 実施例2で得られた面光源D、面光源E、面光源Fの輝度比率の対数を示すグラフである。It is a graph which shows the logarithm of the luminance ratio of the surface light source D obtained in Example 2, the surface light source E, and the surface light source F. 実施例2で得られた面光源D、面光源E、面光源Fの相関関数Fを示すグラフである。It is a graph which shows the correlation function F of the surface light source D obtained in Example 2, the surface light source E, and the surface light source F. 実施例2で得られた面光源D、面光源E、面光源F、面光源Yの輝度を示すグラフである。It is a graph which shows the brightness | luminance of the surface light source D obtained in Example 2, the surface light source E, the surface light source F, and the surface light source Y. FIG.

以下、本発明の実施の形態について図面を用いながら説明するが、本発明はこれらの実施の形態及び図面に限定されるものではない。
本明細書において、「同等」、「同一」、「均一」、「一定」等の記載があるが、必ずしも厳密に「同等」、厳密に「同一」、厳密に「均一」、厳密に「一定」でなくてよく、本発明の趣旨を逸脱しない程度の範囲をもつ。
また、図2、図3、図7、図9において、図1と同じ構成要素には同じ符号を付して説明を省略する。
また、図1〜図3、図7、図9は、その特徴をわかりやすくするために、便宜上、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to these embodiments and drawings.
In this specification, “equivalent”, “same”, “uniform”, “constant”, etc. are described, but strictly “equivalent”, strictly “same”, strictly “uniform”, strictly “constant” It does not have to be "" and has a range that does not depart from the gist of the present invention.
2, 3, 7, and 9, the same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
In addition, FIGS. 1 to 3, 7, and 9 may show the characteristic parts in an enlarged manner for the sake of convenience in order to make the characteristics easy to understand. May be different.

本発明は、板状の導光体の光出射面に光出射手段を設け、側面に光源を設ける面光源の製造方法である。前記光出射手段は、前記導光体と同等の導光体を用い、該導光体の光出射面に均一なパターンで光出射手段を設け、側面に前記光源と同等の光源を設けて導光体の光出射面から発光する輝度を測定し、測定した輝度から光出射手段のパターンを決定し、決定したパターンに従ったものである。
ここで、光出射手段のパターンを決定するとは、面光源の用途に応じて光出射手段が最適なパターンとなるように決定することである。
The present invention is a method of manufacturing a surface light source in which a light emitting means is provided on a light emitting surface of a plate-like light guide and a light source is provided on a side surface. The light emitting means uses a light guide equivalent to the light guide, the light emitting means is provided in a uniform pattern on the light emitting surface of the light guide, and the light source equivalent to the light source is provided on the side surface for guiding. The luminance emitted from the light emitting surface of the light body is measured, the pattern of the light emitting means is determined from the measured luminance, and the determined pattern is followed.
Here, determining the pattern of the light emitting means means determining the light emitting means to be an optimum pattern according to the use of the surface light source.

光出射手段が凹部又は凸部の集合体である場合、光出射手段のパターンは、例えば、測定した輝度から光出射率Pを算出し、算出した光出射率Pと、光出射面の単位面積あたりの前記凹部又は凸部の表面積Sと、所望の輝度を出射させるための光出射率Pとから決定される。具体的には、光出射手段のパターンの決定は以下の工程A〜工程Fを経て行われるので、本発明の面光源の製造方法は、以下の工程A〜工程Gを含むことが好ましい。
工程A:板状の導光体の光出射面に凹部又は凸部の集合体である光出射手段を均一なパターンで設け、導光体の側面に光源を設け、導光体の光出射面から発光する輝度を光源からの距離Lが異なる複数の位置で測定する。
工程B:工程Aで測定した各輝度のうち、最大値に対する各輝度の比率を算出して輝度比率とし、光源からの距離Lに対する輝度比率の対数の傾きIから、光出射率Pを算出する。
工程C:光出射手段を構成する凹部又は凸部の表面積Sが異なる導光体について、前記工程Aと工程Bとを行う。
工程D:光出射面の単位面積あたりの前記凹部又は凸部の表面積Sを算出して表面積率Sとし、前記光出射率Pと表面積率Sとの相関関数Fを作成する。
工程E:光源から導光体に入射させる全光量を分割し、光源からの距離Lごとに出射させたい輝度を決め、その輝度を出射させるための光出射率Pを光源からの距離Lごとに算出する。
工程F:相関関数Fと光出射率Pとから、光源からの距離Lで出射に必要な光出射手段のパターンを決定する。
工程G:工程Aにて輝度の測定に用いた、光出射手段を設ける前の導光体と同等の導光体を準備し、該導光体の光出射面に、側面から距離Lごとに工程Fで決定したパターンに従って光出射手段を設け、導光体の側面に工程Aにて用いた光源と同等の光源を設ける。
尚、工程Aにおいて輝度の測定に用いる導光体であって、光出射手段が設けられる前の導光体を「第一の導光体」ともいい、工程Gにおいて工程Fで決定したパターンに従って光出射手段が設けられる前の導光体を「第二の導光体」ともいう。
When the light emitting means is an aggregate of concave or convex portions, the pattern of the light emitting means, for example, calculates the light emission rate P from the measured luminance, and calculates the calculated light emission rate P and the unit area of the light emission surface. and the surface area S of the concave portions or convex portions per, is determined from the light emitting rate P L for emitting the desired luminance. Specifically, since the pattern of the light emitting means is determined through the following steps A to F, the method for manufacturing a surface light source of the present invention preferably includes the following steps A to G.
Step A: The light emitting means, which is an assembly of concave or convex portions, is provided in a uniform pattern on the light emitting surface of the plate-shaped light guide, the light source is provided on the side surface of the light guide, and the light emitting surface of the light guide Are measured at a plurality of positions at different distances L from the light source.
Step B: Of each luminance measured in Step A, the ratio of each luminance to the maximum value is calculated as a luminance ratio, and the light emission rate P is calculated from the logarithmic slope I of the luminance ratio with respect to the distance L from the light source. .
Process C: The said process A and the process B are performed about the light guide from which the surface area S of the recessed part or convex part which comprises a light-projection means differs.
Step D: calculate the surface area S of the concave portions or convex portions per unit area of the light emission surface is the surface area ratio S P, to create a correlation function F of the light emitting rate P and the surface area ratio S P.
Step E: dividing the entire amount of light emitted from the light source to the light guide determines the brightness desired to be emitted for each distance L from the light source, each distance L of light emitting rate P L for emitting the luminance from the light source To calculate.
Step F: To determine the pattern of the correlation function F and the light emitting rate P L, the light emitting means necessary to exit at a distance L from the light source.
Step G: Prepare a light guide equivalent to the light guide before the light emitting means used for measuring the luminance in Step A, and at each distance L from the side to the light exit surface of the light guide A light emitting means is provided according to the pattern determined in step F, and a light source equivalent to the light source used in step A is provided on the side surface of the light guide.
Note that the light guide used for measuring the luminance in the process A and before the light emitting means is provided is also referred to as a “first light guide”, and according to the pattern determined in the process F in the process G. The light guide before the light emitting means is provided is also referred to as a “second light guide”.

(工程A)
工程Aは、板状の導光体(第一の導光体)の光出射面に凹部又は凸部の集合体である光出射手段を均一なパターンで設け、導光体(第一の導光体)の側面に光源を設け、導光体(第一の導光体)の光出射面から発光する輝度を光源からの距離Lが異なる複数の位置で測定する工程である。
例えば、図1に示すように、導光体(第一の導光体)10の光出射面14に光出射手段20を均一に設け、導光体(第一の導光体)10の側面に光源30を設けて、面光源1を作製する。図1に示す面光源1は、光出射面14となる表面に光出射手段20を均一に設け、光入射面15となる側面に光源30を設けたものである。
(Process A)
In step A, the light emitting means, which is an assembly of concave portions or convex portions, is provided in a uniform pattern on the light emitting surface of the plate-shaped light guide (first light guide), and the light guide (first guide) is provided. In this step, a light source is provided on the side surface of the light body, and the luminance emitted from the light exit surface of the light guide (first light guide) is measured at a plurality of positions at different distances L from the light source.
For example, as shown in FIG. 1, the light emitting means 20 is uniformly provided on the light emitting surface 14 of the light guide (first light guide) 10, and the side surface of the light guide (first light guide) 10. A surface light source 1 is manufactured by providing a light source 30. The surface light source 1 shown in FIG. 1 has light emitting means 20 uniformly provided on the surface that becomes the light emitting surface 14 and the light source 30 provided on the side surface that becomes the light incident surface 15.

導光体としては、導光するものであれば特に限定されないが、例えば、単層導光体、コア−クラッド構造を有する積層体等が挙げられる。
図1に示す導光体(第一の導光体)10は、コア−クラッド構造を有する積層体である。
The light guide is not particularly limited as long as it guides light, and examples thereof include a single-layer light guide and a laminate having a core-clad structure.
A light guide (first light guide) 10 shown in FIG. 1 is a laminated body having a core-clad structure.

単層導光体の材料としては、光透過率が高いものであれば特に限定されないが、例えば、アクリル樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリエステル樹脂、塩化ビニル樹脂、ガラス等が挙げられる。これらの単層導光体の材料の中でも、軽量で、透明性、取り扱い性に優れることから、アクリル樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂が好ましく、アクリル樹脂、ポリカーボネート樹脂がより好ましい。   The material of the single-layer light guide is not particularly limited as long as it has a high light transmittance. Examples thereof include acrylic resin, polycarbonate resin, alicyclic polyolefin resin, polyester resin, vinyl chloride resin, and glass. . Among these single-layer light guide materials, acrylic resins, polycarbonate resins, and alicyclic polyolefin resins are preferable, and acrylic resins and polycarbonate resins are more preferable because they are lightweight, excellent in transparency, and handleability.

単層導光体の厚さは、0.1mm〜15mmが好ましく、0.2mm〜10mmがより好ましい。単層導光体の厚さが0.1mm以上であると、機械特性に優れる。また、単層導光体の厚さが15mm以下であると、取り扱い性に優れる。   The thickness of the single-layer light guide is preferably 0.1 mm to 15 mm, and more preferably 0.2 mm to 10 mm. When the thickness of the single-layer light guide is 0.1 mm or more, the mechanical properties are excellent. Further, when the thickness of the single-layer light guide is 15 mm or less, the handleability is excellent.

