JP6110718B2 - Optical signal processing circuit - Google Patents

Optical signal processing circuit Download PDF

Info

Publication number
JP6110718B2
JP6110718B2 JP2013089778A JP2013089778A JP6110718B2 JP 6110718 B2 JP6110718 B2 JP 6110718B2 JP 2013089778 A JP2013089778 A JP 2013089778A JP 2013089778 A JP2013089778 A JP 2013089778A JP 6110718 B2 JP6110718 B2 JP 6110718B2
Authority
JP
Japan
Prior art keywords
waveguide
optical signal
signal processing
inclined surface
processing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013089778A
Other languages
Japanese (ja)
Other versions
JP2014215317A (en
Inventor
弘和 竹ノ内
弘和 竹ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013089778A priority Critical patent/JP6110718B2/en
Publication of JP2014215317A publication Critical patent/JP2014215317A/en
Application granted granted Critical
Publication of JP6110718B2 publication Critical patent/JP6110718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Integrated Circuits (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Description

本発明は、光信号処理回路に関し、より詳細には、複数の高速光信号部隊して一括で時空間変換信号処理を行い、かつ波長多重を行うことの出来る信号処理回路に関する。   The present invention relates to an optical signal processing circuit, and more particularly to a signal processing circuit capable of performing a time-space conversion signal processing and a wavelength multiplexing by a plurality of high-speed optical signal units collectively.

光信号伝送技術や光信号処理技術の発展に伴い、より高速・大容量の光信号を取り扱うことが必要になってきている。しかしながら、信号速度が高速になると、信号処理を行う際に電気的処理が極めて困難になるという問題が生じる。このため、高速の光信号を光のまま信号処理を行うことの出来る時空間変換信号処理(非特許文献1参照)が注目を集めている。これは、先ず、回折格子やアレイ導波路格子(AWG)などの分散素子を用いて、時間波形を空間波形に変換し、その空間波形をレンズ等によってフーリエ変換することによって時間波形の時間周波数スペクトルを空間周波数スペクトルに変換する。そして、空間周波数スペクトルを空間的に強度や位相を変調することの出来る空間フィルタによってフィルタリングした後、逆過程を行うことで、再び時間波形に変換する。これにより、超高速光信号の時間波形に対して光信号処理を行うことができる。   With the development of optical signal transmission technology and optical signal processing technology, it has become necessary to handle high-speed and large-capacity optical signals. However, when the signal speed is increased, there is a problem that electrical processing becomes extremely difficult when performing signal processing. For this reason, a spatio-temporal conversion signal processing (see Non-Patent Document 1) that can perform signal processing of a high-speed optical signal as light is attracting attention. First, the time waveform is converted into a time waveform using a dispersion element such as a diffraction grating or an arrayed waveguide grating (AWG), and the time waveform is subjected to Fourier transform using a lens or the like, whereby the time frequency spectrum of the time waveform is converted. Is converted to a spatial frequency spectrum. Then, the spatial frequency spectrum is filtered by a spatial filter capable of spatially modulating the intensity and phase, and then converted into a time waveform again by performing the reverse process. Thereby, optical signal processing can be performed on the time waveform of the ultrafast optical signal.

この光信号処理方法は、分散素子として、波長多重(WDM)光信号の合分波に用いられているAWG等を用いるため、WDMされた信号に対して並列で一括信号処理を行うことができるという利点を有する。   Since this optical signal processing method uses AWG or the like used for multiplexing / demultiplexing of wavelength division multiplexing (WDM) optical signals as dispersion elements, it is possible to perform batch signal processing on WDM signals in parallel. Has the advantage.

T. Kurokawa, et al., “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electronics Letters, 1997, Vol. 33, No. 22, pp.1890-1891T. Kurokawa, et al., “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electronics Letters, 1997, Vol. 33, No. 22, pp.1890-1891

しかしながら、従来のAWGを用いた時空間変換光信号処理回路では、入力ポートと出力ポートが同一になってしまうという課題があった。既にWDMされた信号に対して時空間変換光信号処理を行う場合には、従来の光信号処理回路で問題無く一括で信号処理を行うことが出来る。一方、例えばWDM信号の送信時に波長多重された光単側波帯(SSB)信号や光ナイキストパルスなどの特殊な送信光信号を生成するためには装置が複雑になるという課題があった。   However, the conventional space-time conversion optical signal processing circuit using AWG has a problem that the input port and the output port are the same. When space-time converted optical signal processing is performed on a signal that has already been WDM, signal processing can be performed in a lump without problems with a conventional optical signal processing circuit. On the other hand, for example, there is a problem that the apparatus becomes complicated in order to generate a special transmission optical signal such as an optical single sideband (SSB) signal and an optical Nyquist pulse that are wavelength-multiplexed when transmitting a WDM signal.

