JP5013101B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5013101B2
JP5013101B2 JP2007332373A JP2007332373A JP5013101B2 JP 5013101 B2 JP5013101 B2 JP 5013101B2 JP 2007332373 A JP2007332373 A JP 2007332373A JP 2007332373 A JP2007332373 A JP 2007332373A JP 5013101 B2 JP5013101 B2 JP 5013101B2
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
catalyst
flow
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007332373A
Other languages
Japanese (ja)
Other versions
JP2009156065A (en
Inventor
洋之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2007332373A priority Critical patent/JP5013101B2/en
Publication of JP2009156065A publication Critical patent/JP2009156065A/en
Application granted granted Critical
Publication of JP5013101B2 publication Critical patent/JP5013101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、触媒の上流に添加剤を供給するようにした内燃機関の排気ガス浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine that supplies an additive upstream of a catalyst.

ディーゼルエンジン車(車両)の排気ガスの浄化には、ディーゼルエンジンの排気ガス中に含まれるNOx(窒素酸化物)やPM(パティキュレートマター)の大気への放出を防ぐために、NOxトラップ触媒や選択還元型NOx触媒やディーゼルパティキュレートフィルタなどを組み合わせた排気ガス浄化装置が用いられる。
最近では、エンジンの冷態時の浄化効率を高めるために、できるだけエンジンの近く、例えばエンジンのエキゾーストマニホールドの出口の近くに、別途、前段触媒と呼ばれる、酸化触媒やNOxトラップ触媒や選択還元型NOx触媒など触媒を設け、この触媒の上流側に該触媒の反応に求められる燃料を噴射する燃料添加弁(還元剤を添加するもの)を設けて、排気ガス浄化装置を構築することが進められている。
For purification of exhaust gas from diesel engine vehicles (vehicles), NOx trap catalyst or selection is used to prevent NOx (nitrogen oxide) and PM (particulate matter) contained in the exhaust gas of diesel engine from being released into the atmosphere. An exhaust gas purification device combined with a reduced NOx catalyst, a diesel particulate filter, or the like is used.
Recently, in order to increase the purification efficiency in the cold state of the engine, an oxidation catalyst, a NOx trap catalyst, a selective reduction type NOx, which is separately called a pre-stage catalyst, as close as possible to the engine, for example, near the outlet of the exhaust manifold of the engine. A catalyst such as a catalyst is provided, and a fuel addition valve (which adds a reducing agent) for injecting fuel required for the reaction of the catalyst is provided upstream of the catalyst to construct an exhaust gas purification device. Yes.

ところで、こうしたエンジンの排気出口の近くの前段触媒の設置には、自動車のエンジンルーム内に収められるようにする工夫が求められる。
このため、多くは特許文献1に開示されているようにエンジンの排気側に、L形に屈曲した屈曲部を有した排気管部を設けて、屈曲部の直下の排気管部分で触媒が設置可能な場所を確保し、この部分に前段触媒を設け、この前段触媒の直上流に燃料添加弁を設けることが行われている。
By the way, the installation of the pre-stage catalyst near the exhaust outlet of such an engine requires a device that can be accommodated in the engine room of the automobile.
For this reason, as disclosed in Patent Document 1, in many cases, an exhaust pipe portion having a bent portion bent in an L shape is provided on the exhaust side of the engine, and the catalyst is installed in the exhaust pipe portion immediately below the bent portion. A possible place is secured, a pre-stage catalyst is provided in this portion, and a fuel addition valve is provided immediately upstream of the pre-stage catalyst.

近時では、できるだけ前段触媒をエンジンに接近させるために、特許文献1の図1に示されるように排気管部の屈曲部の外周側に燃料添加弁を設置し、さらに噴射距離を確保するために、前段触媒の反応に求められる燃料を、屈曲部の外周側から、該屈曲部を通過する排気ガスの流れを横切るように噴射させて、触媒へ供給することが行われる。
特開2005−127260号公報
Recently, in order to make the upstream catalyst as close as possible to the engine, as shown in FIG. 1 of Patent Document 1, a fuel addition valve is installed on the outer peripheral side of the bent portion of the exhaust pipe portion to further secure the injection distance. In addition, the fuel required for the reaction of the pre-stage catalyst is injected from the outer peripheral side of the bent portion so as to cross the flow of the exhaust gas passing through the bent portion, and supplied to the catalyst.
JP 2005-127260 A

ところで、前段触媒を最も効率よく反応させるためには、燃料添加弁から噴射された燃料は、均一に前段触媒の入口端面へ供給することが求められる。
ところが、燃料添加弁から噴射された燃料の向きは、エンジンから排気される排気ガスの挙動で変わりやすい。
具体的には、エンジンから排気される排気ガスの流速や流量は、エンジンの運転状態に応じて変化している。これに対し燃料添加弁からは、還元など触媒の反応を必要とするときだけ、エンジンの運転状態に関わらず、一定の向きで、燃料が噴射される。
By the way, in order to cause the pre-stage catalyst to react most efficiently, the fuel injected from the fuel addition valve is required to be uniformly supplied to the inlet end face of the pre-stage catalyst.
However, the direction of the fuel injected from the fuel addition valve is likely to change depending on the behavior of the exhaust gas exhausted from the engine.
Specifically, the flow rate and flow rate of the exhaust gas exhausted from the engine changes according to the operating state of the engine. On the other hand, from the fuel addition valve, fuel is injected in a constant direction regardless of the operating state of the engine only when the reaction of the catalyst such as reduction is required.

このような状況で燃料は、排気ガスの流れを横切る方向から、燃料が触媒へ噴射されるが、ここで、当初の燃料の噴射の向きが、例えばエンジンの中負荷運転時に合わせて、燃料添加弁からの燃料が触媒の入口端面の中央に噴射されるようにしてあるとする。
このとき、エンジンの運転が、中負荷運転でなく、高負荷運転であると、排気ガスの流速、流量は、中負荷運転時のときより増しているので、触媒の入口端面に噴射されるはずの燃料の噴射流が、排気ガス流に押されて触媒の縁部側へ偏る。また反対に低負荷運転時であると、排気ガスの流速、流量は、中負荷運転時のときより減少しているので、逆に燃料の噴射流を押す力が小さくなり、触媒の反対側の縁部側へ偏る。
In such a situation, the fuel is injected into the catalyst from the direction crossing the flow of the exhaust gas. Here, the initial fuel injection direction is adjusted in accordance with, for example, the medium load operation of the engine. Assume that the fuel from the valve is injected into the center of the inlet end face of the catalyst.
At this time, if the engine operation is not a medium load operation but a high load operation, the flow rate and flow rate of the exhaust gas are higher than those during the medium load operation, so the engine should be injected to the inlet end face of the catalyst. The fuel injection flow is pushed by the exhaust gas flow and biased toward the edge of the catalyst. On the other hand, during low-load operation, the flow rate and flow rate of exhaust gas are lower than during medium-load operation. It is biased toward the edge side.