コア−クラッド構造を有する積層体は、例えば、図1に示すように、コア層11の両面にクラッド層12を有する積層体である。
コア層11とクラッド層12の材料は、屈折率が異なり、光透過率が高いものであれば特に限定されない。
コア層11とクラッド層12の屈折率差は、入射した光がコア層11とクラッド層12との界面を全反射しながら少ない損失で遠くまで伝播できることから、0.001以上が好ましく、0.01以上がより好ましい。
A laminated body having a core-clad structure is, for example, a laminated body having clad layers 12 on both surfaces of a core layer 11 as shown in FIG.
The material of the core layer 11 and the clad layer 12 is not particularly limited as long as the refractive index is different and the light transmittance is high.
The difference in refractive index between the core layer 11 and the clad layer 12 is preferably 0.001 or more because incident light can propagate far away with little loss while totally reflecting the interface between the core layer 11 and the clad layer 12. 01 or more is more preferable.

コア層11とクラッド層12の屈折率は、どちらが高くてもどちらが低くてもよく、使用目的等に応じて適宜選択することができる。
コア層11の屈折率がクラッド層12の屈折率より高い場合、少ない損失で遠くまで伝播できるため好ましい。
クラッド層12の屈折率がコア層11の屈折率より低い場合、少ない光出射手段の数で面光源の輝度に優れるため好ましい。
The refractive index of the core layer 11 and the cladding layer 12 may be higher or lower, and can be appropriately selected according to the purpose of use.
When the refractive index of the core layer 11 is higher than the refractive index of the cladding layer 12, it is preferable because the core layer 11 can propagate far away with a small loss.
When the refractive index of the cladding layer 12 is lower than the refractive index of the core layer 11, it is preferable because the luminance of the surface light source is excellent with a small number of light emitting means.

コア層11の材料は、光透過率が高いものであれば特に限定されないが、例えば、アクリル樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリエステル樹脂、塩化ビニル樹脂、ガラス等が挙げられる。これらのコア層11の材料の中でも、軽量で、透明性、取り扱い性に優れることから、アクリル樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ガラスが好ましく、アクリル樹脂、ポリカーボネート樹脂、ガラスがより好ましい。   The material of the core layer 11 is not particularly limited as long as it has a high light transmittance, and examples thereof include acrylic resin, polycarbonate resin, alicyclic polyolefin resin, polyester resin, vinyl chloride resin, and glass. Among these materials for the core layer 11, acrylic resin, polycarbonate resin, alicyclic polyolefin resin, and glass are preferable, and acrylic resin, polycarbonate resin, and glass are more preferable because of being lightweight and excellent in transparency and handling.

コア−クラッド構造を有する積層体の厚さは、0.1mm〜15mmが好ましく、0.2mm〜10mmがより好ましい。コア−クラッド構造を有する積層体の厚さが0.1mm以上であると、機械特性に優れる。また、コア−クラッド構造を有する積層体の厚さが15mm以下であると、取り扱い性に優れる。   The thickness of the laminate having a core-clad structure is preferably 0.1 mm to 15 mm, and more preferably 0.2 mm to 10 mm. When the thickness of the laminate having the core-cladding structure is 0.1 mm or more, the mechanical properties are excellent. Further, when the thickness of the laminate having a core-cladding structure is 15 mm or less, the handleability is excellent.

クラッド層12の材料は、光透過率が高く、コア層11の屈折率と異なるものであれば特に限定されず、使用目的等に応じて適宜選択することができる。
コア層11の屈折率がクラッド層12の屈折率より高く、コア層11の材料としてアクリル樹脂を用いる場合、クラッド層12の材料としては、例えば、フッ素含有オレフィン樹脂等が挙げられる。
コア層11の屈折率がクラッド層12の屈折率より高く、コア層11の材料としてポリカーボネート樹脂を用いる場合、クラッド層12の材料としては、例えば、フッ素含有オレフィン樹脂、アクリル樹脂等が挙げられる。
クラッド層12の屈折率がコア層11の屈折率より高く、コア層11の材料としてアクリル樹脂を用いる場合、クラッド層12の材料としては、例えば、ガラス等が挙げられる。
The material of the clad layer 12 is not particularly limited as long as it has a high light transmittance and is different from the refractive index of the core layer 11, and can be appropriately selected according to the purpose of use.
When the refractive index of the core layer 11 is higher than the refractive index of the cladding layer 12 and an acrylic resin is used as the material of the core layer 11, examples of the material of the cladding layer 12 include a fluorine-containing olefin resin.
When the refractive index of the core layer 11 is higher than the refractive index of the cladding layer 12 and polycarbonate resin is used as the material of the core layer 11, examples of the material of the cladding layer 12 include fluorine-containing olefin resin and acrylic resin.
When the refractive index of the cladding layer 12 is higher than the refractive index of the core layer 11 and acrylic resin is used as the material of the core layer 11, examples of the material of the cladding layer 12 include glass.

クラッド層12の厚さは、1μm〜500μmが好ましく、2μm〜200μmがより好ましい。クラッド層12の厚さが1μm以上であると、コア−クラッド構造を有する積層体の漏光を抑制することができる。また、クラッド層12の厚さが500μm以下であると、コア−クラッド構造を有する積層体の生産性に優れる。   The thickness of the cladding layer 12 is preferably 1 μm to 500 μm, and more preferably 2 μm to 200 μm. When the thickness of the cladding layer 12 is 1 μm or more, light leakage of the laminate having the core-cladding structure can be suppressed. Further, when the thickness of the clad layer 12 is 500 μm or less, the productivity of a laminate having a core-clad structure is excellent.

導光体の形状としては、板状であれば特に限定されないが、例えば、矩形、三角形等の多角形状;真円、楕円等の円形状等が挙げられる。これらの導光体の形状の中でも、光源からの光を入射し易く、加工性に優れることから、多角形状が好ましく、矩形状がより好ましい。
導光体は、必要に応じて、光拡散粒子や気泡を有してもよい。
光拡散粒子の材料としては、例えば、シリコーン樹脂、アクリル樹脂、スチレン樹脂等が挙げられる。これらの光拡散粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
The shape of the light guide is not particularly limited as long as it is a plate shape, and examples thereof include a polygonal shape such as a rectangle and a triangle; and a circular shape such as a perfect circle and an ellipse. Among these light guides, a polygonal shape is preferable and a rectangular shape is more preferable because light from a light source is easily incident and the processability is excellent.
The light guide may have light diffusing particles or bubbles as necessary.
Examples of the material for the light diffusing particles include a silicone resin, an acrylic resin, and a styrene resin. These light diffusion particles may be used alone or in combination of two or more.

導光体は、必要に応じて、表面(光出射面14)又は裏面(光出射面14とは反対側の面)に機能層を有してもよい。
機能層としては、例えば、光反射層13、意匠層、光拡散層等の公知の機能層等が挙げられる。
導光体に光反射層13を設ける場合、図1に示すように、導光体の裏面に光反射層13設けることで、クラッド層12から漏光する光を反射させ、再びコア層11に入射させることができる。
The light guide may have a functional layer on the front surface (light output surface 14) or the back surface (surface opposite to the light output surface 14) as necessary.
As a functional layer, well-known functional layers, such as the light reflection layer 13, a design layer, a light-diffusion layer, etc. are mentioned, for example.
When the light reflecting layer 13 is provided on the light guide, as shown in FIG. 1, the light reflecting layer 13 is provided on the back surface of the light guide to reflect the light leaking from the clad layer 12 and enter the core layer 11 again. Can be made.

光反射層13としては、例えば、ビニル系、ポリエステル系、アクリル系、ウレタン系、エポキシ系等の樹脂インクにより可視光を反射する樹脂をコーティング処理した樹脂層;ポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂等の樹脂板や樹脂フィルム;セルロース等の紙;アルミニウム、ニッケル、金、白金、クロム、鉄、銅、インジウム、スズ、銀、チタン、鉛、亜鉛等の金属板や金属薄膜等が挙げられる。これらの光反射層13の中でも、反射率を容易に調整できることから、樹脂インクにより可視光を反射する樹脂をコーティング処理した樹脂層が好ましい。   Examples of the light reflecting layer 13 include a resin layer obtained by coating a resin that reflects visible light with a resin ink such as vinyl, polyester, acrylic, urethane, or epoxy; polyolefin resin, polyester resin, acrylic resin, or the like A resin plate or a resin film; paper such as cellulose; a metal plate such as aluminum, nickel, gold, platinum, chromium, iron, copper, indium, tin, silver, titanium, lead, zinc, or a metal thin film. Among these light reflecting layers 13, a resin layer obtained by coating a resin that reflects visible light with a resin ink is preferable because the reflectance can be easily adjusted.

光反射層13は、必要に応じて、顔料や光拡散粒子や気泡を有してもよい。
顔料としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム等の白色顔料等が挙げられる。これらの顔料は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの顔料の中でも、可視光の全領域に対して反射率が高いことから、白色顔料が好ましい。
光拡散粒子の材料としては、例えば、シリコーン樹脂、アクリル樹脂、スチレン樹脂等が挙げられる。これらの光拡散粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。
The light reflecting layer 13 may have a pigment, light diffusing particles, or bubbles as necessary.
Examples of the pigment include white pigments such as titanium oxide, barium sulfate, calcium carbonate, and magnesium carbonate. These pigments may be used alone or in combination of two or more. Among these pigments, a white pigment is preferable because of its high reflectance with respect to the entire visible light region.
Examples of the material for the light diffusing particles include a silicone resin, an acrylic resin, and a styrene resin. These light diffusion particles may be used alone or in combination of two or more.

光反射層13の厚さは、光反射層13の反射率や導光体の用途に応じて適宜選択すればよいが、導光体の耐久性に優れ、導光体の保護フィルムとして兼ねることができることから、10μm〜500μmが好ましく、50μm〜200μmがより好ましい。   The thickness of the light reflection layer 13 may be appropriately selected according to the reflectance of the light reflection layer 13 and the use of the light guide, but it is excellent in durability of the light guide and serves also as a protective film for the light guide. 10 μm to 500 μm are preferable, and 50 μm to 200 μm are more preferable.

工程Aでは、導光体(第一の導光体)の光出射面に凹部又は凸部の集合体である光出射手段を均一なパターンで設ける。ここで、光出射手段を均一なパターンで設けるとは、形状が同一である複数の凹部又は凸部を等間隔のピッチで光出射面に形成することを意味する。   In step A, the light emitting means, which is an assembly of concave portions or convex portions, is provided in a uniform pattern on the light emitting surface of the light guide (first light guide). Here, providing the light emitting means in a uniform pattern means forming a plurality of concave portions or convex portions having the same shape on the light emitting surface at equal intervals.

光出射手段としては、設計が容易であることから、図1に示すような凹部21の集合体が好ましい。凹部21は、光出射面14側のクラッド層12を貫通し、コア層11に達するものが好ましい。
凹部21の形状としては、円錐形状、楕円錘形状、角錐形状、球欠形状、ライン形状等が挙げられる。
As the light emitting means, an assembly of recesses 21 as shown in FIG. 1 is preferable because it is easy to design. The recess 21 preferably penetrates the cladding layer 12 on the light emitting surface 14 side and reaches the core layer 11.
Examples of the shape of the concave portion 21 include a conical shape, an elliptical cone shape, a pyramid shape, a spherical shape, and a line shape.