図9に、従来の光信号処理回路の構成を示す。波長λ1〜λ4の信号光を入射する複数の入力導波路901、スラブ導波路902、アレイ導波路903、スラブ導波路904からなる前段部においてWDM信号を生成する波長多重処理を行う。その後、前段部と光サーキュレータ905を介して接続された、WDM信号が入射される単一の入力導波路906、スラブ導波路907、アレイ導波路908、スラブ導波路909、スラブ導波路909の焦点面に配置された反射型空間フィルタ910からなる後段部において、時空間変換光信号処理を行う。このように、波長多重処理を行う回路と時空間変換光信号処理を行う回路とを別々に用意する必要があり、それらを組み合わせることで装置が複雑になっていた。   FIG. 9 shows a configuration of a conventional optical signal processing circuit. Wavelength multiplexing processing for generating a WDM signal is performed in a front stage portion composed of a plurality of input waveguides 901, slab waveguides 902, arrayed waveguides 903, and slab waveguides 904 that receive signal light of wavelengths λ1 to λ4. After that, the focal points of the single input waveguide 906, the slab waveguide 907, the arrayed waveguide 908, the slab waveguide 909, and the slab waveguide 909, which are connected to the front stage through the optical circulator 905 and receive the WDM signal. Spatio-temporal conversion optical signal processing is performed in the rear stage part composed of the reflective spatial filter 910 arranged on the surface. Thus, it is necessary to separately prepare a circuit for performing wavelength multiplexing processing and a circuit for performing space-time conversion optical signal processing, and the combination of them complicates the apparatus.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、複数のポートから入力した波長の異なる光信号に対して、時空間変換光信号処理を行い、かつ波長多重処理を1つのAWGで行うことの出来る簡便な時空間変換光信号処理回路を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to perform space-time conversion optical signal processing on optical signals having different wavelengths input from a plurality of ports, and to perform wavelength multiplexing. An object of the present invention is to provide a simple space-time conversion optical signal processing circuit capable of performing processing with one AWG.

上記の課題を解決するために、本発明は、光信号処理回路であって、第1のスラブ導波路と第2のスラブ導波路との間をアレイ導波路で接続され、複数の入力導波路と前記入力導波路に隣接する少なくとも1本の出力導波路が前記第1のスラブ導波路に接続されたアレイ導波路格子と、前記第2のスラブ導波路の焦点面近傍に配置された空間フィルタであって、前記複数の入力導波路から入射した光信号を反射して前記出力導波路に結合させるための位相変調構造を有する空間フィルタと、を備え、前記位相変調構造は、前記第2のスラブ導波路において周波数成分が空間的に展開された光信号の入射位置毎に、前記出力導波路との位置関係に応じた位相遅延量を有する傾斜面を有する基板上に積層されたレジストと、前記傾斜面に積層された金属膜との積層構造からなることを特徴とする。 In order to solve the above problems, the present invention is an optical signal processing circuit, wherein a first slab waveguide and a second slab waveguide are connected by an arrayed waveguide, and a plurality of input waveguides are provided. And an arrayed waveguide grating in which at least one output waveguide adjacent to the input waveguide is connected to the first slab waveguide, and a spatial filter disposed in the vicinity of the focal plane of the second slab waveguide A spatial filter having a phase modulation structure for reflecting and coupling optical signals incident from the plurality of input waveguides to the output waveguide , wherein the phase modulation structure comprises the second modulation structure. A resist laminated on a substrate having an inclined surface having a phase delay amount corresponding to a positional relationship with the output waveguide for each incident position of an optical signal in which a frequency component is spatially expanded in a slab waveguide; Laminated on the inclined surface Characterized in that a laminated structure of a metal film.

請求項において、請求項に記載の光信号処理回路において、前記位相変調構造は、前記傾斜面の全面に前記金属膜が積層されていることを特徴とする。 2. The optical signal processing circuit according to claim 1 , wherein the phase modulation structure has the metal film laminated on the entire surface of the inclined surface.

