JP5014761B2 - Method for measuring tension of buried rod member - Google Patents

Method for measuring tension of buried rod member Download PDF

Info

Publication number
JP5014761B2
JP5014761B2 JP2006335186A JP2006335186A JP5014761B2 JP 5014761 B2 JP5014761 B2 JP 5014761B2 JP 2006335186 A JP2006335186 A JP 2006335186A JP 2006335186 A JP2006335186 A JP 2006335186A JP 5014761 B2 JP5014761 B2 JP 5014761B2
Authority
JP
Japan
Prior art keywords
vibration
tension
rod member
length
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006335186A
Other languages
Japanese (ja)
Other versions
JP2008145356A (en
Inventor
享 伴
修一 辻野
智之 金田
和弘 井上
雅明 草刈
仁 鈴木
将仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Kogyo Co Ltd
Original Assignee
Sato Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Kogyo Co Ltd filed Critical Sato Kogyo Co Ltd
Priority to JP2006335186A priority Critical patent/JP5014761B2/en
Publication of JP2008145356A publication Critical patent/JP2008145356A/en
Application granted granted Critical
Publication of JP5014761B2 publication Critical patent/JP5014761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は港湾・河川等におけるコンクリート製護岸構造の支持を目的として埋設されているタイロッド・タイワイヤ等や、コンクリート構造物内に埋設状態にあるPC鋼材等の埋設ロッド部材の張力測定(正確には推定である。以下、同じ。)方法に関する。   The present invention measures the tension of tie rods, tie wires, etc. embedded for the purpose of supporting concrete revetment structures in harbors, rivers, etc., and embedded rod members such as PC steel materials embedded in concrete structures (more precisely, The same applies hereinafter).

コンクリート製護岸構造に埋設されているタイロッドやコンクリート構造物内に埋設状態にあるPC鋼材等のロッド部材の張力を測定しようとする場合、斜張橋の斜材のようにロッド部材全体が自由空間にある構造部材の張力を測定するのに比較して著しい困難が伴う。   When measuring the tension of a rod member such as a tie rod embedded in a concrete revetment structure or a PC steel member embedded in a concrete structure, the entire rod member is free space, such as a diagonal member of a cable-stayed bridge. There are significant difficulties compared to measuring the tension of structural members in

例えば、従来は、ロッド部材をハンマーで打撃したり、手で揺らすなどの手法で、感覚的に張力の大きさの程度を判断していたが、このような手法では、実際に作用している張力を実測値として把握することはできない。   For example, hitherto, the rod member was hit with a hammer or shaken with a hand, and the degree of tension was judged sensuously, but this method actually works. The tension cannot be grasped as an actual measurement value.

そこで、張力を正確に把握しようとすると、埋設状態にあるロッド部材を、振動弦長の全域にわたって露出させなければならないが、このような手法では、労力・時間・施工コストの面で不利益が大きい。また、コンクリート構造物内に埋設状態にあるPC鋼材の張力測定では、PC鋼材とそれを囲繞するコンクリートとの両者が構造材を構成しているために、コンクリートを破壊してPC鋼材の振動弦長を露出させることは実施不可能である場合が多い。   Therefore, in order to accurately grasp the tension, the embedded rod member must be exposed over the entire length of the vibrating string. However, such a method is disadvantageous in terms of labor, time, and construction cost. large. In addition, when measuring the tension of PC steel material embedded in a concrete structure, the PC steel material and the concrete surrounding it constitute a structural material. It is often impossible to expose the length.

本発明者等は、上記に鑑み、より簡易な手法により埋設状態にある既設タイロッドや埋設PC鋼材等の埋設ロッド部材の張力を測定する方法の研究を行い、本発明に至った。   In view of the above, the present inventors have conducted research on a method for measuring the tension of an embedded rod member such as an existing tie rod or an embedded PC steel in an embedded state by a simpler method, and have reached the present invention.

先ず、本発明者等は、空中ケーブル等の張力計測の手法として知られる振動法が上記事例のロッド部材の張力測定に応用できないかを研究した。振動法は、非特許文献1〜3、特許文献1に記載されているように、張力の懸かっているケーブルに衝撃を与え、ケーブルの任意の点における振動を検出して周波数分析を行い、その分析結果をパソコンに用意されている所定の計算式に代入して、ケーブルの張力を測定する方法である。   First, the present inventors studied whether a vibration method known as a method for measuring the tension of an aerial cable or the like could be applied to the tension measurement of the rod member in the above example. As described in Non-Patent Documents 1 to 3 and Patent Document 1, the vibration method applies a shock to a cable in tension, detects vibration at an arbitrary point of the cable, performs frequency analysis, This is a method of measuring the cable tension by substituting the analysis result into a predetermined calculation formula prepared in the personal computer.

尚、特許文献1は、橋梁に架設されたケーブルの如く空中のワイヤ類に付いての張力を測定する技術である。   Patent Document 1 is a technique for measuring the tension of wires in the air such as a cable laid on a bridge.

張力等の計算には、後述する式(I)から導かれる計算式が用いられることが知られている。   It is known that a calculation formula derived from formula (I) described later is used for calculating the tension and the like.

例えば、非特許文献2の「山極伊知郎外:ケーブル張力と曲げ剛性の同時推定法の実橋への適用」では、後述する式(I)に係る計算式に実際の計測値を基礎とする高次の固有振動数を代入することで、「張力」と「曲げ剛性」を同時に推定している。然しながら、実際に適用しようとすると、ケーブル端の固定条件や構造等により振動の境界条件が明確でないため、計算式に代入するケーブル長や曲げ剛性の評価を適切に行わないと、実際の張力と一致しないことが認められることから、非特許文献3の「伴享外:PC斜張橋の斜材ケーブル張力測定に関する一考察」では、理論値と実測値の比較により、ケーブル長と曲げ剛性の検討が行われている。   For example, Non-Patent Document 2 “Yamaguro Ichiro: Application of Simultaneous Estimation Method of Cable Tension and Bending Rigidity to Real Bridges” describes a calculation formula related to formula (I), which will be described later, based on actual measurement values. By substituting the following natural frequencies, "tension" and "bending stiffness" are estimated simultaneously. However, if it is actually applied, the boundary condition of vibration is not clear due to the cable end fixing condition or structure, etc.If the cable length and bending rigidity to be substituted into the calculation formula are not properly evaluated, the actual tension and In the non-patent document 3 “Bangyou-gai: A consideration on the cable cable tension measurement of PC cable-stayed bridges” in Non-Patent Document 3, the cable length and bending rigidity are compared by comparing the theoretical value with the actual measurement value. Consideration is being made.