このため、エンジンの運転中、燃料噴射の向きは、一定せず、触媒の燃料分布に偏りが生じやすい。
こうした挙動のため、反応のための燃料が前段触媒へ均一に供給されず、前段触媒が十分に発揮できない問題がある。
そこで、本発明の目的は、排気ガス流に影響されずに添加剤を触媒へ均一に供給できるようにしたエンジンの排気ガス浄化装置を提供することにある。
For this reason, during the operation of the engine, the direction of fuel injection is not constant, and the fuel distribution of the catalyst tends to be biased.
Due to such behavior, there is a problem that the fuel for the reaction is not uniformly supplied to the pre-catalyst and the pre-catalyst cannot be sufficiently exhibited.
SUMMARY OF THE INVENTION An object of the present invention is to provide an engine exhaust gas purification apparatus that can uniformly supply an additive to a catalyst without being influenced by an exhaust gas flow.

請求項1に記載の発明は、上記目的を達成するために、エンジンから排気された排気ガスを外部へ導く、L形に屈曲する屈曲部を備えて形成された排気管部と、排気管部の屈曲部の直下流部分に収められた触媒と、排気管部の屈曲部の外周側に設けられ、排気ガスの流れを横切る方向へ噴射させて、触媒の所定位置へ添加剤を供給する添加剤噴射弁と、添加剤噴射弁から上流の排気管部分に設けられ、L形の屈曲部を通過する排気ガスの流れにより押される添加剤噴射弁からの添加剤が触媒の所定位置を保ち続けるように排気ガスの流れを制御する排気制御弁とを具備した
同構成により、エンジンの運転状態に関わらず、L形の屈曲部を通過する排気ガスの流れにより押される、添加剤噴射弁から噴射された添加剤の噴射方向所定に保つことができる。このため、添加剤は触媒の所定位置へ供給される
In order to achieve the above object, the invention according to claim 1 is an exhaust pipe portion formed with a bent portion bent into an L shape for guiding the exhaust gas exhausted from the engine to the outside, and an exhaust pipe portion The catalyst is stored in the portion immediately downstream of the bent portion of the exhaust pipe, and the additive is provided on the outer peripheral side of the bent portion of the exhaust pipe portion, and is injected in a direction crossing the exhaust gas flow to supply the additive to a predetermined position of the catalyst The additive from the additive injection valve and the additive injection valve, which is provided in the exhaust pipe portion upstream from the additive injection valve and pushed by the flow of exhaust gas passing through the L-shaped bent portion, keeps the predetermined position of the catalyst. And an exhaust control valve for controlling the flow of the exhaust gas .
By this construction, regardless of the operating state of the engine, pushed by the flow of exhaust gas passing through the bent portion of the L-shaped injection direction additive injected from the additive injection valve may be kept in a predetermined. For this reason, the additive is supplied to a predetermined position of the catalyst .

好ましくは、添加剤噴射弁の噴孔は、添加剤噴射弁が設けられる側壁の反対側の触媒入口端面に指向し、排気流制御弁により触媒の所定位置に添加剤を供給させるとよい。
請求項2に記載の発明は、添加剤噴射弁の先端に、デジポットが堆積しにくくするよう、排気流制御弁は、添加剤噴射弁と並んで屈曲部の外周側の側壁に設ける構成とした。
請求項3に記載の発明は、どのようなエンジンの運転状態にも対応するよう、排気流制御弁部は、添加剤噴射弁の噴孔近傍の排気ガスの流れが所定の流れとなるように制御されるものとした。
Preferably, the injection hole of the additive injection valve is directed to the catalyst inlet end surface opposite to the side wall provided with the additive injection valve, and the additive is supplied to a predetermined position of the catalyst by the exhaust flow control valve.
The invention according to claim 2 is configured such that the exhaust flow control valve is provided on the side wall on the outer peripheral side of the bent portion along with the additive injection valve so that the digipot is not easily accumulated at the tip of the additive injection valve. .
According to a third aspect of the present invention, the exhaust flow control valve unit is configured so that the flow of exhaust gas in the vicinity of the injection hole of the additive injection valve becomes a predetermined flow so as to correspond to any engine operating state. It was supposed to be controlled.

好ましくは、排気流制御弁は、エンジンの高負荷運転時の最も排気ガスの流速、流量が多い排気ガス流のときに全開にし、エンジンの低負荷運転時の最も排気ガスの流速、流量が少ない排気ガス流のときに全閉にし、エンジンの運転状態に応じて弁部が全開〜全閉までの無段階に制御されるようにすると、高負荷運転時の排気ガスに合わせて添加剤噴射弁の向きを設定さえするだけで、簡単に添加剤の最適な噴射方向が保てる。   Preferably, the exhaust flow control valve is fully opened when the exhaust gas flow rate has the highest exhaust gas flow rate and flow rate when the engine is operating at a high load, and the exhaust gas flow rate and flow rate is the lowest when the engine is operated at a low load. If the exhaust gas flow is fully closed and the valve is controlled steplessly from fully open to fully closed according to the operating state of the engine, the additive injection valve will match the exhaust gas during high-load operation. By simply setting the direction, the optimum injection direction of the additive can be easily maintained.

請求項1の発明によれば、どのようなエンジンの運転状態下で、添加剤が噴射されても、L形の屈曲部を通過する排気ガスの流れにより押される添加剤は、所定の方向を保ち続ける。それ故、常に触媒の所定位置へ添加剤を噴射することができる According to the invention of claim 1, under operating conditions of the throat engines like, even if the additive is injected, additive pushed by the flow of exhaust gas passing through the bent portion of the L-shaped, the predetermined direction the continue to keep. Therefore, the additive can always be injected to a predetermined position of the catalyst .

