JP4407843B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4407843B2
JP4407843B2 JP2007332380A JP2007332380A JP4407843B2 JP 4407843 B2 JP4407843 B2 JP 4407843B2 JP 2007332380 A JP2007332380 A JP 2007332380A JP 2007332380 A JP2007332380 A JP 2007332380A JP 4407843 B2 JP4407843 B2 JP 4407843B2
Authority
JP
Japan
Prior art keywords
exhaust gas
flow
exhaust pipe
catalyst
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007332380A
Other languages
Japanese (ja)
Other versions
JP2009156072A (en
Inventor
光高 小島
洋之 木村
公二郎 岡田
恵 信ヶ原
道博 畠
川島  一仁
一雄 古賀
和人 前原
肇 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP2007332380A priority Critical patent/JP4407843B2/en
Priority to US12/342,675 priority patent/US20090158722A1/en
Priority to EP08022344A priority patent/EP2075428B1/en
Priority to KR1020080133679A priority patent/KR101086616B1/en
Priority to RU2008151437/06A priority patent/RU2406834C2/en
Priority to CN2008101889440A priority patent/CN101469627B/en
Publication of JP2009156072A publication Critical patent/JP2009156072A/en
Application granted granted Critical
Publication of JP4407843B2 publication Critical patent/JP4407843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、触媒の反応に求められる燃料の噴射を行う構造をもつ内燃機関の排気ガス浄化装置に関する。   The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine having a structure for injecting fuel required for reaction of a catalyst.

ディーゼルエンジン車(車両)の排気ガスの浄化には、ディーゼルエンジンの排気ガス中に含まれるNOx(窒素酸化物)やPM(パティキュレートマター)の大気への放出を防ぐために、吸蔵型NOx触媒や選択還元型NOx触媒やディーゼルパティキュレートフィルタなどを組み合わせた排気ガス浄化装置が用いられる。
こうした排気ガス浄化装置には、エンジンから排気された排気ガスを外部へ排気する排気管部内に、前段触媒と呼ばれる、酸化触媒やNOxトラップ触媒や選択還元型NOx触媒などの触媒を設け、触媒の上流側、例えば酸化触媒の上流に、該触媒の反応に求められる燃料を噴射する燃料噴射弁(還元剤を添加するもの)などを設けた構造が採用される。
To purify exhaust gas from diesel engine vehicles (vehicles), in order to prevent NOx (nitrogen oxides) and PM (particulate matter) contained in the exhaust gas of diesel engines from being released into the atmosphere, An exhaust gas purifier combined with a selective reduction type NOx catalyst, a diesel particulate filter, or the like is used.
In such an exhaust gas purification device, a catalyst such as an oxidation catalyst, a NOx trap catalyst or a selective reduction type NOx catalyst, called a pre-stage catalyst, is provided in an exhaust pipe portion for exhausting exhaust gas exhausted from the engine to the outside. A structure in which a fuel injection valve (which adds a reducing agent) for injecting fuel required for the reaction of the catalyst is provided on the upstream side, for example, upstream of the oxidation catalyst.

このような排気ガス浄化装置において、前段触媒を効率よく反応させるためには、前段触媒へ燃料が流入する前に、噴射された燃料と排気ガスとを十分に混合させることが重要である。
このためには、燃料添加弁から触媒までの区間で、十分な燃料の飛翔距離を確保することが求められる。
In such an exhaust gas purifying apparatus, in order for the front catalyst to react efficiently, it is important to sufficiently mix the injected fuel and the exhaust gas before the fuel flows into the front catalyst.
For this purpose, it is required to secure a sufficient fuel flight distance in the section from the fuel addition valve to the catalyst.

しかし、最近のようにエンジンの冷態時の浄化効率を高めるため、例えば特許文献1に開示されているようにエンジンの排気側の近くで触媒の設置箇所を確保することが求められるようになると、燃料の飛翔距離が確保しにくい。
すなわち、この触媒の設置を活かすためには、特許文献1のように触媒の直上流の排気管部分、例えば屈曲部に燃料噴射弁を設けることになる。このため、燃料噴射弁と触媒との間には、燃料と排気ガスとを混合させる距離が稼ぎにくい。
However, in order to increase the purification efficiency when the engine is cold as recently, for example, as disclosed in Patent Document 1, it is required to secure a catalyst installation location near the exhaust side of the engine. , It is difficult to ensure the flight distance of fuel.
That is, in order to make use of the installation of this catalyst, a fuel injection valve is provided in an exhaust pipe portion, for example, a bent portion, just upstream of the catalyst as in Patent Document 1. For this reason, it is difficult to earn a distance for mixing the fuel and the exhaust gas between the fuel injection valve and the catalyst.

こうした燃料噴射弁や触媒の設置上の理由から、燃料と排気ガスとを混合させる距離が稼ぎにくい事情は、屈曲部が有る場合に限らず、屈曲部が無い排気ガス浄化装置にも見られる。
その対策として、特許文献2にも開示されているように排気管部から離れた地点に燃料噴射弁を配置して、燃料を排気ガス流から遠ざけた地点から噴射させる構造の排気ガス浄化装置が提案されている。
特開2005−127260号公報 特開2004− 44483号公報
The reason why it is difficult to increase the distance for mixing the fuel and the exhaust gas due to the installation of the fuel injection valve and the catalyst is not limited to the case where there is a bend, but is also found in the exhaust gas purification apparatus having no bend.
As a countermeasure, an exhaust gas purifying apparatus having a structure in which a fuel injection valve is arranged at a point away from the exhaust pipe part and fuel is injected from a point away from the exhaust gas flow as disclosed in Patent Document 2. Proposed.
JP 2005-127260 A JP 2004-44483 A

しかしながら、いずれも、上記と同様、燃料噴射弁や触媒の設置上の制約などから、燃料と排気ガスとを混合させる距離が稼ぎに難い事情がある。
それ故、排気ガス浄化装置は、噴射された燃料と排気ガスとを十分に混合させることは難しい。このため、均一に霧化した燃料が触媒へ供給されるのが難しく、触媒が、その機能を十分に発揮できない問題があった。
However, as in the above, there are circumstances in which it is difficult to earn a distance for mixing the fuel and the exhaust gas due to restrictions on the installation of the fuel injection valve and the catalyst.
Therefore, it is difficult for the exhaust gas purification device to sufficiently mix the injected fuel and the exhaust gas. For this reason, it is difficult to supply uniformly atomized fuel to the catalyst, and there is a problem that the catalyst cannot sufficiently perform its function.

そこで、本発明の目的は、添加剤噴射弁と触媒間で混合に必要な距離が確保されなくとも、十分に添加剤と排気ガスとを混合させることを可能にした内燃機関の排気ガス浄化装置を提供することにある。   Accordingly, an object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can sufficiently mix the additive and the exhaust gas even if the distance necessary for mixing is not ensured between the additive injection valve and the catalyst. Is to provide.

