JP5013771B2 - MIMO-OFDM noise power measurement method and receiver - Google Patents

MIMO-OFDM noise power measurement method and receiver Download PDF

Info

Publication number
JP5013771B2
JP5013771B2 JP2006218321A JP2006218321A JP5013771B2 JP 5013771 B2 JP5013771 B2 JP 5013771B2 JP 2006218321 A JP2006218321 A JP 2006218321A JP 2006218321 A JP2006218321 A JP 2006218321A JP 5013771 B2 JP5013771 B2 JP 5013771B2
Authority
JP
Japan
Prior art keywords
noise power
transmission
mimo
received signal
symbols
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006218321A
Other languages
Japanese (ja)
Other versions
JP2008042837A (en
Inventor
孝之 中川
哲臣 池田
一彦 澁谷
慎一 鈴木
浩之 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP2006218321A priority Critical patent/JP5013771B2/en
Publication of JP2008042837A publication Critical patent/JP2008042837A/en
Application granted granted Critical
Publication of JP5013771B2 publication Critical patent/JP5013771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は、多入力多出力−直交周波数分割多重(Multiple Input Multiple Output−Orthogonal Frequency Division Multiplexing:MIMO−OFDM)システムにおける、受信信号に含まれる雑音電力を測定する方法及び受信装置に関する。   The present invention relates to a method and a receiving apparatus for measuring noise power included in a received signal in a multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system.

近年注目を集めている無線伝送方式の一つにMIMO技術がある。これは、送信装置に複数のアンテナを設けて同じ周波数で複数の送信信号を送信し、同じく受信装置に複数のアンテナを設けて受信した複数の受信信号から、各送受信アンテナ間の伝搬チャンネル応答を求め、この伝搬チャンネル応答に基づいて複数の送信信号を推定する技術である。この技術を用いることにより、高い周波数利用効率化を実現することができるものと期待されている。以下、複数の送信アンテナと複数の受信アンテナ間の伝搬チャンネルをMIMOチャンネルという。   One of the wireless transmission systems that has attracted attention in recent years is the MIMO technology. This is because a transmission device is provided with a plurality of antennas to transmit a plurality of transmission signals at the same frequency, and a reception device is also provided with a plurality of antennas to receive a propagation channel response between transmission / reception antennas. This is a technique for estimating a plurality of transmission signals based on this propagation channel response. By using this technology, it is expected that high frequency utilization efficiency can be realized. Hereinafter, a propagation channel between a plurality of transmission antennas and a plurality of reception antennas is referred to as a MIMO channel.

各送信アンテナの送信信号をベクトルX=[X・・・X、各受信アンテナの受信信号をベクトルY=[Y・・・Y、各受信信号に含まれる雑音成分をベクトルN=[N・・・Nとすると、MIMOのチャンネル応答Hは、伝搬方程式Y=HX+Nで表されるn行m列の行列となる。但し、ここでは送信アンテナの個数をm個、受信アンテナの個数をn個とし、Tは転置を表す。チャンネル応答Hのi行j列要素hijは、i番目の受信アンテナで受信された受信信号に含まれる、j番目の送信アンテナから出力された送信信号成分の振幅利得及び位相回転を表す複素数である。MIMO受信装置は、チャンネル応答行列Hを推定し、推定したチャンネル応答行列Hを用いて、受信信号ベクトルYから送信信号ベクトルXを復調する(Y=HX+Nを解く)。 A transmission signal of each transmission antenna is a vector X = [X 1 X 2 ... X m ] T , and a reception signal of each reception antenna is a vector Y = [Y 1 Y 2 ... Y n ] T , If the included noise component is a vector N = [N 1 N 2 ... N n ] T , the MIMO channel response H is an n-by-m matrix expressed by the propagation equation Y = HX + N. However, here, the number of transmitting antennas is m, the number of receiving antennas is n, and T represents transposition. The i row j column element h ij of the channel response H is a complex number representing the amplitude gain and phase rotation of the transmission signal component output from the j th transmission antenna included in the reception signal received by the i th reception antenna. is there. The MIMO receiving apparatus estimates the channel response matrix H and demodulates the transmission signal vector X from the received signal vector Y using the estimated channel response matrix H (solves Y = HX + N).

このようなMIMO技術は、狭帯域のシングルキャリア方式への適用が容易である。また、MIMO技術は、直交する多数のサブキャリアに信号を分割して伝送するOFDM伝送方式と組み合わせることにより、広帯域伝送にも適用することができる。以下、MIMO技術とOFDM伝送方式とを組み合わせた伝送システムをMIMO−OFDMシステムという。   Such a MIMO technique can be easily applied to a narrow-band single carrier system. The MIMO technique can also be applied to wideband transmission by combining with an OFDM transmission scheme in which a signal is divided into a number of orthogonal subcarriers and transmitted. Hereinafter, a transmission system combining the MIMO technology and the OFDM transmission scheme is referred to as a MIMO-OFDM system.

一般にOFDMでは、送信信号の特定のサブキャリア(以下、パイロットキャリアという。)にチャンネル推定用の既知信号が含まれており、その受信信号と既知信号との比からチャンネル推定を行う。MIMO−OFDMでは、送信系統毎の固有の既知信号を用いることにより、各受信信号における各送信系統のチャンネル応答を推定することができる。   In general, in OFDM, a known signal for channel estimation is included in a specific subcarrier (hereinafter referred to as pilot carrier) of a transmission signal, and channel estimation is performed from the ratio of the received signal to the known signal. In MIMO-OFDM, the channel response of each transmission system in each received signal can be estimated by using a unique known signal for each transmission system.

ところで、MIMOの伝搬方程式における雑音成分Nは、各受信信号の雑音成分をベクトルで表したものである。各受信系統の雑音指数(Noise Figure:NF)や利得を合わせることにより雑音成分Nにおける各要素Nの平均電力が同一になり、チャンネル応答行列Hの要素として各受信系統のチャンネル推定結果をそのまま用いることができる。 By the way, the noise component N in the MIMO propagation equation is a vector representing the noise component of each received signal. Noise figure of the receiving system (Noise Figure: NF) and the average power of each element N i in the noise component N by matching the gain is the same, as it is a channel estimation result of each receiving system as an element of the channel response matrix H Can be used.