したがって、屈曲部によって添加剤噴射弁の噴孔近傍の排気ガスの流れが大きく影響を受けても排気流制御弁により影響を抑制することができる。
請求項2の発明によれば、さらに排気流制御弁が、添加剤噴射弁の直上流に配置されることにより、排気流制御弁が全開するときを利用して、それまで添加剤噴射弁の先端に堆積していたデジポットを、速い流速の排気ガスで吹き飛ばすことができるといった効果を奏する。
Therefore, even if the flow of exhaust gas in the vicinity of the injection hole of the additive injection valve is greatly affected by the bent portion, the influence can be suppressed by the exhaust flow control valve.
According to the invention of claim 2, the exhaust flow control valve is disposed immediately upstream of the additive injection valve so that the exhaust flow control valve is fully opened. There is an effect that the digipot accumulated at the tip can be blown away with exhaust gas having a high flow velocity.

請求項3の発明によれば、さらに、排気流制御弁が、エンジンの運転状態に応じて添加剤噴射弁の噴孔近傍の排気ガスの流れが所定の流れとなるように制御されるので、どのようなエンジンの運転状態にも対応することができるといった効果を奏する。 According to the invention of claim 3 , the exhaust flow control valve is further controlled so that the flow of the exhaust gas in the vicinity of the injection hole of the additive injection valve becomes a predetermined flow according to the operating state of the engine. There is an effect that it is possible to cope with any engine operating state.

以下、本発明を図1〜図4に示す一実施形態にもとづいて説明する。
図1はディーゼルエンジン(内燃機関)の排気系を示し、同図中1は、ディーゼルエンジンのエンジン本体、1aは同エンジン本体1のエキゾーストマニホールド(一部しか図示せず)、2はそのエキゾーストマニホールド1aの出口に接続された過給機、例えばターボチャージャを示す。
Hereinafter, the present invention will be described based on an embodiment shown in FIGS.
FIG. 1 shows an exhaust system of a diesel engine (internal combustion engine), in which 1 is an engine body of the diesel engine, 1a is an exhaust manifold (only a part of which is shown), and 2 is its exhaust manifold. 1 shows a turbocharger, for example a turbocharger, connected to the outlet of 1a.

ディーゼルエンジン1の排気側をなすターボチャージャ1aの排気出口には、排気ガス浄化装置3が設けられている。この排気ガス浄化装置3には、例えば、排気ガス中のNOx(窒素酸化物)を吸蔵し、定期的に吸蔵したNOxを還元除去するNOx除去系3aと、PM(パティキュレートマター)を捕集するPM捕集系3bとを組み合わせた構造が用いられている。   An exhaust gas purification device 3 is provided at the exhaust outlet of the turbocharger 1 a that forms the exhaust side of the diesel engine 1. In this exhaust gas purification device 3, for example, NOx (nitrogen oxide) in exhaust gas is occluded, and NOx removal system 3a for reducing and removing NOx occluded regularly and PM (particulate matter) are collected. The structure which combined PM collection system 3b to be used is used.

例えば、NOx除去系3aには、ターボチャージャ1aの排気出口から、下方へ向うように連結された、前段触媒となる酸化触媒(本願の触媒に相当)5が内蔵された触媒コンバータ6と、同触媒コンバータ6の後に横方向に連結された、NOxトラップ触媒8が内蔵された触媒コンバータ9との組み合わせが用いてられている。また捕集系3bには、触媒コンバータ9に、パティキュレートフィルタ11が内蔵された触媒コンバータ12を連結した構成が用いられている。これらの触媒コンバータ6,9,12や同コンバータ間をつなぐ接続部13などから、ディーゼルエンジンから排気された排気ガスを外部へ導く排気管部15を構成している。   For example, the NOx removal system 3a includes a catalytic converter 6 in which an oxidation catalyst (corresponding to the catalyst of the present application) 5 that is connected to face downward from the exhaust outlet of the turbocharger 1a is built. A combination with a catalytic converter 9 having a built-in NOx trap catalyst 8 connected laterally after the catalytic converter 6 is used. The collection system 3b employs a configuration in which a catalytic converter 12 having a particulate filter 11 incorporated therein is connected to the catalytic converter 9. An exhaust pipe portion 15 that guides exhaust gas exhausted from the diesel engine to the outside is constituted by the catalytic converters 6, 9, 12 and the connection portion 13 connecting the converters.

このうち触媒コンバータ6の酸化触媒5を収容している縦筒形のハウジング17は、上部側がL形に成形されていて、上部のターボチャージャ2と接続される入口部17aを横向きに配置させている。なお、触媒コンバータ9と連通する出口部17bは、下向きの配置となっている。このハウジング17により、排気管部15のうち、ディーゼルエンジンの排気側の直後の地点にL形に屈曲した屈曲部15aを形成している。またこの屈曲部15aの直下に、触媒設置スペースを確保している。この確保された屈曲部15aの直下流となる地点に酸化触媒5が設置してある。これにより、酸化触媒5を、できるだけエンジン本体1に近い地点に設置させている(エンジン冷態時の昇温性を高めるため)。   Among these, the vertical cylindrical housing 17 that houses the oxidation catalyst 5 of the catalytic converter 6 is formed in an L shape on the upper side, and an inlet portion 17a connected to the upper turbocharger 2 is disposed sideways. Yes. The outlet portion 17b communicating with the catalytic converter 9 is disposed downward. The housing 17 forms a bent portion 15 a bent in an L shape at a point immediately after the exhaust side of the diesel engine in the exhaust pipe portion 15. Further, a catalyst installation space is secured immediately below the bent portion 15a. The oxidation catalyst 5 is installed at a point immediately downstream of the secured bent portion 15a. Thereby, the oxidation catalyst 5 is installed as close to the engine main body 1 as possible (in order to increase the temperature rise characteristic when the engine is cold).