凹部又は凸部の表面積Sは、光出射手段を構成する各凹部又は凸部の表面積が同一であれば特に限定されないが、10μm〜100mmの範囲から選択することが好ましい。 The surface area S of the concave portion or convex portion is not particularly limited as long as the surface area of each concave portion or convex portion constituting the light emitting means is the same, but is preferably selected from the range of 10 μm 2 to 100 mm 2 .

凹部の深さ又は凸部の高さは、光出射手段を構成する各凹部の深さ又は凸部の高さが同一であれば特に限定されないが、0.1μm〜1mmの範囲から選択することが好ましい。導光体が図1に示すようなコア−クラッド構造を有する積層体の場合、凹部21の深さは、クラッド層12の厚さより大きいことが好ましい。
ここで、凹部の深さとは、任意の凹部の開口部から最深部までの垂直距離のことであり、凸部の高さとは、任意の凸部の頂部から底部までの垂直距離のことである。
The depth of the concave portion or the height of the convex portion is not particularly limited as long as the depth of each concave portion or the height of the convex portion constituting the light emitting means is the same, but it is selected from the range of 0.1 μm to 1 mm. Is preferred. In the case where the light guide has a core-cladding structure as shown in FIG. 1, the depth of the recess 21 is preferably larger than the thickness of the cladding layer 12.
Here, the depth of the concave portion is a vertical distance from the opening portion of the arbitrary concave portion to the deepest portion, and the height of the convex portion is a vertical distance from the top portion to the bottom portion of the arbitrary convex portion. .

凹部又は凸部のピッチは、光出射手段を構成する各凹部又は凸部のピッチが同一であれば特に限定されないが、1μm〜10mmの範囲から選択することが好ましい。
ここで、凹部又は凸部のピッチとは、任意の凹部又は凸部の中央部から、これに隣接する凹部又は凸部の中央部までの距離のことである。
The pitch of the concave portions or the convex portions is not particularly limited as long as the pitch of the concave portions or the convex portions constituting the light emitting means is the same, but is preferably selected from the range of 1 μm to 10 mm.
Here, the pitch of a recessed part or a convex part is the distance from the center part of arbitrary recessed parts or a convex part to the central part of the recessed part or convex part adjacent to this.

光出射手段を設ける方法としては、例えば、レーザー加工、サンドブラスト加工、プレス加工、熱プレス加工、印刷加工、エッチング加工、放電加工等が挙げられる。これらの光出射手段を設ける方法の中でも、制御が容易で、簡便な方法であることから、レーザー加工、印刷加工が好ましく、レーザー加工がより好ましい。   Examples of the method of providing the light emitting means include laser processing, sand blast processing, press processing, hot press processing, printing processing, etching processing, and electric discharge processing. Among these methods of providing the light emitting means, laser processing and printing processing are preferable, and laser processing is more preferable because of easy control and simple method.

光源は、例えば、LED等の点光源を複数配置した光源、線状光源等が挙げられる。
光源が点光源を複数配置した光源の場合、導光体の幅(w)方向の全域に点光源を均一に設けることが好ましい。
光源が線状光源の場合、光源の長さと導光体の幅方向の長さが均一であることが好ましい。
光源は、1ヶ所の側面に設けてもよく、対向する2ヶ所の側面に設けてもよい。光源が設けられた側面を光入射面という。
Examples of the light source include a light source in which a plurality of point light sources such as LEDs are arranged, a linear light source, and the like.
When the light source is a light source in which a plurality of point light sources are arranged, it is preferable to provide the point light sources uniformly over the entire region in the width (w) direction of the light guide.
When the light source is a linear light source, it is preferable that the length of the light source and the length of the light guide in the width direction are uniform.
The light source may be provided on one side surface or on two opposing side surfaces. The side surface on which the light source is provided is called a light incident surface.

導光体の光出射面から発光する輝度は、導光体の長さ(l)方向における光源からの距離Lが異なる複数の位置において、輝度計、分光放射計等で測定する。   The luminance emitted from the light exit surface of the light guide is measured with a luminance meter, a spectroradiometer, or the like at a plurality of positions at different distances L from the light source in the length (l) direction of the light guide.

(工程B)
工程Bは、工程Aで測定した各輝度のうち、最大値に対する各輝度の比率を算出して輝度比率とし、光源からの距離Lに対する輝度比率の対数の傾きIから、光出射率Pを算出する工程である。
工程Bは、工程Aの後に行う。
(Process B)
In step B, the ratio of each luminance to the maximum value among the luminances measured in step A is calculated as the luminance ratio, and the light emission rate P is calculated from the logarithmic slope I of the luminance ratio with respect to the distance L from the light source. It is a process to do.
Step B is performed after step A.

工程Bを具体的に説明する。
まず、工程Aで測定した各輝度について、輝度の最大値を1とする輝度比率に換算し、更にその対数をとる。
次いで、光源からの距離L(mm)をx軸に、得られた輝度比率の対数をy軸にとって、2次元のグラフを作成する。
次いで、得られた2次元のグラフから、傾きが一定となる光源からの距離L(mm)の範囲L1(mm)〜L2(mm)を決定する。
次いで、決定した範囲L1(mm)〜L2(mm)における輝度比率の対数IL1〜IL2の傾きI(mm−1)を下記数式(1)により算出する。
次いで、光出射率P(%)を下記数式(2)により算出する。Ls(mm)は、ある一定距離を表し、光出射率P(%)は、Ls(mm)あたりの光出射率となる。
I=(IL2−IL1)/(L2−L1) ・・・(1)
P=(1−10I・Ls)×100 ・・・(2)
Step B will be specifically described.
First, for each luminance measured in step A, it is converted into a luminance ratio with the maximum value of luminance being 1, and the logarithm is further taken.
Next, a two-dimensional graph is created with the distance L (mm) from the light source as the x-axis and the logarithm of the obtained luminance ratio as the y-axis.
Next, a range L1 (mm) to L2 (mm) of a distance L (mm) from the light source where the inclination is constant is determined from the obtained two-dimensional graph.
Next, the slope I (mm −1 ) of the logarithm I L1 to I L2 of the luminance ratio in the determined range L1 (mm) to L2 (mm) is calculated by the following mathematical formula (1).
Next, the light emission rate P (%) is calculated by the following mathematical formula (2). Ls (mm) represents a certain distance, and the light output rate P (%) is the light output rate per Ls (mm).
I = (I L2 −I L1 ) / (L2−L1) (1)
P = (1-10 I · Ls ) × 100 (2)

傾きが一定となる光源からの距離L(mm)の範囲L1(mm)〜L2(mm)の決め方は、得られた2次元のグラフを確認して適宜設定すればよい。範囲L1〜L2は、光を出射させたい範囲(導光体の長さ方向の距離)に対して、20%〜60%の範囲から選択することが好ましい。   The method of determining the range L1 (mm) to L2 (mm) of the distance L (mm) from the light source where the inclination is constant may be set as appropriate by checking the obtained two-dimensional graph. The ranges L1 to L2 are preferably selected from a range of 20% to 60% with respect to a range in which light is desired to be emitted (distance in the length direction of the light guide).

Lsは適宜設定すればよいが、1mm〜100mmが好ましく、2mm〜50mmがより好ましい。Lsが1mm以上であると、設計が容易である。また、Lsが100mm以下であると、面光源の均斉度に優れる。   Ls may be set as appropriate, but is preferably 1 mm to 100 mm, and more preferably 2 mm to 50 mm. Design is easy when Ls is 1 mm or more. Moreover, it is excellent in the uniformity of a surface light source as Ls is 100 mm or less.

(工程C)
工程Cは、光出射手段を構成する凹部又は凸部の表面積Sが異なる導光体について、前記工程Aと工程Bとを行う工程である。
工程Cは、工程Bの後に行う。
工程Cは、少なくとも1回行えばよいが、面光源の均斉度を高めることから、2回以上行うことが好ましい。具体的には、第一の導光体として、先ほどの工程Aにて用いた導光体とは光出射手段を構成する凹部又は凸部の表面積Sが異なる導光体を1つ以上、好ましくは2つ以上準備し、これらについて工程Aと工程Bを実施する。
(Process C)
Step C is a step of performing Step A and Step B for light guides having different surface areas S of concave portions or convex portions constituting the light emitting means.
Step C is performed after step B.
Step C may be performed at least once, but is preferably performed twice or more in order to increase the uniformity of the surface light source. Specifically, as the first light guide, one or more light guides having different surface areas S of the concave or convex portions constituting the light emitting means from the light guide used in the previous step A, preferably Prepare two or more, and perform step A and step B on these.

(工程D)
工程Dは、光出射面の単位面積あたりの前記凹部又は凸部の表面積Sを算出して表面積率Sとし、前記光出射率Pと表面積率Sとの相関関数Fを作成する工程である。
工程Dは、工程Cの後に行う。
(Process D)
Step D is the calculated surface area S of the concave portions or convex portions per unit area of the light emission surface is the surface area ratio S P, to create a correlation function F of the light emitting rate P and the surface area ratio S P step is there.
The process D is performed after the process C.

光出射手段を構成する凹部又は凸部の表面積率Sは、光出射面の単位面積あたりの凹部又は凸部の表面積S(mm)を表す。
光出射面の単位面積あたりの凹部又は凸部の表面積S(mm)は、1個あたりの凹部又は凸部の表面積S(mm)と、凹部又は凸部のピッチ(mm)から算出することができる。例えば、光出射面の単位面積を1mmとし、導光体の長さ(l)方向における凹部又は凸部のピッチp(mm)、及び導光体の幅(w)方向における凹部又は凸部のピッチpが共に1mmである場合は、1個あたりの凹部又は凸部の表面積S(mm)=表面積率Sである。
Surface area ratio S P output recesses or protrusions constituting the light emitting means is representative of the surface area of the recesses or protrusions per unit area of the light emitting surface S (mm 2).
The surface area S (mm 2 ) of the concave portion or convex portion per unit area of the light emitting surface is calculated from the surface area S (mm 2 ) of the concave portion or convex portion per piece and the pitch (mm) of the concave portion or convex portion. be able to. For example, the unit area of the light exit surface is 1 mm 2 , the pitch p x (mm) of the recesses or projections in the length (l) direction of the light guide, and the recesses or projections in the width (w) direction of the light guide If the pitch p y parts are 1mm together, the surface area S (mm 2) of the recesses or protrusions per one = the surface area ratio S P.

相関関数Fは、工程Bで算出した光出射率P(%)をx軸に、光出射手段を構成する凹部又は凸部の表面積率Sをy軸にとってプロットし、プロットした点を最小二乗法により近似した1次関数(y=ax+b)である。 Correlation function F, the light emitting ratio P calculated in Step B (%) in x-axis, the surface area ratio S P output recesses or protrusions constituting the light emitting unit plots for the y-axis, minimizing the points plotted two A linear function approximated by multiplication (y = ax + b).