特許第3313028号Japanese Patent No. 3313028 新家徹也「振動法によるケーブル張力の実用算定式について」土木学会論文集、第294号25〜32頁、1980年2月Tetsuya Shinya “A practical calculation formula for cable tension by the vibration method” Proceedings of Japan Society of Civil Engineers, No. 294, pp. 25-32, February 1980 山極伊知郎外「ケーブル張力と曲げ剛性の同時推定法の実橋への適用」鋼構造年次論文報告集、第5巻15〜22頁、1997年11月Ichiro Yamagoku “Application of Simultaneous Estimation Method of Cable Tension and Flexural Rigidity to Real Bridge” Annual Report of Steel Structure, Vol.5, 15-22, November 1997 伴享外「PC斜張橋の斜材ケーブル張力測定に関する一考察」土木学会第54回年次学術講演会、714〜715頁、1999年11月Bunkai “A Study on Measurement of Tension Cable Cable of PC Cable-stayed Bridge” 54th Annual Scientific Lecture, Japan Society of Civil Engineers, 714-715, November 1999

本発明に係る埋設ロッド部材の張力測定方法は、下記課題を解決することにある。
(1)埋設されているタイロッドやPC鋼材等の埋設状態にある既設ロッド部材の振動弦長を露出させることなく、振動弦長の数値が未知であっても、限定的な露出長さがあれば、張力推定を可能とすること。
(2)固有振動数の計測は、小型のハンマーなどによる打撃といった簡易な手法で行うことができ、また、短時間での実施を可能とすること。
(3)上記を、パソコンを利用した入力と演算という、簡便な手法によって実現可能とすること。
The embedded rod member tension measuring method according to the present invention is to solve the following problems.
(1) Without exposing the vibration string length of the existing rod member in the embedded state such as an embedded tie rod or PC steel material, even if the numerical value of the vibration string length is unknown, there should be a limited exposure length If possible, make it possible to estimate the tension.
(2) The natural frequency can be measured by a simple method such as striking with a small hammer or the like, and can be performed in a short time.
(3) The above can be realized by a simple method of input and calculation using a personal computer.

上記課題を解決する本発明は、下記構成を有する。   The present invention for solving the above problems has the following configuration.

1.埋設されているタイロッドやPC鋼材の如き埋設状態にある既設の埋設ロッド部材の振動弦長を露出させることなく、振動弦長の数値が未知であっても、限定的な露出長さから張力を測定する埋設ロッド部材の張力測定方法であって、
測定対象である前記ロッド部材の振動弦長の内の振動可能な長さ分である一部を掘削・はつり等の手段により露出させ、該露出部分に振動センサーを配設し、該露出部分をハンマ
ーの如き打撃手段による打撃により振動させ、前記振動センサーで検出した振動より固有振動数(fi)を求め、振動モード次数(i)と固有振動数(fi)の関係から、振動モード次数(i)の2乗と固有振動数(fi)の2乗を多項式で表し、振動モード次数(i)の4乗に相当する項より前記ロッド部材の見かけの振動弦長(L)を求め、振動モード次数(i)の2乗に相当する項より張力(T)を求めることを特徴とする埋設ロッド部材の張力測定方法。
1. Without exposing the vibration string length of an existing embedded rod member in an embedded state such as an embedded tie rod or PC steel material, even if the numerical value of the vibration string length is unknown, tension is applied from a limited exposure length. A method for measuring the tension of an embedded rod member to be measured,
A part of the length of the vibrating string of the rod member to be measured that can be vibrated is exposed by means such as excavation and suspension, a vibration sensor is disposed on the exposed part, and the exposed part is Vibrating by striking means such as a hammer, the natural frequency (f i ) is obtained from the vibration detected by the vibration sensor, and the vibration mode order is determined from the relationship between the vibration mode order (i) and the natural frequency (f i ). The square of (i) and the square of the natural frequency (f i ) are expressed by a polynomial, and the apparent vibration chord length (L) of the rod member is obtained from a term corresponding to the fourth power of the vibration mode order (i). A method for measuring the tension of an embedded rod member, wherein the tension (T) is obtained from a term corresponding to the square of the vibration mode order (i).

2.埋設されているタイロッドやPC鋼材の如き埋設状態にある既設の埋設ロッド部材の振動弦長を露出させることなく、振動弦長の数値が未知であっても、限定的な露出長さから張力を測定する埋設ロッド部材の張力測定方法であって、
測定対象である前記ロッド部材の振動弦長の内の振動可能な長さ分である一部を掘削・はつり等の手段により露出させ、該露出部分に振動センサーを配設し、該露出部分をハンマーの如き打撃手段による打撃により振動させ、前記振動センサーで検出した振動をデータロガーにより固有振動数(fi)を計測し、
前記ロッド部材の密度(ρ)と断面積(A)の値を与え、
前記ロッド部材の曲げ剛性(EI)の値を与え、
前記ロッド部材の振動端点間長である振動弦長(L)を、前記固有振動数(fi)、前記密度(ρ)、前記断面積(A)、前記曲げ剛性(EI)を元に算出して求め、
固有振動数(fi)、密度(ρ)、断面積(A)、曲げ剛性(EI)、振動弦長(L)を下記式(I)に代入して算出することで前記ロッド部材の張力を測定することを特徴とする埋設ロッド部材の張力測定方法。
2. Without exposing the vibration string length of an existing embedded rod member in an embedded state such as an embedded tie rod or PC steel material, even if the numerical value of the vibration string length is unknown, tension is applied from a limited exposure length. A method for measuring the tension of an embedded rod member to be measured,
A part of the length of the vibrating string of the rod member to be measured that can be vibrated is exposed by means such as excavation and suspension, a vibration sensor is disposed on the exposed part, and the exposed part is Vibrating by striking means such as a hammer, and measuring the natural frequency (f i ) with a data logger for the vibration detected by the vibration sensor,
Giving the density (ρ) and cross-sectional area (A) of the rod member;
Giving a value of the bending stiffness (EI) of the rod member;
The vibration chord length (L) that is the length between the vibration end points of the rod member is calculated based on the natural frequency (f i ), the density (ρ), the cross-sectional area (A), and the bending rigidity (EI). Ask
The rod member tension is calculated by substituting the natural frequency (f i ), density (ρ), cross-sectional area (A), bending stiffness (EI), and vibration chord length (L) into the following formula (I). A method for measuring the tension of an embedded rod member, characterized in that

Figure 0005014761
ここに、i:モード次数
i:モード次数に対応する固有振動数
ρ:密度
A:断面積
L:振動弦長
EI:曲げ剛性
T:張力(軸力)
Figure 0005014761
Where i: mode order
f i : natural frequency corresponding to mode order
ρ: Density
A: Cross-sectional area
L: Vibration string length
EI: Flexural rigidity
T: Tension (axial force)

3.得られた複数の固有振動数(fi)の2乗の値とモード次数(i)の2乗の値を最小2乗近似を行い、近似曲線のモード次数(i)の4乗の係数から前記振動弦長(L)を算定することを特徴とする請求項1又は2に記載の埋設ロッド部材の張力測定方法。 3. The least square approximation of the square value of the obtained natural frequency (f i ) and the square value of the mode order (i) is performed, and the fourth order coefficient of the mode order (i) of the approximate curve is calculated. The method for measuring tension of an embedded rod member according to claim 1, wherein the vibration string length (L) is calculated.

