JP5016009B2 - Optical signal processing apparatus and assembly method thereof - Google Patents

Optical signal processing apparatus and assembly method thereof Download PDF

Info

Publication number
JP5016009B2
JP5016009B2 JP2009203014A JP2009203014A JP5016009B2 JP 5016009 B2 JP5016009 B2 JP 5016009B2 JP 2009203014 A JP2009203014 A JP 2009203014A JP 2009203014 A JP2009203014 A JP 2009203014A JP 5016009 B2 JP5016009 B2 JP 5016009B2
Authority
JP
Japan
Prior art keywords
waveguide
light
signal processing
optical signal
light input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009203014A
Other languages
Japanese (ja)
Other versions
JP2011053487A (en
Inventor
直樹 大庭
元速 石井
和則 妹尾
俊夫 渡辺
拓也 田中
匡 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009203014A priority Critical patent/JP5016009B2/en
Publication of JP2011053487A publication Critical patent/JP2011053487A/en
Application granted granted Critical
Publication of JP5016009B2 publication Critical patent/JP5016009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical signal processor having improved alignment accuracy. <P>SOLUTION: The optical signal processor is equipped with: an array waveguide diffraction grating which has a signal light input waveguide, an alignment light input waveguide, a slab waveguide linked to the signal light input waveguide and to the alignment light input waveguide, and an array waveguide linked to the slab waveguide; a converging optical system which converges signal light emitted from the array waveguide diffraction grating to a space at a position corresponding to an emission angle from the array waveguide diffraction grating; and an optical signal processing means which is arranged at a position where the signal light is converged by the converging optical system and carries out phase modulation or intensity modulation or deflection of the signal light. In the optical signal processor, a basic mode diameter at a surface linked to the slab waveguide of guided wave light of the alignment light input waveguide is larger than the basic mode diameter at a surface linked to the slab waveguide of the guided wave light of a signal light input output waveguide. Difference between the basic mode diameters improves alignment accuracy when assembling. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、光信号処理装置およびその組み立て方法に関する。   The present invention relates to an optical signal processing device and an assembling method thereof.

光通信ネットワークの高速化および大容量化が進み、波長分割多重(WDM:Wavelength Division Multiplexing)伝送信号の処理等の光信号処理を行う装置へのニーズも高まっている。例えば、多重化された光信号をノードにおいてチャネル毎に経路切り替えする波長選択スイッチ(WSS:Wavelength Selective Switch)や、伝送路の光ファイバが持つ波長分散を補償する可変分散補償器(TODC:Tunable Optical Dispersion Compensator)が必要とされている。   As the speed and capacity of optical communication networks have increased, the need for devices that perform optical signal processing such as processing of wavelength division multiplexing (WDM) transmission signals has increased. For example, a wavelength selective switch (WSS) that switches the path of a multiplexed optical signal for each channel in a node, or a variable dispersion compensator (TODC: Tunable Optical) that compensates for chromatic dispersion of an optical fiber in a transmission line Dispersion Compensator) is required.

光信号処理装置を小型化・集積化する目的から、平面光波回路(PLC:Planar Lightwave Circuit)の開発研究が進められている。例えば、シリコン基板上に石英系ガラスを材料とした導波路を形成して1つのチップに多様な機能を集積し、低損失で信頼性の高い光機能デバイスが実現されている。さらには、複数のPLCチップと他の光機能部品とを組み合わせた複合的な光信号処理装置も登場している。   Research and development of a planar lightwave circuit (PLC) is underway for the purpose of downsizing and integrating an optical signal processing device. For example, a waveguide made of quartz glass material is formed on a silicon substrate, and various functions are integrated on one chip, so that an optical functional device with low loss and high reliability is realized. Furthermore, a composite optical signal processing device in which a plurality of PLC chips and other optical functional parts are combined has appeared.

従来、PLCを用いたWSSとして、光偏向素子にMEMS(Micro Electro Mechanical Systems)ミラーアレイを用いたものが知られている(特許文献1および非特許文献1参照)。図1は、そのようなMEMSミラーアレイを用いたWSSの構成を示す図である。図1(a)はWSSの平面図であり、図1(b)は側面図である。図1に示すWSSは、入力側の光ファイバにWDM光信号が入力光として入力し、PLC技術により作製されるアレイ導波路回折格子10(AWG:Arrayed Waveguide Grating)により互いに波長の異なるチャネル光信号毎に分波され、分波されたチャネル光信号が、レンズ(シリンドリカルレンズ20、主レンズ40)により、MEMSミラーアレイを構成するMEMSミラー60に集光するように構成されている。ここでMEMSミラーアレイは、各々のミラー60に各波長チャネルの光信号が各々入力するように配置されている。なお、本明細書においては、AWGの分光面に垂直な方向をy、AWGの設計中心波長の信号光の主光線軸をz、両者に直交する軸をxとする。   2. Description of the Related Art Conventionally, as a WSS using a PLC, one using a MEMS (Micro Electro Mechanical Systems) mirror array as an optical deflection element is known (see Patent Document 1 and Non-Patent Document 1). FIG. 1 is a diagram showing the configuration of a WSS using such a MEMS mirror array. FIG. 1A is a plan view of the WSS, and FIG. 1B is a side view. In the WSS shown in FIG. 1, WDM optical signals are input as input light to an input-side optical fiber, and channel optical signals having different wavelengths from each other by an arrayed waveguide grating 10 (AWG: Arrayed Waveguide Grating) manufactured by PLC technology. Each channel light signal that has been demultiplexed every time is condensed by a lens (cylindrical lens 20, main lens 40) onto a MEMS mirror 60 that forms a MEMS mirror array. Here, the MEMS mirror array is arranged so that the optical signals of the respective wavelength channels are input to the respective mirrors 60. In this specification, the direction perpendicular to the spectral plane of the AWG is y, the principal ray axis of the signal light having the design center wavelength of the AWG is z, and the axis orthogonal to both is x.

図1(b)に示すように、WSSは、入力側のアレイ導波路回折格子10と複数の出力側のアレイ導波路回折格子10’とを(y方向に)スタックした構成である。MEMSミラー60を対称軸または回転軸として、信号光の光路軸の延長線上であってアレイ導波路回折格子10と重ならない位置に、1つ以上の出射用のアレイ導波路回折格子10’が配置されている。したがって、各MEMSミラーの角度を光軸(z方向)に対して上下の方向(y方向)に調整することにより、スタックされた他のAWGへ光信号を入力させることができる。   As shown in FIG. 1B, the WSS has a configuration in which an input side arrayed waveguide grating 10 and a plurality of output side arrayed waveguide gratings 10 'are stacked (in the y direction). One or more output arrayed waveguide diffraction gratings 10 ′ are arranged at positions on the extended line of the optical path axis of the signal light and not overlapping the arrayed waveguide diffraction grating 10 with the MEMS mirror 60 as the axis of symmetry or the rotation axis. Has been. Therefore, an optical signal can be input to another stacked AWG by adjusting the angle of each MEMS mirror in the vertical direction (y direction) with respect to the optical axis (z direction).

図1に示すWSSにおいて、各波長チャネルの光信号は、出力側の各AWGにより合波され再び各出力ポートからWDM信号として出力される。図1の例では1つの入力側のアレイ導波路回折格子に対して、2個のアレイ導波路回折格子が存在するため1入力2出力のWSSとして機能する。   In the WSS shown in FIG. 1, the optical signals of the respective wavelength channels are multiplexed by the output side AWGs and output again as WDM signals from the respective output ports. In the example of FIG. 1, since there are two arrayed waveguide diffraction gratings for one input side arrayed waveguide diffraction grating, it functions as a 1-input 2-output WSS.