(工程E)
工程Eは、光源から導光体に入射させる全光量を分割し、光源からの距離Lごとに出射させたい輝度を決め、その輝度を出射させるための光出射率Pを光源からの距離Lごとに算出する工程である。
工程Eは、工程A〜工程Dの前に行ってもよく、工程A〜工程Dの後に行ってもよく、工程A〜工程Dの間に行ってもよい。
(Process E)
Step E divides the total amount of light incident on the light guide from the light source, determines the luminance to be emitted for each distance L from the light source, and determines the light emission rate P L for emitting the luminance as the distance L from the light source. It is the process of calculating every.
The process E may be performed before the process A to the process D, may be performed after the process A to the process D, or may be performed between the process A to the process D.

光源から導光体に入射させる全光量を分割することで、輝度利用率を高めることができる。輝度利用率は、光源から出射される全光量100%に対する導光体の光出射面から出射する光量(%)とする。
工程Eの趣旨は、光源から導光体に入射させる全光量に対し、光源からの距離Lごとに、所望の輝度を出射させるための光出射率P(割合)を算出することであるため、光源から導光体に入射させる全光量は、実際に入射させる全光量の値でもよく、仮の数値でもよい。
By dividing the total amount of light incident on the light guide from the light source, the luminance utilization rate can be increased. The luminance utilization rate is the amount of light (%) emitted from the light exit surface of the light guide with respect to 100% of the total amount of light emitted from the light source.
The purpose of step E is to calculate a light emission rate P L (ratio) for emitting a desired luminance for each distance L from the light source with respect to the total amount of light incident on the light guide from the light source. The total amount of light incident on the light guide from the light source may be a value of the total amount of light actually incident or a provisional numerical value.

光源からの距離Lごとに出射させたい輝度は、均一であってもよく、高低があってもよく、面光源の用途に応じて所望の輝度となるよう適宜設定すればよい。
例えば、均斉度の高い面光源を得たい場合、光源からの距離Lごとに出射させたい輝度を均一に配分するとよい。
The brightness desired to be emitted for each distance L from the light source may be uniform or high and low, and may be set as appropriate according to the use of the surface light source.
For example, when it is desired to obtain a surface light source having a high degree of uniformity, it is preferable to uniformly distribute the luminance desired to be emitted at every distance L from the light source.

出射させたい輝度を出射させるための光出射率P(%)は、出射させたい輝度を光源から出射される全光量で割って100を掛けて算出する。 The light emission rate P L (%) for emitting the luminance to be emitted is calculated by dividing the luminance to be emitted by the total light amount emitted from the light source and multiplying by 100.

(工程F)
工程Fは、相関関数Fと光出射率Pとから、光源からの距離Lで出射に必要な光出射手段のパターンを決定する工程である。
工程Fは、工程Dと工程Eの後に行う。
(Process F)
Step F is a step of determining the pattern of the correlation function F and the light emitting rate P L, the light emitting means necessary to exit at a distance L from the light source.
Process F is performed after Process D and Process E.

工程Dで求めた相関関数F(y=ax+b)のxに、工程Eで求めた光出射率P(%)を代入することで、光源からの距離Lで出射に必要な光出射手段の表面積率S(相関関数Fのy)を算出することができる。光源からの距離Lで出射に必要な光出射手段の表面積率Sを基に、光源からの距離Lごとに、各光出射手段のピッチを変化させたり、各光出射手段の表面積を変化させたりして、光出射手段のパターンを決めることができる。 By substituting the light emission rate P L (%) obtained in step E for x of the correlation function F (y = ax + b) obtained in step D, the light emission means required for emission at the distance L from the light source The surface area ratio S P (y of the correlation function F) can be calculated. Based on the surface area ratio S P output light output means necessary to exit at a distance L from the light source, for each distance L from the light source, or to change the pitch of the light emitting means to vary the surface area of each light emitting means Thus, the pattern of the light emitting means can be determined.

具体的には、光源からの距離Lで出射に必要な光出射手段の表面積率Sは、単位面積あたりの光出射手段の表面積S(mm)を表すので、設ける光出射手段の表面積S(mm)、設ける光出射手段の導光体の長さ方向におけるピッチp(mm)、設ける光出射手段の導光体の幅方向におけるピッチp(mm)のとき、下記数式(3)が成り立つ。この下記数式(3)に基づいて、光出射手段のパターンを決めることができる。
=S/(p×p) ・・・(3)
Specifically, the surface area ratio S P output light output means necessary to exit at a distance L from the light source, since they represent a surface area S (mm 2) of the light emitting means per unit area, the surface area of the light output means provided S (Mm 2 ), the pitch p x (mm) in the length direction of the light guide of the provided light emitting means, and the pitch p y (mm) in the width direction of the light guide of the provided light emitting means, ) Holds. Based on the following formula (3), the pattern of the light emitting means can be determined.
S P = S / (p x × p y ) (3)

(工程G)
工程Gは、工程Aにて輝度の測定に用いた、光出射手段を設ける前の導光体(第一の導光体)と同等の導光体(第二の導光体)を準備し、該導光体(第二の導光体)の光出射面に、側面から距離Lごとに工程Fで決定したパターンに従って光出射手段を設け、導光体(第二の導光体)の側面に工程Aにて用いた光源(すなわち、第一の導光体に設けられた光源)と同等の光源を設ける工程である。
(Process G)
In step G, a light guide (second light guide) equivalent to the light guide (first light guide) used for measuring the luminance in step A before the light emitting means is prepared. The light emitting surface of the light guide (second light guide) is provided on the light output surface of the light guide (second light guide) according to the pattern determined in step F for each distance L from the side surface. In this step, a light source equivalent to the light source used in step A (that is, the light source provided in the first light guide) is provided on the side surface.

工程A〜工程Gを経て得られる面光源は、光出射面に用途に応じた最適なパターンの光出射手段が設けられているので、光出射面の場所ごとの輝度が最適化されており、所望の輝度を有する。
工程A〜工程Gを経て得られる面光源は、均斉度を高くすることができ、具体的には均斉度を50%以上とすることができる。均斉度は、面光源の出射させたい範囲における輝度の最大値と最小値の比とする。
工程A〜工程Gを経て得られる面光源は、輝度利用率を高めることができ、具体的には輝度利用率を90%以上とすることができる。輝度利用率は、光源から出射される全光量100%に対する、導光体の光出射面から出射する光量の割合であり、面光源の出射させたい範囲における輝度の総量を、面光源から出射した輝度の総量で割って100を掛けて算出する。
The surface light source obtained through the process A to the process G is provided with light emitting means having an optimum pattern according to the application on the light emitting surface, so that the luminance for each place of the light emitting surface is optimized, It has the desired brightness.
The surface light source obtained through the process A to the process G can increase the uniformity, specifically, the uniformity can be set to 50% or more. The uniformity is the ratio between the maximum value and the minimum value of the luminance within the range in which the surface light source is desired to be emitted.
The surface light source obtained through the process A to the process G can increase the luminance utilization rate, specifically, the luminance utilization rate can be 90% or more. The luminance utilization rate is the ratio of the amount of light emitted from the light emitting surface of the light guide to the total amount of light emitted from the light source, and the total amount of luminance in the range desired to be emitted by the surface light source is emitted from the surface light source. Calculate by dividing by the total amount of luminance and multiplying by 100.

以上説明した本発明の面光源の製造方法によれば、所望の輝度の面光源を得ることができる。そのため、得られる面光源は、例えば、携帯電話、ノートパソコン、液晶テレビ、ビデオカメラ等に用いられる液晶表示装置、携帯電話のバックライトキー、パソコンのバックライトキーボード、電気機器や車両の表示スイッチ等の表示装置、シーリングライト等の室内照明、照明看板等の照明装置等に好適に用いることができる。   According to the method for manufacturing a surface light source of the present invention described above, a surface light source having a desired luminance can be obtained. Therefore, the surface light source obtained is, for example, a liquid crystal display device used for mobile phones, notebook computers, liquid crystal televisions, video cameras, etc., backlight keys for mobile phones, backlight keyboards for personal computers, display switches for electrical equipment and vehicles, etc. It can be suitably used for indoor lighting such as display devices and ceiling lights, and lighting devices such as lighting signs.

以下、本発明を実施例により具体的に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to an Example.

「実施例1」
(導光体の製造)
コア層を構成する材料としてポリカーボネート樹脂(商品名「タフロン LC2200」、出光興産株式会社製、屈折率n=1.585)、クラッド層を構成する材料としてアクリル樹脂(商品名「アクリペット VH000」、三菱レイヨン株式会社製、屈折率n=1.49)を用い、多層溶融押出によりコア層と、コア層の両面に積層したクラッド層とからなる積層体を得た。クラッド層の厚さはそれぞれ10μmであり、積層体の全体の厚さは0.7mmであった。
得られた積層体を幅(w)210mm、長さ(l)605mmの矩形に切断し、4つの側面をダイヤモンドバイトにより鏡面に切削した。次いで、積層体の光出射面の裏面に、片面に粘着層が設けられている光反射層(商品名「E241−WS」、株式会社スミロン製、白色フィルム)の粘着層を有する面をラミネーションし、導光体(第一の導光体)を得た。得られた導光体の模式図を図2に示す。
"Example 1"
(Manufacture of light guides)
Polycarbonate resin (trade name “Taflon LC2200”, manufactured by Idemitsu Kosan Co., Ltd., refractive index n 1 = 1.585) as the material constituting the core layer, and acrylic resin (trade name “Acrypet VH000” as the material constituting the cladding layer , Manufactured by Mitsubishi Rayon Co., Ltd., refractive index n 2 = 1.49), a laminate comprising a core layer and a clad layer laminated on both sides of the core layer was obtained by multilayer melt extrusion. The thickness of each clad layer was 10 μm, and the total thickness of the laminate was 0.7 mm.
The obtained laminate was cut into a rectangle having a width (w) of 210 mm and a length (l) of 605 mm, and four side surfaces were cut into mirror surfaces with a diamond tool. Next, the surface having the adhesive layer of the light reflecting layer (trade name “E241-WS”, manufactured by Sumilon Co., Ltd., white film) provided with an adhesive layer on one side is laminated on the back surface of the light emitting surface of the laminate. A light guide (first light guide) was obtained. A schematic diagram of the obtained light guide is shown in FIG.