請求項に記載の発明は、請求項に記載の光信号処理回路において、前記位相変調構造は、前記傾斜面毎に、前記光信号の片側の側波帯のみを反射するように前記金属膜が前記傾斜面の一部に積層され、かつ、片側の側波帯を吸収するように無反射膜が前記傾斜面の一部に積層されていることを特徴とする。 The invention according to claim 3, in the optical signal processing circuit according to claim 1, wherein the phase modulation structure, for each of the inclined surface, the metal to reflect only one side of the sideband of the optical signal A film is laminated on a part of the inclined surface, and a non-reflective film is laminated on a part of the inclined surface so as to absorb one sideband.

請求項に記載の発明は、請求項に記載の光信号処理回路において、前記位相変調構造は、前記傾斜面毎に、前記光信号のスペクトルの中心のみ反射するように前記傾斜面の一部に前記金属膜が積層されていることを特徴とする。 The invention according to claim 4, the optical signal processing circuit according to claim 1, wherein the phase modulation structure, the each inclined surface of the inclined surface only such that the reflection center of the spectrum of the optical signal one The metal film is laminated on the portion.

請求項5に記載の発明は、請求項1乃至4のいずれかに記載の光信号処理回路において、前記アレイ導波路格子は、石英導波路で形成されていることを特徴とする。 According to a fifth aspect of the present invention, in the optical signal processing circuit according to any one of the first to fourth aspects, the arrayed waveguide grating is formed of a quartz waveguide.

本発明は、複数のポートから入力した波長の異なる光信号に対して、時空間変換光信号処理を行い、かつ波長多重処理を1つのAWGで行うことで、時空間変換光信号処理回路を簡便化することができる。   In the present invention, a spatio-temporal conversion optical signal processing circuit can be simplified by performing spatio-temporal conversion optical signal processing on optical signals having different wavelengths input from a plurality of ports and performing wavelength multiplexing processing with one AWG. Can be