請求項1に記載の発明は、上記目的を達成するために、触媒の直上流の排気管部分に、排気管部内を流れる排気ガス流と交差する方向から下流へ添加剤を噴射するように添加剤噴射弁を設け、添加剤噴射弁から噴射された添加剤の噴射流と交差する上流側の排気管部分に、同排気管部分の流路断面を、噴射流を排気ガス流と交差する方向から見た側面視の形状と同等の形状にしてなる排気ガス誘導部を形成した。   In order to achieve the above object, the invention according to claim 1 adds an additive to the exhaust pipe portion immediately upstream of the catalyst so as to inject the downstream from the direction intersecting the exhaust gas flow flowing in the exhaust pipe portion. A cross section of the exhaust pipe portion is provided in the upstream exhaust pipe portion intersecting the injection flow of the additive injected from the additive injection valve, and the injection flow intersects the exhaust gas flow. An exhaust gas guiding portion having a shape equivalent to the side view seen from above was formed.

同構成によると、排気ガス誘導部により、排気ガスの流路が、噴射した添加剤の噴射流の側面視と同等形状になるため、噴射した燃料添加剤の側面上に排気ガスがくまなく分布するので、排気ガスと添加剤との接触が十分に行われる機会が与えられる。これにより、排気ガスと添加剤との混合は十分に行われ、添加剤噴射弁と触媒間で混合に必要な距離が確保されなくとも、排気ガスと均一に混合した添加剤が触媒へ供給される。   According to the same configuration, the exhaust gas guide portion causes the exhaust gas flow path to have the same shape as the side view of the injected flow of the injected additive, so the exhaust gas is distributed all over the side surface of the injected fuel additive. As a result, an opportunity for sufficient contact between the exhaust gas and the additive is provided. As a result, the exhaust gas and the additive are sufficiently mixed, and the additive uniformly mixed with the exhaust gas is supplied to the catalyst even if the necessary distance between the additive injection valve and the catalyst is not ensured. The

請求項2に記載の発明は、添加剤と排気ガスとの均一な混合が促進されるよう添加剤の噴射流の流速分布に合わせて排ガスの流速を分布させるため、排気ガス誘導部は、噴射流の先端に向かって拡がる形状にならい、噴射流の上流側を細く、噴射流の下流側を太くした流路断面形状で形成した。
請求項3に記載の発明は、さらに、所定位置へ添加剤を噴射させつつ、添加剤と排気ガスとの混合が十分に行えるよう、触媒から上流側の排気管部は、添加剤の噴射流と鋭角的に交差して触媒へ向う構成とし、排気ガス誘導部は、排気管部分のうち、添加剤の噴射流と交差する上流側の排気管部分より形成した。同構成により、排気ガス流がもたらす噴射流の偏向を抑えて所定位置へ添加剤を噴射させながら、十分に添加剤と排気ガスとが接触する機会が与えられる。
According to the second aspect of the present invention, the exhaust gas guiding portion is configured to inject the injection gas in order to distribute the exhaust gas flow velocity in accordance with the flow velocity distribution of the additive injection flow so as to promote uniform mixing of the additive and the exhaust gas. In accordance with the shape that expands toward the tip of the flow, it was formed with a channel cross-sectional shape in which the upstream side of the jet flow was thin and the downstream side of the jet flow was thick.
In the invention according to claim 3, the exhaust pipe portion upstream from the catalyst is provided with an injection flow of the additive so that the additive and the exhaust gas can be sufficiently mixed while injecting the additive into a predetermined position. The exhaust gas guiding part is formed from the exhaust pipe part on the upstream side that intersects the injection flow of the additive in the exhaust pipe part. This configuration provides an opportunity for sufficient contact between the additive and the exhaust gas while suppressing the deflection of the jet flow caused by the exhaust gas flow and injecting the additive to a predetermined position.

請求項4に記載の発明は、また別の手法により、所定位置へ添加剤を噴射させつつ、添加剤と排気ガスとの混合が十分に行えるよう、触媒から上流の排気管部は、添加剤の噴射流とほぼ垂直方向に交差して触媒へ向う構成とし、排気ガス誘導部は、排気管部分のうち、添加剤の噴射流と交差する上流側の排気管部分より形成した。同構成により、上記とは逆に排気ガス流で噴射流を偏向させて所定位置へ添加剤を噴射させながら、十分に添加剤と排気ガスとが接触する機会が与えられる。   In the invention according to claim 4, the exhaust pipe portion upstream from the catalyst is provided with an additive so that the additive and the exhaust gas can be sufficiently mixed while injecting the additive into a predetermined position by another method. The exhaust gas guiding portion was formed from an upstream exhaust pipe portion intersecting with the additive injection flow in the exhaust pipe portion. The same configuration provides the opportunity for the additive and the exhaust gas to contact sufficiently while deflecting the jet flow with the exhaust gas flow and injecting the additive to a predetermined position.

請求項5に記載の発明は、さらに偏向した噴射流が排気管部内で影響を与えないよう、排気管部分のうち、添加剤の噴射流と交差する下流側の排気管部分には、排気ガスとの衝突によって偏向する噴射流との接触を避ける逃がし部を設けた。
請求項6に記載の発明は、さらにエンジンの出力低下がないよう、排気ガス誘導部には、排気管部の上流から所定の流路面積を一定に保つ構造を採用した。
According to a fifth aspect of the present invention, in order to prevent the deflected jet flow from affecting the exhaust pipe portion, the exhaust pipe portion on the downstream side that intersects with the additive jet flow has no exhaust gas. An escape portion was provided to avoid contact with the jet flow deflected by the collision.
The invention described in claim 6 employs a structure in which a predetermined flow passage area is kept constant from the upstream side of the exhaust pipe portion in the exhaust gas guiding portion so that the output of the engine does not further decrease.

請求項1の発明によれば、排気ガス誘導部によって、排気ガス流が添加剤の噴射流上にくまなく分布するので、十分に排気ガス流の排気ガスと噴射流の添加剤とを接触させる機会を与えることができる。
それ故、十分に排気ガスと添加剤を混合させることができ、添加剤噴射弁と触媒間で混合に必要な距離が確保されなくとも、排気ガスと均一に混合した添加剤を触媒へ供給することができる。この結果、触媒の機能を十分に発揮させることができる。
According to the first aspect of the present invention, since the exhaust gas flow is distributed over the injection flow of the additive by the exhaust gas guiding portion, the exhaust gas of the exhaust gas flow and the additive of the injection flow are sufficiently brought into contact with each other. Can give an opportunity.
Therefore, the exhaust gas and the additive can be sufficiently mixed, and the additive uniformly mixed with the exhaust gas is supplied to the catalyst even if the distance necessary for mixing is not ensured between the additive injection valve and the catalyst. be able to. As a result, the function of the catalyst can be sufficiently exerted.