4.前記曲げ剛性(EI)が、鋼材のヤング係数(E)と円形の断面二次モーメント(I)から求めた値を用いることを特徴とする請求項2又は請求項2を引用する請求項3に記載の埋設ロッド部材の張力測定方法。
E=2.0×106kg/cm2
I=π×d4/64(cm4
4). The flexural rigidity (EI) is, in claim 3 quoting claim 2 or claim 2 characterized by using a value obtained from the Young's modulus of steel (E) a circular geometrical moment of inertia (I) A method for measuring the tension of the embedded rod member according to the description.
E = 2.0 × 10 6 kg / cm 2
I = π × d 4/64 (cm 4)

本発明に係る埋設ロッド部材の張力測定方法によれば、埋設されているタイロッドやPC鋼材等の埋設状態にある既設ロッド部材の振動弦長が未知であっても該埋設ロッド部材の一部を露出させるだけで、しかも、ハンマーによる打撃とパソコンを利用した入力・演算という簡便な手法で、その張力を測定することができるので、前記した課題を解決することができる。尚、本明細書において「振動弦長」とは振動端点間距離、即ち、ロッド部材の一端から他端までのロッド部材全体の長さからアンカー等による取付固定部分の長さを除いた部分の長さを云う。   According to the tension measuring method for an embedded rod member according to the present invention, even if the vibration chord length of an existing rod member in an embedded state such as an embedded tie rod or PC steel material is unknown, a part of the embedded rod member is removed. Since the tension can be measured only by exposing it, and by a simple technique of hammering and input / calculation using a personal computer, the above-mentioned problems can be solved. In this specification, the “vibration string length” is the distance between the vibration end points, that is, the length of the entire rod member from one end to the other end of the rod member, excluding the length of the fixing portion by the anchor or the like. Say length.

以下、本発明に係る埋設ロッド部材の張力測定方法を詳細に説明する。   Hereinafter, the method for measuring the tension of the embedded rod member according to the present invention will be described in detail.

本発明に係る埋設ロッド部材の張力測定方法は、埋設されているタイロッドやPC鋼材の如き埋設状態にある既設の埋設ロッド部材の振動弦長を露出させることなく、振動弦長の数値が未知であっても、限定的な露出長さから張力を測定するものである。   The method for measuring the tension of the embedded rod member according to the present invention is such that the numerical value of the vibration string length is unknown without exposing the vibration string length of the existing embedded rod member in an embedded state such as an embedded tie rod or PC steel material. Even if it exists, tension | tensile_strength is measured from limited exposure length.

振動弦長の数値が未知の埋設ロッド部材の張力の測定は、測定対象である前記ロッド部材の振動弦長の内の振動可能な長さ分である一部を掘削・はつり等の手段により露出させ、該露出部分に振動センサーを配設し、該露出部分をハンマーの如き打撃手段による打撃により振動させ、前記振動センサーで検出した振動より固有振動数(fi)を求め、振動モード次数(i)と固有振動数(fi)の関係から、振動モード次数(i)の2乗と固有振動数(fi)の2乗を多項式で表し、振動モード次数(i)の4乗に相当する前記ロッド部材の見かけの振動弦長(L)を求め、振動モード次数(i)の2乗に相当する項より張力(T)を求めることによって行われる。 When measuring the tension of an embedded rod member whose vibration string length value is unknown, a portion of the vibration string length of the rod member that is the object of measurement can be vibrated and exposed by means such as excavation and suspension. A vibration sensor is disposed in the exposed portion, the exposed portion is vibrated by striking means such as a hammer, the natural frequency (f i ) is obtained from the vibration detected by the vibration sensor, and the vibration mode order ( From the relationship between i) and the natural frequency (f i ), the square of the vibration mode order (i) and the square of the natural frequency (f i ) are expressed by a polynomial, which corresponds to the fourth power of the vibration mode order (i). The apparent vibration chord length (L) of the rod member to be obtained is obtained, and the tension (T) is obtained from the term corresponding to the square of the vibration mode order (i).

より具体的には、張力の計測で行われる演算では、従来から知られている下記の式(I)が基礎となっている。   More specifically, the calculation performed in the tension measurement is based on the following formula (I) which has been conventionally known.

Figure 0005014761
ここに、i:モード次数
i:モード次数に対応する固有振動数
ρ:密度
A:断面積
L:振動弦長
EI:曲げ剛性
T:張力(軸力)
Figure 0005014761
Where i: mode order
f i : natural frequency corresponding to mode order
ρ: Density
A: Cross-sectional area
L: Vibration string length
EI: Flexural rigidity
T: Tension (axial force)

上記した式(I)は、ケーブル構造物の張力(軸力)を、部材の固有振動数により測定する場合に用いられているもので、弦の振動方程式或いは張力を受ける梁の曲げ振動方程式として知られている。但し、弦の振動方程式は、式(1)の右辺の第2項(張力項)のみで、右辺第1項(剛性項)は省略されることになる。また、張力が作用していない部材の曲げ振動法定式は、右辺第2項(張力項)が省略された形となる。   The above formula (I) is used when the tension (axial force) of the cable structure is measured by the natural frequency of the member, and is the vibration equation of the string or the bending vibration equation of the beam subjected to the tension. Are known. However, the vibration equation of the string is only the second term (tension term) on the right side of Equation (1), and the first term (rigidity term) on the right side is omitted. Further, the bending vibration law formula for a member to which no tension is applied has a form in which the second term (tension term) on the right side is omitted.