本発明の一実施形態に係る光信号処理回路の構成を示す図である。It is a figure which shows the structure of the optical signal processing circuit which concerns on one Embodiment of this invention. (a)はスラブ導波路からの出力光の焦点面における電界振幅を示す図であり、(b)はスラブ導波路からの出力光の焦点面における位相を示す図である。(A) is a figure which shows the electric field amplitude in the focal plane of the output light from a slab waveguide, (b) is a figure which shows the phase in the focal plane of the output light from a slab waveguide. (a)はスラブ導波路からの出力光の焦点面における電界振幅を示す図であり、(b)はスラブ導波路からの出力光の焦点面における位相を示す図である。(A) is a figure which shows the electric field amplitude in the focal plane of the output light from a slab waveguide, (b) is a figure which shows the phase in the focal plane of the output light from a slab waveguide. (a)は本発明の一実施形態に係る空間フィルタの構造を示す図であり、(b)はその空間フィルタによって与えられる位相遅延量を示す図であり、(c)はその空間フィルタによって与えられる反射電界の位相を示す図である。(A) is a figure which shows the structure of the spatial filter which concerns on one Embodiment of this invention, (b) is a figure which shows the phase delay amount given by the spatial filter, (c) is given by the spatial filter It is a figure which shows the phase of the reflected electric field produced. (a)は本発明の一実施形態に係るSSB信号を生成するためのSSB信号用空間フィルタの構造を示す図であり、(b)はその空間フィルタによって与えられる位相遅延量を示す図であり、(c)はその空間フィルタによって与えられる反射電界の位相を示す図である。(A) is a figure which shows the structure of the spatial filter for SSB signals for producing | generating the SSB signal which concerns on one Embodiment of this invention, (b) is a figure which shows the phase delay amount given by the spatial filter (C) is a figure which shows the phase of the reflected electric field given by the spatial filter. (a)はSSB信号用空間フィルタによるフィルタリング後の電界振幅を示す図であり、(b)はSSB信号用空間フィルタによるフィルタリング後の位相を示す図である。(A) is a figure which shows the electric field amplitude after filtering by the spatial filter for SSB signals, (b) is a figure which shows the phase after filtering by the spatial filter for SSB signals. 本発明の一実施形態に係る光ナイキストパルスを生成するための光ナイキストパルス用空間フィルタの構造を示す図であり、空間フィルタ105によって与えられる位相遅延量を示す図であり、反射電界の位相を示す図である。It is a figure which shows the structure of the spatial filter for optical Nyquist pulses for producing | generating the optical Nyquist pulse which concerns on one Embodiment of this invention, is a figure which shows the phase delay amount given by the spatial filter 105, and shows the phase of a reflected electric field. FIG. (a)は光ナイキストパルス用空間フィルタによるフィルタリング後の電界振幅を示す図であり、(b)は光ナイキストパルス用空間フィルタによるフィルタリング後の位相を示す図である。(A) is a figure which shows the electric field amplitude after filtering by the optical Nyquist pulse spatial filter, (b) is a figure which shows the phase after filtering by the optical Nyquist pulse spatial filter. 従来の光信号処理回路の構成を示す図である。It is a figure which shows the structure of the conventional optical signal processing circuit.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1に、本発明の一実施形態に係る光信号処理回路の構成を示す。複数の入力導波路101から入射された波長λ1〜λ4の信号光は、スラブ導波路102でアレイ導波路103の各導波路に分配される。アレイ導波路103からのそれぞれの出力光は、スラブ導波路104で集光される。アレイ導波路103は、入射信号光を時間−空間変換する機能を有するものであり、スラブ導波路104は、アレイ導波路103からのそれぞれの出力光をフーリエ変換させる機能を有するものである。つまり、スラブ導波路104のアレイ導波路103に接続された端面とは反対側の端面(焦点面)において入力光信号の周波数成分が空間的に展開されており、空間軸と周波数軸とは線分散を通じて互いに比例関係にある。この入力導波路101、スラブ導波路102、アレイ導波路103、スラブ導波路104からなる回路構成は、一般的にアレイ導波路格子(AWG)と呼ばれている。   FIG. 1 shows a configuration of an optical signal processing circuit according to an embodiment of the present invention. Signal light having wavelengths λ1 to λ4 incident from the plurality of input waveguides 101 is distributed to each waveguide of the arrayed waveguide 103 by the slab waveguide 102. Each output light from the arrayed waveguide 103 is collected by the slab waveguide 104. The array waveguide 103 has a function of time-space converting incident signal light, and the slab waveguide 104 has a function of Fourier transforming each output light from the array waveguide 103. That is, the frequency component of the input optical signal is spatially developed on the end face (focal plane) opposite to the end face connected to the arrayed waveguide 103 of the slab waveguide 104, and the spatial axis and the frequency axis are linear. They are proportional to each other through dispersion. A circuit configuration including the input waveguide 101, the slab waveguide 102, the arrayed waveguide 103, and the slab waveguide 104 is generally called an arrayed waveguide grating (AWG).

スラブ導波路104の焦点面には、反射型の空間フィルタ105が配置され、周波数成分が空間的に展開された入力光信号(光スペクトル)に対して、強度や位相変調を施すことができる。   A reflective spatial filter 105 is disposed on the focal plane of the slab waveguide 104, and intensity and phase modulation can be applied to an input optical signal (optical spectrum) in which frequency components are spatially expanded.

本実施形態で用いたアレイ導波路103の中心波長が1552nmであり、その本数は378本、回折次数(隣接導波路の光路長差を波長で除した値)は327である。スラブ導波路104の焦点面における線分散は250MHz/μmであり、周波数分解能は約2.2GHzである。また複数の入力導波路101の本数は4本であり、200GHz間隔に相当する間隔でスラブ導波路102に入射するように設計されている。   The center wavelength of the arrayed waveguide 103 used in this embodiment is 1552 nm, the number thereof is 378, and the diffraction order (the value obtained by dividing the optical path length difference between adjacent waveguides by the wavelength) is 327. The linear dispersion at the focal plane of the slab waveguide 104 is 250 MHz / μm, and the frequency resolution is about 2.2 GHz. The number of the plurality of input waveguides 101 is four, and the input waveguides 101 are designed to enter the slab waveguide 102 at intervals equivalent to 200 GHz intervals.