(工程A)
得られた導光体の光出射面に、炭酸ガスレーザー加工装置(機種名「EMMLS−001」、LTS社製)を用い、表面積Sが0.0044mm(直径75μmの略円)であり、深さが25μmである凹部を、導光体の長さ方向におけるピッチp及び導光体の幅方向におけるピッチpがそれぞれ1mmとなるように均一に形成して光出射手段を設けた。次いで、導光体の側面に、光源としてLED(商品名「NSSW157T」、日亜化学工業株式会社製)を10mmピッチで20個配置し、面光源Aを得た。得られた面光源Aの模式図を図3に示す。
得られた面光源Aを、直流18V、630mAの電流を通電し発光させ、輝度計(機種名「BM−7A」、株式会社トプコンテクノハウス製)を用い、光源からの距離Lが10mm〜360mmの領域について、10mm刻みで36点の法線方向の輝度を測定した。尚、面光源Aから輝度計の高さを500mm、視野角度を2°とし、輝度計の測定円の中心を各領域の中心と一致させて各領域の輝度を測定し、法線方向の輝度を得た。面光源Aの輝度を図4、図8に示す。
(Process A)
Using a carbon dioxide laser processing device (model name “EMMLS-001”, manufactured by LTS) on the light exit surface of the obtained light guide, the surface area S is 0.0044 mm 2 (approximately circle with a diameter of 75 μm), the recess depth is 25 [mu] m, the pitch p y in the width direction of the pitch p x and the light guide member in the longitudinal direction of the light guide body is provided with a light emitting means uniformly formed so that each becomes 1 mm. Then, 20 LEDs (trade name “NSSW157T”, manufactured by Nichia Corporation) were arranged as light sources on the side surface of the light guide at a pitch of 10 mm to obtain a surface light source A. A schematic view of the obtained surface light source A is shown in FIG.
The obtained surface light source A was made to emit light by applying a direct current of 18 V, 630 mA, and using a luminance meter (model name “BM-7A”, manufactured by Topcon Techno House Co., Ltd.), the distance L from the light source was 10 mm to 360 mm. With respect to the above area, the luminance in the normal direction of 36 points was measured in increments of 10 mm. The brightness of the luminance meter in the normal direction is measured by setting the luminance meter height from the surface light source A to 500 mm, the viewing angle to 2 °, and the center of the measurement circle of the luminance meter to coincide with the center of each region. Got. The luminance of the surface light source A is shown in FIGS.

(工程B)
図4に示す輝度について、その最大値を1とする輝度比率に換算し、更にその対数をとった。次いで、光源からの距離L(mm)をx軸に、得られた輝度比率の対数をy軸にとって、2次元のグラフを作成した。結果を図5に示す。
図5から、傾きが一定となる光源からの距離Lの範囲L1〜L2を200mm〜360mmとした。光源からの距離Lが200mm〜360mmの範囲における輝度比率の対数IL1〜IL2の傾きIを上記数式(1)より求めたところ、−0.00049mm−1であった。Lsを10mmとし、10mmあたりの光出射率Pを上記数式(2)より求めたところ、1.13%であった。面光源Aの光出射率Pを表1に示す。
(Process B)
The luminance shown in FIG. 4 was converted to a luminance ratio with the maximum value being 1, and the logarithm was further taken. Next, a two-dimensional graph was created with the distance L (mm) from the light source as the x axis and the logarithm of the obtained luminance ratio as the y axis. The results are shown in FIG.
From FIG. 5, the range L1 to L2 of the distance L from the light source where the inclination is constant was set to 200 mm to 360 mm. The slope I of the logarithm I L1 to I L2 of the luminance ratio in the range of the distance L from the light source of 200 mm to 360 mm was determined from the above formula (1), and was −0.00049 mm −1 . Ls was set to 10 mm, and the light emission rate P per 10 mm was determined from the above formula (2) and found to be 1.13%. The light emission rate P of the surface light source A is shown in Table 1.

(工程C)
光出射手段を構成する凹部の表面積Sを0.0250mm(長径350μm、短径75μmの略楕円)とした以外は面光源Aと同様の操作を行い、面光源Bを得た。
別途、光出射手段を構成する凹部の表面積Sを0.0550mm(長径750μm、短径75μmの略楕円)とした以外は面光源Aと同様の操作を行い、面光源Cを得た。
得られた面光源B及び面光源Cについて、面光源Aと同様にして輝度を測定し、輝度比率の対数の傾きIから光出射率Pを求めた。面光源B及び面光源Cの輝度を図4、図8に示し、輝度比率の対数を図5に示し、光出射率Pを表1に示す。
尚、長径が導光体の幅方向であり、短径が導光体の長さ方向である。
(Process C)
A surface light source B was obtained in the same manner as the surface light source A except that the surface area S of the concave portion constituting the light emitting means was changed to 0.0250 mm 2 (approximately ellipse having a major axis of 350 μm and a minor axis of 75 μm).
Separately, the surface light source C was obtained in the same manner as the surface light source A, except that the surface area S of the recesses constituting the light emitting means was 0.0550 mm 2 (major ellipse having a major axis of 750 μm and a minor axis of 75 μm).
With respect to the obtained surface light source B and surface light source C, the luminance was measured in the same manner as the surface light source A, and the light emission rate P was obtained from the logarithmic slope I of the luminance ratio. The luminance of the surface light source B and the surface light source C is shown in FIGS. 4 and 8, the logarithm of the luminance ratio is shown in FIG. 5, and the light emission rate P is shown in Table 1.
The major axis is the width direction of the light guide, and the minor axis is the length direction of the light guide.

(工程D)
面光源A、面光源B、面光源Cについて、光出射手段を構成する凹部の表面積Sとピッチから、光出射面の単位面積(1mm)あたりの凹部の表面積Sを算出し、これを表面積率Sとした。面光源A、面光源B、面光源Cの表面積率Sを表1に示す。
工程Bで算出した光出射率P(%)をx軸に、光出射手段を構成する凹部の表面積率Sをy軸にとってプロットした。結果を図6に示す。プロットした3点を最小二乗法により近似して相関関数Fを算出したところ、y=0.00657x−0.00577であった。
(Process D)
For the surface light source A, the surface light source B, and the surface light source C, the surface area S of the concave portion per unit area (1 mm 2 ) of the light emitting surface is calculated from the surface area S and pitch of the concave portions constituting the light emitting means. was the rate S P. Surface light source A, a surface light source B, and the surface area ratio S P output surface light source C shown in Table 1.
Light emission ratio P calculated in Step B (%) in x-axis, the surface area ratio S P output recess constituting the light output means was plotted for the y-axis. The results are shown in FIG. When the correlation function F was calculated by approximating the three plotted points by the least square method, y = 0.657x−0.00577.

Figure 2015213051
Figure 2015213051

(工程E)
光源から導光体に入射させる全光量を3000cd/mと仮に設定し、その全光量を均等に分割し、光源からの距離Lごとに出射させたい輝度を決定した。具体的には、全光量(3000cd/m)を30等分し、光源からの距離Lが0mm〜300mmの領域について10mm刻みで出射させたい輝度を100cd/mと決定した。
次いで、各領域において出射させたい輝度(100cd/m)を出射させるための光出射率Pを算出した。具体的には、各領域において出射させたい輝度を光源から出射される全光量(各領域における減衰前輝度)で割って100を掛けて算出した。算出した光出射率Pを表2に示す。尚、各領域における減衰前輝度は以下のようにして求めた。
本工程の場合、光源からの距離Lが0mm〜300mmの領域について10mm刻みで出射させたい輝度を100cd/mと決定したので、光源からの距離Lが0mm〜10mmの領域(領域i)における減衰前輝度は3000cd/mであり、減衰後輝度は領域iにおける減衰前輝度から出射させたい輝度を差し引いた値、すなわち2900cd/mである。光源からの距離Lが10mm〜20mmの領域(領域ii)における減衰前輝度は領域iにおける減衰後輝度と同じ値、すなわち2900cd/mであり、減衰後輝度は領域iiにおける減衰前輝度から出射させたい輝度を差し引いた値、すなわち2800cd/mである。以下、同様にして、光源からの距離Lが0mm〜300mmの領域において10mm刻みで減衰前輝度および減衰後輝度を求めていくと、光源からの距離Lが290mm〜300mmの領域における減衰前輝度は100cd/mであり、減衰後輝度は0cd/mである。各領域における減衰前輝度と減衰後輝度を表2に示す。
(Process E)
The total amount of light incident on the light guide from the light source was temporarily set to 3000 cd / m 2 , the total amount of light was equally divided, and the luminance desired to be emitted for each distance L from the light source was determined. Specifically, the total amount of light (3000 cd / m 2 ) was divided into 30 equal parts, and the luminance desired to be emitted in 10 mm increments for the region where the distance L from the light source was 0 mm to 300 mm was determined to be 100 cd / m 2 .
Next, a light emission rate P L for emitting the luminance (100 cd / m 2 ) desired to be emitted in each region was calculated. Specifically, the luminance to be emitted in each region was calculated by dividing the luminance by the total light amount emitted from the light source (luminance before attenuation in each region) and multiplying by 100. The calculated light emission rate P L shown in Table 2. The luminance before attenuation in each region was obtained as follows.
In the case of this step, since the luminance to be emitted in 10 mm increments for the region where the distance L from the light source is 0 mm to 300 mm is determined to be 100 cd / m 2 , the region L (region i) where the distance L from the light source is 0 mm to 10 mm. The luminance before attenuation is 3000 cd / m 2 , and the luminance after attenuation is a value obtained by subtracting the luminance to be emitted from the luminance before attenuation in the region i, that is, 2900 cd / m 2 . The luminance before attenuation in the region (region ii) where the distance L from the light source is 10 mm to 20 mm is the same value as the luminance after attenuation in the region i, that is, 2900 cd / m 2 , and the luminance after attenuation is emitted from the luminance before attenuation in the region ii. A value obtained by subtracting the luminance to be obtained, that is, 2800 cd / m 2 . Similarly, when the pre-attenuation luminance and the post-attenuation luminance are determined in increments of 10 mm in a region where the distance L from the light source is 0 mm to 300 mm, the luminance before attenuation in the region where the distance L from the light source is 290 mm to 300 mm is It was 100 cd / m 2, attenuation after the luminance is 0 cd / m 2. Table 2 shows the luminance before attenuation and luminance after attenuation in each region.

Figure 2015213051
Figure 2015213051

(工程F)
相関関数F(y=0.00657x−0.00577)のxに、工程Eで算出した光出射率Pを代入し、相関関数Fのyを算出し、これを光源からの距離Lで出射に必要な光出射手段の表面積率Sとした。
工程Gで設ける予定の光出射手段を、表面積Sが0.0044mm(直径75μmの略円)であり、深さが25μmである凹部の集合体とし、導光体の幅方向のピッチpを0.1mmとし、上記数式(3)より導光体の長さ方向のピッチpを算出した。算出した長さ方向のピッチpを表3に示す。
(Process F)
The x of the correlation function F (y = 0.00657x-0.00577) , by substituting the light emitting rate P L calculated in step E, calculates the y of the correlation function F, which emits at a distance L from the light source and surface area ratio S P output light emitting means necessary.
Light emitting means will be provided in step G, the surface area S is 0.0044mm 2 (substantially circular in diameter 75 [mu] m), the aggregate of the recess depth of 25 [mu] m, the width direction of the light guide pitch p y was a 0.1 mm, it was calculated pitch p x in the longitudinal direction of the equation (3) from the light guide. The pitch p x of the calculated longitudinal shown in Table 3.