張力Tを求める場合、式(I)の右辺第2項(張力項)が適用され、モード次数(i)を省略すると、未知数(パラメータ)は、(1)fi:固有振動数、(2)ρ:密度、(3)A:断面積、(4)L:振動弦長、(5)EI:曲げ剛性の5個となる。 When obtaining the tension T, the second term (tension term) on the right side of the formula (I) is applied, and if the mode order (i) is omitted, the unknown (parameter) is (1) f i : natural frequency, (2 ) Ρ: density, (3) A: cross-sectional area, (4) L: vibration string length, (5) EI: bending rigidity.

上記パラメータの内、
(1)固有振動数fiは実測で得られる数値である。
(2)密度ρ、(3)断面積Aは、計測しようとする部材によって決まる数値である。
例えば、密度ρは、ステンレス鋼等のような特別鋼材を用いた場合を除き、一般的な鉄の単位体積質量である7.85kg/cm3を用いることができる。特別鋼材の場合には適宜適した単位体積質量を用いる。断面積Aは、計測しようとする部材を実測することで求めることができる。また、腐食等により断面欠損が生じている場合、欠損の割合が少ない場合はそのままの値を用い、欠損の割合の多い場合は適宜現状を反映した値に調整して用いる。
(5)曲げ剛性EIは、鋼材のヤング係数Eと円形の断面二次モーメント(I)から求めた値を用いる。
E=2.0×106kg/cm2
I=π×d4/64(cm4
尚、EI:曲げ剛性は、測定すべきロッド部材が多数有る場合等では、現場において切断しても最も影響の少ない位置にある少なくとも1本をサンプルとして選択して切断して実測することで、曲げ剛性TIを実測することもできる。
(4)L:振動弦長は、振動端点間長であり、剛性項の係数より求められる値となる。
前記した山極らの非特許文献2では、曲げ剛性がそのケーブルの張力状態により変化するため、曲げ剛性と張力とを同時に推定する方法を採用している。この方法では、振動弦長(L)は一定値とし、例えばケーブルなどの部材固定間長が用いられている。
Of the above parameters,
(1) The natural frequency f i is a numerical value obtained by actual measurement.
(2) The density ρ and (3) the cross-sectional area A are values determined by the member to be measured.
For example, the density ρ can be 7.85 kg / cm 3 , which is a general unit volume mass of iron, except when a special steel material such as stainless steel is used. In the case of special steel materials, a suitable unit volume mass is used. The cross-sectional area A can be obtained by actually measuring a member to be measured. Further, when a cross-sectional defect is caused by corrosion or the like, the value is used as it is when the ratio of the defect is small, and when the ratio of the defect is large, the value is appropriately adjusted to reflect the current state.
(5) As the bending rigidity EI, a value obtained from the Young's modulus E of the steel material and the circular second moment (I) is used.
E = 2.0 × 10 6 kg / cm 2
I = π × d 4/64 (cm 4)
In addition, EI: bending rigidity is measured by selecting and cutting at least one sample at a position having the least influence even if it is cut at the site when there are many rod members to be measured, The bending stiffness TI can also be measured.
(4) L: The vibration string length is the length between the vibration end points, and is a value obtained from the coefficient of the stiffness term.
In the non-patent document 2 of Yamagaki et al. Described above, since the bending stiffness changes depending on the tension state of the cable, a method of simultaneously estimating the bending stiffness and the tension is adopted. In this method, the vibration string length (L) is a constant value, and for example, the length between fixed members such as a cable is used.

然しながら、伴らの非特許文献3に示されているように、ケーブルやロッド部材の振動では、振動弦長(L)は、式(I)の右辺第1項(剛性項)では4乗、第2項(張力項)では2乗の値となっており、振動弦長(L)の数値の変動が他のパラメータの変動に比較して、剛性ないし張力の推定結果に大きく影響を及ぼすことになっている。従って、山極らが提案するように、応力状態にて弾性係数(E)が変化し、これを正確に推定する必要があるように思われるが、然しながら、伴らが行ったように、振動端点位置を求めること、これをできるだけ正確に評価することが、張力を測定する上で重要なことであり、このことにより、振動弦長Lの数値の変動が張力の測定に与える影響を回避することができるとの知見が得られた。   However, as shown in the accompanying Non-Patent Document 3, in the vibration of the cable or the rod member, the vibration string length (L) is the fourth power in the first term (rigidity term) on the right side of the formula (I), The second term (tension term) is a square value, and fluctuations in the numerical value of the vibration chord length (L) have a greater effect on the rigidity or tension estimation results than fluctuations in other parameters. It has become. Therefore, as suggested by Yamagiwa et al., It seems that the elastic modulus (E) changes in the stress state and this needs to be estimated accurately. Determining the position and evaluating this as accurately as possible are important in measuring the tension, thereby avoiding the effect of fluctuations in the numerical value of the vibrating string length L on the tension measurement. The knowledge that it was possible was obtained.

上記から明らかなように、本発明に係る張力の測定方法では、測定対象のロッド部材の振動弦長が自由空間にある必要はなく、振動弦長の内の一部が露出されれば張力の測定が可能となる点が特徴である。即ち、未知数である振動弦長(L)の数値は、(2)ρ:密度、(3)A:断面積、(5)EI:曲げ剛性の数値を入力することで得られ、この数値を用いて張力(T)を測定することができることとなる。このように、評価が難しい振動端点位置を、振動測定結果から振動端点間距離である振動弦長(L)を求めることができ、この結果、振動弦長(L)を直接に測定することや、露出させたロッド部材の長さ(例えば、後述の実施例では約5メートル)の数値を張力計測の式に代入する必要がないことを意味している。   As is clear from the above, in the tension measuring method according to the present invention, the vibration chord length of the rod member to be measured does not need to be in free space, and if a part of the vibration chord length is exposed, the tension is not reduced. The feature is that measurement is possible. In other words, the numerical value of the vibration string length (L), which is an unknown number, is obtained by inputting (2) ρ: density, (3) A: cross-sectional area, and (5) EI: bending stiffness, and this numerical value is It will be possible to measure the tension (T). Thus, the vibration chord length (L), which is the distance between the vibration end points, can be obtained from the vibration measurement result for the position of the vibration end point that is difficult to evaluate, and as a result, the vibration chord length (L) can be directly measured. This means that it is not necessary to substitute the numerical value of the length of the exposed rod member (for example, about 5 meters in the embodiment described later) into the tension measurement formula.

本発明に係る張力の計測方法によれば、コンクリート構造物内に埋設状態にあるPC鋼材のように、その振動弦長を露出させることができないような場合に、振動数の実測に必要な長さ分だけPC鋼材を、例えばはつり作業などにより露出させることで張力の計測が可能となる。   According to the tension measuring method according to the present invention, the length required for the actual measurement of the vibration frequency when the vibration chord length cannot be exposed, such as the PC steel material embedded in the concrete structure. The tension can be measured by exposing the PC steel material by, for example, a fishing operation.