図1の光信号処理回路は、以下のように作製された石英系光導波路としても良い。すなわち、単結晶シリコンの基板上に火炎加水分解体積法(FHD法)によって下部クラッド層、コア層の順にガラス微粒子膜として堆積させた後、アニール炉中で高温に加熱し、シリコン基板上を覆う透明なガラス膜とする。その後、導波路の形にパターニングを施し、ドライエッチングを用いて、不要なコア層を除去した後、再びFHD法を用いて上部クラッド層を堆積させ、高温に加熱して上部クラッド層を透明化させる。   The optical signal processing circuit of FIG. 1 may be a silica-based optical waveguide manufactured as follows. That is, after depositing as a glass fine particle film in the order of the lower cladding layer and the core layer on the single crystal silicon substrate by the flame hydrolysis volume method (FHD method), it is heated to a high temperature in an annealing furnace to cover the silicon substrate. A transparent glass film is used. Then, after patterning the waveguide, using dry etching to remove the unnecessary core layer, the upper cladding layer is deposited again using the FHD method, and heated to a high temperature to make the upper cladding layer transparent. Let

尚、本発明は、石英系光導波路の他に、InPなどの半導体層にコア層としてInGaAsPなどのクラッドよりも屈折率の高い半導体をエピタキシャル成長させ、パターニング、及びエッチングによって作製した半導体の導波路構造やコアを重水素化PMMA、クラッドを紫外線硬化樹脂とするようなポリマーからなる導波路構造としても良い。この場合は、使用したい波長域において材料が十分透明であることが望ましい。   In the present invention, in addition to the silica-based optical waveguide, a semiconductor waveguide structure produced by epitaxially growing a semiconductor having a refractive index higher than that of a cladding such as InGaAsP as a core layer on a semiconductor layer such as InP, and patterning and etching. Alternatively, a waveguide structure made of a polymer in which the core is deuterated PMMA and the cladding is an ultraviolet curable resin may be used. In this case, it is desirable that the material is sufficiently transparent in the wavelength range to be used.

ここで、4本の入力導波路から、周波数間隔が100GHzの周波数λ1、λ2、λ3、λ4の光を入射した場合のスラブ導波路104の焦点面の電界について説明する。入射導波路の間隔が200GHzであるため、スラブ導波路104の焦点面にはλ1、λ2、λ3、λ4の光スペクトルが、100GHz間隔に相当する間隔(本実施例では400μm)で、展開される。図2(a)、(b)に、このときの電界振幅と位相を示す。   Here, the electric field on the focal plane of the slab waveguide 104 when light of frequencies λ1, λ2, λ3, and λ4 having a frequency interval of 100 GHz is incident from four input waveguides will be described. Since the interval between the incident waveguides is 200 GHz, the optical spectrum of λ1, λ2, λ3, and λ4 is developed on the focal plane of the slab waveguide 104 at intervals corresponding to 100 GHz intervals (400 μm in this embodiment). . 2A and 2B show the electric field amplitude and phase at this time.

ここで、図3のように各入射スペクトルの位相を空間位置に対して傾けることで、反射する空間周波数スペクトルの波面を制御することが可能である。具体的には、周波数λ1、λ2、λ3、λ4の光スペクトルに対して、与える位相を独立に制御することで、空間フィルタ105で反射された光信号をもとの入力導波路101ではなく、1本の出力導波路106に合波して出力させることが可能になった。これにより、これまで2つのAWGで独立に行ってきた時空間変換光信号処理と波長多重処理とを1つのAWGで行うことが可能になった。   Here, as shown in FIG. 3, the wavefront of the reflected spatial frequency spectrum can be controlled by tilting the phase of each incident spectrum with respect to the spatial position. Specifically, by independently controlling the phase to be given to the optical spectrum of the frequencies λ1, λ2, λ3, and λ4, the optical signal reflected by the spatial filter 105 is not the original input waveguide 101, It becomes possible to multiplex and output to one output waveguide 106. As a result, it has become possible to perform space-time conversion optical signal processing and wavelength multiplexing processing, which have been performed independently by two AWGs, by one AWG.

図4(a)〜(c)に、空間フィルタ105の詳細な構造、空間フィルタ105によって与えられる位相遅延量、反射電界の位相を示す。空間フィルタ105は、石英で出来たフィルタ基板401上の周波数λ1、λ2、λ3、λ4の光スペクトルが展開される位置毎に、電子線描画レジスト402、金ミラー403からなる位相変調構造を備えている。これは以下のように作製した。   4A to 4C show the detailed structure of the spatial filter 105, the phase delay amount provided by the spatial filter 105, and the phase of the reflected electric field. The spatial filter 105 has a phase modulation structure including an electron beam drawing resist 402 and a gold mirror 403 at each position where the optical spectrum of the frequencies λ1, λ2, λ3, and λ4 on the filter substrate 401 made of quartz is developed. Yes. This was produced as follows.