一方、PLCを用いたTODCとして、空間光位相変調素子としてLCOS(Liquid Crystal On Silicon)を用いたものが知られている(非特許文献2参照)。図2は、そのようTODCの構成を示す図である。図2に示すTODCは、入出力導波路15に光信号が入力光として入力し、AWG10により互いに波長の異なる光毎に分波され、分波された光信号が、集光光学系(シリンドリカルレンズ20、主レンズ40)により、波長成分毎にLCOS61に集光するように構成されている。ここでLCOSは、入射光を任意のx軸方向パターンで位相変調して反射する機能を持っているので、LCOSにより波長に対して任意のパターンの位相変調を信号光に付与できる。波長に対して2次関数パターンの位相変調を行うと波長分散が生ずる事が知られている。光信号に付与される波長分散値は、位相変調パターンの2次係数に比例する。目的の2次係数を持つパターンをLCOSへ設定する事で目的の波長分散を信号光に付与するTODC機能が実現できる。   On the other hand, a TODC using a PLC is known that uses LCOS (Liquid Crystal On Silicon) as a spatial light phase modulation element (see Non-Patent Document 2). FIG. 2 is a diagram showing the configuration of such a TODC. In the TODC shown in FIG. 2, an optical signal is input to the input / output waveguide 15 as input light, and is demultiplexed by the AWG 10 for each light having different wavelengths, and the demultiplexed optical signal is converted into a condensing optical system (cylindrical lens). 20, the main lens 40) is configured to condense on the LCOS 61 for each wavelength component. Here, the LCOS has a function of reflecting the phase of incident light with an arbitrary pattern in the x-axis direction, so that the phase modulation of an arbitrary pattern with respect to the wavelength can be imparted to the signal light by the LCOS. It is known that chromatic dispersion occurs when phase modulation of a quadratic function pattern is performed on the wavelength. The chromatic dispersion value given to the optical signal is proportional to the second order coefficient of the phase modulation pattern. By setting a pattern having a target second-order coefficient in the LCOS, a TODC function that imparts target wavelength dispersion to the signal light can be realized.

米国特許第7088882号明細書U.S. Pat. No. 7,088,882

Proc. 31st Eur. Conf. Opt. Commun. 2005, Th3.6.4Proc. 31st Eur. Conf. Opt. Commun. 2005, Th3.6.4 Opt. Fiber Commun. Conf. 2008, OWP04Opt. Fiber Commun. Conf. 2008, OWP04 J. Lightwave Technol., vol. 22, p. 833, 2004J. Lightwave Technol., Vol. 22, p. 833, 2004

しかしながら、図1のWSSおよび図2のTODCには、以下のような課題が存在する。一般に、AWG、レンズ等の集光素子によって構成される集光光学系、MEMSミラーやLCOSのような光信号処理手段は、光軸を基準に正しい位置に配置される必要がある。すなわち、設計位置からの偏心は、信号光透過損失の原因となるため、光信号処理装置の組み立て時に十分小さくしなくてはならない。光学部材の正しい位置への配置方法、すなわち調心方法は、信号光を入力してその透過損失等の光学特性を評価しながら最適位置に調心する「アクティブ調心」と、カメラ等の光線位置を直接観測する手段を用いて光線が設計位置に配置されるように調心する「パッシブ調心」の2つの方法がある。   However, the WSS of FIG. 1 and the TODC of FIG. 2 have the following problems. In general, a condensing optical system constituted by a condensing element such as an AWG or a lens, an optical signal processing means such as a MEMS mirror or LCOS needs to be arranged at a correct position with reference to the optical axis. That is, since the eccentricity from the design position causes a loss of signal light transmission, it must be made sufficiently small when the optical signal processing apparatus is assembled. The optical member is positioned at the correct position, that is, the alignment method is an active alignment method in which signal light is input and the optical characteristics such as transmission loss are evaluated, and an optical beam from a camera or the like. There are two methods of “passive alignment” in which the light beam is aligned at the design position using means for directly observing the position.

アクティブ調心では、透過率等の観測される情報からはどの光学部材が偏心しているかが特定できない。このため、個々のレンズ等の多数の光学部材の多数の軸(並進軸や回転軸)を動かして見て結果を観測する事を繰り返す手順が必要となる。この方法は、(1)調心時間が長くなる欠点と、(2)実際の最適配置ではない局所的な透過率ピーク位置を最適調心位置と見誤る可能性がある欠点、さらには、(3)局所的な透過率ピーク位置であると判明しても最適調心位置を見つけ出す指針が無いと言う欠点を有する。ただし、他の方法により光学部材の位置がほぼ設計通りの位置に調心配置された状態から、さらに精度を高める調心においては前記の欠点は解消される。   In active alignment, which optical member is decentered cannot be specified from observed information such as transmittance. For this reason, it is necessary to repeat a procedure of observing the result by moving a large number of axes (translation axes and rotation axes) of a large number of optical members such as individual lenses. This method has the following disadvantages: (1) the alignment time becomes long, (2) the local transmittance peak position that is not the actual optimal arrangement may be mistaken as the optimal alignment position, and ( 3) There is a drawback that there is no guide for finding the optimum alignment position even if it is determined that the position is a local transmittance peak position. However, the above-described drawbacks are eliminated in alignment that further increases accuracy from a state in which the position of the optical member is aligned at a substantially designed position by another method.

一方、パッシブ調心方法では、調心光が設計時の光線位置になるように入射側から順次光学部材を調整する事が出来るので、上記アクティブ調心の3つの欠点は解決される。しかしながら、信号光透過率等の光信号処理装置として必要な特性を得るために必要な光軸位置精度が、カメラ等の光線観測手段の精度を上回る場合は、十分な調心精度が得られないという欠点が存在する。   On the other hand, in the passive alignment method, the optical member can be sequentially adjusted from the incident side so that the alignment light becomes the light beam position at the time of design, so that the three drawbacks of the active alignment are solved. However, sufficient alignment accuracy cannot be obtained when the optical axis position accuracy required to obtain the characteristics required for the optical signal processing device such as the signal light transmittance exceeds the accuracy of the light beam observation means such as a camera. There is a drawback.