次に、発明に係る既設ロッド部材の張力測定法を実施例に従って詳細に説明する。   Next, the tension measuring method for the existing rod member according to the invention will be described in detail according to an embodiment.

図1は本発明に用いられる振動測定機器の一実施例を示す構成図、図2は図1の振動測定機器の配設例を示す説明図、図3は周波数分析結果の一例を示すグラフ、図4は10回の周波数分析結果を合計し平均化処理した一例を示すグラフ、図5は5次、6次の高次モードの確認例の一例を示すグラフ、図6は5次、6次の高次モードの確認例の一例を示すグラフ、図7は周波数の2乗と振動モード次数の2乗のプロットの一例を示すグラフ、図8は最小2乗近似の一例を示すグラフである。   FIG. 1 is a configuration diagram showing an embodiment of a vibration measuring device used in the present invention, FIG. 2 is an explanatory diagram showing an example of the arrangement of the vibration measuring device of FIG. 1, and FIG. 3 is a graph and diagram showing an example of a frequency analysis result 4 is a graph showing an example in which 10 frequency analysis results are totaled and averaged, FIG. 5 is a graph showing an example of confirmation of the 5th and 6th order higher modes, and FIG. 6 is a 5th and 6th order. FIG. 7 is a graph showing an example of a high-order mode confirmation example, FIG. 7 is a graph showing an example of a plot of the square of the frequency and the square of the vibration mode order, and FIG. 8 is a graph showing an example of the least-square approximation.

図1は、本発明を既設のタイロッドの張力測定に実施する場合に用いられる振動測定機器の構成を示しており、振動センサー(例えば、加速度センサー)10、データロガー(例えば、動ひずみ測定器)20、パソコン30から成り、現場においては、図2に示すように配置される。   FIG. 1 shows the configuration of a vibration measuring device used when the present invention is implemented to measure the tension of an existing tie rod, and includes a vibration sensor (for example, an acceleration sensor) 10 and a data logger (for example, a dynamic strain measuring device). 20 and a personal computer 30, which are arranged in the field as shown in FIG.

振動センサー10・10は、露出させたタイロッド40に、タイロッド長と各振動モードの形状を考慮した適切な位置に固定される。固定は、粘着テープなどによって行うことができるが、固定手段は、限定的ではない。振動センサー10は、固有振動数のピークを見逃すことを避けることで測定誤差を抑制するために複数(本実施例では2個)用いることが好ましいが1個でもよい。また、複数個用いた場合の各振動センサー10・10の間隔は各振動モードの形状を考慮した適切な間隔に固定されるのが好ましい。   The vibration sensors 10 and 10 are fixed to the exposed tie rod 40 at an appropriate position in consideration of the tie rod length and the shape of each vibration mode. The fixing can be performed with an adhesive tape or the like, but the fixing means is not limited. It is preferable to use a plurality of vibration sensors 10 (two in this embodiment) in order to suppress measurement errors by avoiding overlooking the peak of the natural frequency. In addition, when a plurality of vibration sensors are used, the distance between the vibration sensors 10 and 10 is preferably fixed at an appropriate distance considering the shape of each vibration mode.

振動センサー10としては、公知の加速度センサーを特別の制限なく使用できる。   As the vibration sensor 10, a known acceleration sensor can be used without any particular limitation.

データロガー20としては、公知の動ひずみ測定器を特別の制限なく使用できる。   As the data logger 20, a known dynamic strain measuring instrument can be used without any particular limitation.

パソコン30は、データロガー20からのデータ信号を収録すると共に、以下に説明する各種の演算を行い、結果を数値・画像表示するのに利用される。   The personal computer 30 records the data signal from the data logger 20, performs various calculations described below, and is used to display the results as numerical values and images.

上記した機器は、図2に示す態様で現場に配設されるが、理解を容易にするために、護岸の改修現場とタイロッドに関して説明する。   The above-described equipment is arranged on the site in the form shown in FIG. 2, but for the sake of easy understanding, description will be given with respect to the revetment site and tie rods.

タイロッド40の基端はコンクリート製の護岸構造41の陸側に固定され、他端はアンカー42に固定され、所定の張力が負荷された状態で土中に埋設されている。   The base end of the tie rod 40 is fixed to the land side of the concrete revetment structure 41, the other end is fixed to the anchor 42, and is buried in the soil under a predetermined tension.

護岸構造41の陸側は、例えば5mの幅で掘削され、タイロッド40が露出される(図2に示す「露出部分」)。市販の護岸用タイロッドの振動弦長は、メーカー及び品番に差があるが、例えば、タイロッド40全体の長さが17.5m、タイロッド40の両端部の固定部分が各々50cmとすると振動弦長は16.5mとなり、5mを露出させると振動弦長11.5mが地中に埋設状態にあることになる。   The land side of the revetment structure 41 is excavated with a width of 5 m, for example, and the tie rod 40 is exposed (“exposed portion” shown in FIG. 2). The vibration string length of commercially available tie rods for revetment varies depending on the manufacturer and product number. For example, if the length of the entire tie rod 40 is 17.5 m and the fixed portions at both ends of the tie rod 40 are 50 cm each, the vibration string length is If it becomes 16.5m and 5m is exposed, the vibration string length of 11.5m will be in an embedded state in the ground.

尚、後述する計算式への数値の代入に当たっては、市販タイロッドのメーカーは限られており(例えば、神鋼建材工業株式会社・日本タイロッド工業株式会社・合鐵産業株式会社・東京製網株式会社/順不同)、利用されているタイロッド40のメーカー名及び品番が設計(施工)図から、或いは露出させたタイロッド40の目視検査により明らかな場合には、その数値を代入すればよい。その際、パソコン30に用意するソフトウエアには、メーカー名・品番を選択するだけで必要な数値の代入が行われるプログラムが備えられるのが好ましい。更に好ましくは、実測により得られたデータとの比較を行い、数値不一致の場合の措置を行うプログラムを備える。   In addition, when substituting numerical values into the calculation formula described later, manufacturers of commercially available tie rods are limited (for example, Shinko Construction Materials Industry Co., Ltd., Nippon Tie Rod Industry Co., Ltd., Sogo Sangyo Co., Ltd., Tokyo Seimitsu Co., Ltd./ If the manufacturer name and product number of the tie rod 40 being used are clear from the design (construction) drawing or by visual inspection of the exposed tie rod 40, the numerical values may be substituted. In that case, it is preferable that the software prepared in the personal computer 30 is provided with a program in which necessary numerical values are substituted only by selecting a manufacturer name and a product number. More preferably, a program is provided for comparing with data obtained by actual measurement and taking measures in case of numerical mismatch.