しかし、OFDMでは、一般に、受信信号をAD変換してデジタル信号処理により復調するため、AD変換器の入力電圧範囲の中でダイナミックレンジが大きく取れるように各受信信号の利得調整を自動で行う。各受信アンテナに到達する信号の電力は一般には同一ではなく時間的に変動するため、各受信系統で不均一な利得調整が行われることになる。このため、各受信系統で異なる雑音電力を有する受信信号に対して得られたチャンネル推定結果をHの要素としてそのまま用いた場合には、正確なMIMOの復調を実現することができない。この問題を解決するため、各受信系統の雑音電力を検出した後、雑音電力の違いをとり除くために、この雑音電力が各受信系統で同一のレベルになるように、FFT後の受信信号またはチャンネル推定結果を調整する必要がある。   However, in OFDM, generally, since the received signal is AD converted and demodulated by digital signal processing, the gain of each received signal is automatically adjusted so that the dynamic range can be increased within the input voltage range of the AD converter. Since the power of the signal reaching each receiving antenna is generally not the same and fluctuates with time, non-uniform gain adjustment is performed in each receiving system. For this reason, when channel estimation results obtained with respect to received signals having different noise powers in the respective receiving systems are used as they are as elements of H, accurate MIMO demodulation cannot be realized. In order to solve this problem, after detecting the noise power of each receiving system, in order to remove the difference in noise power, the received signal or channel after FFT is set so that the noise power becomes the same level in each receiving system. The estimation result needs to be adjusted.

通常のOFDMにおいても、受信アンテナを複数用いて最大比合成や指向性制御を行う場合、または軟判定ビタビ復号を行う場合には、雑音電力を測定することが行われる。この雑音電力を測定する手法の例として、OFDMの信号帯域から少し離れた周波数の電力を雑音電力とする方法が知られている。しかし、一般に、受信装置においてチャンネル選択性を良くするために、SAWフィルタ等の急峻なバンドパス・フィルタに受信信号を通過させる。このため、OFDMの信号帯域から離れた周波数帯域において信号が減衰し、正確な雑音電力を測定することが困難な場合が多い。   Even in normal OFDM, when maximum ratio combining and directivity control are performed using a plurality of receiving antennas, or when soft decision Viterbi decoding is performed, noise power is measured. As an example of a technique for measuring the noise power, a method is known in which the power at a frequency slightly away from the OFDM signal band is used as the noise power. However, in general, in order to improve channel selectivity in the receiving apparatus, the received signal is passed through a steep band pass filter such as a SAW filter. For this reason, the signal attenuates in a frequency band far from the OFDM signal band, and it is often difficult to measure accurate noise power.

この問題を解決するため、OFDMの信号帯域内で雑音電力を測定する手法も提案されている。例えば、OFDMのサブキャリアには、周波数関係から歪みが大きくなる等の理由により情報を送信しない無信号のNULLキャリアが含まれており、この点に着目した手法、すなわち、NULLキャリアの受信電力を雑音電力とする手法が知られている。しかし、一般にはNULLキャリアの数は非常に少なく、また、歪みの影響を強く受けるため、正確な雑音電力を測定することは困難である。   In order to solve this problem, a method of measuring noise power within the OFDM signal band has also been proposed. For example, an OFDM subcarrier includes a non-signaled NULL carrier that does not transmit information due to a large distortion due to a frequency relationship, and a technique that pays attention to this point, that is, a reception power of a NULL carrier is reduced. There is a known technique for noise power. However, in general, the number of NULL carriers is very small, and since it is strongly influenced by distortion, it is difficult to measure accurate noise power.

また、他の手法として、チャンネル推定結果を用いて受信信号を波形等化した後の信号に対しデマッピング時に、QPSKや16QAM等の変調方式に応じた正規のシンボル点からの距離を雑音成分として雑音電力を測定する方法が知られている。この手法は、雑音成分が大きい場合やチャンネル推定が正しく行われない場合には、受信シンボルが異なるシンボルエリアに飛び出してしまい、本来のシンボル点からの距離ではなくなってしまう。したがって、この手法では、正確な雑音電力を測定することは困難である。   As another method, at the time of demapping the signal after waveform equalization of the received signal using the channel estimation result, the distance from the normal symbol point according to the modulation method such as QPSK or 16QAM is used as the noise component. Methods for measuring noise power are known. In this method, when the noise component is large or when channel estimation is not performed correctly, the received symbol jumps out to a different symbol area and is not the distance from the original symbol point. Therefore, it is difficult to measure accurate noise power with this method.

さらに、その他の手法として、特許文献1〜5に記載のものが提案されている。特許文献1では、2つのOFDMシンボルと既知信号を用いて、初めのOFDMシンボルでチャンネル推定を行い、そのチャンネル推定結果を用いて次のOFDMシンボルを波形等化し、得られた受信シンボル点と既知信号のシンボル点との差を雑音成分として雑音電力を測定する。また、特許文献2では、パイロットキャリアの信号を波形等化した後に、既知のシンボル点からの距離を雑音成分として雑音電力を測定する。また、特許文献3では、受信信号と既知信号との複素相関を各サブキャリアで求め、隣り合うサブキャリアで引き算して雑音成分を検出し、雑音電力を測定する。   Further, as other methods, those described in Patent Documents 1 to 5 have been proposed. In Patent Document 1, channel estimation is performed with the first OFDM symbol using two OFDM symbols and a known signal, and the next OFDM symbol is waveform-equalized using the channel estimation result, and the received symbol point obtained is known. The noise power is measured using the difference from the symbol point of the signal as a noise component. In Patent Document 2, after the pilot carrier signal is waveform-equalized, the noise power is measured using the distance from a known symbol point as a noise component. Further, in Patent Document 3, a complex correlation between a received signal and a known signal is obtained for each subcarrier, subtracted by adjacent subcarriers to detect a noise component, and noise power is measured.

このような従来のOFDMの信号帯域内の雑音測定法では、単一のOFDM信号が送信されている場合に適用することができるが、MIMO−OFDMシステムのように同一周波数で異なる複数のOFDM信号が送信され、それらが複雑に混ざり合って受信される場合には適用することができない。具体的には、デマッピング時に測定する手法、並びに特許文献1及び2の手法に対しては、まず各受信信号の雑音電力が同一になるようにしなければチャンネル応答行列Hを正しく求めることができない。このため、干渉除去及び波形等化を行うことができず、雑音電力の測定を行うことができない。   Such a conventional noise measurement method in the OFDM signal band can be applied when a single OFDM signal is transmitted, but a plurality of OFDM signals different at the same frequency as in a MIMO-OFDM system. Cannot be applied if they are transmitted and received in a complex mix. Specifically, the channel response matrix H cannot be obtained correctly unless the noise power of each received signal is the same for the method of measuring at the time of demapping and the methods of Patent Documents 1 and 2. . For this reason, interference removal and waveform equalization cannot be performed, and noise power cannot be measured.