また屈曲部15aの外周側の曲がり方向中央には、ディーゼルエンジンで用いる軽油などの燃料(添加剤)を噴射する燃料添加弁19(添加剤噴射弁)が設けられている。この燃料添加弁19は、先端部に燃料噴射部19a(噴孔)をもち、同燃料噴射部19aから燃料が酸化触媒5の入口端面へ向けて噴射されるようにしてある。この燃料添加弁19が、先端の燃料噴射部19aをハウジング17から退避させて、ハウジング17に設けた据付座20に設置させてある。つまり、燃料添加弁19は、酸化触媒5から、噴射に求められる噴射距離をおいて設置してある。なお、据付座20には、燃料噴射部19aから噴射された燃料をハウジング17内へ導くためのポート21が形成してある。燃料添加弁19は、酸化触媒5の反応(酸化)を利用して還元剤の生成し、この還元剤でNOxトラップ触媒8に吸蔵されたNOxやSOxを還元除去したり、同じく酸化触媒5の反応(酸化)で得られる昇温により、パティキュレートフィルタ11で捕集したPMを燃焼除去したりするのに用いる。そして、燃料添加弁19は、ディーゼルエンジンを制御する制御部、例えばECU27によって、ディーゼルエンジンの運転中、NOxやSOxの還元除去、PMの燃焼除去といった、触媒反応が求められるときに燃料が噴射されるようにしてある。   A fuel addition valve 19 (additive injection valve) for injecting fuel (additive) such as light oil used in a diesel engine is provided at the center in the bending direction on the outer peripheral side of the bent portion 15a. The fuel addition valve 19 has a fuel injection part 19 a (injection hole) at the tip, and fuel is injected from the fuel injection part 19 a toward the inlet end face of the oxidation catalyst 5. The fuel addition valve 19 is installed on a mounting seat 20 provided in the housing 17 by retracting the fuel injection portion 19 a at the tip from the housing 17. That is, the fuel addition valve 19 is installed at an injection distance required for injection from the oxidation catalyst 5. Note that a port 21 for guiding the fuel injected from the fuel injection portion 19a into the housing 17 is formed in the installation seat 20. The fuel addition valve 19 uses the reaction (oxidation) of the oxidation catalyst 5 to generate a reducing agent, and this reducing agent reduces and removes NOx and SOx stored in the NOx trap catalyst 8. It is used to burn and remove PM collected by the particulate filter 11 by the temperature rise obtained by the reaction (oxidation). The fuel addition valve 19 is injected with fuel by a control unit that controls the diesel engine, for example, the ECU 27, when a catalytic reaction such as NOx or SOx reduction removal or PM combustion removal is required during operation of the diesel engine. It is made to do.

この屈曲部15aで行われる燃料添加弁19の噴射動作より、触媒の反応に求められる燃料が、屈曲部15aを流れる排気ガスの流れに対し、横切る方向から噴射されて、酸化触媒5の入口端面へ噴射されるようにしている。このときの燃料噴射部19aの向きは、ディーゼルエンジンの高負荷運転時の排気ガスが屈曲部15aを流れているときを基準に、予め傾けてある。具体的には、燃料噴射部19aから噴射される燃料は、排気ガスで押されながら、所定位置、例えば酸化触媒5の入口の端面中央へ向って噴射される。このため、燃料噴射部19aの向きは、予め高負荷運転時の排気ガスで押されることを考慮して、若干、入口部17a側へ傾けてある。   Due to the injection operation of the fuel addition valve 19 performed at the bent portion 15a, the fuel required for the reaction of the catalyst is injected from the direction crossing the flow of the exhaust gas flowing through the bent portion 15a. It is made to be injected into. The direction of the fuel injection part 19a at this time is inclined in advance with reference to the time when exhaust gas during high-load operation of the diesel engine flows through the bent part 15a. Specifically, the fuel injected from the fuel injection unit 19a is injected toward a predetermined position, for example, the center of the end face of the inlet of the oxidation catalyst 5, while being pushed by the exhaust gas. For this reason, the direction of the fuel injection portion 19a is slightly inclined toward the inlet portion 17a in consideration of being pushed in advance by exhaust gas during high load operation.

一方、燃料添加弁19から上流の排気管部分、例えば入口部17aをなす筒形口体の壁部分には、排気流制御弁23が設けられている。さらに述べれば、排気流制御弁23は燃料添加弁19と隣接した直上流の地点に配置されている。
この排気流制御弁23を説明すると、24は、筒形口体の内面に開閉可能に設けられた、ダンパー式の弁体24である。ダンパー式の弁体24は、屈曲部15aの外周側へ向う排気ガス流の流通を制御するよう、例えば筒形口体の上側の半分の領域を開閉する大きさとし、入口部17a側に回動支点24aを配置した構成としてある。さらに述べれば、弁体24は、図1中の実線で示す、筒形口体内を全開とする全開位置と、二点鎖線で示す、筒形口体内をほぼ半減にする全閉位置との間を回動変位するようにしてある。
On the other hand, an exhaust flow control valve 23 is provided in an exhaust pipe portion upstream from the fuel addition valve 19, for example, in a wall portion of a cylindrical mouth forming the inlet portion 17 a. More specifically, the exhaust flow control valve 23 is arranged at a point immediately upstream adjacent to the fuel addition valve 19.
The exhaust flow control valve 23 will be described. The reference numeral 24 denotes a damper type valve body 24 provided on the inner surface of the cylindrical mouth body so as to be opened and closed. The damper type valve body 24 is sized to open and close, for example, the upper half region of the cylindrical mouth body so as to control the flow of the exhaust gas flow toward the outer peripheral side of the bent portion 15a, and rotates toward the inlet portion 17a. The fulcrum 24a is arranged. More specifically, the valve body 24 is located between a fully open position indicated by a solid line in FIG. 1 in which the cylindrical mouth is fully opened and a fully closed position indicated by a two-dot chain line in which the cylindrical mouth is substantially halved. Is rotated and displaced.

この弁体24が、ハウジング17外に設置した、例えば電動モータなど弁部駆動用のアクチュエータ25に接続されている。具体的には、弁体24とアクチュエータ25間はリンク機構26を介して接続されている。これにより、アクチュエータ25の駆動で、弁体24の弁開度が、全開から全閉までの範囲で連続的に変位できるようにしてある。
アクチュエータ25は、制御部、例えばECU27に接続されている。ECU27には、ディーゼルエンジンの運転状態に関わらず、屈曲部15aを流れる排気ガスの流速を一定する制御が設定されている。同制御は、例えば図2に示されるような排気ガスの流速が速く、流量が多いディーゼルエンジンの高負荷運転状態(エンジン回転数やアクセル開度の検出による)のときには、弁体24を全開にし、排気ガスの流速が遅く、流量が少ないディーゼルエンジンの低負荷運転状態のときには、弁体24を全閉しにし、その間を無段階にするマップを用いて行われる。
The valve body 24 is connected to an actuator 25 for driving the valve portion such as an electric motor, which is installed outside the housing 17. Specifically, the valve body 24 and the actuator 25 are connected via a link mechanism 26. Thereby, the valve opening degree of the valve body 24 can be continuously displaced in the range from fully open to fully closed by driving the actuator 25.
The actuator 25 is connected to a control unit, for example, the ECU 27. The ECU 27 is set to control the flow rate of the exhaust gas flowing through the bent portion 15a regardless of the operating state of the diesel engine. In the control, for example, as shown in FIG. 2, when the exhaust gas flow rate is fast and the flow rate is high, the diesel engine is in a high load operation state (by detecting the engine speed and the accelerator opening), and the valve body 24 is fully opened. When the diesel engine is in a low load operation state where the flow rate of exhaust gas is low and the flow rate is low, the valve body 24 is fully closed, and a map is used in which there is no step in between.