具体的には、図1及び図2の光信号処理装置においては、分波後の信号光の主光線は、その波長に依らず、光信号処理手段(MEMSミラー60またはLCOS61)にx−z面内で垂直に入射する必要がある。垂直に入射しないと、入射光と反射光の主光線軸がずれることになり、光軸ずれによる光損失が生じる。特定の波長の光で前記の垂直を実現するには、光信号処理手段のθyを調整すれば済む。しかし、すべての波長の光で同時に前記の垂直入射を実現し、光損失の波長依存(ILU:Insertion Loss Uniformity)を小さくするには、各波長の信号光の主光線が互いに平行である必要がある。この要請は、集光光学系における「像テレセントリシティ」と呼ばれ、主レンズ40の前焦点位置が、瞳と一致するように光学系の各部材を調心する事で実現される。AWGによる分光光学系の場合、瞳は、各波長光が偏角するアレイ導波路14と出力側スラブ導波路11との接続する面にある。また、図1や図2の構成以外として、信号光を透過する形式の光信号処理手段を用い、入射光線の光路軸の延長線上に集光光学系と新たなAWGによる出射光学系を配置した場合にも、光損失を避けるためには、集光光学系の像テレセントリシティが必要となる。   Specifically, in the optical signal processing device of FIGS. 1 and 2, the principal ray of the signal light after demultiplexing does not depend on the wavelength, but is transmitted to the optical signal processing means (MEMS mirror 60 or LCOS 61) by xz. It is necessary to enter perpendicularly in the plane. If the light does not enter perpendicularly, the principal ray axes of the incident light and the reflected light will deviate, resulting in light loss due to the deviation of the optical axis. In order to realize the perpendicularity with light of a specific wavelength, it is only necessary to adjust θy of the optical signal processing means. However, in order to realize the above-described normal incidence at the same time for all wavelengths of light and reduce the wavelength dependence (ILU) of the optical loss, it is necessary for the principal rays of the signal light of each wavelength to be parallel to each other. is there. This requirement is called “image telecentricity” in the condensing optical system, and is realized by aligning each member of the optical system so that the front focal position of the main lens 40 coincides with the pupil. In the case of a spectroscopic optical system based on AWG, the pupil is on the surface where the arrayed waveguide 14 and the output-side slab waveguide 11 where the light of each wavelength is deflected are connected. In addition to the configuration shown in FIGS. 1 and 2, an optical signal processing means that transmits signal light is used, and a condensing optical system and a new AWG emitting optical system are arranged on an extension of the optical path axis of the incident light. Even in this case, in order to avoid light loss, image telecentricity of the condensing optical system is required.

パッシブ調心方法によって像テレセントリシティの調整をするには、各波長光の主光線軸方向を正確に評価する必要がある、しかし、この方向角度検出には以下に示す限界がある。   In order to adjust the image telecentricity by the passive alignment method, it is necessary to accurately evaluate the principal ray axis direction of each wavelength light. However, this direction angle detection has the following limitations.

図3は、光信号処理手段近傍で集光する特定の波長の信号光のビーム形状を模式的に表している。光軸z方向に対して、光信号処理手段が配置される予定の断面Bの位置で集光されている場合を示している。図中の周辺光とは、主光線から最も離れた光の軌跡をビームの太さを表す目的で表示したものである。一般に周辺光の広がり角は、ビームの開口、NAで表現する。焦点でのビーム半径をωOとするとNAは、下記の通りとなる。 FIG. 3 schematically shows the beam shape of signal light of a specific wavelength that is collected near the optical signal processing means. A case where light is condensed at a position of a cross section B where the optical signal processing means is to be arranged is shown with respect to the optical axis z direction. Ambient light in the figure is a display of the trajectory of the light farthest from the principal ray for the purpose of representing the beam thickness. In general, the spread angle of ambient light is expressed by the aperture of the beam, NA. When the beam radius at the focus and omega O NA becomes as follows.

Figure 0005016009
Figure 0005016009

ここで、λは光の波長である。パッシブ調心による光線方向の検出は、光軸方向zに検出手段を移動させて、たとえば、断面Aと断面Cで光強度の分布を測定し、その主光線位置のz依存を評価する事で実現する。主光線位置の検出精度は、近似的にはビーム太さに比例するので、ここではその比をkと定義すると、角度検出限界θlimは以下の通りとなる。 Here, λ is the wavelength of light. The detection of the light beam direction by the passive alignment is performed by moving the detection means in the optical axis direction z, measuring the light intensity distribution in the cross section A and the cross section C, and evaluating the z dependency of the principal ray position. Realize. Since the detection accuracy of the principal ray position is approximately proportional to the beam thickness, if the ratio is defined as k here, the angle detection limit θ lim is as follows.

Figure 0005016009
Figure 0005016009

一方、光信号処理手段の反射面の法線と各波長の信号光の入射主光線軸とのなす角をθとすると、入射主光線軸の傾きによる光結合損失Loss[dB]は以下の通りとなる. On the other hand, if the angle between the normal of the reflecting surface of the optical signal processing means and the incident principal ray axis of the signal light of each wavelength is θ, the optical coupling loss Loss [dB] due to the inclination of the incident principal ray axis is as follows. It becomes.

Figure 0005016009
Figure 0005016009

ここで、検出限界θlimまで調心できたとすると、調心精度限界による残留光損失は、 Here, assuming that alignment is possible up to the detection limit θ lim , the residual optical loss due to alignment accuracy limit is

Figure 0005016009
Figure 0005016009

となる。光強度分布が理想的なものであればkは小さく出来るが、ノイズ、レンズの収差等によりビーム形状が乱れている場合は、カメラ等によるビーム位置検出精度はビーム半径の1/5程度、すなわちk=0.2程度まで低下する。この場合、式4に従えば、調心限界による残留光損失は、光学系の設計に依らずに0.69dBになる。光信号処理装置全体の信号光透過率が数dB、その仕様値が0.1dB単位で指定される使用形態を考慮すると、この限界値では大きすぎる。従来のパッシブ調心では調心精度の要求を満たせないという課題が明らかになった。 It becomes. If the light intensity distribution is ideal, k can be reduced, but if the beam shape is disturbed due to noise, lens aberration, etc., the beam position detection accuracy by a camera or the like is about 1/5 of the beam radius, that is, k decreases to about 0.2. In this case, according to Equation 4, the residual light loss due to the alignment limit is 0.69 dB regardless of the design of the optical system. Considering the usage pattern in which the signal light transmittance of the entire optical signal processing apparatus is several dB and its specification value is specified in units of 0.1 dB, this limit value is too large. The problem that the conventional passive alignment cannot meet the alignment accuracy requirement has been clarified.

本発明はこのような問題点に鑑みてなされたものであり、その目的は、パッシブ調心を用いた光信号処理装置の組み立て方法において、調心精度を高めることにある。また、本発明の別の目的は、調心精度向上が可能な光信号処理装置を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to improve alignment accuracy in an assembly method of an optical signal processing device using passive alignment. Another object of the present invention is to provide an optical signal processing device capable of improving alignment accuracy.

このような目的を達成するために、本発明の第1の態様は、信号光入力導波路および調心光入力導波路と、前記信号光入力導波路および前記調心光入力導波路に接続したスラブ導波路と、前記スラブ導波路に接続したアレイ導波路とを有するアレイ導波路回折格子と、前記アレイ導波路回折格子より空間に出射した信号光を、前記アレイ導波路回折格子からの出射角度に応じた位置に集光する集光光学系と、前記集光光学系により前記信号光が集光される位置に配置された、前記信号光を位相変調、強度変調または偏向する光信号処理手段とを備え、前記調心光入力導波路の導波光の前記スラブ導波路に接続する面での基本モード径が、前記信号光入出力導波路の導波光の前記スラブ導波路に接続する面での基本モード径に比べて大きいことを特徴とする光信号処理装置である。   In order to achieve such an object, the first aspect of the present invention is connected to the signal light input waveguide and the aligning light input waveguide, and to the signal light input waveguide and the aligning light input waveguide. An arrayed waveguide grating having a slab waveguide and an arrayed waveguide connected to the slab waveguide, and an output angle of the signal light emitted from the arrayed waveguide grating to the space from the arrayed waveguide grating A condensing optical system for condensing the signal light at a position corresponding to the optical signal processing means for phase-modulating, intensity-modulating or deflecting the signal light, disposed at a position where the signal light is condensed by the condensing optical system And the fundamental mode diameter of the guided light of the alignment light input waveguide connected to the slab waveguide is the surface of the signal light input / output waveguide connected to the slab waveguide. Larger than the basic mode diameter of An optical signal processing apparatus characterized.