フィルタ基板401上にレジストでパターニングし、電子線描画装置でドーズ(電荷打ち込み)量を空間的に調整して露光して一定時間後に現像することで、光スペクトルが展開される位置毎に異なる傾きを持った電子線描画レジスト402を形成することができる。その後、電子線描画レジスト402の全面に金ミラー403を200μm蒸着した。   Patterning with a resist on the filter substrate 401, spatially adjusting the dose (charge implantation) with an electron beam lithography system, exposing and developing after a certain period of time, so that the inclination varies depending on the position where the optical spectrum is developed. Can be formed. Thereafter, a gold mirror 403 was deposited on the entire surface of the electron beam drawing resist 402 by 200 μm.

図4(a)に示す空間フィルタ105を用いて実際に100GHz間隔の光信号(波長はそれぞれ1552.15nm、1552.9nm、1553.7nm、1554.5nm)を入射したところ、4波長全てが出力ポート106から出射することを確認出来た。   When an optical signal (wavelengths of 155.15 nm, 1552.9 nm, 1553.7 nm, and 1554.5 nm, respectively) is actually incident using the spatial filter 105 shown in FIG. 4A, all four wavelengths are output. It was confirmed that the light was emitted from the port 106.

上述の例では、金ミラー403を全面に蒸着したため、空間フィルタ105によって全てのスペクトルが反射されるが、金ミラー403をパターニングすることで、信号処理を行うことが出来る。   In the above example, since the gold mirror 403 is deposited on the entire surface, the entire spectrum is reflected by the spatial filter 105, but signal processing can be performed by patterning the gold mirror 403.

図5(a)〜(c)に、本発明の一実施形態に係るSSB信号を生成するためのSSB信号用空間フィルタの構造、空間フィルタ105によって与えられる位相遅延量、反射電界の位相を示す。また図6(a)、(b)に、SSB信号用空間フィルタによるフィルタリング後の電界振幅と位相を示す。搬送波の片側の側波帯のみを反射し、他方の側波帯は無反射膜501によってカット(吸収)されるため、フィルタリング後の光スペクトルは光SSB信号になる。   5A to 5C show the structure of an SSB signal spatial filter for generating an SSB signal according to an embodiment of the present invention, the phase delay amount provided by the spatial filter 105, and the phase of the reflected electric field. . FIGS. 6A and 6B show the electric field amplitude and phase after filtering by the SSB signal spatial filter. Since only one sideband of the carrier wave is reflected and the other sideband is cut (absorbed) by the non-reflective film 501, the optical spectrum after filtering becomes an optical SSB signal.

図7に、本発明の一実施形態に係る光ナイキストパルスを生成するための光ナイキストパルス用空間フィルタの構造、空間フィルタ105によって与えられる位相遅延量、反射電界の位相を示す。また図8(a)、(b)に、光ナイキストパルス用空間フィルタによるフィルタリング後の電界振幅と位相を示す。スペクトルの中心のみ反射するよう金ミラー403を図7(a)のようにパターニングして、スペクトルの裾が急峻にカットされた図8(a)のようなスペクトルを形成することで、光ナイキストパルスを生成することも可能である。   FIG. 7 shows the structure of an optical Nyquist pulse spatial filter for generating an optical Nyquist pulse according to an embodiment of the present invention, the phase delay amount provided by the spatial filter 105, and the phase of the reflected electric field. 8A and 8B show the electric field amplitude and phase after filtering by the optical Nyquist pulse spatial filter. An optical Nyquist pulse is formed by patterning the gold mirror 403 so as to reflect only the center of the spectrum as shown in FIG. 7A to form a spectrum as shown in FIG. Can also be generated.

本実施形態では、フィルタ基板401上に電子線描画レジスト402、金ミラー403や無反射膜501で空間フィルタ105を形成したが、LCOS(Liquid crystal on silicon)のような動的に反射面を構成可能な空間フィルタ105を用いても良い。   In this embodiment, the spatial filter 105 is formed on the filter substrate 401 with the electron beam drawing resist 402, the gold mirror 403, and the non-reflective film 501, but a reflective surface is dynamically configured such as LCOS (Liquid crystal on silicon). A possible spatial filter 105 may be used.