Figure 2015213051
Figure 2015213051

(工程G)
工程Aにて輝度の測定に用いた、光出射手段を設ける前の導光体(第一の導光体)と同等の導光体(第二の導光体)を準備した。炭酸ガスレーザー加工装置(機種名「EMMLS−001」、LTS社製)を用い、準備した導光体(第二の導光体)の光出射面に、距離Lごとに、表面積Sが0.0044mm(直径75μmの略円)であり、深さが25μmである凹部を、導光体の幅方向のピッチpを0.1mm、導光体の長さ方向のピッチpを表3に示す値として形成し、光出射手段を設けた。光出射手段の設け方の模式図を図7に示す。
次いで、導光体(第二の導光体)の側面に、光源としてLED(商品名「NSSW157T」、日亜化学工業株式会社製)を10mmピッチで20個配置し、面光源Xを得た。
(Process G)
A light guide body (second light guide body) equivalent to the light guide body (first light guide body) used for measuring the luminance in Step A before providing the light emitting means was prepared. Using a carbon dioxide laser processing apparatus (model name “EMMLS-001”, manufactured by LTS), the surface area S is set to be 0.00 for each distance L on the light emission surface of the prepared light guide (second light guide). 0044mm is 2 (substantially circular with a diameter of 75 [mu] m), a recess depth of 25 [mu] m, 0.1 mm pitch p y in the width direction of the light guide, Table 3 pitches p x length direction of the light guide The light output means was provided. A schematic diagram of how to provide the light emitting means is shown in FIG.
Next, 20 LEDs (trade name “NSSW157T”, manufactured by Nichia Corporation) as light sources were arranged on the side surface of the light guide (second light guide) at a pitch of 10 mm to obtain a surface light source X. .

(光学評価)
得られた面光源Xに直流18V、630mAの電流を通電して発光させ、輝度計(機種名「BM−7A」、株式会社トプコンテクノハウス製)を用い、光源からの距離Lが10mm〜360mmの領域について、10mm刻みで36点の法線方向の輝度を測定した。尚、面光源Xから輝度計の高さを500mm、視野角度を2°とし、輝度計の測定円の中心を各領域の中心と一致させて各領域の輝度を測定し、法線方向の輝度を得た。面光源Xの輝度を図8に示す。
(Optical evaluation)
The obtained surface light source X was made to emit light by applying a direct current of 18 V, 630 mA, and using a luminance meter (model name “BM-7A”, manufactured by Topcon Technohouse Co., Ltd.), the distance L from the light source was 10 mm to 360 mm. With respect to the above area, the luminance in the normal direction of 36 points was measured in increments of 10 mm. The brightness of the luminance meter in the normal direction is measured by setting the luminance meter height from the surface light source X to 500 mm, the viewing angle to 2 °, and the luminance circle of the luminance meter to coincide with the center of each region. Got. The luminance of the surface light source X is shown in FIG.

このとき、光源からの距離Lが10mm〜290mmにおける輝度の平均値を、面光源Xの輝度(cd/m)とした。
また、このとき、光源からの距離Lが10mm〜290mmにおける輝度の最大値と最小値の比を下記数式(4)により算出し、得られた値を面光源Xの均斉度(%)とした。
更に、このとき、光源からの距離Lが10mm〜290mmにおける輝度の総量と光源からの距離Lが10mm〜360mmにおける輝度の総量の比を下記数式(5)により算出し、得られた値を面光源Xの輝度利用率(%)とした。
均斉度={(輝度の最小値)/(輝度の最大値)}×100 ・・・(4)
輝度利用率={(10mm〜290mmにおける輝度の総量)/(10mm〜360mmにおける輝度の総量)}×100 ・・・(5)
At this time, the average value of the luminance when the distance L from the light source was 10 mm to 290 mm was defined as the luminance (cd / m 2 ) of the surface light source X.
At this time, the ratio between the maximum value and the minimum value of the luminance when the distance L from the light source is 10 mm to 290 mm is calculated by the following mathematical formula (4), and the obtained value is defined as the uniformity (%) of the surface light source X. .
Further, at this time, the ratio of the total amount of luminance when the distance L from the light source is 10 mm to 290 mm and the total amount of luminance when the distance L from the light source is 10 mm to 360 mm is calculated by the following equation (5), and the obtained value is The luminance utilization factor (%) of the light source X was used.
Uniformity = {(minimum value of luminance) / (maximum value of luminance)} × 100 (4)
Luminance utilization rate = {(total amount of luminance at 10 mm to 290 mm) / (total amount of luminance at 10 mm to 360 mm)} × 100 (5)

面光源Xの輝度、均斉度、輝度利用率を表4に示す。
また、面光源A、面光源B、面光源Cについても、面光源Xと同様にして輝度、均斉度、輝度利用率を算出した。これらの結果を表4に示す。
Table 4 shows the luminance, uniformity, and luminance utilization factor of the surface light source X.
For the surface light source A, surface light source B, and surface light source C, the luminance, uniformity, and luminance utilization rate were calculated in the same manner as the surface light source X. These results are shown in Table 4.

Figure 2015213051
Figure 2015213051

実施例1で得られた面光源Xは、平均輝度、輝度利用率に優れると共に、均斉度に優れていた。
一方、ピッチを均一にして光出射手段を設けた面光源A、面光源B、面光源Cは、均斉度に劣っていた。
The surface light source X obtained in Example 1 was excellent in average luminance and luminance utilization rate, and excellent in uniformity.
On the other hand, the surface light source A, the surface light source B, and the surface light source C provided with light emitting means with a uniform pitch were inferior in uniformity.

「実施例2」
(導光体の製造)
単層導光体の材料としてアクリル樹脂(商品名「アクリライト LX#001」、三菱レイヨン株式会社製、屈折率n=1.49、厚さ=3.0mm)を用い、これを幅(w)300mm、長さ(l)510mmの矩形に切断し、4つの側面をダイヤモンドバイトにより鏡面に切削し、導光体(第一の導光体)を得た。
"Example 2"
(Manufacture of light guides)
Acrylic resin (trade name “Acrylite LX # 001”, manufactured by Mitsubishi Rayon Co., Ltd., refractive index n 1 = 1.49, thickness = 3.0 mm) is used as the material of the single-layer light guide, and the width ( w) It was cut into a rectangle of 300 mm and length (l) 510 mm, and four side surfaces were cut into mirror surfaces with a diamond tool to obtain a light guide (first light guide).

(工程A)
得られた導光体の光出射面に、炭酸ガスレーザー加工装置(機種名「EMMLS−001」、LTS社製)を用い、表面積Sが0.0044mm(直径75μmの略円)であり、深さが60μmである凹部を、導光体の長さ方向におけるピッチpが0.5mm、導光体の幅方向におけるピッチpが1mmとなるように均一に形成して光出射手段を設けた。次いで、導光体のドット面(光出射面)を下にし、導光体の光出射面とは反対側の面に光反射層として反射シート(商品名「E60」、東レ株式会社製、厚さ188μm)を載置した。また、導光体の側面に、光源としてLED(商品名「NSSW157T」、日亜化学工業株式会社製)を10mmピッチで30個配置し、面光源Dを得た。得られた面光源Dの模式図を図9に示す。
得られた面光源Dを、直流18V 630mAの電流を通電し発光させ、分光放射計(機種名「SR−3AR」、株式会社トプコンテクノハウス製)を用い、光源からの距離Lが10mm〜360mmの領域について、10mm刻みで36点の法線方向の輝度を測定した。尚、面光源Dから分光放射計の高さを500mm、視野角度を2°とし、分光放射計の測定円の中心を各領域の中心と一致させて各領域の輝度を測定し、法線方向の輝度を得た。面光源Dの輝度を図10、13に示す。
(Process A)
Using a carbon dioxide laser processing device (model name “EMMLS-001”, manufactured by LTS) on the light exit surface of the obtained light guide, the surface area S is 0.0044 mm 2 (approximately circle with a diameter of 75 μm), the recess depth is 60 [mu] m, the pitch p x in the longitudinal direction of the light guide is 0.5 mm, the light emitting means uniformly formed so that the pitch p y is 1mm in width direction of the light guide Provided. Next, a reflective sheet (trade name “E60”, manufactured by Toray Industries, Inc., with a thickness as a light reflecting layer on the surface opposite to the light emitting surface of the light guide with the dot surface (light emitting surface) of the light guide down. 188 μm). Further, 30 LEDs (trade name “NSSW157T”, manufactured by Nichia Corporation) were disposed as light sources on the side surface of the light guide at a pitch of 10 mm to obtain a surface light source D. A schematic diagram of the surface light source D obtained is shown in FIG.
The obtained surface light source D was caused to emit light by applying a current of DC 18V 630 mA, and using a spectroradiometer (model name “SR-3AR”, manufactured by Topcon Technohouse Co., Ltd.), the distance L from the light source was 10 mm to 360 mm. With respect to the above area, the luminance in the normal direction of 36 points was measured in increments of 10 mm. In addition, the height of the spectroradiometer from the surface light source D is 500 mm, the viewing angle is 2 °, the center of the spectroradiometer measurement circle is aligned with the center of each region, and the luminance of each region is measured. The brightness was obtained. The luminance of the surface light source D is shown in FIGS.

(工程B)
図10に示す輝度について、その最大値を1とする輝度比率に換算し、更にその対数をとった。次いで、光源からの距離L(mm)をx軸に、得られた輝度比率の対数をy軸にとって、2次元のグラフを作成した。結果を図11に示す。
図11から、傾きが一定となる光源からの距離Lの範囲L1〜L2を60mm〜200mmとした。光源からの距離Lが60mm〜200mmの範囲における輝度比率の対数IL1〜IL2の傾きIを上記数式(1)より求めたところ、−0.01264mm−1であった。Lsを10mmとし、10mmあたりの光出射率Pを上記数式(2)より求めたところ、2.87%であった。面光源Dの光出射率Pを表5に示す。
(Process B)
About the brightness | luminance shown in FIG. 10, it converted into the brightness | luminance ratio which makes the maximum value 1, and also took the logarithm. Next, a two-dimensional graph was created with the distance L (mm) from the light source as the x axis and the logarithm of the obtained luminance ratio as the y axis. The results are shown in FIG.
From FIG. 11, the range L1 to L2 of the distance L from the light source where the inclination is constant was set to 60 mm to 200 mm. When the slope I of the logarithm I L1 to I L2 of the luminance ratio in the range of the distance L from the light source of 60 mm to 200 mm was determined from the above formula (1), it was −0.01264 mm −1 . Ls was set to 10 mm, and the light emission rate P per 10 mm was determined from the above formula (2) and found to be 2.87%. Table 5 shows the light emission rate P of the surface light source D.