次に計測の実際を説明する。   Next, the actual measurement will be described.

先ず、露出させたタイロッド40の任意の位置に振動センサー10を固定し、振動センサー10から離れた任意の位置でハンマー打撃を行い、振動を測定する。ハンマー打撃は、様々な振動モードの振動を発生させるように、例えば、10回など複数回行うことが好ましく、更に打撃毎に任意の位置を選択することが好ましい。更に、振動測定精度をより向上させるために、振動センサー10の固定位置を変更して、夫々複数回のハンマー打撃を繰り返すことも好ましい。   First, the vibration sensor 10 is fixed at an arbitrary position of the exposed tie rod 40, hammering is performed at an arbitrary position away from the vibration sensor 10, and vibration is measured. The hammer hitting is preferably performed a plurality of times such as 10 times so as to generate vibrations in various vibration modes, and it is preferable to select an arbitrary position for each hit. Furthermore, in order to further improve the vibration measurement accuracy, it is also preferable to change the fixed position of the vibration sensor 10 and repeat hammering a plurality of times.

振動データの収集が終わったら、これを周波数分析し、モード次数に対応する周波数の読取を行う。周波数の読取の実例を表1、図3〜図6に示す。   When the collection of the vibration data is finished, the frequency is analyzed and the frequency corresponding to the mode order is read. Examples of frequency reading are shown in Table 1 and FIGS.

表1は、図3に表わされている如き周波数分析結果の周波数振幅(マイクロμ)の波形から各振動モードに対応する周波数(Hz)を読み取って表にしたものである。卓越周波数のピークが明瞭でない場合には、図5及び図6に示す平均値処理や図7に示すような周波数を際立たせるような処理を行う。図7は各周波数分析結果の周波数振幅を掛け算した例を示すものであるが、図3と比較すると卓越周波数が明瞭である。   Table 1 is a table obtained by reading the frequencies (Hz) corresponding to the respective vibration modes from the waveform of the frequency amplitude (micro μ) of the frequency analysis result as shown in FIG. When the peak of the dominant frequency is not clear, the average value processing shown in FIGS. 5 and 6 and the processing that makes the frequency stand out as shown in FIG. 7 are performed. FIG. 7 shows an example in which the frequency amplitude of each frequency analysis result is multiplied, but the dominant frequency is clear as compared with FIG.

Figure 0005014761
Figure 0005014761

次に、得られた複数の固有振動数fとモード次数iの夫々の値の2乗の値(表2に示す)を図7に示すようにプロットし、図8に示すように最小2乗近似を行い、近似曲線のモード次数iの4乗の係数からロッド部材の振動弦長(L)を算定する。   Next, the square values (shown in Table 2) of the obtained natural frequencies f and mode orders i are plotted as shown in FIG. 7, and the least squares are plotted as shown in FIG. The approximation is performed, and the vibration chord length (L) of the rod member is calculated from the coefficient of the fourth order of the mode order i of the approximate curve.

尚、最小2乗近似を行うに際しては、前記式(I)を下記式(II)のように簡略化する。   When performing the least square approximation, the formula (I) is simplified as the following formula (II).

Figure 0005014761
Figure 0005014761

最小2乗近似を行った結果から、近似式である下記の式(III)が得られる。   From the result of the least square approximation, the following formula (III), which is an approximation formula, is obtained.

Figure 0005014761
Figure 0005014761

式(III)のα項より、振動弦長(L)を算定する。
即ち、a=8.1924であるから、
The vibration string length (L) is calculated from the α term of the formula (III).
That is, since a = 8.1924,

Figure 0005014761
となり、L=5.128(m)が得られる。
ここで、
π=3.14
EI=2.084(tm2
ρ=7.85(t/m3
A=1.134×10-3(m2
Figure 0005014761
Thus, L = 5.128 (m) is obtained.
here,
π = 3.14
EI = 2.084 (tm 2 )
ρ = 7.85 (t / m 3 )
A = 1.134 × 10 −3 (m 2 )

尚、計算に用いる単位系により、計算式内で重力加速度(g)を考慮する必要がある。上記計算はCGS単位系を用いているため、上記のように分子に重力加速度(g)を掛ける。一方、SI単位系では、元より重力加速度が考慮されている該重力加速度(g)を掛ける必要はない。   In addition, it is necessary to consider gravity acceleration (g) in a calculation formula by the unit system used for calculation. Since the calculation uses a CGS unit system, the gravity acceleration (g) is applied to the molecule as described above. On the other hand, in the SI unit system, it is not necessary to multiply the gravitational acceleration (g) in which the gravitational acceleration is taken into consideration.

Figure 0005014761
Figure 0005014761

本発明に係る既設ロッド部材の張力測定法において、張力の計測で行われる演算では、前記式(I)が基礎となっている。   In the tension measuring method for the existing rod member according to the present invention, the calculation performed by measuring the tension is based on the formula (I).

式(I)に各値(モード次数:i、モード次数iに対する固有振動数:fi、密度:ρ、断面積:A、振動弦長:L、曲げ剛性:EI)を代入することで、張力:Tを算定することが可能となる。 By substituting each value (mode order: i, natural frequency for the mode order i: f i , density: ρ, cross-sectional area: A, vibration chord length: L, bending stiffness: EI) into the formula (I), Tension: T can be calculated.

前記において振動弦長(L)が算出されたことにより、張力項の係数bより張力(T)を求めることができる。
即ち、b=316.57であるから、
By calculating the vibration string length (L) in the above, the tension (T) can be obtained from the coefficient b of the tension term.
That is, since b = 316.57,

Figure 0005014761
となり、T=30.22(t)が得られる。ここで、単位tは引張を示す。
Figure 0005014761
Thus, T = 30.22 (t) is obtained. Here, the unit t indicates tension.

尚、本実施例の結果を検証するために、振動法による測定を行った。即ち、本ロッド部材の切断時の該ロッド部材の縮み量の標点間距離を測定して簡易的に検証を行ったところ、前記値であるT=30.22(t)に対して1割程度の誤差範囲であるT=34.5(t)の値が得られた。   In order to verify the result of this example, measurement by the vibration method was performed. That is, when the distance between the gauge points of the amount of contraction of the rod member at the time of cutting the rod member was measured and simply verified, 10% of the value T = 30.22 (t) was obtained. A value of T = 34.5 (t), which is a margin of error, was obtained.