また、本発明の第2の態様は、第1の態様において、前記信号光入出力導波路の前記スラブ導波路内への延長線と、前記調心光入力導波路の前記スラブ導波路内への延長線とが、前記スラブ導波路と前記アレイ導波路とが接続する面上で交差することを特徴とする。   According to a second aspect of the present invention, in the first aspect, the signal light input / output waveguide extends into the slab waveguide and the alignment light input waveguide enters the slab waveguide. Are extended on the surface where the slab waveguide and the arrayed waveguide are connected to each other.

また、本発明の第3の態様は、第1又は第2の態様において、前記調心光入力導波路の導波光の前記スラブ導波路に接続する面での基本モード径が、前記信号光入出力導波路の導波光の前記スラブ導波路に接続する面での基本モード径に比べて2倍以上大きいことを特徴とする。   According to a third aspect of the present invention, in the first or second aspect, the fundamental mode diameter of the guided light of the aligning light input waveguide on the surface connected to the slab waveguide is the signal light input. It is characterized by being at least twice as large as the fundamental mode diameter of the guided light of the output waveguide on the surface connected to the slab waveguide.

また、本発明の第4の態様は、第1乃至第3のいずれかの態様において、前記光信号処理手段は、前記光信号処理手段において処理された前記信号光を反射する反射型であり、反射した前記信号光は、前記集光光学系へ経て、前記アレイ導波路回折格子に入射して、前記信号光用入出力導波路から出力されることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the optical signal processing means is a reflective type that reflects the signal light processed in the optical signal processing means, The reflected signal light is incident on the arrayed waveguide diffraction grating through the condensing optical system, and is output from the signal light input / output waveguide.

また、本発明の第5の態様は、第1乃至第3のいずれかの態様において、前記光信号処理手段を対称軸または回転軸として、前記信号光の光路軸の延長線上であって前記アレイ導波路回折格子と重ならない位置に、1つ以上の出射用のアレイ導波路回折格子を配置したことを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to third aspects, the optical signal processing means is a symmetric axis or a rotation axis on an extension line of the optical path axis of the signal light. One or more output arrayed waveguide diffraction gratings are arranged at positions that do not overlap with the waveguide diffraction grating.

また、本発明の第6の態様は、信号光入力導波路および調心光入力導波路と、前記信号光入力導波路および前記調心光入力導波路に接続したスラブ導波路と、前記スラブ導波路に接続したアレイ導波路とを有するアレイ導波路回折格子と、前記アレイ導波路回折格子より空間に出射した信号光を、前記アレイ導波路回折格子からの出射角度に応じた位置に集光する集光光学系と、前記集光光学系により前記信号光が集光される位置に配置された、前記信号光を位相変調、強度変調または偏向する光信号処理手段とを備える光信号処理装置の組み立て方法であって、調心光を前記調心光入力導波路に入力するステップと、前記集光光学系から出射した前記調心光の主光線軸の方向を測定するステップと、前記主光線軸が前記調心光の波長に依らず平行となるように、前記集光光学系に含まれる少なくとも1つの集光素子の位置を調整するステップとを含み、前記調心光入力導波路の導波光の前記スラブ導波路に接続する面での基本モード径が、前記信号光入出力導波路の導波光の前記スラブ導波路に接続する面での基本モード径に比べて大きいことを特徴とする。   According to a sixth aspect of the present invention, there is provided a signal light input waveguide and an aligning light input waveguide, a slab waveguide connected to the signal light input waveguide and the aligning light input waveguide, and the slab guide. An arrayed waveguide diffraction grating having an arrayed waveguide connected to the waveguide, and signal light emitted from the arrayed waveguide diffraction grating to the space is condensed at a position corresponding to an emission angle from the arrayed waveguide diffraction grating. An optical signal processing apparatus comprising: a condensing optical system; and an optical signal processing unit that is disposed at a position where the signal light is collected by the condensing optical system and that modulates or deflects the signal light. An assembly method, the step of inputting aligning light into the aligning light input waveguide, the step of measuring the direction of the principal ray axis of the aligning light emitted from the condensing optical system, and the chief ray The axis depends on the wavelength of the aligning light Adjusting a position of at least one condensing element included in the condensing optical system so as to be parallel, and connecting the guided light of the aligning light input waveguide to the slab waveguide The fundamental mode diameter of the signal light input / output waveguide is larger than the fundamental mode diameter of the guided light of the signal light input / output waveguide on the surface connected to the slab waveguide.

また、本発明の第7の態様は、第6の態様において、前記光信号処理装置は、第2乃至第5のいずれかの態様の光信号処理装置であることを特徴とする。   According to a seventh aspect of the present invention, in the sixth aspect, the optical signal processing device is the optical signal processing device according to any one of the second to fifth aspects.

また、本発明の第8の態様は、第6又は第7の態様において、調心光を前記調心光入力導波路に入力するステップと、前記調心光入力導波路から出力される前記調心光の光強度が最大となるように、前記光信号処理手段の前記アレイ導波路格子の分光面に垂直な軸回りの調整を行うステップとをさらに含むことを特徴とする。   According to an eighth aspect of the present invention, in the sixth or seventh aspect, the step of inputting alignment light into the alignment light input waveguide and the adjustment output from the alignment light input waveguide. And a step of adjusting about an axis perpendicular to the spectral plane of the arrayed waveguide grating of the optical signal processing means so that the light intensity of the heart light becomes maximum.

本発明による光信号処理装置の組み立て方法によれば、調心光入力導波路の導波光のスラブ導波路に接続する面での基本モード径が、信号光入出力導波路の導波光のスラブ導波路に接続する面での基本モード径に比べて大きいことにより、調心精度を高め、それにより光信号処理装置の信号光透過損失を低減することができる。   According to the method of assembling the optical signal processing device of the present invention, the fundamental mode diameter of the surface of the aligning light input waveguide connected to the slab waveguide is such that the slab guide of the waveguide light of the signal light input / output waveguide is the same. By being larger than the fundamental mode diameter on the surface connected to the waveguide, alignment accuracy can be improved, thereby reducing signal light transmission loss of the optical signal processing device.

また、本発明の光信号処理装置によれば、調心光入力導波路の導波光のスラブ導波路に接続する面での基本モード径が、信号光入出力導波路の導波光のスラブ導波路に接続する面での基本モード径に比べて大きいことにより、組み立て時に調心精度を高め、それにより信号光透過損失を低減することができる。   Further, according to the optical signal processing device of the present invention, the fundamental mode diameter on the surface of the alignment light input waveguide connected to the slab waveguide of the guided light is the slab waveguide of the guided light of the signal light input / output waveguide. Since it is larger than the fundamental mode diameter on the surface connected to, the alignment accuracy during assembly can be increased, thereby reducing signal light transmission loss.

従来の波長選択スイッチの概略構成を説明するための図であり、(a)は平面図、(b)は側面図である。It is a figure for demonstrating schematic structure of the conventional wavelength selective switch, (a) is a top view, (b) is a side view. 従来のTODCの概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the conventional TODC. 光信号処理手段近傍の光ビームの形状を説明するための図である。It is a figure for demonstrating the shape of the light beam of an optical signal processing means vicinity. 本発明の第1の実施例に係るTODCの組み立て方法を説明するための図である。It is a figure for demonstrating the assembly method of TODC which concerns on the 1st Example of this invention. 本発明の第1の実施例に係るTODCの組み立て時に使用するビーム位置観測装置による評価結果を示す図である。It is a figure which shows the evaluation result by the beam position observation apparatus used at the time of the assembly of TODC which concerns on 1st Example of this invention. 本発明の第2の実施例に係るTODCのAWGの構造を説明するための図である。It is a figure for demonstrating the structure of AWG of TODC based on 2nd Example of this invention.