また、特許文献3の手法に対しては、チャンネル推定用として特定のOFDMシンボルの全てのサブキャリアを既知信号で変調するバーストOFDMの場合は、チャンネル推定して既知信号が混ざり合っている割合を正しく再現することにより適用することができると考えられる。しかし、そのような特定のOFDMシンボルがなく、毎シンボルにある決まったサブキャリア間隔でパイロット信号が挿入されているコンティニュアルパイロット方式のMIMO−OFDMシステムには適用することができない。   For the technique of Patent Document 3, in the case of burst OFDM in which all subcarriers of a specific OFDM symbol are modulated with known signals for channel estimation, the ratio of known signals mixed by channel estimation is calculated. It can be applied by reproducing correctly. However, the present invention is not applicable to a continuous pilot MIMO-OFDM system in which there is no such specific OFDM symbol and a pilot signal is inserted at a predetermined subcarrier interval in each symbol.

さらに、特許文献4では、OFDMのシンボル同期を検出するために行うガード相関の積分値を信号電力とし、これとAGC(Automatic Gain Control:自動利得制御)の目標電力との差を雑音電力としている。また、特許文献5では、OFDMのガード期間の信号と、それから有効シンボル分遅延した信号(OFDM信号の生成時にガード期間の信号は、有効シンボル分遅れた信号のレプリカになっている。)との差の絶対値を求め、そこに適当な窓を設けて平均化し、これを雑音電力としている。   Further, in Patent Document 4, the integral value of the guard correlation performed for detecting OFDM symbol synchronization is used as signal power, and the difference between this and the target power of AGC (Automatic Gain Control) is used as noise power. . Further, in Patent Document 5, a signal in an OFDM guard period and a signal delayed by an effective symbol therefrom (the signal in the guard period at the time of generating an OFDM signal is a replica of a signal delayed by an effective symbol). The absolute value of the difference is obtained, and an appropriate window is provided and averaged, and this is used as noise power.

前述の特許文献4の手法では、ガード相関の値はCN比が小さくなると雑音成分が無視できなくなり、その積分値が正確な信号電力を表さなくなる。また、実際のアナログ回路ではデバイスのばらつきや温度特性により、AGCの目標電力を各受信系統で均一にすることが困難になる。このため、計算した雑音電力は誤差を含みやすい。   In the method of the above-mentioned Patent Document 4, when the CN ratio of the guard correlation value becomes small, the noise component cannot be ignored, and the integrated value does not represent accurate signal power. In an actual analog circuit, it becomes difficult to make the target power of AGC uniform in each receiving system due to device variations and temperature characteristics. For this reason, the calculated noise power tends to include an error.

また、前述の特許文献5では、計算した雑音電力がマルチパス成分を含まないように窓を最適に選ぶ必要がある。言い換えれば、長遅延のマルチパスが存在すると、平均化する期間を相当短くしなければならず、計算精度が落ちてしまう。また、OFDM信号を急峻なフィルタに通し、帯域外のスペクトルが規定値以下になるように送信しているため、シンボルが切り替わる付近(ガード期間の初めとシンボルの終わりの部分)では信号がなまっている。したがって、特許文献5ではこの期間を用いて雑音電力を測定するから、誤差が生じやすい。   Further, in Patent Document 5 described above, it is necessary to optimally select a window so that the calculated noise power does not include a multipath component. In other words, if there is a long-delay multipath, the averaging period must be considerably shortened, resulting in a decrease in calculation accuracy. Also, since the OFDM signal is passed through a steep filter and transmitted so that the spectrum outside the band is below the specified value, the signal is distorted in the vicinity of the symbol switching (the beginning of the guard period and the end of the symbol). Yes. Therefore, in Patent Document 5, since noise power is measured using this period, an error is likely to occur.

特許第3445773号公報Japanese Patent No. 3445773 特許第3662579号広報Patent No. 3662579 特開2005−204307公報JP-A-2005-204307 特開2004−112155公報JP 2004-112155 A 特開2005−175878公報JP 2005-175878 A

このように、MIMO−OFDMシステムにおいて、受信系統毎に独立して利得調整が行われる場合には、正確なチャンネル応答行列Hを得るために、各受信系統の雑音電力のレベルが同一になるように、FFT後の受信信号を調整する必要がある。しかしながら、従来の手法では、各受信系統の雑音電力を正確に測定することが困難であるという問題があった。   Thus, in the MIMO-OFDM system, when gain adjustment is performed independently for each reception system, in order to obtain an accurate channel response matrix H, the noise power level of each reception system becomes the same. In addition, it is necessary to adjust the received signal after the FFT. However, the conventional method has a problem that it is difficult to accurately measure the noise power of each receiving system.

そこで、本発明はこのような状況に鑑みてなされたものであり、その目的は、MIMO−OFDMシステムにおいて、受信信号に含まれる雑音電力を正確に測定することが可能な方法及び受信装置を提供することにある。   Therefore, the present invention has been made in view of such a situation, and an object thereof is to provide a method and a receiving apparatus capable of accurately measuring noise power included in a received signal in a MIMO-OFDM system. There is to do.

上記目的を達成するため、本発明は、チャンネル推定を行う前に、パイロットキャリア信号の送信パターンを利用して帯域内の雑音電力を測定することにより、正確な雑音電力を求める。そして、その測定した雑音電力を用いて受信信号を正規化することにより、全ての受信系統の雑音電力を同一レベルにする。また、この正規化した受信信号を用いることにより、チャンネル応答行列を正確に推定する。   In order to achieve the above object, the present invention obtains accurate noise power by measuring noise power in a band using a transmission pattern of a pilot carrier signal before performing channel estimation. Then, by normalizing the received signal using the measured noise power, the noise power of all reception systems is set to the same level. Further, the channel response matrix is accurately estimated by using the normalized received signal.