このマップに基づき行われる弁体24による筒形口体の絞り制御から、高負荷運転時の排ガス流を基準として、屈曲部15aを通過して酸化触媒5へ向う排気ガスの流速が一定に調節される構造にしてある。また弁体24で、屈曲部15aの外周側へ向う排気ガス流を制御することによって、燃料添加弁19から噴射された燃料の噴射流αの先端側に、常に流速が一定な排気ガス流を導ける構成としている。   From the throttle control of the cylindrical mouth performed by the valve body 24 performed based on this map, the flow rate of the exhaust gas passing through the bent portion 15a toward the oxidation catalyst 5 is adjusted to be constant with reference to the exhaust gas flow during high load operation. The structure is made. Further, by controlling the exhaust gas flow toward the outer peripheral side of the bent portion 15a with the valve body 24, an exhaust gas flow having a constant flow velocity is always provided on the front end side of the fuel injection flow α injected from the fuel addition valve 19. It can be guided.

この排気ガス流の制御により、燃料添加弁19から噴射された燃料が、ディーゼルエンジンの運転状態に影響されずに、前段触媒である酸化触媒5へ均一に供給されるようにしている。
すなわち、この燃料の噴射について説明すると、自動車の運転中、ディーゼルエンジンから排気された排気ガスは、エキゾーストマニホールド1a、ターボチャージャ2、酸化触媒5、NOxトラップ触媒8およびパティキュレートフィルタ11を通じて、外気へ放出される。
By controlling the exhaust gas flow, the fuel injected from the fuel addition valve 19 is uniformly supplied to the oxidation catalyst 5 as the preceding catalyst without being affected by the operating state of the diesel engine.
That is, the fuel injection will be described. Exhaust gas exhausted from the diesel engine during the operation of the automobile passes through the exhaust manifold 1a, the turbocharger 2, the oxidation catalyst 5, the NOx trap catalyst 8, and the particulate filter 11 to the outside air. Released.

こうした自動車の運転時、高負荷運転や中負荷運転や低負荷運転に関わらず、排気ガス中に含まれるNOxは、NOxトラップ触媒8に吸蔵され、同じくPMは、パティキュレートフィルタ11により捕集される。
このとき排気流制御弁23の弁体24の弁開度は、ECU27で行われる図2に示すマップに基づき制御され、酸化触媒5に向う排気ガスの流速を、常に高負荷運転時における排ガス流の流速と同じに調節している。
During operation of such an automobile, regardless of high load operation, medium load operation, or low load operation, NOx contained in the exhaust gas is occluded in the NOx trap catalyst 8, and PM is also collected by the particulate filter 11. The
At this time, the valve opening degree of the valve body 24 of the exhaust flow control valve 23 is controlled based on the map shown in FIG. 2 performed by the ECU 27, and the exhaust gas flow rate toward the oxidation catalyst 5 is always set to the exhaust gas flow during the high load operation. The flow rate is adjusted to be the same.

具体的には、ディーゼルエンジンが高負荷運転されているときは、弁体24は、アクチュエータ25により、図1中の実線で示す全開位置に位置決められ、排気ガスは、流速、流量とも多いそのままの状態で、酸化触媒5へ導かれる。
またディーゼルエンジンが低負荷運転されているときは、弁体24は、アクチュエータ25により、図3に示すように全閉位置決められ、流速が小さい排気ガスの主流は、弁体24で行われる絞りにより、高負荷運転時と同等まで流速が増しながら、屈曲部15aの内周側に最も偏り寄ったコースを通り、酸化触媒5の入口の端面へ向う。
Specifically, when the diesel engine is operating at a high load, the valve body 24 is positioned by the actuator 25 at the fully open position shown by the solid line in FIG. In this state, it is guided to the oxidation catalyst 5.
When the diesel engine is operating at a low load, the valve body 24 is fully closed and positioned as shown in FIG. 3 by the actuator 25, and the main flow of exhaust gas having a low flow velocity is caused by the restriction performed by the valve body 24. While the flow rate increases to the same level as during high-load operation, it passes through the course that is most biased toward the inner peripheral side of the bent portion 15a and travels toward the end face of the inlet of the oxidation catalyst 5.

またディーゼルエンジンが中負荷運転されているときは、弁体24は、アクチュエータ25により、全開〜全閉間のマップで求められた中間地点にしたがい、図4に示されるように中間位置決められ、排気ガスの主流は、弁体24で行われる絞りにより、高負荷運転時と同等まで流速が増しながら、屈曲部15aの内周側に偏ったコースを通り、酸化触媒5の入口の端面へ向う。   Further, when the diesel engine is operated at a medium load, the valve body 24 is positioned intermediately as shown in FIG. 4 by the actuator 25 according to the intermediate point determined by the map between fully open and fully closed, and the exhaust gas is exhausted. The main flow of the gas passes through a course biased toward the inner peripheral side of the bent portion 15a while being increased in flow rate to the same level as that during high-load operation due to the restriction performed by the valve body 24, and then toward the end face of the inlet of the oxidation catalyst 5.

このようなディーゼルエンジンの運転状態に応じた弁体24の弁開度により、屈曲部15aを流れる排気ガスの流速は一定に保たれている。
ここで、吸蔵されたNOxや捕集されたPMを除去する時期となり、これらの除去に求められる燃料が、燃料添加弁19から噴射されたとする。すると、燃料は、屈曲部15aを流れる排気ガスの流れを横切るように噴射され、酸化触媒5の入口の端面へ噴射される。
The flow rate of the exhaust gas flowing through the bent portion 15a is kept constant by the valve opening degree of the valve body 24 corresponding to the operating state of the diesel engine.
Here, it is time to remove the stored NOx and the collected PM, and it is assumed that the fuel required for the removal is injected from the fuel addition valve 19. Then, the fuel is injected so as to cross the flow of the exhaust gas flowing through the bent portion 15 a and is injected to the end face of the inlet of the oxidation catalyst 5.