(工程C)
光出射手段を構成する凹部の表面積Sを0.0250mm(長径350μm、短径75μmの略楕円)とし、深さを60μmとした以外は面光源Dと同様の操作を行い、面光源Eを得た。
別途、光出射手段を構成する凹部の表面積Sを0.0550mm(長径750μm、短径75μmの略楕円)とし、深さを60μmとした以外は面光源Dと同様の操作を行い、面光源Fを得た。
得られた面光源E及び面光源Fについて、面光源Dと同様にして輝度を測定し、輝度比率の対数の傾きIから光出射率Pを求めた。面光源E及び面光源Fの輝度を図10、図13に示し、輝度比率の対数を図11に示し、光出射率Pを表5に示す。
尚、長径が導光体の幅方向であり、短径が導光体の長さ方向である。
(Process C)
The surface light source E is operated in the same manner as the surface light source D except that the surface area S of the concave portion constituting the light emitting means is 0.0250 mm 2 (approximately ellipse having a major axis of 350 μm and a minor axis of 75 μm) and the depth is 60 μm. Obtained.
Separately, the surface light source D is operated in the same manner as the surface light source D except that the surface area S of the concave portion constituting the light emitting means is 0.0550 mm 2 (major ellipse having a major axis of 750 μm and a minor axis of 75 μm) and the depth is 60 μm. F was obtained.
With respect to the obtained surface light source E and surface light source F, the luminance was measured in the same manner as the surface light source D, and the light emission rate P was obtained from the logarithmic slope I of the luminance ratio. The luminance of the surface light source E and the surface light source F is shown in FIGS. 10 and 13, the logarithm of the luminance ratio is shown in FIG. 11, and the light emission rate P is shown in Table 5.
The major axis is the width direction of the light guide, and the minor axis is the length direction of the light guide.

(工程D)
面光源D、面光源E、面光源Fについて、光出射手段を構成する凹部の表面積Sとピッチから、光出射面の単位面積(1mm)あたりの凹部の表面積Sを算出し、これを表面積率Sとした。面光源D、面光源E、面光源Fの表面積率Sを表5に示す。
工程Bで算出した光出射率P(%)をx軸に、光出射手段を構成する凹部の表面積率Sをy軸にとってプロットした。結果を図12に示す。プロットした3点を最小二乗法により近似して相関関数Fを算出したところ、y=0.00860x−0.01932であった。
(Process D)
For the surface light source D, the surface light source E, and the surface light source F, the surface area S of the concave portion per unit area (1 mm 2 ) of the light emitting surface is calculated from the surface area S and pitch of the concave portions constituting the light emitting means. was the rate S P. Surface light source D, a surface light source E, the surface area ratio S P output surface light source F are shown in Table 5.
Light emission ratio P calculated in Step B (%) in x-axis, the surface area ratio S P output recess constituting the light output means was plotted for the y-axis. The results are shown in FIG. When the correlation function F was calculated by approximating the three plotted points by the least square method, y = 0.00860x−0.01932.

Figure 2015213051
Figure 2015213051

(工程E)
光源から導光体に入射させる全光量を3000cd/mと仮に設定し、その全光量を均等に分割し、光源からの距離Lごとに出射させたい輝度を決定した。具体的には、全光量(3000cd/m)を30等分し、光源からの距離Lが0mm〜300mmの領域について10mm刻みで出射させたい輝度を100cd/mと決定した。
次いで、各領域において出射させたい輝度(100cd/m)を出射させるための光出射率Pを算出した。具体的には、各領域において出射させたい輝度を光源から出射される全光量(各領域における減衰前輝度)で割って100を掛けて算出した。算出した光出射率Pを表6に示す。尚、各領域における減衰前輝度は実施例1と同様にして求めた。各領域における減衰前輝度と減衰後輝度を表6に示す。
(Process E)
The total amount of light incident on the light guide from the light source was temporarily set to 3000 cd / m 2 , the total amount of light was equally divided, and the luminance desired to be emitted for each distance L from the light source was determined. Specifically, the total amount of light (3000 cd / m 2 ) was divided into 30 equal parts, and the luminance desired to be emitted in 10 mm increments for the region where the distance L from the light source was 0 mm to 300 mm was determined to be 100 cd / m 2 .
Next, a light emission rate P L for emitting the luminance (100 cd / m 2 ) desired to be emitted in each region was calculated. Specifically, the luminance to be emitted in each region was calculated by dividing the luminance by the total light amount emitted from the light source (luminance before attenuation in each region) and multiplying by 100. The calculated light emission rate P L shown in Table 6. The luminance before attenuation in each region was determined in the same manner as in Example 1. Table 6 shows the luminance before attenuation and luminance after attenuation in each region.

Figure 2015213051
Figure 2015213051

(工程F)
相関関数F(y=0.00860x−0.01932)のxに、工程Eで算出した光出射率Pを代入し、相関関数Fのyを算出し、これを光源からの距離Lで出射に必要な光出射手段の表面積率Sとした。
工程Gで設ける予定の光出射手段を、表面積Sが0.0250mm(直径350μmの略円)であり、深さが60μmである凹部の集合体とし、導光体の幅方向のピッチpを1mmとし、上記数式(3)より導光体の長さ方向のピッチpを算出した。算出した長さ方向のピッチpを表7に示す。
(Process F)
The x of the correlation function F (y = 0.00860x-0.01932) , by substituting the light emitting rate P L calculated in step E, calculates the y of the correlation function F, which emits at a distance L from the light source and surface area ratio S P output light emitting means necessary.
Light emitting means will be provided in step G, the surface area S is 0.0250mm 2 (approximately circular diameter 350 .mu.m), the aggregate of the recess depth of 60 [mu] m, the width direction of the light guide pitch p y It was a 1 mm, were calculated pitch p x in the longitudinal direction of the equation (3) from the light guide. The pitch p x of the calculated longitudinal shown in Table 7.

Figure 2015213051
Figure 2015213051

(工程G)
工程Aにて輝度の測定に用いた、光出射手段を設ける前の導光体(第一の導光体)と同等の導光体(第二の導光体)を準備した。炭酸ガスレーザー加工装置(機種名「EMMLS−001」、LTS社製)を用い、準備した導光体(第二の導光体)の光出射面に、距離Lごとに、表面積Sが0.0250mm(直径350μmの略円であり)、深さが60μmである凹部を、導光体の幅方向のピッチpを1.0mm、導光体の長さ方向のピッチpを表7に示す値として形成し、光出射手段を設けた。光出射手段の設け方の模式図を図7に示す。
次いで、導光体(第二の導光体)の側面に、光源としてLED(商品名「NSSW157T」、日亜化学工業株式会社製)を10mmピッチで30個配置し、面光源Yを得た。
(Process G)
A light guide body (second light guide body) equivalent to the light guide body (first light guide body) used for measuring the luminance in Step A before providing the light emitting means was prepared. Using a carbon dioxide laser processing apparatus (model name “EMMLS-001”, manufactured by LTS), the surface area S is set to be 0.00 for each distance L on the light emission surface of the prepared light guide (second light guide). 0250mm 2 (be approximately circular with a diameter of 350 .mu.m), the recess depth is 60 [mu] m, 1.0 mm pitch p y in the width direction of the light guide, table pitches p x in the longitudinal direction of the light guide body 7 The light output means was provided. A schematic diagram of how to provide the light emitting means is shown in FIG.
Next, 30 LEDs (trade name “NSSW157T”, manufactured by Nichia Corporation) were disposed as light sources on the side surface of the light guide (second light guide) at a pitch of 10 mm to obtain a surface light source Y. .

(光学評価)
得られた面光源Yに直流18V、630mAの電流を通電して発光させ、分光放射計(機種名「SR−3AR」、株式会社トプコンテクノハウス製)を用い、光源からの距離Lが10mm〜360mmの領域について、10mm刻みで36点の法線方向の輝度を測定した。尚、面光源Yから分光放射計の高さを500mm、視野角度を2°とし、分光放射計の測定円の中心を各領域の中心と一致させて各領域の輝度を測定し、法線方向の輝度を得た。面光源Yの輝度を図13に示す。
(Optical evaluation)
The obtained surface light source Y was caused to emit light by applying a direct current of 18 V, 630 mA, and using a spectroradiometer (model name “SR-3AR”, manufactured by Topcon Technohouse Co., Ltd.), the distance L from the light source was 10 mm to For a 360 mm region, the luminance in the normal direction of 36 points was measured in increments of 10 mm. The height of the spectroradiometer from the surface light source Y is 500 mm, the viewing angle is 2 °, the center of the spectroradiometer measurement circle is aligned with the center of each region, and the brightness of each region is measured. The brightness was obtained. The luminance of the surface light source Y is shown in FIG.

このとき、光源からの距離Lが10mm〜290mmにおける輝度の平均値を、面光源Yの輝度(cd/m)とした。
また、このとき、光源からの距離Lが10mm〜290mmにおける輝度の最大値と最小値の比を上記数式(4)により算出し、得られた値を面光源Yの均斉度(%)とした。
更に、このとき、光源からの距離Lが10mm〜290mmにおける輝度の総量と光源からの距離Lが10mm〜360mmにおける輝度の総量の比を上記数式(5)により算出し、得られた値を面光源Yの輝度利用率(%)とした。
At this time, the average value of the luminance when the distance L from the light source was 10 mm to 290 mm was defined as the luminance (cd / m 2 ) of the surface light source Y.
At this time, the ratio between the maximum value and the minimum value of the luminance when the distance L from the light source is 10 mm to 290 mm is calculated by the above formula (4), and the obtained value is defined as the uniformity (%) of the surface light source Y. .
Further, at this time, the ratio of the total amount of luminance when the distance L from the light source is 10 mm to 290 mm and the total amount of luminance when the distance L from the light source is 10 mm to 360 mm is calculated by the above equation (5), and the obtained value The luminance utilization factor (%) of the light source Y was used.

面光源Yの輝度、均斉度、輝度利用率を表8に示す。
また、面光源D、面光源E、面光源Fについても、面光源Yと同様にして輝度、均斉度、輝度利用率を算出した。これらの結果を表8に示す。
Table 8 shows the luminance, uniformity, and luminance utilization factor of the surface light source Y.
For the surface light source D, the surface light source E, and the surface light source F, the luminance, the uniformity, and the luminance utilization rate were calculated in the same manner as the surface light source Y. These results are shown in Table 8.