本発明による雑音電力測定方法の原理について、各送信信号のパイロットキャリアが直交符号により複数のシンボルにわたって符号分割多重されたMIMO−OFDMシステム、ここでは、送信が2系統で構成され、送信系統1に「1、1、1、1」、送信系統2に「1、−1、1、−1」の直交符号を割り当てたMIMO−OFDMシステムを例に説明する。   Regarding the principle of the noise power measurement method according to the present invention, a MIMO-OFDM system in which pilot carriers of each transmission signal are code-division multiplexed over a plurality of symbols by orthogonal codes, where transmission is composed of two systems, A MIMO-OFDM system in which orthogonal codes “1, 1, 1, −1” are assigned to “1, 1, 1, 1” and transmission system 2 will be described as an example.

送信系統1のi番目のパイロットキャリアの送信信号x1i(t)は、このパイロットキャリアに割り当てた既知信号をCPとして、4シンボル周期で以下の繰返しになる。ただし、tはシンボル番号を表す。

Figure 0005013771
The transmission signal x 1i (t) of the i-th pilot carrier of the transmission system 1 is the following repetition in a 4-symbol period, where CP i is a known signal assigned to this pilot carrier. Here, t represents a symbol number.
Figure 0005013771

同様に、送信系統2のi番目のパイロットキャリアの出力x2i(t)は、以下の4シンボルの繰返しになる。

Figure 0005013771
Similarly, the output x 2i (t) of the i-th pilot carrier of the transmission system 2 is a repetition of the following four symbols.
Figure 0005013771

受信系統jのi番目のパイロットキャリアの受信信号yji(t)は、hj1i(t)を送信系統1の出力に対するチャンネル応答、hj2i(t)を送信系統2の出力に対するチャンネル応答、nji(t)をN(0,σji )の複素ガウス雑音として、以下の式により表すことができる。

Figure 0005013771
The received signal y ji (t) of the i-th pilot carrier of the receiving system j is such that h j1i (t) is a channel response to the output of the transmission system 1, h j2i (t) is a channel response to the output of the transmission system 2, n ji (t) can be expressed by the following equation as N (0, σ ji 2 ) complex Gaussian noise.
Figure 0005013771

(1)式及び(2)式を(3)式に代入し、連続する4シンボルの間でhj1i(t)及びhj2i(t)をhj1i、hj2iの一定値として受信信号系列を表すと、以下の式になる。

Figure 0005013771
(1) is substituted into equation and (2) a (3), the received signal sequence h J1i between successive 4 symbols (t) and h j2i (t) h j1i, a constant value of h J2i If it represents, it will become the following formulas.
Figure 0005013771

ここで、yji(1)とyji(3)、及びyji(2)とyji(4)は雑音成分が異なるのみで同一とみなせる受信信号系列なので、次のようなパラメータsjiを導入して雑音成分のみを抽出する。ただし、|Z|=Z・Zは複素共役を表す。

Figure 0005013771
パラメータsjiをL個のパイロットキャリアについて求め、sjiの平均値Sを(6)式により求める。
Figure 0005013771
Here, since y ji (1) and y ji (3), and y ji (2) and y ji (4) are received signal sequences that differ only in noise components and can be regarded as the same, the following parameter s ji is set: Introduce only noise components. However, | Z | 2 = Z · Z * , * represents a complex conjugate.
Figure 0005013771
The parameter s ji is obtained for L pilot carriers, and the average value S j of s ji is obtained from the equation (6).
Figure 0005013771

Lが十分大きいと、平均値Sはアンサンブル平均になり、各項は期待値になる。すなわち、雑音成分の大きさの2乗(電力)は分散σji になり、異なる雑音成分の積は中心極限定理によりゼロになる。雑音は周波数軸上でフラットな白色雑音なので、σji は全てのiで一定のσ とすることができる。したがって、平均値Sを計算すると(7)式のようになり、受信系統jの雑音電力σ を求めることができる。

Figure 0005013771
When L is sufficiently large, the average value S j becomes an ensemble average, and each term becomes an expected value. That is, the square (power) of the magnitude of the noise component becomes the variance σ ji 2 , and the product of the different noise components becomes zero by the central limit theorem. Since the noise is flat white noise on the frequency axis, σ ji 2 can be a constant σ j 2 for all i. Therefore, when the average value S j is calculated, the equation (7) is obtained, and the noise power σ j 2 of the receiving system j can be obtained.
Figure 0005013771

以上説明した本発明による雑音電力測定方法の原理から、この雑音電力測定方法を実行する受信装置は、パイロットキャリアの受信信号が雑音成分を除いて同一とみなせるシンボルの受信信号系列を用いて、その差の大きさの2乗を平均化することにより、その受信信号の雑音電力σ を求める。そして、すべてのサブキャリアの受信信号を雑音電力σ の平方根σで割算して正規化する。これにより、その後に行われるチャンネル推定の結果が受信信号のSN比を反映したものになり、正しいチャンネル応答行列を得ることができる。 Based on the principle of the noise power measurement method according to the present invention described above, a receiver that executes this noise power measurement method uses a received signal sequence of symbols that can be regarded as the same except for the noise component of the received signal of the pilot carrier. By averaging the square of the magnitude of the difference, the noise power σ j 2 of the received signal is obtained. Then, the received signals of all subcarriers are normalized by dividing by the square root σ j of the noise power σ j 2 . As a result, the result of channel estimation performed thereafter reflects the SN ratio of the received signal, and a correct channel response matrix can be obtained.

以上説明した原理により、本発明によるMIMO−OFDMシステムの雑音電力測定方法は、各送信信号のパイロットキャリアが複数のシンボルにわたって符号分割多重されるMIMO−OFDMシステムの下で、該MIMO−OFDMシステムを構成する受信装置により受信信号に含まれる雑音電力を測定する方法において、既知信号で変調されたパイロットキャリアについて、その送信パターンに応じて、受信信号が雑音成分を除いて同一とみなせるシンボルの受信信号系列の差を2乗し、該2乗した結果を複数のパイロットキャリアについて平均化し、該平均化した値を前記雑音電力とすることを特徴とする。   In accordance with the principle described above, the noise power measurement method of the MIMO-OFDM system according to the present invention is based on the MIMO-OFDM system under the MIMO-OFDM system in which the pilot carrier of each transmission signal is code division multiplexed over a plurality of symbols. In a method of measuring noise power contained in a received signal by a receiving device that constitutes, a received signal of a symbol that can be regarded as the same except for a noise component according to the transmission pattern of a pilot carrier modulated with a known signal The difference between the sequences is squared, the squared result is averaged for a plurality of pilot carriers, and the averaged value is used as the noise power.