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施形態1)
本発明の実施形態1による光信号処理装置は、信号光入力導波路および調心光入力導波路と、信号光入力導波路および調心光入力導波路に接続したスラブ導波路と、スラブ導波路に接続したアレイ導波路とを有するアレイ導波路回折格子と、アレイ導波路回折格子より空間に出射した信号光をアレイ導波路回折格子からの出射角度に応じた位置に集光する集光光学系と、集光光学系により信号光が集光される位置に配置された、信号光を位相変調、強度変調または偏向する光信号処理手段とを備える。当該光信号処理装置は、調心光入力導波路の導波光のスラブ導波路に接続する面での基本モード径が、信号光入出力導波路の導波光のスラブ導波路に接続する面での基本モード径に比べて大きい。この基本モード径の差が、組み立て時の調心精度向上につながることを以下に説明する。
(Embodiment 1)
An optical signal processing device according to Embodiment 1 of the present invention includes a signal light input waveguide and an alignment light input waveguide, a slab waveguide connected to the signal light input waveguide and the alignment light input waveguide, and a slab waveguide. An arrayed waveguide diffraction grating having an arrayed waveguide connected to the optical waveguide, and a condensing optical system that condenses the signal light emitted from the arrayed waveguide diffraction grating into the space at a position corresponding to the emission angle from the arrayed waveguide diffraction grating And optical signal processing means arranged at a position where the signal light is condensed by the condensing optical system, for phase-modulating, intensity-modulating or deflecting the signal light. In the optical signal processing device, the fundamental mode diameter on the surface of the aligning light input waveguide connected to the slab waveguide of the guided light is the surface of the signal light input / output waveguide connected to the slab waveguide of the guided light. Larger than the basic mode diameter. It will be described below that this difference in basic mode diameter leads to an improvement in alignment accuracy during assembly.

本実施形態による光信号処理装置の組み立て方法では、信号光と調心光が別の入力導波路から入射される。スラブ導波路に入射する際の、信号光入出力導波路及び調心光入力導波路の導波光の基本モード径を、それぞれωs1、ωa1=α・ωs1とする。係数αは、調心光と信号光のモード径の比である。スラブ導波路の入力導波路側の接続面と光信号処理手段が置かれる集光光学系の焦点面は、光学的に共役であるので、スラブ導波路の入力ビーム形状は、一定の倍率を持って光信号処理手段上に投影される。すなわち、光信号処理手段上の信号光と調心光のビーム径をそれぞれωs2、ωa2とすると、ωa1/ωs1=ωa2/ωs2=αとなる。このように、信号光と調心光のビーム径が異なる場合、式2から式4は以下の通りに変更される、 In the method of assembling the optical signal processing device according to the present embodiment, signal light and alignment light are incident from different input waveguides. The fundamental mode diameters of the guided light of the signal light input / output waveguide and the aligning light input waveguide when entering the slab waveguide are ω s1 and ω a1 = α · ω s1 , respectively. The coefficient α is the ratio of the mode diameter between the aligning light and the signal light. Since the connecting surface of the slab waveguide on the input waveguide side and the focal plane of the condensing optical system on which the optical signal processing means is placed are optically conjugate, the input beam shape of the slab waveguide has a constant magnification. And projected onto the optical signal processing means. That is, if the beam diameters of the signal light and the aligning light on the optical signal processing means are ω s2 and ω a2 , respectively, ω a1 / ω s1 = ω a2 / ω s2 = α. Thus, when the beam diameters of the signal light and the aligning light are different, Expressions 2 to 4 are changed as follows:

Figure 0005016009
Figure 0005016009

Figure 0005016009
Figure 0005016009

Figure 0005016009
Figure 0005016009

すなわち、残留が見込まれる光損失値はdB単位でαの2乗に反比例する。WSSやTODCにおいてILUは、1dB程度は許容されるとすると、組み立て精度の限界としてその数分の1程度であれば十分である。実際の使用形態と調心状態をLoss≦0.2dB、k=0.2と見込むと、α≧2であれば十分である。換言すると、調心光入力導波路の導波光のスラブ導波路に接続する面での基本モード径が、信号光入出力導波路の導波光のスラブ導波路に接続する面での基本モード径に比べて2倍以上大きいことが好ましい。   That is, the optical loss value that is expected to remain is inversely proportional to the square of α in dB. Assuming that an ILU of about 1 dB is allowed in WSS and TODC, it is sufficient that the assembly accuracy is limited to a fraction of that. Assuming that the actual usage and alignment are Loss ≦ 0.2 dB and k = 0.2, α ≧ 2 is sufficient. In other words, the fundamental mode diameter on the surface of the aligning light input waveguide connected to the slab waveguide of the guided light is the fundamental mode diameter on the surface of the signal light input / output waveguide connected to the slab waveguide. It is preferable that it is twice or more as large as compared.

実施例1
図4は、本発明の実施形態1による光信号処理装置の組み立て方法を説明するための図である。アレイ導波路回折格子10は、信号光入出力導波路16とは別に、調心光入力導波路17を備える。調心光光源として波長可変レーザー光源の出力光を調心光入力導波路17に入力し、その波長を調整して、調心光がアレイ導波路回折格子10からz軸に概ね平行に出射するように調整した。ここで、信号光と調心光はスラブ導波路12への入射位置が異なるため、AWG10の設計中心波長では調心光がz軸に平行に出射しない事に注意が必要である。
Example 1
FIG. 4 is a diagram for explaining an assembling method of the optical signal processing device according to the first embodiment of the present invention. The arrayed waveguide diffraction grating 10 includes a aligning light input waveguide 17 separately from the signal light input / output waveguide 16. The output light of the wavelength tunable laser light source as the aligning light source is input to the aligning light input waveguide 17, the wavelength is adjusted, and the aligning light is emitted from the arrayed waveguide grating 10 substantially parallel to the z-axis. Adjusted as follows. Here, since the incident position to the slab waveguide 12 is different between the signal light and the aligning light, it should be noted that the aligning light does not exit parallel to the z-axis at the design center wavelength of the AWG 10.

調心光入力導波路17は、スラブ導波路12への接続面18に向けてその幅が徐々に太くなっている。これにより、調心光はその基本モード導波を保ったままモード径が太くなった後にスラブ導波路12に入射する。実施例1では、信号光入出力導波路16の幅を7.5μmとし、調心光入力導波路17の幅は、入り口で7.5μm、スラブ導波路12への出口で22.5μmとした。この設計により調心光のスラブ導波路12に入射する前の基本モード径は信号光のそれの約3倍となった。   The width of the aligning light input waveguide 17 gradually increases toward the connection surface 18 to the slab waveguide 12. As a result, the aligning light is incident on the slab waveguide 12 after the mode diameter is increased while maintaining the fundamental mode waveguide. In Example 1, the width of the signal light input / output waveguide 16 is 7.5 μm, the width of the aligning light input waveguide 17 is 7.5 μm at the entrance, and 22.5 μm at the exit to the slab waveguide 12. . With this design, the fundamental mode diameter of the aligning light before entering the slab waveguide 12 is about three times that of the signal light.