以上説明したように、本発明の時空間変換光信号処理回路では、空間フィルタに波面制御構造を設けることで、1つのAWGで、複数のポートから入力した波長の異なる複数の光信号に対して、個別に時空間変換光信号処理を行い、かつ波長多重処理も行うことが出来る。   As described above, in the space-time conversion optical signal processing circuit of the present invention, by providing a wavefront control structure in a spatial filter, a single AWG can handle a plurality of optical signals having different wavelengths input from a plurality of ports. In addition, the space-time conversion optical signal processing can be performed individually, and wavelength multiplexing processing can also be performed.

101、901 入力導波路
102、104、902、904、907、909 スラブ導波路
103、903、908 アレイ導波路
105、910 空間フィルタ
106 出力導波路
401 フィルタ基板
402 電子線描画レジスト
403 金ミラー
501 無反射膜
905 光サーキュレータ
906 入出力導波路
101, 901 Input waveguide 102, 104, 902, 904, 907, 909 Slab waveguide 103, 903, 908 Array waveguide 105, 910 Spatial filter 106 Output waveguide 401 Filter substrate 402 Electron beam drawing resist 403 Gold mirror 501 None Reflective film 905 Optical circulator 906 Input / output waveguide

Claims (5)

第1のスラブ導波路と第2のスラブ導波路との間をアレイ導波路で接続され、複数の入力導波路と前記入力導波路に隣接する少なくとも1本の出力導波路が前記第1のスラブ導波路に接続されたアレイ導波路格子と、
前記第2のスラブ導波路の焦点面近傍に配置された空間フィルタであって、前記複数の入力導波路から入射した光信号を反射して前記出力導波路に結合させるための位相変調構造を有する空間フィルタと、
を備え、前記位相変調構造は、前記第2のスラブ導波路において周波数成分が空間的に展開された光信号の入射位置毎に、前記出力導波路との位置関係に応じた位相遅延量を有する傾斜面を有する基板上に積層されたレジストと、前記傾斜面に積層された金属膜との積層構造からなることを特徴とする光信号処理回路。
The first slab waveguide and the second slab waveguide are connected by an arrayed waveguide, and a plurality of input waveguides and at least one output waveguide adjacent to the input waveguide are the first slab waveguide. An arrayed waveguide grating connected to the waveguide;
A spatial filter disposed in the vicinity of a focal plane of the second slab waveguide, and having a phase modulation structure for reflecting an optical signal incident from the plurality of input waveguides to couple to the output waveguide A spatial filter,
The phase modulation structure has a phase delay amount corresponding to the positional relationship with the output waveguide for each incident position of the optical signal in which the frequency component is spatially expanded in the second slab waveguide. An optical signal processing circuit comprising a laminated structure of a resist laminated on a substrate having an inclined surface and a metal film laminated on the inclined surface.
前記位相変調構造は、前記傾斜面の全面に前記金属膜が積層されていることを特徴とする請求項1に記載の光信号処理回路。   The optical signal processing circuit according to claim 1, wherein the phase modulation structure has the metal film laminated on the entire inclined surface. 前記位相変調構造は、前記傾斜面毎に、前記光信号の片側の側波帯のみを反射するように前記金属膜が前記傾斜面の一部に積層され、かつ、片側の側波帯を吸収するように無反射膜が前記傾斜面の一部に積層されていることを特徴とする請求項1に記載の光信号処理回路。   In the phase modulation structure, for each inclined surface, the metal film is laminated on a part of the inclined surface so as to reflect only one side band of the optical signal, and absorbs one side band. The optical signal processing circuit according to claim 1, wherein an antireflective film is laminated on a part of the inclined surface. 前記位相変調構造は、前記傾斜面毎に、前記光信号のスペクトルの中心のみ反射するように前記傾斜面の一部に前記金属膜が積層されていることを特徴とする請求項1に記載の光信号処理回路。   2. The phase modulation structure according to claim 1, wherein the metal film is laminated on a part of the inclined surface so that only the center of the spectrum of the optical signal is reflected for each inclined surface. Optical signal processing circuit. 前記アレイ導波路格子は、石英導波路で形成されていることを特徴とする請求項1乃至のいずれかに記載の光信号処理回路。 The arrayed waveguide grating, the optical signal processing circuit according to any one of claims 1 to 4, characterized in that it is formed of quartz waveguide.
JP2013089778A 2013-04-22 2013-04-22 Optical signal processing circuit Active JP6110718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013089778A JP6110718B2 (en) 2013-04-22 2013-04-22 Optical signal processing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013089778A JP6110718B2 (en) 2013-04-22 2013-04-22 Optical signal processing circuit