この燃料噴射が行われるときが、図1に示されるようなディーゼルエンジンの高負荷運転時のときとする。
このときは、燃料添加弁10は、既に排気ガスで押されることを考慮して、当初から、排気ガスの影響を回避するよう、噴射方向を傾けて取り付けてあるから、図1に示されるように燃料添加弁19からの燃料の噴射流の先端は、排気ガスで押されながらも、酸化触媒5の入口の所定位置、すなわち酸化触媒5の端面中央へ噴射される。
This fuel injection is performed when the diesel engine is in a high load operation as shown in FIG.
At this time, considering that the fuel addition valve 10 is already pushed by the exhaust gas, the fuel addition valve 10 is attached with an inclined injection direction so as to avoid the influence of the exhaust gas from the beginning, and as shown in FIG. In addition, the tip of the fuel injection flow from the fuel addition valve 19 is injected to a predetermined position at the inlet of the oxidation catalyst 5, that is, the center of the end face of the oxidation catalyst 5 while being pushed by the exhaust gas.

また燃料噴射が行われるときが、図3に示されるようなディーゼルエンジンの低負荷運転時とする。
このときは、弁体24で、高負荷運転時の排気ガスと同等にまで、流速が高められた排気ガスの主流は、図3に示されるように燃料添加弁19からの燃料の噴射流を、高負荷運転時ときと同じく横方向から押しながら、酸化触媒5の入口へ向う。これにより、図3に示されるように燃料添加弁19からの燃料の噴射流の先端は、高負荷運転時のときと同様な排気ガスで押される挙動を伴う。
Further, the time when fuel injection is performed is the time of low load operation of the diesel engine as shown in FIG.
At this time, the main flow of the exhaust gas whose flow velocity is increased by the valve body 24 to the same level as the exhaust gas at the time of high load operation is the fuel injection flow from the fuel addition valve 19 as shown in FIG. In the same manner as during high-load operation, it is pushed from the lateral direction toward the inlet of the oxidation catalyst 5. Thereby, as shown in FIG. 3, the tip of the fuel injection flow from the fuel addition valve 19 has a behavior of being pushed by the exhaust gas as in the case of high load operation.

つまり、燃料は、排気ガスの流速や流量が小さい低負荷運転時であっても、酸化触媒5の入口の所定位置、すなわち酸化触媒5の端面中央へ噴射される。
また燃料噴射が行われるときが、図4に示されるようなディーゼルエンジンの中負荷運転時とする。
このときは、弁体24で、高負荷運転時の排気ガスと同等にまで、流速が高められた排気ガスの主流は、図4に示されるように燃料添加弁19からの燃料の噴射流を、高負荷運転時ときと同じく横方向から押しながら、酸化触媒5の入口へ向う。これにより、図4に示されるように燃料添加弁19からの燃料の噴射流の先端は、高負荷運転時のときと同様な排気ガスで押される挙動を伴う。
That is, the fuel is injected to a predetermined position at the inlet of the oxidation catalyst 5, that is, to the center of the end surface of the oxidation catalyst 5 even during low load operation where the flow rate and flow rate of the exhaust gas are small.
Further, the time when fuel injection is performed is during the middle load operation of the diesel engine as shown in FIG.
At this time, the main flow of the exhaust gas whose flow velocity is increased by the valve body 24 to the same level as the exhaust gas at the time of high load operation is the fuel injection flow from the fuel addition valve 19 as shown in FIG. In the same manner as during high-load operation, it is pushed from the lateral direction toward the inlet of the oxidation catalyst 5. As a result, as shown in FIG. 4, the tip of the fuel injection flow from the fuel addition valve 19 has a behavior of being pushed by the exhaust gas as in the high load operation.

つまり、燃料は、排気ガスの流速や流量が小さい中負荷運転時であっても、酸化触媒5の入口の所定位置、すなわち酸化触媒5の端面中央へ噴射される。
むろん、弁体24は、ディーゼルエンジンの運転状態に応じて、無段階に制御されるので、どのような運転状態でも、燃料添加弁19からの燃料の噴射流の先端は、酸化触媒5の入口の所定位置、すなわち酸化触媒5の端面中央へ噴射される。
In other words, the fuel is injected to a predetermined position at the inlet of the oxidation catalyst 5, that is, to the center of the end face of the oxidation catalyst 5 even during medium load operation where the flow rate and flow rate of the exhaust gas are small.
Of course, since the valve body 24 is controlled steplessly according to the operating state of the diesel engine, the tip of the fuel injection flow from the fuel addition valve 19 is the inlet of the oxidation catalyst 5 in any operating state. Is injected to the predetermined position, that is, the center of the end face of the oxidation catalyst 5.

したがって、どのようなエンジンの運転状態下で、燃料が燃料添加弁19から噴射されても、噴射された燃料の噴射方向は所定に保ち続けるので、常に酸化触媒5の所定位置へ燃料を噴射することができる。
この結果、酸化触媒5における燃料分布の偏りが抑えられ、常に屈曲部15aから酸化触媒5へ均一に燃料を供給することができ、酸化触媒5のみならず、下流のNOxトラップ触媒8やパティキュレートフィルタ11がもつ機能を十分に発揮させることができる。このため、排気ガス浄化装置の浄化機能を十分に発揮させることができる。特に、屈曲部15aにより、燃料添加弁19の噴孔近傍の排気ガスの流れが大きく影響を受けやすい場合には有効である。
Therefore, no matter what engine operating state the fuel is injected from the fuel addition valve 19, the injection direction of the injected fuel is kept constant, so that the fuel is always injected into a predetermined position of the oxidation catalyst 5. be able to.
As a result, the uneven distribution of fuel in the oxidation catalyst 5 is suppressed, and fuel can be supplied uniformly from the bent portion 15a to the oxidation catalyst 5, so that not only the oxidation catalyst 5 but also the downstream NOx trap catalyst 8 and particulates. The function of the filter 11 can be exhibited sufficiently. For this reason, the purification function of the exhaust gas purification device can be sufficiently exhibited. This is particularly effective when the flow of exhaust gas in the vicinity of the injection hole of the fuel addition valve 19 is easily affected by the bent portion 15a.