また、本発明によるMIMO−OFDMシステムの受信装置は、各送信信号のパイロットキャリアが複数のシンボルにわたって符号分割多重されるMIMO−OFDMシステムを構成する受信装置において、受信信号に含まれる雑音電力を測定する雑音電力測定手段を備え、該雑音電力測定手段が、受信信号からパイロットキャリアを抽出するパイロットキャリア抽出段と、前記抽出されたパイロットキャリアについて、雑音成分を除いて同一とみなせるシンボルの受信信号系列の差を2乗する差分段と、前記2乗した結果を複数のパイロットキャリアについて平均化し、該平均化した値を雑音電力として出力する平均化段とを有することを特徴とする。   In addition, the MIMO-OFDM system receiver according to the present invention measures the noise power included in the received signal in the MIMO-OFDM system in which the pilot carrier of each transmission signal is code division multiplexed over a plurality of symbols. Noise power measurement means, and the noise power measurement means extracts a pilot carrier from a received signal and a received signal sequence of symbols that can be regarded as the same except for noise components with respect to the extracted pilot carrier. A difference stage that squares the difference between the two, and an averaging stage that averages the squared result for a plurality of pilot carriers and outputs the averaged value as noise power.

また、本発明によるMIMO−OFDMシステムの受信装置は、さらに、前記雑音電力測定手段により測定された雑音電力に基づいて、受信信号を正規化する正規化手段を備えたことを特徴とする。   The receiving apparatus of the MIMO-OFDM system according to the present invention further includes normalizing means for normalizing the received signal based on the noise power measured by the noise power measuring means.

以上のように、本発明によれば、パイロットキャリアの受信信号が雑音成分を除いて同一とみなせるシンボルの受信信号系列を用いて、雑音電力を測定するようにした。これにより、従来の手法では測定が困難だったMIMO−OFDMシステムの雑音電力を正確に測定することができる。また、測定した雑音電力に基づいて受信信号を正規化するようにした。これにより、各受信系統において独立して利得制御が行われた場合であっても、受信信号は、その受信系統において測定された雑音電力により正規化されるから、全ての受信系統の雑音電力を同一のレベルにすることができる。したがって、各受信系統の受信SN比を反映したチャンネル応答行列を正確に推定することができる。   As described above, according to the present invention, the noise power is measured using the received signal sequence of the symbols that can be regarded as the same except for the noise component of the received signal of the pilot carrier. Thereby, it is possible to accurately measure the noise power of the MIMO-OFDM system, which is difficult to measure with the conventional method. The received signal is normalized based on the measured noise power. As a result, even if gain control is performed independently in each receiving system, the received signal is normalized by the noise power measured in that receiving system. Can be at the same level. Accordingly, it is possible to accurately estimate the channel response matrix reflecting the reception S / N ratio of each reception system.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。尚、以下に示すMIMO−OFDMシステムは、各送信信号のパイロットキャリアが直交符号により複数のシンボルにわたって符号分割多重されたシステムであり、ここでは、送信装置が2系統で構成され、送信系統1に「1,1,1,1」、送信系統2に「1,−1,1,−1」の直交符号を割り当てたシステムを例にして説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The MIMO-OFDM system shown below is a system in which pilot carriers of each transmission signal are code-division multiplexed over a plurality of symbols by orthogonal codes. Here, the transmission apparatus includes two systems, and the transmission system 1 includes A system in which orthogonal codes of “1, 1, 1, 1” and “1, -1, 1, −1” are assigned to the transmission system 2 will be described as an example.

図1は、本発明の実施の形態に係る受信装置を含むMIMO−OFDMシステムの全体構成図である。このMIMO−OFDMシステム100は、2系統の送信装置101、及びn系統の受信装置102から構成される。尚、インターリープや誤り訂正については省略してある。このMIMO−OFDMシステム100は、送信信号x,xを各サブキャリアに割り当てて送信し、受信信号から送信信号を推定するシステムである。送信側の送信装置101は、図3のような構成例があり、2つの送信系統について、各々入力信号x,xに対しIFFT手段14−1,14−2でIFFTを行い、ガード付加手段15−1,15−2でガード信号を付加し、D/A変換手段16−1,16−2でD/A変換を行い、U/C(アップコンバート)手段17−1,17−2で無線周波数に周波数変換を行い、送信アンテナ18−1,18−2から出力する。 FIG. 1 is an overall configuration diagram of a MIMO-OFDM system including a receiving apparatus according to an embodiment of the present invention. The MIMO-OFDM system 100 includes two transmission apparatuses 101 and n reception apparatuses 102. Note that interleaving and error correction are omitted. The MIMO-OFDM system 100 is a system that allocates transmission signals x 1 and x 2 to each subcarrier and transmits them, and estimates a transmission signal from the received signal. The transmission apparatus 101 on the transmission side has a configuration example as shown in FIG. 3, and for two transmission systems, IFFT means 14-1 and 14-2 perform IFFT on the input signals x 1 and x 2 respectively, and guard is added. Guard signals are added by means 15-1 and 15-2, D / A conversion is carried out by D / A conversion means 16-1 and 16-2, and U / C (up-conversion) means 17-1 and 17-2. The frequency is converted to a radio frequency and output from the transmitting antennas 18-1 and 18-2.

受信側の受信装置102は、図2に示すように、それぞれ同一の機能を有するn個の受信系統1〜nから構成され、受信アンテナ1−1〜1−n、D/C(ダウンコンバータ)手段2−1〜2−n、AGC手段3−1〜3−n、A/D変換手段4−1〜4−n、同期手段5−1〜5−n、FFT手段6−1〜6−n、正規化手段7−1〜7−n、雑音電力測定手段8−1〜8−n、チャンネル推定手段9−1〜9−n、及び、MIMO復調手段10を備えている。   As shown in FIG. 2, the receiving device 102 on the receiving side includes n receiving systems 1 to n each having the same function, and includes receiving antennas 1-1 to 1-n and D / C (down converter). Means 2-1 to 2-n, AGC means 3-1 to 3-n, A / D conversion means 4-1 to 4-n, synchronization means 5-1 to 5-n, FFT means 6-1 to 6- n, normalizing means 7-1 to 7-n, noise power measuring means 8-1 to 8-n, channel estimating means 9-1 to 9-n, and MIMO demodulating means 10.