Figure 2015213051
Figure 2015213051

実施例2で得られた面光源Yは、平均輝度、輝度利用率に優れると共に、均斉度に優れていた。
一方、ピッチを均一にして光出射手段を設けた面光源D、面光源E、面光源Fは、均斉度に劣っていた。
The surface light source Y obtained in Example 2 was excellent in average luminance and luminance utilization rate and in uniformity.
On the other hand, the surface light source D, the surface light source E, and the surface light source F provided with light emitting means with a uniform pitch were inferior in uniformity.

本発明の面光源の製造方法によれば、所望の輝度の面光源を得ることができる。そのため、得られる面光源は、例えば、携帯電話、ノートパソコン、液晶テレビ、ビデオカメラ等に用いられる液晶表示装置、携帯電話のバックライトキー、パソコンのバックライトキーボード、電気機器や車両の表示スイッチ等の表示装置、シーリングライト等の室内照明、照明看板等の照明装置等に好適に用いることができる。   According to the method for manufacturing a surface light source of the present invention, a surface light source having a desired luminance can be obtained. Therefore, the surface light source obtained is, for example, a liquid crystal display device used for mobile phones, notebook computers, liquid crystal televisions, video cameras, etc., backlight keys for mobile phones, backlight keyboards for personal computers, display switches for electrical equipment and vehicles, etc. It can be suitably used for indoor lighting such as display devices and ceiling lights, and lighting devices such as lighting signs.

1 面光源
10 導光体
11 コア層
12 クラッド層
13 光反射層
14 光出射面
15 光入射面
20 光出射手段
21 凹部
30 光源
l 導光体の長さ
w 導光体の幅
DESCRIPTION OF SYMBOLS 1 Surface light source 10 Light guide 11 Core layer 12 Cladding layer 13 Light reflection layer 14 Light emission surface 15 Light incident surface 20 Light emission means 21 Recess 30 Light source l Length of light guide w Width of light guide

Claims (6)

板状の導光体の光出射面に光出射手段を設け、側面に光源を設ける面光源の製造方法であって、
前記光出射手段は、前記導光体と同等の導光体を用い、該導光体の光出射面に均一なパターンで光出射手段を設け、側面に前記光源と同等の光源を設けて導光体の光出射面から発光する輝度を測定し、測定した輝度から光出射手段のパターンを決定し、決定したパターンに従ったものである、面光源の製造方法。
A method of manufacturing a surface light source in which a light emitting means is provided on a light emitting surface of a plate-like light guide and a light source is provided on a side surface,
The light emitting means uses a light guide equivalent to the light guide, the light emitting means is provided in a uniform pattern on the light emitting surface of the light guide, and the light source equivalent to the light source is provided on the side surface for guiding. A method of manufacturing a surface light source, comprising: measuring a luminance emitted from a light emitting surface of a light body; determining a pattern of light emitting means from the measured luminance; and following the determined pattern.
前記光出射手段が凹部又は凸部の集合体であり、
測定した輝度から光出射率Pを算出し、算出した光出射率Pと、光出射面の単位面積あたりの前記凹部又は凸部の表面積Sと、所望の輝度を出射させるための光出射率Pとから、光出射手段のパターンを決定する、請求項1に記載の面光源の製造方法。
The light emitting means is an assembly of concave or convex portions;
The light output rate P is calculated from the measured luminance, the calculated light output rate P, the surface area S of the concave or convex portion per unit area of the light output surface, and the light output rate P for emitting a desired luminance. The method of manufacturing a surface light source according to claim 1, wherein a pattern of the light emitting means is determined from L.
以下の工程A〜工程Gを含む、請求項1又は2に記載の面光源の製造方法。
工程A:板状の導光体の光出射面に凹部又は凸部の集合体である光出射手段を均一なパターンで設け、導光体の側面に光源を設け、導光体の光出射面から発光する輝度を光源からの距離Lが異なる複数の位置で測定する。
工程B:工程Aで測定した各輝度のうち、最大値に対する各輝度の比率を算出して輝度比率とし、光源からの距離Lに対する輝度比率の対数の傾きIから、光出射率Pを算出する。
工程C:光出射手段を構成する凹部又は凸部の表面積Sが異なる導光体について、前記工程Aと工程Bとを行う。
工程D:光出射面の単位面積あたりの前記凹部又は凸部の表面積Sを算出して表面積率Sとし、前記光出射率Pと表面積率Sとの相関関数Fを作成する。
工程E:光源から導光体に入射させる全光量を分割し、光源からの距離Lごとに出射させたい輝度を決め、その輝度を出射させるための光出射率Pを光源からの距離Lごとに算出する。
工程F:相関関数Fと光出射率Pとから、光源からの距離Lで出射に必要な光出射手段のパターンを決定する。
工程G:工程Aにて輝度の測定に用いた、光出射手段を設ける前の導光体と同等の導光体を準備し、該導光体の光出射面に、側面から距離Lごとに工程Fで決定したパターンに従って光出射手段を設け、導光体の側面に工程Aにて用いた光源と同等の光源を設ける。
The manufacturing method of the surface light source of Claim 1 or 2 including the following processes A-G.
Step A: The light emitting means, which is an assembly of concave or convex portions, is provided in a uniform pattern on the light emitting surface of the plate-shaped light guide, the light source is provided on the side surface of the light guide, and the light emitting surface of the light guide Are measured at a plurality of positions at different distances L from the light source.
Step B: Of each luminance measured in Step A, the ratio of each luminance to the maximum value is calculated as a luminance ratio, and the light emission rate P is calculated from the logarithmic slope I of the luminance ratio with respect to the distance L from the light source. .
Process C: The said process A and the process B are performed about the light guide from which the surface area S of the recessed part or convex part which comprises a light-projection means differs.
Step D: calculate the surface area S of the concave portions or convex portions per unit area of the light emission surface is the surface area ratio S P, to create a correlation function F of the light emitting rate P and the surface area ratio S P.
Step E: dividing the entire amount of light emitted from the light source to the light guide determines the brightness desired to be emitted for each distance L from the light source, each distance L of light emitting rate P L for emitting the luminance from the light source To calculate.
Step F: To determine the pattern of the correlation function F and the light emitting rate P L, the light emitting means necessary to exit at a distance L from the light source.
Step G: Prepare a light guide equivalent to the light guide before the light emitting means used for measuring the luminance in Step A, and at each distance L from the side to the light exit surface of the light guide A light emitting means is provided according to the pattern determined in step F, and a light source equivalent to the light source used in step A is provided on the side surface of the light guide.
請求項1〜3のいずれか一項に記載の面光源の製造方法により得られる、面光源。   The surface light source obtained by the manufacturing method of the surface light source as described in any one of Claims 1-3. 導光体の側面に光源を有し、導光体の光出射面から光が出射する面光源であって、
面光源の均斉度が50%以上である、面光源。
A surface light source having a light source on the side surface of the light guide and emitting light from the light exit surface of the light guide,
A surface light source in which the uniformity of the surface light source is 50% or more.
光源から出射される全光量100%に対し、導光体の光出射面から出射する光量が90%以上である、請求項5に記載の面光源。   The surface light source according to claim 5, wherein the amount of light emitted from the light emitting surface of the light guide is 90% or more with respect to 100% of the total amount of light emitted from the light source.
JP2015061296A 2014-04-16 2015-03-24 Manufacturing method of surface light source and surface light source Pending JP2015213051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015061296A JP2015213051A (en) 2014-04-16 2015-03-24 Manufacturing method of surface light source and surface light source

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014084181 2014-04-16
JP2014084181 2014-04-16
JP2015061296A JP2015213051A (en) 2014-04-16 2015-03-24 Manufacturing method of surface light source and surface light source

Publications (1)

Publication Number Publication Date
JP2015213051A true JP2015213051A (en) 2015-11-26

Family

ID=54697207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015061296A Pending JP2015213051A (en) 2014-04-16 2015-03-24 Manufacturing method of surface light source and surface light source

Country Status (1)

Country Link
JP (1) JP2015213051A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180676A1 (en) * 2018-03-22 2019-09-26 Nitto Denko Corporation Optical device
JPWO2018212177A1 (en) * 2017-05-15 2020-03-12 大日本印刷株式会社 Light emitting device, assembly kit, building material panel, structure, and method of manufacturing structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018212177A1 (en) * 2017-05-15 2020-03-12 大日本印刷株式会社 Light emitting device, assembly kit, building material panel, structure, and method of manufacturing structure
JP2021064611A (en) * 2017-05-15 2021-04-22 大日本印刷株式会社 Light emission device, assembly kit, building panel, structure, and method of manufacturing structure
WO2019180676A1 (en) * 2018-03-22 2019-09-26 Nitto Denko Corporation Optical device
CN111936785A (en) * 2018-03-22 2020-11-13 日东电工株式会社 Optical device
KR20200134226A (en) * 2018-03-22 2020-12-01 닛토덴코 가부시키가이샤 Optical device
JP2021518634A (en) * 2018-03-22 2021-08-02 日東電工株式会社 Optical device
US11733447B2 (en) 2018-03-22 2023-08-22 Nitto Denko Corporation Optical device
JP7341157B2 (en) 2018-03-22 2023-09-08 日東電工株式会社 optical device
TWI837121B (en) * 2018-03-22 2024-04-01 日商日東電工股份有限公司 Optical device
KR102671591B1 (en) * 2018-03-22 2024-06-03 닛토덴코 가부시키가이샤 optical device

Similar Documents

Publication Publication Date Title
JP6223746B2 (en) Single-sided light-emitting transparent light guide plate and surface light-emitting device using this light guide plate
JP2007256910A (en) Surface light source device, backlight unit with same and liquid crystal display provided with backlight unit
JP2009164101A (en) Backlight
JP2013016472A (en) Light guide plate
JP2017027814A (en) Surface light source device and prism sheet
TWI605224B (en) Illumination device
TW201505847A (en) Laminate, method for producing laminate, light guide body for light source device and light source device
JP2008218418A (en) Surface light source and light guide used for same
JP2005353406A (en) Light guide plate
JP2018517166A (en) Texture gradient for uniform light output from a transparent backlight
JP2009140905A (en) Light guide plate and backlight
JP2015213051A (en) Manufacturing method of surface light source and surface light source
JP5930729B2 (en) Light guide plate, surface light source device, and transmissive image display device
JP5804216B2 (en) Light guide plate, surface light source device, transmissive display device
WO2015020031A1 (en) Method for producing laminate, laminate, light guide body for light source devices, and light source device
JP5804011B2 (en) Transmission type display device
JP2017123218A (en) Transparent material, process of manufacturing transparent material, and light source device
JP2009158468A (en) Backlight
JP5784428B2 (en) Light guide plate unit
JP2015015185A (en) Luminaire
US20160313493A1 (en) Light guide plate and transparent display apparatus having the same
JP2013229210A (en) Light guide plate
JP2012256534A (en) Planar lighting device
JP2014146468A (en) Light guide plate
JP2016219121A (en) Light guide body for surface light source device, and surface light source device