また弁部24は、ディーゼルエンジンの運転状態に応じて連続的に制御されることによって、どのようなエンジンの運転状態にも迅速に対応することができる。
しかも、弁体24にて、燃料添加弁19からの噴射流の先端側へ、流速が一定な排気ガス流を導く構造は、噴射された燃料の貫徹力が弱くなった先端側の噴射方向を制御するので、容易に最適な噴射方向が保てる。
Moreover, the valve part 24 can respond | correspond rapidly to the driving | running state of any engine by being controlled continuously according to the driving | running state of a diesel engine.
Moreover, the structure in which the exhaust gas flow having a constant flow velocity is guided to the front end side of the injection flow from the fuel addition valve 19 by the valve body 24, the injection direction on the front end side where the penetrating force of the injected fuel is weakened. Since it is controlled, the optimum injection direction can be easily maintained.

そのうえ、弁体24には、ディーゼルエンジンの高負荷運転時の最も排気ガスの流速、流量が多い排気ガス流のときに全開にし、ディーゼルエンジンの低負荷運転時の最も排気ガスの流速、流量が少ない排気ガス流のときに全閉にし、ディーゼルエンジンの運転状態に応じて弁部24を全開〜全閉までの無段階にする制御を用いたことにより、燃料添加弁19の向きは、高負荷運転時の排気ガスに合わせて設定するだけで、簡単に燃料の最適な噴射方向を保つことができる。   In addition, the valve body 24 is fully opened when the exhaust gas flow has the highest exhaust gas flow rate and flow rate during the high load operation of the diesel engine, and has the highest exhaust gas flow rate and flow rate during the low load operation of the diesel engine. The direction of the fuel addition valve 19 is set to a high load by using a control in which the exhaust valve flow is fully closed when the exhaust gas flow is small and the valve unit 24 is continuously opened to fully closed according to the operation state of the diesel engine. By simply setting according to the exhaust gas during operation, the optimal fuel injection direction can be easily maintained.

加えて、弁体24は、燃料添加弁19の直上流に配置してあるので、たとえ燃料添加弁19の先端にデジポットが堆積しても、弁部24が全開するときを利用して、速い流速の排気ガスで吹き飛ばすことができ、燃料添加弁19の先端にデジポットを堆積しにくくできる利点がある。
なお、本発明は上述した一実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施しても構わない。例えば一実施形態では、屈曲部の直下流の触媒として酸化触媒を設け、その下流にNOxトラップ触媒、パティキュレートフィルタを設けた排ガス浄化装置に本発明を適用した例を挙げたが、これに限らず、他の浄化方式の排気ガス浄化装置、例えば屈曲部の直下流の触媒としてNOxトラップ触媒を設け、その下流にパティキュレートフィルタを設け、NOxトラップ触媒の上流に添加弁を設けた排気ガス浄化装置でも、屈曲部の直下流の触媒としてNOxトラップ触媒を設け、その下流にNOxトラップ触媒、酸化触媒、パティキュレートフィルタを設け、NOxトラップ触媒の上流に添加弁を設けた排気ガス浄化装置でもよく、要は屈曲部の直下流に触媒が配置され、同触媒の上流に燃料添加弁が配置される排気ガス浄化装置や、または添加剤噴射弁の直下流に選択還元型触媒やパティキュレートフィルタを設けた排気ガス浄化装置であれば、本発明を適用してもよい。
In addition, since the valve body 24 is arranged immediately upstream of the fuel addition valve 19, even when a digipot is accumulated at the tip of the fuel addition valve 19, the valve body 24 is fully utilized by utilizing the time when the valve portion 24 is fully opened. There is an advantage that it can be blown away with exhaust gas at a flow velocity, and it is difficult to deposit a digipot at the tip of the fuel addition valve 19.
The present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the spirit of the present invention. For example, in one embodiment, an example is given in which the present invention is applied to an exhaust gas purification apparatus in which an oxidation catalyst is provided as a catalyst immediately downstream of a bent portion, and a NOx trap catalyst and a particulate filter are provided downstream thereof. First, an exhaust gas purification apparatus of another purification system, for example, an exhaust gas purification system in which a NOx trap catalyst is provided as a catalyst immediately downstream of the bent portion, a particulate filter is provided downstream thereof, and an addition valve is provided upstream of the NOx trap catalyst. The exhaust gas purification device may also be an exhaust gas purification device in which a NOx trap catalyst is provided as a catalyst immediately downstream of the bent portion, a NOx trap catalyst, an oxidation catalyst, and a particulate filter are provided downstream thereof, and an addition valve is provided upstream of the NOx trap catalyst. In short, an exhaust gas purification device in which a catalyst is disposed immediately downstream of the bent portion and a fuel addition valve is disposed upstream of the catalyst, or If the exhaust gas purification device provided with a selective reduction catalyst and the particulate filter immediately downstream of the additive injection valve may be applied to the present invention.

また、一実施形態では、屈曲部に添加剤噴射弁を設けたが、触媒の直上流のストレートな排気管部分、例えば屈曲部と触媒上流端との間に形成されるストレート部分に設けても良い。
さらに、上述した一実施形態では、添加剤として燃料を用いて説明したが、触媒に供給するものであれば何でもよく、例えば還元剤としての軽油,ガソリン,エタノール,ジメチルエーテル,天然ガス,プロパンガス,尿素,アンモニア,水素,一酸化炭素などでもよい。また、還元剤以外の物質でもよく、例えば触媒冷却のための空気,窒素,二酸化炭素などや,パティキュレートフィルタに捕集した煤の燃焼除去を促進させるための空気やセリアなどでもよい。
In one embodiment, the additive injection valve is provided at the bent portion. However, the additive injection valve may be provided at a straight exhaust pipe portion immediately upstream of the catalyst, for example, a straight portion formed between the bent portion and the catalyst upstream end. good.
Furthermore, in the above-described embodiment, the fuel is used as the additive. However, any fuel may be used as long as it is supplied to the catalyst, such as light oil, gasoline, ethanol, dimethyl ether, natural gas, propane gas, Urea, ammonia, hydrogen, carbon monoxide, etc. may be used. Further, a substance other than the reducing agent may be used. For example, air for cooling the catalyst, nitrogen, carbon dioxide, etc., air or ceria for promoting combustion removal of soot collected in the particulate filter, and the like may be used.

また一実施形態では、排気流制御弁にダンパー式の弁体を用いた構造を例に挙げたが、これに限らず、他の弁構造の排気流制御弁を用いてもよい。   In one embodiment, a structure using a damper-type valve body as an exhaust flow control valve has been described as an example. However, the present invention is not limited to this, and an exhaust flow control valve having another valve structure may be used.