以下、受信系統1〜nを代表した受信系統jを用いて説明する。受信アンテナ1−jは、送信装置101の送信アンテナ18−1,18−2から、MIMOチャンネルを伝わった送信信号を受信し、D/C(ダウンコンバート)手段2−jは、受信信号を無線周波数からIF周波数に変換し、AGC手段3−jは、その受信信号に対して規定レベルになるように増幅器の利得を自動的に調整する。A/D変換手段4−jは、利得調整が施された受信信号をA/D変換し、同期手段5−jは、A/D変換された受信信号について、OFDMシンボルの開始位置を検出する。FFT手段6−jは、A/D変換された受信信号について、ガード期間を除いてフーリエ変換を施し、FFT出力yを出力する。 Hereinafter, description will be made using a reception system j representing the reception systems 1 to n. The reception antenna 1-j receives transmission signals transmitted through the MIMO channel from the transmission antennas 18-1 and 18-2 of the transmission apparatus 101, and the D / C (down-conversion) means 2-j wirelessly receives the reception signals. The AGC means 3-j automatically adjusts the gain of the amplifier so as to obtain a specified level for the received signal by converting the frequency to the IF frequency. A / D conversion means 4-j performs A / D conversion on the received signal subjected to gain adjustment, and synchronization means 5-j detects the start position of the OFDM symbol for the A / D converted reception signal. . FFT means 6-j, for A / D converted received signal is subjected to Fourier transform, except a guard period, and outputs the FFT output y j.

雑音電力測定手段8−jは、FFT出力yを入力し、雑音電力σ を測定する。正規化手段7−jは、FFT手段6−jからFFT出力yを入力し、雑音電力測定手段8−jから雑音電力σ を入力し、FFT出力yを雑音電力σ の平方根σで割って正規化し、正規化FFT出力y’を出力する。 The noise power measuring means 8-j receives the FFT output y j and measures the noise power σ j 2 . Normalizing means 7-j receives the FFT output y j from the FFT unit 6-j receives the noise power sigma j 2 from the noise power measurement unit 8-j, the FFT output y j of the noise power sigma j 2 Normalize by dividing by the square root σ j and output the normalized FFT output y ′ j .

チャンネル推定手段9−jは、正規化手段7−jから正規化FFT出力y’を入力し、パイロットキャリアの信号y’ji(t)を抽出し、送信系統1,2に割り当てられた直交符号に応じて以下のように相関処理を施す。(y’ji(t)のiはパイロットキャリアの番号を示す。)
(y’ji(1)+y’ji(2)+y’ji(3)+y’ji(4))/4、及び
(y’ji(1)−y’ji(2)+y’ji(3)−y’ji(4))/4
そして、チャンネル推定手段9−jは、上記相関出力と既知信号CPとの比を算出し、これを周波数軸上でフィルタリングし、全てのサブキャリアのチャンネル応答h’j1,h’j2を推定する。
Channel estimation means 9-j is 'enter a j, signal y of the pilot carrier' normalized FFT output y from the normalization unit 7-j extracts ji (t), assigned to the transmission system 2 perpendicular Correlation processing is performed as follows according to the code. (I in y ′ ji (t) indicates a pilot carrier number.)
(Y ′ ji (1) + y ′ ji (2) + y ′ ji (3) + y ′ ji (4)) / 4, and (y ′ ji (1) −y ′ ji (2) + y ′ ji (3) -Y ' ji (4)) / 4
Then, the channel estimation means 9-j calculates the ratio between the correlation output and the known signal CP i , filters this on the frequency axis, and estimates the channel responses h ′ j1 and h ′ j2 of all subcarriers. To do.

復調手段10は、全ての受信系統1〜nから正規化FFT出力y’,・・・,y’,・・・,y’及びチャンネル応答h’11,h’22,・・・,h’j1,h’j2,・・・,h’n1,h’n2を入力し、ゼロフォーシングまたは最尤推定等のアルゴリズムにより、送信信号の推定値x、xを出力する。 The demodulating means 10 includes normalized FFT outputs y ′ 1 ,..., Y ′ j ,..., Y ′ n and channel responses h ′ 11 , h ′ 22 ,. , H ′ j1 , h ′ j2 ,..., H ′ n1 , h ′ n2 are input, and estimated values x 1 and x 2 of the transmission signal are output by an algorithm such as zero forcing or maximum likelihood estimation.

図4は、図2に示した雑音電力測定手段8−jの構成を示すブロック図である。雑音電力測定手段8−jは、他の受信系統の雑音電力測定手段と同一の機能を有する。この雑音電力測定手段8−jは、パイロットキャリア抽出段11−j、差分段12−j、及び平均化段13−jを備えている。   FIG. 4 is a block diagram showing the configuration of the noise power measuring means 8-j shown in FIG. The noise power measuring means 8-j has the same function as the noise power measuring means of other receiving systems. The noise power measuring means 8-j includes a pilot carrier extraction stage 11-j, a difference stage 12-j, and an averaging stage 13-j.

パイロットキャリア抽出段11−jは、FFT手段6−jからFFT出力yを入力し、そのFFT出力yのうちのパイロットキャリアの信号yji(t)を抽出する。差分段12−jは、パイロットキャリア抽出段11−jからパイロットキャリア信号yji(t)を入力し、前述の(5)式により、L個のパイロットキャリア信号について雑音成分のみを抽出したパラメータsjiを計算する。平均化段13−jは、差分段12−jからパラメータsjiを入力し、前述の(6)式により、L個のパイロットキャリア信号のパラメータsjiを平均化し、平均値Sを雑音電力σ として正規化手段7−jに出力する。 Pilot carrier extraction stage 11-j receives the FFT output y j from the FFT unit 6-j, extracts a signal y ji (t) of the pilot carriers of the FFT output y j. The difference stage 12-j receives the pilot carrier signal y ji (t) from the pilot carrier extraction stage 11-j, and the parameter s is obtained by extracting only the noise component from the L pilot carrier signals according to the above equation (5). ji is calculated. The averaging stage 13-j receives the parameter s ji from the difference stage 12-j, averages the parameters s ji of the L pilot carrier signals according to the above equation (6), and uses the average value S j as the noise power. Output to the normalizing means 7-j as σ j 2 .

以上のように、本発明の実施の形態によれば、雑音電力測定手段8−jが、FFT出力yのうちのパイロットキャリア信号yji(t)を抽出し、(5)式により4シンボル分のパイロットキャリア信号を用いてパラメータsjiを計算し、L個のパイロットキャリア信号のパラメータsjiの平均値Sを雑音電力σ として測定するようにした。つまり、パイロットキャリア信号の送信パターンを利用して帯域内の雑音電力を測定するようにしたから、MIMO−OFDMシステムにおいても正確な雑音電力を求めることが可能となる。 As described above, according to the embodiment of the present invention, the noise power measuring unit 8-j extracts the pilot carrier signal y ji (t) from the FFT output y j and uses the four symbols according to the equation (5). The parameter s ji is calculated using the pilot carrier signal of the minute, and the average value S j of the parameters s ji of the L pilot carrier signals is measured as the noise power σ j 2 . That is, since the noise power in the band is measured using the transmission pattern of the pilot carrier signal, accurate noise power can be obtained even in the MIMO-OFDM system.

また、本発明の実施の形態によれば、正規化手段7−jが、FFT出力yを雑音電力σ の平方根σで割って正規化し、チャンネル推定手段9−jが、正規化された正規化FFT出力y’に基づいて、チャンネル応答h’j1,h’j2を推定するようにした。これにより、各受信系統1〜nにおいてAGC手段3−1〜3−nにより独立して利得制御が行われた場合であっても、各受信系統1〜nのFFT出力は各受信系統1〜nの雑音電力で正規化されるから、全ての受信系統1〜nの雑音電力を同一レベルにすることができる。したがって、各受信系統1〜nのSN比を反映したチャンネル応答行列を正確に推定することが可能となる。 Further, according to the embodiment of the present invention, the normalizing means 7-j normalizes the FFT output y j by dividing by the square root σ j of the noise power σ j 2 , and the channel estimation means 9-j The channel responses h ′ j1 and h ′ j2 are estimated based on the normalized FFT output y ′ j . Thereby, even if the gain control is performed independently by the AGC means 3-1 to 3-n in each of the reception systems 1 to n, the FFT output of each of the reception systems 1 to n is the reception system 1 to 1. Since normalization is performed with the noise power of n, the noise power of all the receiving systems 1 to n can be set to the same level. Therefore, it is possible to accurately estimate the channel response matrix reflecting the S / N ratio of each receiving system 1 to n.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、その技術思想を逸脱しない範囲で種々変形可能である。例えば、上記実施の形態では、送信装置101が2系統で構成され、送信系統1に「1,1,1,1」、送信系統2に「1,−1,1,−1」の直交符号を割り当てたMIMO−OFDMシステム100を例にして説明したが、送信系統数及び直交符号はこれに限定されるものではなく、前述の(5)式及び相関処理を送信系統数に応じて変更し、また、割り当てられた直交符号に応じて変更することにより適用することができる。   The present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the technical idea thereof. For example, in the above-described embodiment, the transmission apparatus 101 includes two systems, and the transmission system 1 has “1,1,1,1” and the transmission system 2 has “1, -1,1, -1” orthogonal codes. However, the number of transmission systems and orthogonal codes are not limited to this, and the above equation (5) and the correlation processing are changed according to the number of transmission systems. Also, it can be applied by changing according to the assigned orthogonal code.

例えば、送信装置が3系統で構成され、追加した送信系統3に「1、1、−1、−1」の直交符号を割り当てた場合、8個のOFDMシンボルの受信信号yji(1)〜yji(8)から、以下の(8)式によりパラメータsjiを求め、(9)式により平均値sを求める。

Figure 0005013771
Figure 0005013771
For example, when the transmission apparatus is configured by three systems and an orthogonal code “1, 1, −1, −1” is assigned to the added transmission system 3, reception signals y ji (1) to 8 OFDM symbols are assigned. From y ji (8), parameter s ji is obtained by the following equation (8), and average value s j is obtained by equation (9).
Figure 0005013771
Figure 0005013771

尚、(8)式の右辺の項数を減らして計算量を少なくするようにしてもよい。この場合、(8)式の右辺に含まれるyji(t)の個数に応じて(9)式の分母を変更する必要がある。また、この場合の送信系統3のチャンネル推定を行うための相関処理は、以下のとおりである。
(y’ji(1)+y’ji(2)−y’ji(3)−y’ji(4))/4
Note that the amount of calculation may be reduced by reducing the number of terms on the right side of equation (8). In this case, it is necessary to change the denominator of Expression (9) according to the number of y ji (t) included in the right side of Expression (8). In this case, the correlation processing for estimating the channel of the transmission system 3 is as follows.
(Y ′ ji (1) + y ′ ji (2) −y ′ ji (3) −y ′ ji (4)) / 4

本発明の実施の形態による受信装置を含むMIMO−OFDMシステムの全体構成図である。1 is an overall configuration diagram of a MIMO-OFDM system including a receiving apparatus according to an embodiment of the present invention. 本発明の実施の形態による受信装置の構成を示す図である。It is a figure which shows the structure of the receiver by embodiment of this invention. 送信装置の構成を示す図である。It is a figure which shows the structure of a transmitter. 図2の雑音電力測定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the noise power measurement means of FIG.

符号の説明Explanation of symbols

1 受信アンテナ
2 D/C(ダウンコンバート)手段
3 AGC手段
4 A/D変換手段
5 同期手段
6 FFT手段
7 正規化手段
8 雑音電力測定手段
9 チャンネル推定手段
10 復調手段
11 パイロットキャリア抽出段
12 差分段
13 平均化段
14 IFFT手段
15 ガード付加手段
16 D/A変換手段
17 U/C(アップコンバート)手段
18 送信アンテナ
100 MIMO−OFDMシステム
101 送信装置
102 受信装置
DESCRIPTION OF SYMBOLS 1 Reception antenna 2 D / C (down-conversion) means 3 AGC means 4 A / D conversion means 5 Synchronization means 6 FFT means 7 Normalization means 8 Noise power measurement means 9 Channel estimation means 10 Demodulation means 11 Pilot carrier extraction stage 12 Difference Stage 13 Averaging stage 14 IFFT means 15 Guard addition means 16 D / A conversion means 17 U / C (up-conversion) means 18 Transmitting antenna 100 MIMO-OFDM system 101 Transmitting apparatus 102 Receiving apparatus

Claims (3)