請求項2の発明によれば、衝突後の添加剤と排気ガスの流速は、噴射流のうち貫徹力の強い上流側が、細い流路断面部分で流速が増した高流速の排気ガスと衝突し、貫徹力の弱い下流側が、太い流路断面部分で流速が低下した低流速の排気ガスと衝突することによって、添加剤と排気ガスの均一な混合を促進し、混合した添加剤と排気ガスを触媒へ供給させることができる。   According to the invention of claim 2, the flow rate of the additive and the exhaust gas after the collision is such that the upstream side where the penetration force is strong in the jet flow collides with the high flow rate exhaust gas whose flow rate is increased at the narrow flow path cross-section. The downstream side where the penetration force is weak collides with the low flow rate exhaust gas whose flow rate is reduced at the cross section of the thick channel, thereby promoting the uniform mixing of the additive and the exhaust gas. It can be fed to the catalyst.

請求項3の発明によれば、さらに、噴射流の偏向を抑えて所定位置へ添加剤を噴射させる手法を踏襲しながら、十分に排気ガスと添加剤とを混合させることができる。
請求項4の発明によれば、さらに、逆に排気ガス流で噴射流を偏向させて所定位置へ添加剤を噴射させる手法を踏襲しながら、十分に排気ガスと添加剤とを混合させることができる。
According to the invention of claim 3, the exhaust gas and the additive can be sufficiently mixed while following the method of injecting the additive to a predetermined position while suppressing the deflection of the injection flow.
According to the invention of claim 4, the exhaust gas and the additive can be sufficiently mixed while following the method of deflecting the injection flow with the exhaust gas flow and injecting the additive into a predetermined position. it can.

請求項5の発明によれば、排気ガス流れで噴射流が偏向しても、逃がし部により、偏向した噴射流の添加剤が排気管部分の壁面に触れずにすむので、良好な混合が約束される。
請求項6の発明によれば、排気管部は、上流から排気ガス誘導部まで、流路面積が一定なので、流路抵抗が増大することはなく、エンジン出力の低下はない。
According to the invention of claim 5, even if the jet flow is deflected by the exhaust gas flow, the escape portion does not allow the additive of the deflected jet flow to touch the wall surface of the exhaust pipe portion, so that good mixing is promised. Is done.
According to the invention of claim 6, since the exhaust pipe portion has a constant passage area from upstream to the exhaust gas guiding portion, the passage resistance does not increase and the engine output does not decrease.

以下、本発明を図1〜図3に示す第1の実施形態にもとづいて説明する。
図1は内燃機関、例えばディーゼルエンジンの排気系を示している。同図中1は、ディーゼルエンジンのエンジン本体、1aは同エンジン本体1のエキゾーストマニホールド(一部しか図示せず)、2はそのエキゾーストマニホールド1aの出口に接続された過給機、例えばターボチャージャを示している。
The present invention will be described below based on the first embodiment shown in FIGS.
FIG. 1 shows an exhaust system of an internal combustion engine, for example, a diesel engine. In the figure, 1 is an engine body of a diesel engine, 1a is an exhaust manifold (only part of which is shown), and 2 is a turbocharger connected to the outlet of the exhaust manifold 1a, for example, a turbocharger. Show.

ターボチャージャ2の排気出口には、排気ガス浄化装置3が設けられている。この排気ガス浄化装置3には、例えば、排気ガス中のNOx(窒素酸化物)を吸蔵し、定期的に吸蔵したNOxを還元除去するNOx除去系3aと、PM(パティキュレートマター)を捕集するPM捕集系3bとを組み合わせた装置が用いられている。
例えば、NOx除去系3aには、ターボチャージャ1aの排気出口から、下方へ向うように連結された、前段触媒となる酸化触媒5(本願の触媒に相当)が内蔵された触媒コンバータ6と、同触媒コンバータ6の後に横方向に連結された、NOxトラップ触媒8が内蔵された触媒コンバータ9と、後述する酸化触媒5へ添加剤となる触媒反応用の燃料を供給する燃料添加弁(添加剤噴射弁)23とを組み合わせた構成が用いられている。また捕集系3bには、触媒コンバータ9に、パティキュレートフィルタ11が内蔵された触媒コンバータ12を連結した構成が用いられている。これらの触媒コンバータ6,9,12や同コンバータ間をつなぐ接続部13などから、ディーゼルエンジン(エンジン本体1)から排気された排気ガスを外部へ導く排気管部15を構成している。
An exhaust gas purification device 3 is provided at the exhaust outlet of the turbocharger 2. In this exhaust gas purification device 3, for example, NOx (nitrogen oxide) in exhaust gas is occluded, and NOx removal system 3a for reducing and removing NOx occluded regularly and PM (particulate matter) are collected. The apparatus which combined PM collection system 3b to be used is used.
For example, the NOx removal system 3a includes a catalytic converter 6 in which an oxidation catalyst 5 (corresponding to the catalyst of the present application), which is connected in a downward direction from an exhaust outlet of the turbocharger 1a, is incorporated. A catalytic converter 9 having a built-in NOx trap catalyst 8 connected laterally after the catalytic converter 6 and a fuel addition valve (additive injection) for supplying fuel for catalytic reaction as an additive to the oxidation catalyst 5 described later. Valve) 23 is used in combination. The collection system 3b employs a configuration in which a catalytic converter 12 having a particulate filter 11 incorporated therein is connected to the catalytic converter 9. An exhaust pipe portion 15 that guides the exhaust gas exhausted from the diesel engine (engine body 1) to the outside is constituted by the catalytic converters 6, 9, 12 and the connection portion 13 connecting the converters.

このうち触媒コンバータ6の酸化触媒5を収容している筒形のハウジング17は、例えば図1に示すように上部側を屈曲させ上側のターボチャージャ2と接続される入口部17aを横向きに配置させている。なお、下側の触媒コンバータ9と連通する出口部17bは、下向きの配置となっている。このハウジング17により、排気管部15のうち、ディーゼルエンジンの排気側の直後の地点に、屈曲した屈曲部15aを形成している。この屈曲部15aの直下の部分に触媒設置スペースを確保している。酸化触媒5は、このディーゼルエンジンの排気側に近い地点に設置してある。   Among these, the cylindrical housing 17 that houses the oxidation catalyst 5 of the catalytic converter 6 has an inlet portion 17a that is bent at the upper side and connected to the upper turbocharger 2 as shown in FIG. ing. Note that the outlet portion 17b communicating with the lower catalytic converter 9 is disposed downward. The housing 17 forms a bent part 15a in the exhaust pipe part 15 at a point immediately after the exhaust side of the diesel engine. A catalyst installation space is secured in a portion immediately below the bent portion 15a. The oxidation catalyst 5 is installed at a point close to the exhaust side of the diesel engine.

燃料添加弁23は、この酸化触媒5へ、触媒反応に求められる燃料の噴射を果たすために、酸化触媒5の直上の地点、例えば屈曲部15aまたは屈曲部15a下流の外周側の壁部に設けられている。この燃料添加弁23は、燃料を噴射する燃料噴射部を先端部にもつ。燃料添加弁23は、屈曲部15a下流の外周部から分岐して外側へ延びる筒形部24の端に、取付フランジ24aおよび台座25を用いて設置されている。これにより、燃料添加弁23の先端部の燃料噴射部を、筒形部24の内部空間で形成される燃料噴射路24bに臨ませている。燃料噴射路24bは、屈曲部15aの曲がり方向とは反対側へ傾いて延びていて、出口端を酸化触媒5の入口端面の中央から端寄り(入口部17側)へ向けている。これにより、排気ガス流から遠ざけた地点から、酸化触媒5の反応用の燃料が、屈曲部15aを通過する排気ガス流とは交差する方向から酸化触媒5へ噴射されるようにしている。具体的には燃料は、図1中に示されるように排気ガス流の流れ方向aとは、鋭角的に交差する角度θ1の方向から、下流方向、すなわち酸化触媒5の入口端面の前方に形成されている混合室19へ向かって噴射されるようにしている。これで、噴射流αの貫徹力が弱まる下流部分が、酸化触媒5から直上流の地点で排気ガスと衝突するようしている。なお、25aは、台座25の内部に形成されている冷却水路を示す。   The fuel addition valve 23 is provided at a point immediately above the oxidation catalyst 5, for example, a wall portion on the outer peripheral side downstream of the bent portion 15 a or the bent portion 15 a in order to inject fuel required for the catalytic reaction to the oxidation catalyst 5. It has been. The fuel addition valve 23 has a fuel injection part for injecting fuel at the tip part. The fuel addition valve 23 is installed at the end of the cylindrical portion 24 that branches off from the outer peripheral portion downstream of the bent portion 15a and extends outward using the mounting flange 24a and the pedestal 25. Thereby, the fuel injection part at the tip of the fuel addition valve 23 faces the fuel injection path 24 b formed in the internal space of the cylindrical part 24. The fuel injection path 24b is inclined and extends in the direction opposite to the bending direction of the bent portion 15a, and the outlet end is directed from the center of the inlet end surface of the oxidation catalyst 5 toward the end (the inlet portion 17 side). Thereby, the fuel for the reaction of the oxidation catalyst 5 is injected from the point away from the exhaust gas flow into the oxidation catalyst 5 from the direction intersecting with the exhaust gas flow passing through the bent portion 15a. Specifically, as shown in FIG. 1, the fuel is formed in the downstream direction, that is, in front of the inlet end surface of the oxidation catalyst 5 from the direction of the angle θ1 that intersects the exhaust gas flow direction a at an acute angle. It is made to inject toward the mixing chamber 19 currently made. Thus, the downstream portion where the penetration force of the injection flow α is weakened collides with the exhaust gas at a point immediately upstream from the oxidation catalyst 5. Reference numeral 25 a denotes a cooling water channel formed inside the pedestal 25.

一方、酸化触媒5から上流の排気管部分のうち、燃料添加弁23から噴射された燃料の噴射流αと交差する地点、例えば屈曲部15aから混合室19までの領域の排気管部分Sには、排気ガス誘導部28が設けられている。この排気ガス誘導部28は、図2に示す断面図および図3の斜視図に示されるように噴射流αと交差する排気管部分Sの流路断面形状を、当該排気ガス流と交差する横方向から見た噴射流αの側面視の噴射領域と同等の形状にしてなる。具体的には、排気管部分Sの流路断面形状を、噴射流αを横方向から投影した下流側の形状とほぼ同じ扇形に形成してなる。これで、排気ガス誘導部28は、先端に向かって拡がる噴射流αの形状にならい、噴射流αの上流側となる部分が細く、反対の下流側となる部分が太くなる流路断面形状をもつ。図2中の符号28aは、このうちの細い流路断面部分を示し、28bは太い流路断面部分を示している。この排気ガス誘導部28により、排気ガス誘導部の排気ガス流を添加剤の噴射流上にくまなく分布させて、排気ガスと十分に接触させる機会を与えるようにしている。   On the other hand, in the exhaust pipe portion upstream from the oxidation catalyst 5, there is a point intersecting the fuel injection flow α injected from the fuel addition valve 23, for example, the exhaust pipe portion S in the region from the bent portion 15 a to the mixing chamber 19. An exhaust gas guiding unit 28 is provided. As shown in the cross-sectional view shown in FIG. 2 and the perspective view of FIG. 3, the exhaust gas guiding section 28 has a cross-sectional shape of the exhaust pipe portion S that intersects the jet flow α and a horizontal cross-section that intersects the exhaust gas flow. It becomes a shape equivalent to the injection area | region of the side view of the injection flow (alpha) seen from the direction. Specifically, the cross-sectional shape of the flow path of the exhaust pipe portion S is formed in substantially the same fan shape as the downstream shape obtained by projecting the jet flow α from the lateral direction. Thus, the exhaust gas guiding portion 28 has a flow passage cross-sectional shape in which the upstream portion of the injection flow α is narrow and the opposite downstream portion is thick, following the shape of the injection flow α that expands toward the tip. Have. Reference numeral 28a in FIG. 2 indicates a thin channel cross-sectional portion, and 28b indicates a thick channel cross-sectional portion. The exhaust gas guiding section 28 distributes the exhaust gas flow of the exhaust gas guiding section all over the injection flow of the additive to give an opportunity to make sufficient contact with the exhaust gas.

排気管部15の上流端となる入口部17aから燃料混合部28までの区間の流路面積は、所定の流路面積に一定に保たれている。もちろん、排気ガス誘導部28までは、断面形状が徐々に噴射流αと同形になるよう変化していて、無用な通路抵抗を発生させない構造にしてある。
また排気ガス誘導部28から下流の排気管部分は、半径方向へ拡がるように成形されている。この拡がる拡大部29により、衝突を終えた燃料と排気ガスとが半径方向へ拡げられながら、酸化触媒5の入口端面へ供給されるようにしている。拡大部29の形状として、円錐形の他にラッパ状の形(ベルマウス形)が酸化触媒5に均一な分布で供給するためには有効である。
The flow passage area in the section from the inlet portion 17a that is the upstream end of the exhaust pipe portion 15 to the fuel mixing portion 28 is kept constant at a predetermined flow passage area. Of course, up to the exhaust gas guiding section 28, the cross-sectional shape is gradually changed to be the same as the jet flow α, so that unnecessary passage resistance is not generated.
The exhaust pipe portion downstream from the exhaust gas guiding portion 28 is shaped so as to expand in the radial direction. By the expanding portion 29 that expands, the fuel and exhaust gas that have finished the collision are supplied to the inlet end face of the oxidation catalyst 5 while being expanded in the radial direction. As the shape of the enlarged portion 29, a trumpet shape (bell mouth shape) in addition to the conical shape is effective for supplying the oxidation catalyst 5 with a uniform distribution.

なお、燃料添加弁23から噴射される燃料は、酸化触媒5の反応により還元剤を生成し、この還元剤でNOxトラップ触媒8に吸蔵されたNOx及びSOxを還元除去したり、同じく酸化触媒5の反応で得た熱により、パティキュレートフィルタ11で捕集したPMを燃焼除去したりするのに用いるものである。そのため、燃料添加弁23は、ディーゼルエンジンを制御する制御部、例えばECU(図示しない)によって、ディーゼルエンジンの運転中、NOx及びSOxの還元除去、PMの燃焼除去といった、触媒反応が求められるときに燃料が噴射されるようになっている。   The fuel injected from the fuel addition valve 23 generates a reducing agent by the reaction of the oxidation catalyst 5, and the reducing agent removes NOx and SOx stored in the NOx trap catalyst 8. This is used to burn and remove the PM collected by the particulate filter 11 by the heat obtained by the above reaction. Therefore, the fuel addition valve 23 is used when a catalytic reaction such as NOx and SOx reduction removal and PM combustion removal is required during operation of the diesel engine by a control unit that controls the diesel engine, for example, an ECU (not shown). Fuel is injected.

つぎに、このように構成された排気ガス浄化装置3の作用を説明する。
ディーゼルエンジンの運転中、ディーゼルエンジンから排気された排気ガスは、図1に示されるようにエキゾーストマニホールド1a、ターボチャージャ2、屈曲部15a、排気ガス誘導部28、酸化触媒5、NOxトラップ触媒8およびパティキュレートフィルタ11を通じて、外気へ排気される。
Next, the operation of the exhaust gas purification device 3 configured as described above will be described.
During operation of the diesel engine, exhaust gas exhausted from the diesel engine is, as shown in FIG. 1, exhaust manifold 1a, turbocharger 2, bent portion 15a, exhaust gas guiding portion 28, oxidation catalyst 5, NOx trap catalyst 8 and It is exhausted to the outside air through the particulate filter 11.

排気ガス中に含まれるNOx及びSOxは、NOxトラップ触媒8に吸蔵され、同じくPMは、パティキュレートフィルタ11により捕集される。
吸蔵されたNOx及びSOxや捕集されたPMを除去する時期となり、燃料添加弁23が作動したとする。
すると、燃料添加弁23の燃料噴射部から、NOxやSOxやPMを除去するための燃料が、図1〜図3に示されるように燃料噴射路24bを通じて、鋭角的な方向から、排気管部分S内を流れる排気ガス流へ噴射される。これで、噴射流αの燃料と排気ガス流の排気ガスとが衝突する。
NOx and SOx contained in the exhaust gas are occluded in the NOx trap catalyst 8, and PM is also collected by the particulate filter 11.
Assume that it is time to remove the stored NOx and SOx and the collected PM, and the fuel addition valve 23 is activated.
Then, the fuel for removing NOx, SOx and PM from the fuel injection portion of the fuel addition valve 23 passes through the fuel injection path 24b as shown in FIGS. It is injected into the exhaust gas stream flowing in S. Thus, the fuel of the injection flow α and the exhaust gas of the exhaust gas flow collide with each other.

このとき、噴射流αの貫徹力が弱まる下流部分と交差する直上流から交差する排気管部分Sには、噴射流αの横方向から見た噴射領域とほぼ同形状の流路断面をもつ排気ガス誘導部28に形成してある。そのため、排気ガス誘導部28を通過した排気ガスは、添加剤の噴射流α上を、くまなく分布しながら通る。
これにより、排気ガス流の排気ガスと噴射流αの燃料とは十分に接触する機会が与えられる。これで、排気ガスと燃料とはくまなく接触し、排気ガスと燃料とは十分に混合される。
At this time, the exhaust pipe portion S that intersects from the upstream side that intersects with the downstream portion where the penetration force of the injection flow α weakens has an exhaust having a flow path cross section substantially the same shape as the injection region viewed from the lateral direction of the injection flow α. The gas guide 28 is formed. Therefore, the exhaust gas that has passed through the exhaust gas guiding portion 28 passes through the additive injection flow α while being distributed throughout.
This provides an opportunity for the exhaust gas of the exhaust gas stream and the fuel of the injection stream α to be in full contact. Thus, the exhaust gas and the fuel are in contact with each other, and the exhaust gas and the fuel are sufficiently mixed.

このとき燃料と排気ガスの流速は、燃料添加弁23から近い貫徹力の強い上流側の噴射流αの燃料が、細い流路断面部分28aで流速が増した高流速の排気ガスと衝突し、燃料添加弁23から遠い貫徹力の弱い下流側の噴射流αの燃料が、太い流路断面部分28bで流速が低下した低流速の排気ガスと衝突するので、添加剤と排気ガスの均一な混合がより一層得られる。この均一に混合された燃料と排気ガスとが、拡大部29により、半径方向へ拡がりながら、酸化触媒5へ向かう。   At this time, the flow rate of the fuel and the exhaust gas is such that the fuel in the upstream injection flow α having a strong penetrating force close to the fuel addition valve 23 collides with the high flow rate exhaust gas whose flow rate is increased in the narrow flow path cross-sectional portion 28a, Since the fuel of the downstream injection flow α having a weak penetration force far from the fuel addition valve 23 collides with the low flow rate exhaust gas whose flow rate is reduced in the thick channel cross-sectional portion 28b, uniform mixing of the additive and the exhaust gas is performed. Is further obtained. The uniformly mixed fuel and exhaust gas travel toward the oxidation catalyst 5 while expanding in the radial direction by the expanding portion 29.

ここで、排気ガス流と噴射流αとは、鋭角的に交差して、排気ガス流がもたらす噴射流αの偏向を抑えているから、混合した燃料と排気ガスとは、酸化触媒5の所定位置、例えば入口端面のほぼ中央へ供給される。
したがって、排気ガス誘導部28の形成により、たとえ燃料添加弁23と酸化触媒5間で混合に必要な距離が確保されなくとも、排気ガスと均一に混合した燃料を触媒へ供給することができる。
Here, since the exhaust gas flow and the injection flow α intersect at an acute angle to suppress the deflection of the injection flow α caused by the exhaust gas flow, the mixed fuel and the exhaust gas are predetermined in the oxidation catalyst 5. It is supplied to a position, for example, approximately the center of the inlet end face.
Therefore, the formation of the exhaust gas guiding portion 28 enables the fuel uniformly mixed with the exhaust gas to be supplied to the catalyst even if the distance necessary for mixing between the fuel addition valve 23 and the oxidation catalyst 5 is not ensured.

それ故、排気ガス誘導部28を用いて、酸化触媒5の機能を十分に発揮させることができる。むろん、拡大部29を併用すると、一層、均一な分布で、酸化触媒5へ燃料を供給することができる。そのうえ、排気ガス誘導部28は、排気管部15の上流から所定の流路面積を一定に保つように形成してあるので、排気管部15の流路抵抗の増加はなく、エンジン出力の低下は抑えられる。   Therefore, the function of the oxidation catalyst 5 can be sufficiently exhibited using the exhaust gas guiding portion 28. Of course, when the enlarged portion 29 is used in combination, the fuel can be supplied to the oxidation catalyst 5 with a more uniform distribution. In addition, the exhaust gas guiding portion 28 is formed so as to keep a predetermined flow passage area constant from the upstream side of the exhaust pipe portion 15, so that the flow passage resistance of the exhaust pipe portion 15 does not increase and the engine output decreases. Is suppressed.

特に噴射流αを排気ガス流に鋭角的に交差させる噴射構造に排気ガス誘導部28を採用すると、噴射流αの偏向を抑えて所定位置へ燃料を噴射させる手法を踏襲しながら、十分に排気ガスと燃料とを混合させることができる。
図4および図5は、本発明の第2の実施形態を示す。
本実施形態は、第1の実施形態のように噴射流αに対し排気ガス流が鋭角的に交差する構造の排気ガス浄化装置ではなく、噴射流αに対して排気ガス流がほぼ垂直に交差する構造の排気ガス浄化装置に本発明を適用したものである。
In particular, when the exhaust gas guiding portion 28 is employed in an injection structure that makes the injection flow α intersect the exhaust gas flow at an acute angle, the exhaust flow can be sufficiently exhausted while following the method of injecting fuel to a predetermined position while suppressing the deflection of the injection flow α. Gas and fuel can be mixed.
4 and 5 show a second embodiment of the present invention.
The present embodiment is not an exhaust gas purification device having a structure in which the exhaust gas flow intersects the injection flow α at an acute angle as in the first embodiment, but the exhaust gas flow intersects the injection flow α substantially perpendicularly. The present invention is applied to an exhaust gas purification apparatus having a structure as described above.

具体的には、本実施形態の排気ガス浄化装置は、第1の実施形態と同様に、燃料添加弁23の噴射方向を酸化触媒5から外れた地点に定める。酸化触媒5から上流の排気管部分には、燃料添加弁23から噴射された燃料の噴射流αとほぼ垂直方向に交差して酸化触媒5へ向う経路が形成されている。これで、第1の実施形態とは逆に、排気ガス流で噴射流αを押して、噴射流αを当初の外れた位置から所望の地点へ偏向させ、所定位置へ燃料を噴射させる構造としてある。そして、この酸化触媒5から上流の排気管部分のうち、燃料添加弁23からの噴射流αと交差する直上流から交差する排気管部分Sには、第1の実施形態と同様、図5の断面図で示されるような排気管部分の流路断面を、噴射流αの側面視の噴射領域とほぼ同形にしてなる排気ガス誘導部28が設けてある。   Specifically, the exhaust gas purification apparatus of this embodiment determines the injection direction of the fuel addition valve 23 at a point away from the oxidation catalyst 5, as in the first embodiment. In the exhaust pipe portion upstream from the oxidation catalyst 5, a path toward the oxidation catalyst 5 is formed so as to intersect the fuel injection flow α injected from the fuel addition valve 23 in a substantially vertical direction. Thus, contrary to the first embodiment, the injection flow α is pushed by the exhaust gas flow, the injection flow α is deflected from the initially deviated position to a desired point, and the fuel is injected to a predetermined position. . In the exhaust pipe portion upstream from the oxidation catalyst 5, the exhaust pipe portion S that intersects from the upstream immediately intersecting the injection flow α from the fuel addition valve 23 is similar to that in the first embodiment, as shown in FIG. An exhaust gas guiding portion 28 is provided in which the cross section of the flow path of the exhaust pipe portion as shown in the cross-sectional view is substantially the same as the injection region in a side view of the injection flow α.

これにより、第1の実施形態とは逆に排気ガス流で噴射流αを偏向させて所定位置へ燃料を噴射させる排気ガス浄化装置でも、同手法を踏襲しながら、排気ガス誘導部28を用いて、十分に排気ガスと燃料とを混合させることができる。
特に第2の実施形態では、偏向した噴射流αが排気管部15内で影響を与えないよう、噴射流αと交差する下流側の排気管部分Tの壁面には、逃がし部として、例えば湾形の凹部30が形成してある。この凹部30により、偏向する噴射流αが排気管部分Tの壁面と接触するのを避け、良好な排気ガスと燃料との混合が約束できる。しかも、凹部30の壁面は、矢印bに示されるように凹部30と衝突した排気ガスを、噴射流αの方向へ跳ね返して、再び噴射流αの燃料と衝突させるから、さらなる燃料と排気ガスとの混合の促進が期待できる。
Accordingly, in the exhaust gas purifying apparatus that deflects the injection flow α by the exhaust gas flow and injects the fuel to a predetermined position contrary to the first embodiment, the exhaust gas guiding unit 28 is used while following the same method. Thus, the exhaust gas and the fuel can be sufficiently mixed.
In particular, in the second embodiment, in order to prevent the deflected jet flow α from affecting the exhaust pipe portion 15, the wall surface of the exhaust pipe portion T on the downstream side intersecting the jet flow α is used as a relief portion, for example, a bay. A shaped recess 30 is formed. By this recess 30, it is possible to prevent the deflected jet flow α from coming into contact with the wall surface of the exhaust pipe portion T and to promise good mixing of exhaust gas and fuel. Moreover, the wall surface of the recess 30 rebounds the exhaust gas colliding with the recess 30 as shown by the arrow b in the direction of the injection flow α and collides with the fuel of the injection flow α again. The promotion of mixing can be expected.