ビーム位置観測装置62は、シリンドリカルレンズ20及び主レンズ(「集光レンズ」とも言う。)40を通過した集光ビームの焦点面近傍に、z軸方向の可動ステージを用いて設置した。ここでは、ビーム位置観測装置62としてCCDカメラ型のビームプロファイラーを用いたが、スリットスキャン型やIRカメラを用いる事も可能である。   The beam position observation device 62 was installed using a movable stage in the z-axis direction in the vicinity of the focal plane of the condensed beam that passed through the cylindrical lens 20 and the main lens (also referred to as “condensing lens”) 40. Here, a CCD camera type beam profiler is used as the beam position observation device 62, but a slit scan type or an IR camera can also be used.

図5は、図4において、ビーム位置観測装置62を、焦点面Bの位置とz軸方向に±10mm移動したA及びCの位置に置いた時のx方向の光強度分布である。焦点面Bでは、ビーム径は信号光の方が細く位置評価が容易であるが(図5(a)参照)、A面やC面では、調心光の方が細くなり位置検出精度が高くなっている事が分かる(図5(b)参照)。したがって、調心光の主光線方向の角度検出をより高精度に行うことができる。調心光のビーム径ωa2は約100μmであり、信号光のビーム径ωs2は約40μmであったので、式7より調心限界におけるロスを推定すると、0.11dBとなり十分小さい事が分かった。 FIG. 5 shows the light intensity distribution in the x direction when the beam position observation device 62 is placed at positions A and C moved ± 10 mm in the z-axis direction from the position of the focal plane B in FIG. On the focal plane B, the beam diameter is thinner for the signal light and the position evaluation is easier (see FIG. 5A). However, on the A and C planes, the alignment light is thinner and the position detection accuracy is higher. (See FIG. 5B). Therefore, the angle detection of the aligning light in the principal ray direction can be performed with higher accuracy. Since the beam diameter ω a2 of the aligning light is about 100 μm and the beam diameter ω s2 of the signal light is about 40 μm, it is found from Equation 7 that the loss at the alignment limit is 0.11 dB, which is sufficiently small. It was.

調心光の波長を、TODCで使用する範囲の波長で変化させ、各波長における調心光の主光線軸が平行になるように主レンズ40のz軸方向の位置を調整した。具体的には、まず,図4のAの位置にビームプロファイラー62を設置する。短波長信号光の主光線軸53と概ね同じ主光線軸をもつように波長を調整した調心光(短波長調心光)と、長波長信号光の主光線軸54と概ね同じ主光線軸をもつように波長を調整した調心光(長波長調心光)とをビームプロファイラー62で観測して、それぞれの主光線位置のx座標の差、すなわち主光線の間隔(間隔A)を記録する。次に、可動ステージを動かしてビームプロファイラー62をCの位置に移動して、同様に短波長調心光と長波長調心光の間隔(間隔C)を計測する。間隔A>間隔Cならば、主レンズ40をAWG10に近づけるようにz軸に沿って移動させる。間隔A<間隔Cならば,主レンズ40をAWG10から遠ざけるようにz軸に沿って移動させる。この操作を繰り返して,短波長調心光と長波長調心光の主光線軸が平行になるまで調整する。この調整により集光光学系が像テレセントリック光学系となるため、信号光においてもその波長に寄らず主光線軸はz軸に平行になる。   The wavelength of the aligning light was changed within the range of the range used in TODC, and the position of the main lens 40 in the z-axis direction was adjusted so that the principal ray axis of the aligning light at each wavelength was parallel. Specifically, first, the beam profiler 62 is installed at the position A in FIG. An aligning light (short wavelength aligning light) whose wavelength is adjusted so as to have substantially the same principal ray axis as the principal ray axis 53 of the short wavelength signal light, and a principal ray axis substantially the same as the principal ray axis 54 of the long wavelength signal light. The beam profiler 62 observes the aligning light (long wavelength aligning light) whose wavelength is adjusted so as to have a difference, and records the difference in the x coordinate of each principal ray position, that is, the principal ray interval (interval A). Next, the movable stage is moved to move the beam profiler 62 to the position C, and similarly, the interval (interval C) between the short wavelength aligning light and the long wavelength aligning light is measured. If the distance A> the distance C, the main lens 40 is moved along the z-axis so as to approach the AWG 10. If the distance A <the distance C, the main lens 40 is moved along the z-axis so as to be away from the AWG 10. This operation is repeated until the principal beam axes of the short wavelength aligning light and the long wavelength aligning light are parallel. By this adjustment, the condensing optical system becomes an image telecentric optical system, so that the principal ray axis is parallel to the z axis regardless of the wavelength of the signal light.

なお、本実施例では、集光レンズ40は1枚の凸レンズを用いたが、集光光学系の収差を考慮して複数のレンズの組合せ、すなわちレンズユニットとする事も出来る。その場合は、レンズユニット全体の位置調整によっても、レンズユニット内の一部のレンズの位置調整によってもテレセントリシティ調整は可能である。   In the present embodiment, a single convex lens is used as the condensing lens 40, but a combination of a plurality of lenses, that is, a lens unit can be used in consideration of the aberration of the condensing optical system. In that case, the telecentricity adjustment can be performed by adjusting the position of the entire lens unit or by adjusting the position of some lenses in the lens unit.

その後、主レンズ40を固定し、LCOS(「光信号処理手段」に相当)を、信号光を用いたアクティブ調心で焦点面Bに調心配置して固定し、TODC(「光信号処理装置」に相当)を完成させた。分散を発生させない状態、すなわちLCOSの位相変調量を0とした状態でのILUを測定した。比較にため、本発明に依らずに信号光入出力導波路16から調心光を入力して調整したTODCも作製した。両者の特性評価結果を表1に示す。本発明によりILU特性が実用上問題ないレベルまで改善された。   After that, the main lens 40 is fixed, and LCOS (corresponding to “optical signal processing means”) is aligned and fixed on the focal plane B by active alignment using signal light, and the TODC (“optical signal processing device”) is fixed. Is equivalent). ILU was measured in a state where no dispersion occurred, that is, in a state where the phase modulation amount of LCOS was zero. For comparison, a TODC adjusted by inputting alignment light from the signal light input / output waveguide 16 without depending on the present invention was also manufactured. Table 1 shows the results of both characteristics evaluation. According to the present invention, the ILU characteristics have been improved to a level where there is no practical problem.

Figure 0005016009
Figure 0005016009

(実施形態2)
図6は、本発明の実施形態2による光信号処理装置が備えるAWG内のスラブ導波路近傍の拡大図である。実施形態2による光信号処理装置は、調心光入力導波路17がスラブ導波路12への接続面18に向かって細くなっている点と、調心光入力導波路17の延長線が、スラブ導波路12のアレイ導波路14側の境界面で信号光入出力導波路16の延長線と交差している点が実施形態1による光信号処理装置と異なる。
(Embodiment 2)
FIG. 6 is an enlarged view of the vicinity of the slab waveguide in the AWG provided in the optical signal processing device according to Embodiment 2 of the present invention. In the optical signal processing device according to the second embodiment, the alignment light input waveguide 17 is narrowed toward the connection surface 18 to the slab waveguide 12 and the extension line of the alignment light input waveguide 17 is the slab. The optical signal processing apparatus according to the first embodiment is different from the optical signal processing apparatus according to the first embodiment in that the waveguide 12 crosses the extension line of the signal light input / output waveguide 16 at the boundary surface on the array waveguide 14 side.