複数の送信系統の各々における送信信号のパイロットキャリアが複数のシンボルにわたって符号分割多重されるMIMO−OFDMシステムの下で、該MIMO−OFDMシステムを構成する受信装置により各受信系統の受信信号に含まれる雑音電力を測定する方法において、
既知信号で変調され、送信系統毎に異なるパイロットキャリアの複数のシンボルにわたる送信パターンに基づいて、受信信号が雑音成分を除いて同一とみなせるシンボルの受信信号系列の差を2乗し、
該2乗した結果を複数のパイロットキャリアについて平均化し、該平均化した値を当該受信系統の前記雑音電力とすることを特徴とする雑音電力測定方法。
Under a MIMO-OFDM system in which pilot carriers of transmission signals in each of a plurality of transmission systems are code-division multiplexed over a plurality of symbols, they are included in the reception signals of the respective reception systems by the receivers constituting the MIMO-OFDM system. In a method for measuring noise power,
Based on a transmission pattern over a plurality of symbols of pilot carriers that are modulated by a known signal and differ for each transmission system , square the difference of received signal sequences of symbols that can be regarded as the same except for noise components,
A method of measuring noise power, wherein the squared result is averaged for a plurality of pilot carriers, and the averaged value is used as the noise power of the receiving system .
複数の送信系統の各々における送信信号のパイロットキャリアが複数のシンボルにわたって符号分割多重されるMIMO−OFDMシステムを構成する受信装置において、
複数の受信系統の各々は、受信信号に含まれる雑音電力を測定する雑音電力測定手段を備え、
該雑音電力測定手段
受信信号からパイロットキャリアを抽出するパイロットキャリア抽出段と、
前記抽出されたパイロットキャリアについて、送信系統毎に異なるパイロットキャリアの複数のシンボルにわたる送信パターンに基づいて、雑音成分を除いて同一とみなせるシンボルの受信信号系列の差を2乗する差分段と、
前記2乗した結果を複数のパイロットキャリアについて平均化し、該平均化した値を雑音電力として出力する平均化段とを有することを特徴とする受信装置。
In a receiving apparatus constituting a MIMO-OFDM system in which pilot carriers of transmission signals in each of a plurality of transmission systems are code division multiplexed over a plurality of symbols,
Each of the plurality of reception systems includes noise power measurement means for measuring the noise power included in the received signal,
The noise power measuring means includes :
A pilot carrier extraction stage for extracting a pilot carrier from the received signal;
For the extracted pilot carrier , based on a transmission pattern over a plurality of symbols of different pilot carriers for each transmission system , a difference stage that squares the difference between received signal sequences of symbols that can be regarded as the same except for noise components;
And a averaging stage that averages the squared result of a plurality of pilot carriers and outputs the averaged value as noise power.
請求項2に記載の受信装置において、
複数の受信系統の各々は、さらに、当該受信系統の前記雑音電力測定手段により測定された雑音電力に基づいて、受信信号を正規化する正規化手段を備えたことを特徴とする受信装置。

The receiving device according to claim 2,
Each of the plurality of receiving systems is further based on the measured noise power by the noise power measurement unit of the receiving system, the receiving apparatus characterized by comprising a normalization means for normalizing the received signal.

JP2006218321A 2006-08-10 2006-08-10 MIMO-OFDM noise power measurement method and receiver Active JP5013771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218321A JP5013771B2 (en) 2006-08-10 2006-08-10 MIMO-OFDM noise power measurement method and receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218321A JP5013771B2 (en) 2006-08-10 2006-08-10 MIMO-OFDM noise power measurement method and receiver

Publications (2)

Publication Number Publication Date
JP2008042837A JP2008042837A (en) 2008-02-21
JP5013771B2 true JP5013771B2 (en) 2012-08-29

Family

ID=39177314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218321A Active JP5013771B2 (en) 2006-08-10 2006-08-10 MIMO-OFDM noise power measurement method and receiver

Country Status (1)

Country Link
JP (1) JP5013771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545120B2 (en) 2002-08-07 2017-01-17 Basf Se Method of lowering glycemic index of foods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902333B2 (en) * 2006-12-11 2012-03-21 三洋電機株式会社 Receiving method and receiving apparatus and receiving system using the same
JP5175253B2 (en) * 2009-08-31 2013-04-03 日本放送協会 Single carrier receiver
JP5940934B2 (en) * 2012-08-10 2016-06-29 株式会社日立国際電気 OFDM receiver normalization circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532864B2 (en) * 2003-02-17 2009-05-12 Panasonic Corporation Noise power estimation method and noise power estimation device
US8000221B2 (en) * 2004-07-20 2011-08-16 Qualcomm, Incorporated Adaptive pilot insertion for a MIMO-OFDM system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545120B2 (en) 2002-08-07 2017-01-17 Basf Se Method of lowering glycemic index of foods

Also Published As

Publication number Publication date
JP2008042837A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
US7139340B2 (en) Robust OFDM carrier recovery methods and apparatus
JP6060210B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
US20100111157A1 (en) Wireless communication device, wireless communication method, signal processing device, signal processing method, and computer program
JP4572968B2 (en) Packet detection device, packet detection method, wireless communication device, wireless communication method, and computer program
US7190748B2 (en) Digital front-end for wireless communication system
US7295517B2 (en) Method and apparatus for channel quality metric generation within a packet-based multicarrier modulation communication system
US7158585B2 (en) OFDM channel estimation in the presence of interference
US7349667B2 (en) Simplified noise estimation and/or beamforming for wireless communications
US7949040B2 (en) Reception quality measuring apparatus and reception quality measuring method
JP4264550B2 (en) Reception device and channel estimation device
KR101656083B1 (en) Apparatus and method for obtaining reception synchronization in wireless communication system
US20050078649A1 (en) Apparatus and method of multiple antenna receiver combining of high data rate wideband packetized wireless communication signals
JP3492565B2 (en) OFDM communication device and detection method
US7349462B2 (en) Acquisition and adjustment of gain, receiver clock frequency, and symbol timing in an OFDM radio receiver
JP4725628B2 (en) Reception device, reception method, program, and wireless communication system
WO2008137840A1 (en) Ofdm-based device and method for performing synchronization
US9143286B2 (en) Estimation of signal to noise ratio in receivers
JP3910956B2 (en) Propagation path estimator and receiving apparatus using the same for OFDM wireless communication system
TWI385950B (en) Receiving method and device
US6950483B2 (en) Timing misalignment estimation
JP5013771B2 (en) MIMO-OFDM noise power measurement method and receiver
JP6140565B2 (en) Diversity receiver
JP3919159B2 (en) OFDM digital signal relay device
US9628303B2 (en) Receiver apparatus and frequency selectivity interference correction method
US20100046359A1 (en) Wireless Terminal, Base Station and Channel Characteristic Estimating Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5013771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250