但し、図4および図5において、第1の実施形態と同一部分には同一符号を付してその説明を省略した。
なお、本発明は上述したいずれの実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施しても構わない。例えば上述した実施形態では、噴射流に対して排気ガス流を鋭角的に交差させたり、垂直に交差させたりする構造を挙げたが、これに限らず、噴射流に対して排気ガス流が交差する構造であれば、どのような排気ガス浄化装置に適用してもよい。また例えば上述した実施形態では、屈曲部の直下流の触媒として酸化触媒を用い、その下流にNOxトラップ触媒、パティキュレートフィルタを設けた排ガス浄化装置に本発明を適用した例を挙げたが、これに限らず、他の浄化方式の排気ガス浄化装置、例えば屈曲部の直下流の触媒としてNOxトラップ触媒を用い、その下流にパティキュレートフィルタを設け、NOxトラップ触媒の上流に添加弁を設けた排気ガス浄化装置でも、屈曲部の直下流の触媒としてNOxトラップ触媒を用い、その下流にNOxトラップ触媒、酸化触媒、パティキュレートフィルタを設け、NOxトラップ触媒の上流に添加弁を設けた排気ガス浄化装置や、または選択還元型触媒やパティキュレートフィルタの上流に添加弁を設けた排気ガス浄化装置などに本発明を適用しても構わない。
However, in FIGS. 4 and 5, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
In addition, this invention is not limited to any embodiment mentioned above, You may implement in various changes within the range which does not deviate from the main point of this invention. For example, in the above-described embodiment, the exhaust gas flow intersects the injection flow at an acute angle or intersects vertically. However, the present invention is not limited to this, and the exhaust gas flow intersects the injection flow. As long as the structure is such that it can be applied to any exhaust gas purifying device. Further, for example, in the embodiment described above, an example is given in which the present invention is applied to an exhaust gas purification apparatus in which an oxidation catalyst is used as a catalyst immediately downstream of the bent portion, and a NOx trap catalyst and a particulate filter are provided downstream thereof. The exhaust gas purifying apparatus of other purification methods, for example, an exhaust using a NOx trap catalyst as a catalyst immediately downstream of the bent portion, providing a particulate filter downstream thereof, and providing an addition valve upstream of the NOx trap catalyst. Also in the gas purification device, an exhaust gas purification device using a NOx trap catalyst as a catalyst immediately downstream of the bent portion, provided with a NOx trap catalyst, an oxidation catalyst, and a particulate filter downstream thereof, and provided with an addition valve upstream of the NOx trap catalyst Or an exhaust gas purification device with an addition valve upstream of the selective reduction catalyst or particulate filter. It may be applied to the Ming.

さらに、上述した実施形態では、添加剤として燃料を用いて説明したが、触媒に供給するものであれば何でもよく、例えば還元剤としての軽油,ガソリン,エタノール,ジメチルエーテル,天然ガス,プロパンガス,尿素,アンモニア,水素,一酸化炭素などでもよい。また、還元剤以外の物質でもよく、例えば触媒冷却のための空気,窒素,二酸化炭素などや,パティキュレートフィルタに捕集した煤の燃焼除去を促進させるための空気やセリアなどでもよい。   Further, in the above-described embodiment, the fuel is used as the additive. However, any material may be used as long as it is supplied to the catalyst. For example, light oil, gasoline, ethanol, dimethyl ether, natural gas, propane gas, urea as a reducing agent. , Ammonia, hydrogen, carbon monoxide, etc. Further, a substance other than the reducing agent may be used. For example, air for cooling the catalyst, nitrogen, carbon dioxide, etc., air or ceria for promoting combustion removal of soot collected in the particulate filter, and the like may be used.

また、上述した実施形態では、燃料添加弁23の噴射形状としてコーン状を用いて説明したが、偏平で扇状に拡がる添加剤噴射弁や複数の噴射孔より添加剤が噴射される添加剤噴射弁でもよい。複数の噴射孔がある場合は、複数の噴射流の外郭が噴射領域となる。   Moreover, in embodiment mentioned above, although demonstrated using cone shape as the injection shape of the fuel addition valve 23, the additive injection valve which expands in flat and fan shape, or the additive injection valve from which an additive is injected from several injection holes But you can. When there are a plurality of injection holes, the outline of the plurality of injection flows is an injection region.

本発明の第1の実施形態に係る排気ガス浄化装置の構造を示す一部断面した側面図。1 is a partially sectional side view showing a structure of an exhaust gas purification apparatus according to a first embodiment of the present invention. 図1中のA−A線に沿う排気ガス誘導部に断面図。Sectional drawing in the exhaust-gas induction | guidance | derivation part which follows the AA line in FIG. 同排気ガス誘導部を概略的に示す斜視図。The perspective view which shows the exhaust-gas induction | guidance part roughly. 本発明の第2の実施形態に係る排気ガス浄化装置の要部を示す側断面図。The sectional side view which shows the principal part of the exhaust-gas purification apparatus which concerns on the 2nd Embodiment of this invention. 図4中のB−B線に沿う断面図。Sectional drawing which follows the BB line in FIG.

符号の説明Explanation of symbols

1 エンジン本体
3 排気ガス浄化装置
5 酸化触媒(触媒)
15 排気管部
23 燃料添加弁
28 排気ガス誘導部
30 凹部(逃がし部)
α 噴射流
1 Engine body 3 Exhaust gas purification device 5 Oxidation catalyst (catalyst)
15 Exhaust pipe portion 23 Fuel addition valve 28 Exhaust gas guide portion 30 Recessed portion (relief portion)
α jet flow

Claims (6)