Publications (2)

Publication Number Publication Date
JP2014215317A JP2014215317A (en) 2014-11-17
JP6110718B2 true JP6110718B2 (en) 2017-04-05

Family

ID=51941148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013089778A Active JP6110718B2 (en) 2013-04-22 2013-04-22 Optical signal processing circuit

Country Status (1)

Country Link
JP (1) JP6110718B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10574630B2 (en) 2011-02-15 2020-02-25 Webroot Inc. Methods and apparatus for malware threat research

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885669B2 (en) * 2019-04-25 2024-01-30 Prophesee Systems and methods for imaging and sensing vibrations
WO2023182593A1 (en) * 2022-03-25 2023-09-28 주식회사 피피아이 Pon power meter using multi-input type awg

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177113A (en) * 1996-12-18 1998-06-30 Nippon Telegr & Teleph Corp <Ntt> Array waveguide grating type band pass filter
JPH11174252A (en) * 1997-12-09 1999-07-02 Hitachi Cable Ltd Array waveguide type grating
JP2000098148A (en) * 1998-09-17 2000-04-07 Nippon Telegr & Teleph Corp <Ntt> Ultra-fast optical signal processing circuit
JP2000214392A (en) * 1999-01-21 2000-08-04 Nippon Telegr & Teleph Corp <Ntt> Optical wave length filter
JP3607534B2 (en) * 1999-06-17 2005-01-05 日本電信電話株式会社 Optical wavelength division multiplexer
US7505651B2 (en) * 2006-10-06 2009-03-17 Motorola, Inc. Optical planar wavelength selective filter and method of manufacture
JP5016009B2 (en) * 2009-09-02 2012-09-05 日本電信電話株式会社 Optical signal processing apparatus and assembly method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10574630B2 (en) 2011-02-15 2020-02-25 Webroot Inc. Methods and apparatus for malware threat research

Also Published As

Publication number Publication date
JP2014215317A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
US9052447B2 (en) Optical device with echelle grating and wavefront tailoring
JP2008058562A (en) Arrayed wave guide grating demultiplexer
JP6110718B2 (en) Optical signal processing circuit
Zhang et al. Full bandwidth wavelength division multiplexer/demultiplexer based on MMI
US20030206694A1 (en) Photonic multi-bandgap lightwave device and methods for manufacturing thereof
Bidnyk et al. Novel architecture for design of planar lightwave interleavers
JP2001221923A (en) Optical waveguide circuit
JP3515532B2 (en) Optical signal processing circuit
JP2017090640A (en) Optical functional device
JP4513471B2 (en) Demultiplexer
JP6670209B2 (en) Hybrid optical circuit
JP2000098148A (en) Ultra-fast optical signal processing circuit
JP4091944B2 (en) Optical circuit
TW486580B (en) Planar optical waveguide type dense wavelength division multiplexer
JPS63244003A (en) Multiplexer/demultiplexer
Seno et al. 50-wavelength channel-by-channel tunable optical dispersion compensator using combination of arrayed-waveguide and bulk gratings
JP2015212798A (en) Wavelength dispersion element
Liou et al. Design and fabrication of ring resonator spectral response through-drop wavelengths selective
Ning et al. Ultra-Broadband Optical Filter Based on step-chirped Multimode Waveguide Bragg Grating
Seno et al. 50-wavelength channel-by-channel tunable optical dispersion compensator using a combination of AWG and bulk grating
Kobayashi et al. Design of a hybrid wavelength selective switch using silica and silicon waveguides
JP3540687B2 (en) Optical signal processing circuit and method thereof
Preble et al. Passive silicon photonic devices
Madsen Optical filter synthesis
US6650796B2 (en) Waveguide optical frequency router

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170310

R150 Certificate of patent or registration of utility model

Ref document number: 6110718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150