導波路における基本導波モード径は、導波路幅がシングルモード条件を満たす幅よりさらに細くなると、逆に太くなる事が知られている(非特許文献3に詳しい)。図6では、調心光入力導波路17は緩やかなテーパー形状を持って、約2μmまで細なった後にスラブ導波路12に接続している。これにより、調心光のモード径が太くなり、像テレセントリシティ調整の精度が高くなると期待できる。   It is known that the fundamental waveguide mode diameter in a waveguide becomes thicker on the contrary when the waveguide width becomes narrower than the width satisfying the single mode condition (detailed in Non-Patent Document 3). In FIG. 6, the aligning light input waveguide 17 has a gentle taper shape and is connected to the slab waveguide 12 after being reduced to about 2 μm. Thereby, it can be expected that the mode diameter of the aligning light is increased and the accuracy of image telecentricity adjustment is increased.

さらに、調心光と信号光は、ともにアレイ導波路14の中心位置に入射している。これにより、アレイ導波路14からの出射位置も同じとなるため,調心光と信号光が光信号処理手段の位置で平行になる.これにより、光信号処理手段のθy調整も調心光入力導波路17から入射した調心光を使用してアクティブ調心が可能になる。このとき、アクティブ調心時の光透過率変化検出限界Losslimと、θyの調整限界θylimには、 Further, both the alignment light and the signal light are incident on the center position of the arrayed waveguide 14. As a result, the exit position from the arrayed waveguide 14 becomes the same, so that the alignment light and the signal light are parallel at the position of the optical signal processing means. As a result, θy adjustment of the optical signal processing means can be performed by using the aligning light incident from the aligning light input waveguide 17. At this time, the light transmittance change detection limit Loss lim during active alignment and the θy adjustment limit θy lim are:

Figure 0005016009
Figure 0005016009

の関係が成り立つ。信号光における残留光透過損失は、 The relationship holds. Residual light transmission loss in signal light is

Figure 0005016009
Figure 0005016009

となる。信号光入出力導波路から入力した光を用いて光信号処理手段のθyを調整した時(α=1に相当)に比べて、α>1となる調心光入力導波路17に入射した調心光を用いた場合は、αの2乗に反比例して調心偏差による残留光損失を減らす事が出来る。実施例1と同等の調心作業に加えて、LOCSのθyの調整を、調心光入力導波路17から入射した調心光を用いて行った場合のTODCの透過特性を表2に示す。透過損失の低下の効果が確認できた。 It becomes. Compared with the case where θy of the optical signal processing means is adjusted using the light input from the signal light input / output waveguide (corresponding to α = 1), the light incident on the alignment light input waveguide 17 where α> 1. When heart light is used, residual light loss due to alignment deviation can be reduced in inverse proportion to the square of α. Table 2 shows the transmission characteristics of TODC when the LOCS θy is adjusted by using the aligning light incident from the aligning light input waveguide 17 in addition to the aligning work equivalent to that of the first embodiment. The effect of reducing transmission loss was confirmed.

Figure 0005016009
Figure 0005016009

10,10’ アレイ導波路回折格子
11 出力側スラブ導波路
12 スラブ導波路
14 アレイ導波路
15 入出力導波路
16 信号光入出力導波路
17 調心光入力導波路
18 信号光入出力導波路及び調心光入力導波路とスラブ導波路の接続面
20 シリンドリカルレンズ
40 集光レンズ
60 MEMSミラー
61 LCOS
10, 10 'array waveguide diffraction grating 11 output side slab waveguide 12 slab waveguide 14 array waveguide 15 input / output waveguide 16 signal light input / output waveguide 17 aligning light input waveguide 18 signal light input / output waveguide and Connecting surface of alignment light input waveguide and slab waveguide 20 Cylindrical lens 40 Condensing lens 60 MEMS mirror 61 LCOS

Claims (8)