エンジンから排気された排気ガスを外部へ導く排気管部と、
前記排気管部内に収められた触媒と、
前記触媒の直上流の排気管部分に設けられ、前記触媒に供給する添加剤を、前記排気管部内を流れる排気ガス流と交差する方向から下流へ噴射する添加剤噴射弁と、
前記触媒から上流の排気管部のうち、前記添加剤噴射弁から噴射された添加剤の噴射流と交差する排気管部分に形成され、同排気管部分の流路断面を、前記噴射流を排気ガス流と交差する方向から見た側面視の噴射領域と同等の形状にしてなる排気ガス誘導部と
を具備したことを特徴とする内燃機関の排気ガス浄化装置。
An exhaust pipe that guides exhaust gas exhausted from the engine to the outside;
A catalyst housed in the exhaust pipe section;
An additive injection valve that is provided in an exhaust pipe portion immediately upstream of the catalyst and injects an additive supplied to the catalyst downstream from a direction intersecting with an exhaust gas flow flowing in the exhaust pipe portion;
Of the exhaust pipe portion upstream from the catalyst, the exhaust pipe portion is formed in an exhaust pipe portion that intersects the injection flow of the additive injected from the additive injection valve. An exhaust gas purifying device for an internal combustion engine, comprising: an exhaust gas guiding portion having a shape equivalent to an injection region in a side view as viewed from a direction intersecting with a gas flow.
前記排気ガス誘導部は、当該噴射流の先端に向かって拡がる形状にならい、噴射流の上流側を細く、噴射流の下流側を太くした流路断面形状をなしていることを特徴とする請求項1に記載の内燃機関の排気ガス浄化装置。   The exhaust gas guiding portion has a flow path cross-sectional shape in which the upstream side of the jet flow is narrowed and the downstream side of the jet flow is thick, following a shape expanding toward the tip of the jet flow. Item 6. An exhaust gas purifying device for an internal combustion engine according to Item 1. 前記触媒から上流側の排気管部は、前記添加剤の噴射流と鋭角的に交差して前記触媒へ向うように構成され、
前記排気ガス誘導部は、前記排気管部分のうち、前記添加剤の噴射流と交差する上流側の排気管部分より形成される
ことを特徴とする請求項1または請求項2に記載の内燃機関の排気ガス浄化装置。
The exhaust pipe portion upstream from the catalyst is configured to intersect the injection flow of the additive at an acute angle toward the catalyst,
3. The internal combustion engine according to claim 1, wherein the exhaust gas guiding portion is formed from an exhaust pipe portion on an upstream side intersecting an injection flow of the additive in the exhaust pipe portion. Exhaust gas purification device.
前記触媒から上流側の排気管部は、前記添加剤の噴射流とほぼ垂直方向に交差して前記触媒へ向うように構成され、
前記排気ガス誘導部は、前記排気管部分のうち、前記添加剤の噴射流と交差する上流側の排気管部分より形成される
ことを特徴とする請求項1または請求項2に記載の内燃機関の排気ガス浄化装置。
An exhaust pipe section upstream from the catalyst is configured to intersect the injection flow of the additive in a direction substantially perpendicular to the catalyst,
3. The internal combustion engine according to claim 1, wherein the exhaust gas guiding portion is formed from an exhaust pipe portion on an upstream side intersecting an injection flow of the additive in the exhaust pipe portion. Exhaust gas purification device.
前記排気管部分のうち、前記添加剤の噴射流と交差する下流側の排気管部分には、排気ガスとの衝突によって偏向する噴射流との接触を避ける逃がし部が設けられることを特徴とする請求項4に記載の内燃機関の排気ガス浄化装置。   Of the exhaust pipe portion, a downstream exhaust pipe portion intersecting with the injection flow of the additive is provided with a relief portion that avoids contact with the jet flow deflected by collision with the exhaust gas. The exhaust gas purification device for an internal combustion engine according to claim 4. 前記排気ガス誘導部は、前記排気管部の上流側から所定の流路面積を一定に保つように形成されることを特徴とする請求項1ないし請求項5のいずれか一つに記載の内燃機関の排気ガス浄化装置。   The internal combustion engine according to any one of claims 1 to 5, wherein the exhaust gas guiding portion is formed so as to keep a predetermined flow path area constant from an upstream side of the exhaust pipe portion. Engine exhaust gas purification device.
JP2007332380A 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine Active JP4407843B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007332380A JP4407843B2 (en) 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine
US12/342,675 US20090158722A1 (en) 2007-12-25 2008-12-23 Emission control system
EP08022344A EP2075428B1 (en) 2007-12-25 2008-12-23 Emission control system
KR1020080133679A KR101086616B1 (en) 2007-12-25 2008-12-24 Emission control system
RU2008151437/06A RU2406834C2 (en) 2007-12-25 2008-12-24 System of reducing toxicity of exhaust
CN2008101889440A CN101469627B (en) 2007-12-25 2008-12-24 Emission control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332380A JP4407843B2 (en) 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009156072A JP2009156072A (en) 2009-07-16
JP4407843B2 true JP4407843B2 (en) 2010-02-03

Family

ID=40960357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332380A Active JP4407843B2 (en) 2007-12-25 2007-12-25 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4407843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155591A1 (en) * 2010-06-11 2011-12-15 いすゞ自動車株式会社 System for injecting fuel into exhaust pipe
JP2011256852A (en) * 2010-06-11 2011-12-22 Isuzu Motors Ltd System for injecting fuel into exhaust pipe

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826639B2 (en) * 2009-02-27 2011-11-30 トヨタ自動車株式会社 Exhaust pipe structure of internal combustion engine
JP5510656B2 (en) * 2010-07-08 2014-06-04 三菱自動車工業株式会社 Exhaust purification device
US8932530B2 (en) 2011-12-27 2015-01-13 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
US8916100B2 (en) 2011-12-27 2014-12-23 Komatsu Ltd. Reducing agent aqueous solution mixing device and exhaust gas post-treatment device
JP5349575B2 (en) 2011-12-27 2013-11-20 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device
JP5728578B2 (en) 2013-01-17 2015-06-03 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device having the same
DE112013000009B4 (en) * 2013-01-17 2016-10-13 Komatsu Ltd. Mixing device for an aqueous reducing agent solution and exhaust aftertreatment device provided therewith
CN104066942B (en) 2013-01-17 2015-09-16 株式会社小松制作所 Reducing agent aqueous solution device and possess its exhaust aftertreatment device
WO2014112073A1 (en) 2013-01-17 2014-07-24 株式会社小松製作所 Reducing agent aqueous solution mixing device and exhaust gas aftertreatment device provided with same
US20150198073A1 (en) * 2014-01-13 2015-07-16 Caterpillar, Inc. Exhaust aftertreatment system with in-elbow reductant injection
JP2018071353A (en) * 2016-10-24 2018-05-10 いすゞ自動車株式会社 Exhaust system structure for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155591A1 (en) * 2010-06-11 2011-12-15 いすゞ自動車株式会社 System for injecting fuel into exhaust pipe
JP2011256852A (en) * 2010-06-11 2011-12-22 Isuzu Motors Ltd System for injecting fuel into exhaust pipe
JP2011256851A (en) * 2010-06-11 2011-12-22 Isuzu Motors Ltd System for injecting fuel into exhaust pipe
US9255516B2 (en) 2010-06-11 2016-02-09 Isuzu Motors Limited System for injecting fuel into exhaust pipe
US9790829B2 (en) 2010-06-11 2017-10-17 Isuzu Motors Limited System for injecting fuel into exhaust pipe

Also Published As

Publication number Publication date
JP2009156072A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4407843B2 (en) Exhaust gas purification device for internal combustion engine
KR101086616B1 (en) Emission control system
JP4816967B2 (en) Exhaust gas purification device for internal combustion engine
JP5510656B2 (en) Exhaust purification device
JP3892452B2 (en) Engine exhaust purification system
JP4375465B2 (en) Additive dispersion plate structure in exhaust passage
JP2009156071A (en) Exhaust emission control device for internal combustion engine
KR101758217B1 (en) Reducing agent mixing apparatus having liquid drop preventing function
JP2009156076A (en) Exhaust emission control device for internal combustion engine
JP2009156077A (en) Exhaust emission control device for internal combustion engine
US20110239631A1 (en) Ring Reductant Mixer
US20120151902A1 (en) Biased reductant mixer
JP4600457B2 (en) Additive dispersion plate structure in exhaust passage
JP6424869B2 (en) Engine exhaust purification system
KR100932351B1 (en) Exhaust Gas Purification System for Internal Combustion Engines
JP2008240722A (en) Exhaust emission control device
JP2013002335A (en) Exhaust gas after-treatment device
JP2009138598A (en) Additive distribution board structure of exhaust passage
JP4924834B2 (en) Exhaust gas purification device for internal combustion engine
JP4844758B2 (en) Exhaust gas purification device for internal combustion engine
KR101601478B1 (en) Reducing agent mixing duct assembly
JP5239764B2 (en) Engine exhaust system structure
JP6724750B2 (en) Selective reduction catalyst system
JP5013101B2 (en) Exhaust gas purification device for internal combustion engine
JP2009162122A (en) Exhaust gas passage structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091103

R150 Certificate of patent or registration of utility model

Ref document number: 4407843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350