[実験例]
以下、実験例により、本発明に係る既設タイロッドの張力測定法を実証する。
[Experimental example]
Hereinafter, an experimental example demonstrates the tension measurement method for an existing tie rod according to the present invention.

実験例1:
A.使用したタイロッド
全体の長さが17.50m、直径が38mm(設計値)の市販品を用い、両端部を固定した状態(取付固定分は両端夫々50cmずつ)で埋設した。
B.タイロッドの掘り起こし(露出)
埋設したタイロッドの端部から本工事の施工上最低限必要な幅である、約5mを掘削し、タイロッドの掘り出しを行った。
C.タイロッドの曲げ剛性(EI)を算出した。
D.打撃によりタイロッドを励起させ、タイロッドの固有振動数を測定し、モード次数:i、モード次数iに対する固有振動数:fi、密度:ρ、断面積:A、振動弦長:L、曲げ剛性:EIの各値を計算式に代入して張力:Tを算定する。
E.各タイロッドに掛かった張力と、本発明の張力測定方法によって算定した張力(T)の結果は極めて近似した値を示すことが判った。
Experimental example 1:
A. The tie rod used was a commercial product having a total length of 17.50 m and a diameter of 38 mm (design value), and was embedded in a state where both ends were fixed (the fixed mounting portion was 50 cm each for both ends).
B. Tie rod digging (exposed)
About 5m, the minimum width required for the construction work, was excavated from the end of the buried tie rod, and the tie rod was excavated.
C. The bending stiffness (EI) of the tie rod was calculated.
D. The tie rod is excited by striking and the natural frequency of the tie rod is measured. The mode order is i, the natural frequency for the mode order i is f i , the density is ρ, the cross-sectional area is A, the vibration string length is L, and the bending stiffness is Tension: T is calculated by substituting each value of EI into the formula.
E. It was found that the tension applied to each tie rod and the result of the tension (T) calculated by the tension measuring method of the present invention showed very close values.

本発明に用いられる振動測定機器の一実施例を示す構成図The block diagram which shows one Example of the vibration measuring instrument used for this invention 図1の振動測定機器の配設例を示す説明図Explanatory drawing which shows the example of arrangement | positioning of the vibration measuring instrument of FIG. 周波数分析結果の一例を示すグラフGraph showing an example of frequency analysis results 10回の周波数分析結果を合計し平均化処理した一例を示すグラフGraph showing an example of summing up and averaging 10 frequency analysis results 5次、6次の高次モードの確認例の一例を示すグラフGraph showing an example of confirmation of fifth-order and sixth-order higher-order modes 5次、6次の高次モードの確認例の一例を示すグラフGraph showing an example of confirmation of fifth-order and sixth-order higher-order modes 周波数の2乗と振動モード次数の2乗のプロットの一例を示すグラフGraph showing an example of a plot of the square of the frequency and the square of the vibration mode order 最小2乗近似の一例を示すグラフGraph showing an example of least square approximation

符号の説明Explanation of symbols

10 振動センサー
20 データロガー
30 パソコン
40 タイロッド
41 護岸構造
42 アンカー
10 Vibration sensor 20 Data logger 30 PC 40 Tie rod 41 Seawall structure 42 Anchor

Claims (4)

埋設されているタイロッドやPC鋼材の如き埋設状態にある既設の埋設ロッド部材の振動弦長を露出させることなく、振動弦長の数値が未知であっても、限定的な露出長さから張力を測定する埋設ロッド部材の張力測定方法であって、
測定対象である前記ロッド部材の振動弦長の内の振動可能な長さ分である一部を掘削・はつり等の手段により露出させ、該露出部分に振動センサーを配設し、該露出部分をハンマーの如き打撃手段による打撃により振動させ、前記振動センサーで検出した振動より固有振動数(fi)を求め、振動モード次数(i)と固有振動数(fi)の関係から、振動モード次数(i)の2乗と固有振動数(fi)の2乗を多項式で表し、振動モード次数(i)の4乗に相当する項より前記ロッド部材の見かけの振動弦長(L)を求め、振動モード次数(i)の2乗に相当する項より張力(T)を求めることを特徴とする埋設ロッド部材の張力測定方法。
Without exposing the vibration string length of an existing embedded rod member in an embedded state such as an embedded tie rod or PC steel material, even if the numerical value of the vibration string length is unknown, tension is applied from a limited exposure length. A method for measuring the tension of an embedded rod member to be measured,
A part of the length of the vibrating string of the rod member to be measured that can be vibrated is exposed by means such as excavation and suspension, a vibration sensor is disposed on the exposed part, and the exposed part is Vibrating by striking means such as a hammer, the natural frequency (f i ) is obtained from the vibration detected by the vibration sensor, and the vibration mode order is determined from the relationship between the vibration mode order (i) and the natural frequency (f i ). The square of (i) and the square of the natural frequency (f i ) are expressed by a polynomial, and the apparent vibration chord length (L) of the rod member is obtained from a term corresponding to the fourth power of the vibration mode order (i). A method for measuring the tension of an embedded rod member, wherein the tension (T) is obtained from a term corresponding to the square of the vibration mode order (i).
埋設されているタイロッドやPC鋼材の如き埋設状態にある既設の埋設ロッド部材の振動弦長を露出させることなく、振動弦長の数値が未知であっても、限定的な露出長さから張力を測定する埋設ロッド部材の張力測定方法であって、
測定対象である前記ロッド部材の振動弦長の内の振動可能な長さ分である一部を掘削・はつり等の手段により露出させ、該露出部分に振動センサーを配設し、該露出部分をハンマーの如き打撃手段による打撃により振動させ、前記振動センサーで検出した振動をデータロガーにより固有振動数(fi)を計測し、
前記ロッド部材の密度(ρ)と断面積(A)の値を与え、
前記ロッド部材の曲げ剛性(EI)の値を与え、
前記ロッド部材の振動端点間長である振動弦長(L)を、前記固有振動数(fi)、前記密度(ρ)、前記断面積(A)、前記曲げ剛性(EI)を元に算出して求め、
固有振動数(fi)、密度(ρ)、断面積(A)、曲げ剛性(EI)、振動弦長(L)を下記式(I)に代入して算出することで前記ロッド部材の張力を測定することを特徴とする埋設ロッド部材の張力測定方法。
Figure 0005014761
ここに、i:モード次数
i:モード次数に対応する固有振動数
ρ:密度
A:断面積
L:振動弦長
EI:曲げ剛性
T:張力(軸力)
Without exposing the vibration string length of an existing embedded rod member in an embedded state such as an embedded tie rod or PC steel material, even if the numerical value of the vibration string length is unknown, tension is applied from a limited exposure length. A method for measuring the tension of an embedded rod member to be measured,
A part of the length of the vibrating string of the rod member to be measured that can be vibrated is exposed by means such as excavation and suspension, a vibration sensor is disposed on the exposed part, and the exposed part is Vibrating by striking means such as a hammer, and measuring the natural frequency (f i ) with a data logger for the vibration detected by the vibration sensor,
Giving the density (ρ) and cross-sectional area (A) of the rod member;
Giving a value of the bending stiffness (EI) of the rod member;
The vibration chord length (L) that is the length between the vibration end points of the rod member is calculated based on the natural frequency (f i ), the density (ρ), the cross-sectional area (A), and the bending rigidity (EI). Ask
The rod member tension is calculated by substituting the natural frequency (f i ), density (ρ), cross-sectional area (A), bending stiffness (EI), and vibration chord length (L) into the following formula (I). A method for measuring the tension of an embedded rod member, characterized in that
Figure 0005014761
Where i: mode order
f i : natural frequency corresponding to mode order
ρ: Density
A: Cross-sectional area
L: Vibration string length
EI: Flexural rigidity
T: Tension (axial force)
得られた複数の固有振動数(fi)の2乗の値とモード次数(i)の2乗の値を最小2乗近似を行い、近似曲線のモード次数(i)の4乗の係数から前記振動弦長(L)を算定することを特徴とする請求項1又は2に記載の埋設ロッド部材の張力測定方法。 The least square approximation of the square value of the obtained natural frequency (f i ) and the square value of the mode order (i) is performed, and the fourth order coefficient of the mode order (i) of the approximate curve is calculated. The method for measuring tension of an embedded rod member according to claim 1, wherein the vibration string length (L) is calculated. 前記曲げ剛性(EI)が、鋼材のヤング係数(E)と円形の断面二次モーメント(I)から求めた値を用いることを特徴とする請求項2又は請求項2を引用する請求項3に記載の埋設ロッド部材の張力測定方法。 The flexural rigidity (EI) is, in claim 3 quoting claim 2 or claim 2 characterized by using a value obtained from the Young's modulus of steel (E) a circular geometrical moment of inertia (I) A method for measuring the tension of the embedded rod member according to the description.
JP2006335186A 2006-12-13 2006-12-13 Method for measuring tension of buried rod member Active JP5014761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335186A JP5014761B2 (en) 2006-12-13 2006-12-13 Method for measuring tension of buried rod member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335186A JP5014761B2 (en) 2006-12-13 2006-12-13 Method for measuring tension of buried rod member

Publications (2)

Publication Number Publication Date
JP2008145356A JP2008145356A (en) 2008-06-26
JP5014761B2 true JP5014761B2 (en) 2012-08-29

Family

ID=39605686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335186A Active JP5014761B2 (en) 2006-12-13 2006-12-13 Method for measuring tension of buried rod member

Country Status (1)

Country Link
JP (1) JP5014761B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781324A (en) * 2019-01-07 2019-05-21 中国石油天然气股份有限公司 Pipeline meter Sai Si stress monitoring system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385083B1 (en) * 2012-04-27 2014-04-14 주식회사 포스코건설 Prestress concrete structure providing exposed tendon and tensible force measurement method
CN111666667B (en) * 2020-05-29 2023-06-13 黄河水利委员会黄河水利科学研究院 Method for determining bed-making flow of wandering river

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063436B2 (en) * 1988-05-30 1994-01-12 日本電信電話株式会社 Method and apparatus for diagnosing deterioration of article
JPH0526749A (en) * 1991-07-25 1993-02-02 Kansai Electric Power Co Inc:The Method for measuring surface pressure of pipe line flange joint
JP3313028B2 (en) * 1995-08-03 2002-08-12 株式会社神戸製鋼所 Measurement method of bending stiffness and tension of cable under tension
JP3550296B2 (en) * 1998-03-23 2004-08-04 株式会社神戸製鋼所 Measuring method of tension and bending stiffness of structures
JP3571968B2 (en) * 1999-09-02 2004-09-29 株式会社青木建設 Ground anchor diagnosis method
JP2002340710A (en) * 2001-05-17 2002-11-27 Kawasaki Heavy Ind Ltd Method and instrument for measuring axial force of bolt
JP3943888B2 (en) * 2001-10-12 2007-07-11 四国電力株式会社 Anchor introduction load detection method, apparatus and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109781324A (en) * 2019-01-07 2019-05-21 中国石油天然气股份有限公司 Pipeline meter Sai Si stress monitoring system and method

Also Published As

Publication number Publication date
JP2008145356A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
Owolabi et al. Crack detection in beams using changes in frequencies and amplitudes of frequency response functions
JP4992084B2 (en) Structure damage diagnostic system and method
Dong et al. Bridges structural health monitoring and deterioration detection-synthesis of knowledge and technology
Swamidas et al. Identification of cracking in beam structures using Timoshenko and Euler formulations
Choi et al. Application of the modified damage index method to timber beams
Cherpakov et al. Identification of concrete properties in beam-type structures with defects based on dynamic methods
Caddemi et al. Detecting multiple open cracks in elastic beams by static tests
CN107300432A (en) A kind of method and apparatus for being used to realize live adaptive cable force measurement
CN112683425A (en) Method for detecting effective stress of longitudinal prestressed tendon in bridge body
JP5014761B2 (en) Method for measuring tension of buried rod member
Calvert et al. Bridge structural health monitoring system using fiber grating sensors: development and preparation for a permanent installation
JP2009198366A (en) Soundness diagnosis method of structure
WO2011054323A1 (en) A method and equipment for determination of damage rate of a structure
Siddique et al. Assessment of vibration-based damage detection for an integral abutment bridge
Barton et al. Structural finite element model updating using vibration tests and modal analysis for NPL Footbridge–SHM demonstrator
Pansare et al. Detection of inclined edge crack in prismatic beam using static deflection measurements
Garevski et al. Damping and response measurement on A small‐scale model of A cable‐stayed bridge
JP2018009354A (en) Viaduct state monitoring apparatus and viaduct state monitoring method
Moghadam A signal-processing-based approach for damage detection of steel structures
JP6554065B2 (en) Method and system for evaluating deterioration state of metal structure
JP2021009072A (en) Tension force evaluation method and tension force evaluation system for ground anchor
Ramos et al. Damage identification in masonry structures with vibration measurements
JP2022001862A (en) Pile damage evaluation method
Francesca et al. Dynamic characterization of open-ended pipe piles in marine environment
WO2023007566A1 (en) Tunnel displacement estimation system and tunnel displacement estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150