信号光入力導波路および調心光入力導波路と、前記信号光入力導波路および前記調心光入力導波路に接続したスラブ導波路と、前記スラブ導波路に接続したアレイ導波路とを有するアレイ導波路回折格子と、
前記アレイ導波路回折格子より空間に出射した信号光を、前記アレイ導波路回折格子からの出射角度に応じた位置に集光する集光光学系と、
前記集光光学系により前記信号光が集光される位置に配置された、前記信号光を位相変調、強度変調または偏向する光信号処理手段と
を備え、
前記調心光入力導波路の導波光の前記スラブ導波路に接続する面での基本モード径が、前記信号光入出力導波路の導波光の前記スラブ導波路に接続する面での基本モード径に比べて大きいことを特徴とする光信号処理装置。
An array having a signal light input waveguide and an aligning light input waveguide, a slab waveguide connected to the signal light input waveguide and the aligning light input waveguide, and an array waveguide connected to the slab waveguide A waveguide grating;
A condensing optical system for condensing the signal light emitted to the space from the arrayed waveguide diffraction grating at a position corresponding to an emission angle from the arrayed waveguide diffraction grating;
Optical signal processing means arranged at a position where the signal light is collected by the condensing optical system, and phase-modulating, intensity-modulating or deflecting the signal light;
The fundamental mode diameter of the waveguide light of the aligning light input waveguide on the surface connected to the slab waveguide is the fundamental mode diameter of the waveguide light of the signal light input / output waveguide on the surface connected to the slab waveguide. An optical signal processing device characterized by being larger than the above.
前記信号光入出力導波路の前記スラブ導波路内への延長線と、前記調心光入力導波路の前記スラブ導波路内への延長線とが、前記スラブ導波路と前記アレイ導波路とが接続する面上で交差することを特徴とする請求項1に記載の光信号処理装置。   An extension line of the signal light input / output waveguide into the slab waveguide and an extension line of the alignment light input waveguide into the slab waveguide are formed by the slab waveguide and the arrayed waveguide. The optical signal processing device according to claim 1, wherein the optical signal processing device intersects on a connecting surface. 前記調心光入力導波路の導波光の前記スラブ導波路に接続する面での基本モード径が、前記信号光入出力導波路の導波光の前記スラブ導波路に接続する面での基本モード径に比べて2倍以上大きいことを特徴とする請求項1又は2に記載の光信号処理装置。   The fundamental mode diameter of the waveguide light of the aligning light input waveguide on the surface connected to the slab waveguide is the fundamental mode diameter of the waveguide light of the signal light input / output waveguide on the surface connected to the slab waveguide. 3. The optical signal processing apparatus according to claim 1, wherein the optical signal processing apparatus is at least twice as large as the optical signal processing apparatus. 前記光信号処理手段は、前記光信号処理手段において処理された前記信号光を反射する反射型であり、
反射した前記信号光は、前記集光光学系へ経て、前記アレイ導波路回折格子に入射して、前記信号光用入出力導波路から出力されることを特徴とする請求項1乃至3のいずれかに記載の光信号処理装置。
The optical signal processing means is a reflective type that reflects the signal light processed in the optical signal processing means,
4. The reflected signal light is incident on the arrayed waveguide diffraction grating through the condensing optical system and output from the signal light input / output waveguide. An optical signal processing device according to claim 1.
前記光信号処理手段を対称軸または回転軸として、前記信号光の光路軸の延長線上であって前記アレイ導波路回折格子と重ならない位置に、1つ以上の出射用のアレイ導波路回折格子を配置したことを特徴とする請求項1乃至3のいずれかに記載の光信号処理装置。   Using the optical signal processing means as a symmetry axis or a rotation axis, at least one arrayed-waveguide diffraction grating for emission is located on an extension line of the optical path axis of the signal light so as not to overlap the arrayed-waveguide diffraction grating. 4. The optical signal processing device according to claim 1, wherein the optical signal processing device is disposed. 信号光入力導波路および調心光入力導波路と、前記信号光入力導波路および前記調心光入力導波路に接続したスラブ導波路と、前記スラブ導波路に接続したアレイ導波路とを有するアレイ導波路回折格子と、前記アレイ導波路回折格子より空間に出射した信号光を、前記アレイ導波路回折格子からの出射角度に応じた位置に集光する集光光学系と、前記集光光学系により前記信号光が集光される位置に配置された、前記信号光を位相変調、強度変調または偏向する光信号処理手段とを備える光信号処理装置の組み立て方法であって、
調心光を前記調心光入力導波路に入力するステップと、
前記集光光学系から出射した前記調心光の主光線軸の方向を測定するステップと、
前記主光線軸が前記調心光の波長に依らず平行となるように、前記集光光学系に含まれる少なくとも1つの集光素子の位置を調整するステップと
を含み、
前記調心光入力導波路の導波光の前記スラブ導波路に接続する面での基本モード径が、前記信号光入出力導波路の導波光の前記スラブ導波路に接続する面での基本モード径に比べて大きいことを特徴とする組み立て方法。
An array having a signal light input waveguide and an aligning light input waveguide, a slab waveguide connected to the signal light input waveguide and the aligning light input waveguide, and an array waveguide connected to the slab waveguide A waveguide diffraction grating, a condensing optical system for condensing the signal light emitted into the space from the arrayed waveguide diffraction grating at a position corresponding to an emission angle from the arrayed waveguide diffraction grating, and the condensing optical system An optical signal processing apparatus assembly method comprising: an optical signal processing means arranged at a position where the signal light is condensed by the optical signal processing means for phase modulation, intensity modulation or deflection of the signal light,
Inputting aligning light into the aligning light input waveguide;
Measuring the direction of the principal ray axis of the aligning light emitted from the condensing optical system;
Adjusting the position of at least one condensing element included in the condensing optical system so that the principal ray axis is parallel regardless of the wavelength of the aligning light,
The fundamental mode diameter of the waveguide light of the aligning light input waveguide on the surface connected to the slab waveguide is the fundamental mode diameter of the waveguide light of the signal light input / output waveguide on the surface connected to the slab waveguide. An assembly method characterized by being large compared to.
前記光信号処理装置は、請求項2乃至5のいずれかに記載の光信号処理装置であることを特徴とする請求項6に記載の組み立て方法。
The assembly method according to claim 6, wherein the optical signal processing device is the optical signal processing device according to claim 2.
調心光を前記調心光入力導波路に入力するステップと、
前記調心光入力導波路から出力される前記調心光の光強度が最大となるように、前記光信号処理手段の前記アレイ導波路格子の分光面に垂直な軸回りの調整を行うステップと
をさらに含むことを特徴とする請求項6又は7に記載の組み立て方法。
Inputting aligning light into the aligning light input waveguide;
Adjusting the axis perpendicular to the spectral plane of the arrayed-waveguide grating of the optical signal processing means so that the light intensity of the aligning light output from the aligning light input waveguide is maximized; The assembly method according to claim 6, further comprising:
JP2009203014A 2009-09-02 2009-09-02 Optical signal processing apparatus and assembly method thereof Active JP5016009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009203014A JP5016009B2 (en) 2009-09-02 2009-09-02 Optical signal processing apparatus and assembly method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009203014A JP5016009B2 (en) 2009-09-02 2009-09-02 Optical signal processing apparatus and assembly method thereof

Publications (2)

Publication Number Publication Date
JP2011053487A JP2011053487A (en) 2011-03-17
JP5016009B2 true JP5016009B2 (en) 2012-09-05

Family

ID=43942538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009203014A Active JP5016009B2 (en) 2009-09-02 2009-09-02 Optical signal processing apparatus and assembly method thereof

Country Status (1)

Country Link
JP (1) JP5016009B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839586B2 (en) * 2012-08-30 2016-01-06 日本電信電話株式会社 Optical signal processor
JP6110718B2 (en) * 2013-04-22 2017-04-05 日本電信電話株式会社 Optical signal processing circuit
CN105452950B (en) * 2013-07-16 2018-11-16 日本电信电话株式会社 Light signal processing device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116927B2 (en) * 1998-12-02 2000-12-11 日本電気株式会社 Array waveguide grating
JP3346751B2 (en) * 1999-10-14 2002-11-18 日本電気株式会社 Array waveguide grating
JP2003149492A (en) * 2001-11-09 2003-05-21 Sumitomo Electric Ind Ltd Optical waveguide circuit module
JP2005024914A (en) * 2003-07-02 2005-01-27 Hitachi Cable Ltd Optical wavelength multiplexer/demultiplexer and method of connecting optical wavelength multiplexer/demultiplexer and an optical fiber array
JP5290534B2 (en) * 2007-03-30 2013-09-18 古河電気工業株式会社 Optical integrated circuit and optical integrated circuit module
JP4659791B2 (en) * 2007-07-31 2011-03-30 日本電信電話株式会社 Optical wavelength filter
JP2009042557A (en) * 2007-08-09 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Wavelength selection switch
JP4974874B2 (en) * 2007-12-27 2012-07-11 日本電信電話株式会社 Variable dispersion compensator
JP2009251176A (en) * 2008-04-03 2009-10-29 Nippon Telegr & Teleph Corp <Ntt> Optical signal processing circuit

Also Published As

Publication number Publication date
JP2011053487A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
US7889991B2 (en) Planar lightwave circuit based tunable 3 port filter
CN103999303B (en) Integrated sub-wave length grating system
US6487334B2 (en) Optical switch
AU2012216378B2 (en) Asymmetric lenslet array
US7440650B2 (en) Planar lightwave circuit based wavelength selective switch
JP6068478B2 (en) Optical signal processor
WO2012172968A1 (en) Optical device
US7676125B2 (en) Method and apparatus to provide multi-channel bulk fiber optical power detection
US10908356B2 (en) Optical device having a fiber array, and method of alignment thereof
EP3431918B1 (en) Multichannel confocal sensor and related method for inspecting a sample
JP5016009B2 (en) Optical signal processing apparatus and assembly method thereof
JP4939341B2 (en) Optical signal processor
JP4942775B2 (en) Optical device with compact dispersion system
JP2017522605A (en) Microscope with beam splitter device
JP5759430B2 (en) Wavelength selective switch
JP6714555B2 (en) Optical waveguide component, core alignment method, and optical element mounting method
JP2012145373A (en) Spectroscopic instrument and wavelength selection switch using the same
JP2004271743A (en) Optical device
Goering et al. Miniaturized optical switches based on piezoelectrically driven microprism arrays
JP4659846B2 (en) Optical signal processing device
JP2012173720A (en) Wavelength selection switch
JP4814147B2 (en) Optical signal processor
JP2002243974A (en) Optical parts, and optical module using the same
JP2002236262A (en) Optical switch
JP4696521B2 (en) Demultiplexer, optical waveguide, and wavelength division multiplexing optical transmission module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350