本発明の一実施形態に係る排気ガス浄化装置の構造を、高負荷運転時に燃料添加弁から燃料が噴射される状態と共に示す一部断面した側面図。The side view which carried out the partial cross section which shows the structure of the exhaust-gas purification apparatus which concerns on one Embodiment of this invention with the state in which fuel is injected from a fuel addition valve at the time of high load driving | operation. 同排気ガス浄化装置の排気流制御弁の動作特性を示す線図。The diagram which shows the operation | movement characteristic of the exhaust-flow control valve of the same exhaust gas purification apparatus. 低負荷運転時に燃料添加弁から燃料が噴射されるときを示す一部断面した側面図。The side view which carried out the partial cross section which shows when fuel is injected from a fuel addition valve at the time of low load operation. 中負荷運転時に燃料添加弁から燃料が噴射されるときを示す一部断面した側面図。The side view which carried out the partial cross section which shows when fuel is injected from a fuel addition valve at the time of a medium load driving | operation.

符号の説明Explanation of symbols

1 エンジン本体
5 酸化触媒(触媒)
15 排気管部
15a 屈曲部
19 燃料添加弁(添加剤噴射弁)
19a 燃料噴射部(噴孔)
23 排気流制御弁
1 Engine body 5 Oxidation catalyst (catalyst)
15 Exhaust pipe portion 15a Bending portion 19 Fuel addition valve (additive injection valve)
19a Fuel injection part (nozzle hole)
23 Exhaust flow control valve

Claims (3)

エンジンから排気された排気ガスを外部へ導く、L形に屈曲する屈曲部を備えて形成された排気管部と、
前記排気管部の前記屈曲部の直下流部分に収められた触媒と、
前記排気管部の前記屈曲部の外周側に設けられ、排気ガスの流れを横切る方向へ噴射させて、前記触媒の所定位置へ添加剤を供給する添加剤噴射弁と、
前記添加剤噴射弁から上流の排気管部分に設けられ、前記L形の屈曲部を通過する排気ガスの流れにより押される前記添加剤噴射弁からの添加剤が前記触媒の所定位置を保ち続けるように前記排気ガスの流れを制御する排気制御弁と
を具備したことを特徴とする内燃機関の排気ガス浄化装置。
Directing exhaust gas exhausted from the engine to the external, and the exhaust pipe portion which is formed with a bent portion that is bent in an L shape,
A catalyst housed in a portion immediately downstream of the bent portion of the exhaust pipe portion ;
An additive injection valve that is provided on the outer peripheral side of the bent portion of the exhaust pipe portion, and injects the exhaust gas in a direction across the flow of the exhaust gas to supply the additive to a predetermined position of the catalyst;
The additive from the additive injection valve, which is provided in the exhaust pipe portion upstream from the additive injection valve and is pushed by the flow of exhaust gas passing through the L-shaped bent portion, keeps the predetermined position of the catalyst. exhaust gas purification system of an internal combustion engine, characterized by comprising an exhaust control valve for controlling the flow of pre-Symbol exhaust gas.
前記排気流制御弁は、前記添加剤噴射弁と並んで前記屈曲部の外周側の前記排気管側壁に設けられていることを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。 2. The exhaust gas purification device for an internal combustion engine according to claim 1 , wherein the exhaust flow control valve is provided on the exhaust pipe side wall on the outer peripheral side of the bent portion along with the additive injection valve. 前記排気流制御弁は、エンジンの運転状態に応じて前記添加剤噴射弁の噴孔近傍の排気ガスの流れが所定の流れとなるように制御されるものであることを特徴とする請求項1または請求項2に記載の内燃機関の排気ガス浄化装置。 2. The exhaust flow control valve is controlled so that a flow of exhaust gas in the vicinity of an injection hole of the additive injection valve becomes a predetermined flow according to an operating state of an engine. Or the exhaust-gas purification apparatus of the internal combustion engine of Claim 2 .
JP2007332373A 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5013101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332373A JP5013101B2 (en) 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332373A JP5013101B2 (en) 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009156065A JP2009156065A (en) 2009-07-16
JP5013101B2 true JP5013101B2 (en) 2012-08-29

Family

ID=40960352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332373A Expired - Fee Related JP5013101B2 (en) 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5013101B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6344403B2 (en) * 2016-02-10 2018-06-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4290056B2 (en) * 2004-03-31 2009-07-01 日産ディーゼル工業株式会社 Engine exhaust purification system
JP4461973B2 (en) * 2004-09-10 2010-05-12 トヨタ自動車株式会社 Diesel engine exhaust purification system
JP2006214370A (en) * 2005-02-04 2006-08-17 Hino Motors Ltd Exhaust emission control device
JP2006233906A (en) * 2005-02-25 2006-09-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
JP2009156065A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
EP2075428B1 (en) Emission control system
JP4407843B2 (en) Exhaust gas purification device for internal combustion engine
JP5449009B2 (en) Exhaust purification device
JP4816967B2 (en) Exhaust gas purification device for internal combustion engine
KR20140027397A (en) Method for regenerating nox storage catalytic converters of diesel engines with low-pressure egr
JP5510656B2 (en) Exhaust purification device
KR20090069237A (en) Exhaust gas purification device of internal combustion engine
JP2009156076A (en) Exhaust emission control device for internal combustion engine
JP2009156077A (en) Exhaust emission control device for internal combustion engine
US9574482B2 (en) Method for operating components for exhaust gas after-treatment and exhaust gas after-treatment apparatus
JP2009156071A (en) Exhaust emission control device for internal combustion engine
KR100932351B1 (en) Exhaust Gas Purification System for Internal Combustion Engines
JP2006242020A (en) Exhaust emission control device
JP4807524B2 (en) Exhaust gas purification device for internal combustion engine
JP4327445B2 (en) Exhaust purification equipment
JP2008240552A (en) Exhaust emission control device for internal combustion engine
JP5013101B2 (en) Exhaust gas purification device for internal combustion engine
JP4924834B2 (en) Exhaust gas purification device for internal combustion engine
JP4506546B2 (en) Exhaust gas purification system for internal combustion engine
JP4844758B2 (en) Exhaust gas purification device for internal combustion engine
JP2010150978A (en) Exhaust emission control device
JP2008025438A (en) Exhaust emission control device
JP2009156074A (en) Exhaust emission control device for internal combustion engine
JP5681267B2 (en) Exhaust purification device
JP4307855B2 (en) Exhaust purification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5013101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees