JP5011694B2 - Manufacturing method of composite filter for display - Google Patents

Manufacturing method of composite filter for display Download PDF

Info

Publication number
JP5011694B2
JP5011694B2 JP2005281907A JP2005281907A JP5011694B2 JP 5011694 B2 JP5011694 B2 JP 5011694B2 JP 2005281907 A JP2005281907 A JP 2005281907A JP 2005281907 A JP2005281907 A JP 2005281907A JP 5011694 B2 JP5011694 B2 JP 5011694B2
Authority
JP
Japan
Prior art keywords
layer
electromagnetic wave
wave shielding
grounding
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005281907A
Other languages
Japanese (ja)
Other versions
JP2007095915A (en
Inventor
和仁 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005281907A priority Critical patent/JP5011694B2/en
Priority to KR1020060094114A priority patent/KR101239507B1/en
Publication of JP2007095915A publication Critical patent/JP2007095915A/en
Application granted granted Critical
Publication of JP5011694B2 publication Critical patent/JP5011694B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/286Interference filters comprising deposited thin solid films having four or fewer layers, e.g. for achieving a colour effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/867Means associated with the outside of the vessel for shielding, e.g. magnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/446Electromagnetic shielding means; Antistatic means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Description

本発明は、CRT、PDPなどの各種ディスプレイから発生する電磁波を遮蔽する電磁波遮蔽機能と、光学フィルタ機能を有するディスプレイ用複合フィルタの製造方法に関する。更に詳しくは、接地する為に光学フィルタの剥離除去が不要な製造方法に関する。   The present invention relates to an electromagnetic wave shielding function for shielding electromagnetic waves generated from various displays such as CRT and PDP, and a method for manufacturing a composite filter for a display having an optical filter function. More specifically, the present invention relates to a manufacturing method in which it is not necessary to remove and remove an optical filter for grounding.

PDP(プラズマディスプレイパネル)、CRT(ブラウン管)ディスプレイ、等の各種ディスプレイから発生する電磁波を遮蔽(シールド)する為に、ディスプレイ前面に配置する電磁波遮蔽フィルタが知られている。この様な用途に用いる電磁波遮蔽フィルタでは電磁波遮蔽性能と共に光透過性も要求される。そこで、電磁波シールドフィルタとして例えば、樹脂フィルムからなる透明基材に接着剤で貼り合わせた銅箔等の金属箔をエッチングすることで、メッシュ状領域を設けた導電体層を、前記透明基材上に積層した構成の電磁波遮蔽性シート等が知られている。   In order to shield (shield) electromagnetic waves generated from various displays such as a PDP (plasma display panel) and a CRT (CRT) display, an electromagnetic wave shielding filter disposed in front of the display is known. The electromagnetic wave shielding filter used for such applications requires light transmittance as well as electromagnetic wave shielding performance. Therefore, as an electromagnetic wave shielding filter, for example, by etching a metal foil such as a copper foil bonded to a transparent base material made of a resin film with an adhesive, a conductor layer provided with a mesh region is formed on the transparent base material. An electromagnetic wave shielding sheet having a structure laminated on the substrate is known.

また、ディスプレイの前面に配置する前面フィルタ等では、電磁波遮蔽機能以外に、光学フィルタ機能、例えば、ディスプレイから放射する不要な光(例えばPDPではネオン発光による波長590nm付近の光)を遮断し画像の色相調整を行い色再現性を向上させる機能、外光の不要な反射を抑える機能、ディスプレイからの不要な赤外線放射を抑え赤外線利用機器の誤動作を防ぐ機能等が求められることがある。そこで実際の前面フィルタでは、上記の様な電磁波遮蔽性シートに、他のフィルタ機能を有する光学フィルタ(例えば、反射防止フィルタ、着色フィルタ、赤外線吸収フィルタ、等)を積層一体化して機能を複合化した、ディスプレイ用複合フィルタとしての使用が多い(特許文献1等参照)。   In addition to the electromagnetic wave shielding function, the front filter or the like disposed on the front surface of the display blocks an optical filter function, for example, unnecessary light radiated from the display (for example, light having a wavelength of about 590 nm due to neon emission in a PDP). There are cases where a function for improving color reproducibility by adjusting hue, a function for suppressing unnecessary reflection of external light, a function for suppressing unnecessary infrared radiation from a display and a function of preventing malfunction of an infrared device, and the like may be required. Therefore, in an actual front filter, an optical filter (for example, an antireflection filter, a coloring filter, an infrared absorption filter, etc.) having other filter functions is laminated and integrated on the electromagnetic wave shielding sheet as described above to combine the functions. In many cases, it is used as a composite filter for display (see Patent Document 1, etc.).

また、この様なディスプレイ用複合フィルタは、電磁波遮蔽シートの導電体層を接地する必要が有る。そのために通常は、導電体層のメッシュ状領域の周縁部に接地用領域として、該メッシュ状領域を囲むように設けられた額縁状の、メッシュ非形成の導電体層部分を有し、この額縁状の接地用領域から接地することが一般的である。この為、従来のディスプレイ用複合フィルタは、接地を取る為に、接地用領域の直上部に貼り付けられている光学フィルタを所望の面積だけ除去して、接地に必要な面を露出させる必要があった(特許文献1、特許文献2、等参照)。   Further, such a composite filter for display needs to ground the conductor layer of the electromagnetic wave shielding sheet. For this purpose, usually there is a frame-like, non-mesh conductor layer provided around the mesh area as a grounding area at the periphery of the mesh area of the conductor layer. In general, grounding is performed from the grounding area. For this reason, in the conventional composite filter for display, it is necessary to remove the optical filter attached just above the grounding area by a desired area to expose the surface necessary for grounding in order to achieve grounding. (See Patent Document 1, Patent Document 2, etc.).

但しこの方法では、必然的に接地面の露出加工を、各々完成したディスプレイ用複合フィルタとディスプレイ本体とを組合わせる、最終工程に近い段階に行うことになる。この為、該露出加工は、ディスプレイ1台毎に1回ずつ実施する必要が有るため、まとめて量産加工するのは不可能であって生産効率が悪く、煩雑であり、且つ加工には技量も要求され、失敗するとディスプレイ用複合フィルタ全体が無駄になってしまう。
また、電磁波遮蔽シート(フィルタ)と光学フィルタを積層一体化した後、再びこれを剥がし、しかも導電体層を傷つけること無く、正確に導電体層を露出させることは困難であり、熟練しても失敗の確率が高いという難点(課題1)があった。
However, in this method, the exposure processing of the ground plane is inevitably performed at a stage close to the final process in which the completed composite filter for display and the display body are combined. For this reason, it is necessary to perform the exposure processing once for each display. Therefore, it is impossible to perform mass production in a mass, the production efficiency is poor, and it is cumbersome. If requested and failed, the entire display composite filter is wasted.
Further, after the electromagnetic wave shielding sheet (filter) and the optical filter are laminated and integrated, it is difficult to expose the conductor layer accurately without peeling it again and damaging the conductor layer. There was a difficulty (Problem 1) that the probability of failure was high.

そこで、これを解決すべく、光学フィルタをディスプレイ1台分の寸法形状に切断する際に、枚葉化の為の切断箇所とは別に、予め接地の為に剥離除去する予定の箇所に全層厚みの大部分に達する切れ目(ハーフカット)を入れた上で、電磁波遮蔽シート上に積層して複合フィルタ化し、しかる後に該切れ目のところで切断して、接地用領域の額縁部直上の光学フィルタ(及びその接着に用いた接着剤層)を剥離除去する方法も試みられている(特許文献3)。   Therefore, in order to solve this problem, when cutting the optical filter into the size of one display, all the layers are separated from the part to be removed for grounding in advance, apart from the part to be cut into single wafers. After making a cut (half cut) that reaches most of the thickness, it is laminated on the electromagnetic wave shielding sheet to form a composite filter, and then cut at the cut to provide an optical filter directly above the frame portion of the grounding region ( In addition, a method of peeling off and removing the adhesive layer used for the adhesion has also been attempted (Patent Document 3).

特開2003−86991号公報JP 2003-86991 A 特開平11−126024号公報(特に図1)Japanese Patent Laid-Open No. 11-12604 (particularly FIG. 1) 特開2003−66854号公報JP 2003-66854 A

しかし、上記特許文献3による方法によって、剥離時の導電体層が損傷する確率は減り、又剥離作業自体は容易にはなるが、依然として、これらの作業は、ディスプレイ1台毎の作業の為、量産加工が不可能であって、生産効率が悪く、煩雑であり、ディスプレイ用複合フィルタの接地の際に、除去すべき物及び作業負荷が増えるという難点(課題2)があった。   However, the method according to Patent Document 3 reduces the probability that the conductor layer is damaged at the time of peeling, and the peeling work itself becomes easy. However, these works are still performed for each display, There is a problem (problem 2) that mass production processing is impossible, production efficiency is poor and complicated, and that the objects to be removed and the work load increase when the composite filter for display is grounded.

そこで、生産性向上の為、電磁波遮蔽シート及び光学フィルタを共に連続帯状のシートとしてロールラミネータに供給して、両者を接着剤で連続的に積層する製造方法を試みた。しかも、この際に、図5の説明図で例示する従来方法のように、光学フィルタ20の幅を電磁波遮蔽シート10の幅よりも小さくし、電磁波遮蔽シートの両側の接地用領域102が連続して露出するような位置関係で積層する方法である。
この方法によって、上記課題1及び課題2である、光学フィルタ剥離時の労力、所要時間による量産加工性の悪さ、及び導電体層の損傷による不良は改善できる。しかも、連続帯状シートとした電磁波遮蔽シートの幅方向両側部2箇所のみの接地で良い場合であれば問題も無い。
但し、導電体層のメッシュ状領域の4周に接地箇所を設ける場合には、電磁波遮蔽シートの流れ方向に於ける製品単位3u毎のメッシュ状領域101の左右両側部2箇所は、接地不能箇所104であり、依然として従来の課題は未解決のままであった。
Therefore, in order to improve productivity, an electromagnetic shielding sheet and an optical filter were both supplied to a roll laminator as a continuous belt-like sheet, and a production method in which both were continuously laminated with an adhesive was attempted. In addition, at this time, as in the conventional method illustrated in the explanatory diagram of FIG. 5, the width of the optical filter 20 is made smaller than the width of the electromagnetic wave shielding sheet 10, and the grounding regions 102 on both sides of the electromagnetic wave shielding sheet are continuous. It is the method of laminating | stacking by the positional relationship which is exposed.
By this method, the above problems 1 and 2, which are the labor at the time of peeling the optical filter, the poor mass production processability due to the required time, and the defects due to the damage of the conductor layer can be improved. In addition, there is no problem if only two places on both sides in the width direction of the electromagnetic wave shielding sheet as a continuous belt-like sheet are sufficient.
However, in the case where grounding locations are provided on the four circumferences of the mesh region of the conductor layer, the two left and right side portions of the mesh region 101 for each product unit 3u in the flow direction of the electromagnetic wave shielding sheet are locations where grounding is impossible. 104, and the conventional problem remains unsolved.

すなわち、本発明の課題は、ディスプレイ用複合フィルタの製造方法として、接地箇所確保の為の光学フィルタ剥離時の労力やその所要時間による量産加工性の悪さ、及び導電体層損傷による不良発生を回避して、導電体層のメッシュ状領域の4周全てに接地箇所を設けられる様にすることである。   That is, the object of the present invention is to prevent the occurrence of defects due to the labor of removing the optical filter for securing the grounding location, the poor mass production processability due to the required time, and the damage to the conductor layer as a manufacturing method of the composite filter for display. Then, it is to be able to provide a grounding location on all four circumferences of the mesh region of the conductor layer.

上記課題を解決すべく、本発明のディスプレイ用複合フィルタの製造方法は、電磁波遮蔽シートと光学フィルタとの積層体から成るディスプレイ用複合フィルタの製造方法において、少なくとも次の(A)、(B)、(C)の各工程を有する、ディスプレイ用複合フィルタの製造方法とした。
(A)電磁波遮蔽シートを準備する工程;該電磁波遮蔽シートは、厚み方向に於いて、透明基材と、其の一方の面に導電体層が少なくとも積層されて成り、平面内に於いて、該導電体層は、適用されるディスプレイの画像表示領域を全て覆うことが可能なメッシュ状領域と、該メッシュ状領域の4周を囲繞してメッシュを形成した接地用領域と、該接地用領域の周縁に、更に開口部の無い額縁状領域を形成して成る1単位を、1方向に周期的に接続して配列してなる連続帯状シートである。
(B)光学フィルタを準備する工程;該光学フィルタは、一方の面に接着剤層が積層されてなり、上記電磁波遮蔽シートに於けるディスプレイの画像表示領域に対峙する部分の全て、及び該接地用領域の少なくとも一部を被覆することが可能な形状及び寸法を有する連続帯状シートであって、且つ上記電磁波遮蔽シートの接地用領域の4周に於ける接地必要箇所に対峙する領域が切り抜かれて成る。
(C)電磁波遮蔽シートの接地用領域を露出させる工程;上記光学フィルタの接着剤層側を、上記電磁波遮蔽シートの導電体層側に向けると共に、上記光学フィルタが上記電磁波遮蔽シートにおけるディスプレイの画像表示領域に対峙する部分直上に対峙し、且つ上記光学フィルタの切り抜かれた領域が4周の接地必要箇所に対峙する様に、位置合わせした状態で、上記電磁波遮蔽シートに上記光学フィルタを接着、及び積層し、上記電磁波遮蔽シート4周の接地必要箇所に於いて、導電体層を露出させる。
In order to solve the above-mentioned problems, a method for producing a composite filter for display according to the present invention is a method for producing a composite filter for display comprising a laminate of an electromagnetic wave shielding sheet and an optical filter. At least the following (A), (B) The method for producing a composite filter for display having the steps of (C).
(A) A step of preparing an electromagnetic wave shielding sheet; the electromagnetic wave shielding sheet is formed by laminating a transparent substrate and a conductor layer on one surface thereof in the thickness direction, and in a plane. The conductor layer includes a mesh region that can cover the entire image display region of the display to be applied, a grounding region that forms a mesh surrounding four circumferences of the meshed region, and the grounding region. 1 is a continuous belt-like sheet in which one unit formed by forming a frame-like region having no opening on the periphery is periodically connected and arranged in one direction.
(B) a step of preparing an optical filter; the optical filter is formed by laminating an adhesive layer on one surface, and all the portions of the electromagnetic wave shielding sheet facing the image display area of the display, and the grounding A continuous belt-like sheet having a shape and a dimension capable of covering at least a part of the working area, and an area facing a grounding required portion in the four circumferences of the grounding area of the electromagnetic wave shielding sheet is cut out. It consists of
(C) exposing the grounding area of the electromagnetic wave shielding sheet; the adhesive layer side of the optical filter is directed to the conductor layer side of the electromagnetic wave shielding sheet, and the optical filter is an image of the display on the electromagnetic wave shielding sheet Adhering the optical filter to the electromagnetic wave shielding sheet in an aligned state so as to face directly above the part facing the display area and so that the cut-out area of the optical filter faces a grounding required place of 4 rounds, Then, the conductor layer is exposed at the place where the grounding is required around the electromagnetic wave shielding sheet 4.

この様な方法とすることで、接地箇所を導電体層メッシュ状領域の4周全てに設けても、光学フィルタと電磁波遮蔽性シートとを各々連続帯状のシートとして積層時に、光学フィルタは接地用領域の4周に於ける接地必要箇所に対峙する領域を切り抜いてから積層するので、接地の為に電磁波遮蔽性シート上に積層済みの光学フィルタを剥離除去をせずに、ディスプレイ1台分毎ではなく複数台分を纏めて連続的に、接地必要箇所を露出させながら積層できる。その為、量産加工性が得られ、しかも導電体層損傷も回避できる。   By adopting such a method, the optical filter is used for grounding at the time of laminating the optical filter and the electromagnetic wave shielding sheet as continuous belt-like sheets, even if the grounding location is provided on all four circumferences of the conductive layer mesh area. Since the area facing the grounding required place in the 4th circle of the area is cut out and laminated, the optical filter already laminated on the electromagnetic wave shielding sheet is not peeled and removed for grounding. Rather, a plurality of units can be stacked continuously while exposing the necessary grounding portions. Therefore, mass production processability can be obtained, and damage to the conductor layer can be avoided.

なお、好ましくは、本発明のディスプレイ用複合フィルタの製造方法は上記構成の方法に於いて、上記(C)工程の後に更に次の(D)工程を有する製造方法とする。
(D)枚葉化切断工程;導電体層が1方向に周期的に接続して配列してなる連続帯状シート形態のディスプレイ用複合フィルタを、1台のディスプレイに対応する1単位毎に切断、分離させる。
In addition, Preferably, the manufacturing method of the composite filter for displays of this invention is a manufacturing method which has the following (D) process after the said (C) process in the method of the said structure.
(D) Single wafer cutting step; cutting a composite filter for display in the form of a continuous belt-like sheet in which conductor layers are periodically connected and arranged in one direction for each unit corresponding to one display; Separate.

この様な方法とすることで、ディスプレイ用複合フィルタとして、最終的に、1台のディスプレイに対応した大きさの枚葉状シートにでき、また、上記量産加工性、及び導電体層損傷回避の効果も同様に得られる。   By adopting such a method, the composite filter for display can be finally made into a sheet-like sheet having a size corresponding to one display, and the mass production processability and the effect of avoiding damage to the conductor layer can be achieved. Is obtained in the same way.

本発明によれば、接地箇所を導電体層のメッシュ状領域の4周に設けても、量産加工性が得られ、しかも導電体層損傷も回避できる。更に、最終的に1台のディスプレイに対応した大きさの枚葉状シートにできる。   According to the present invention, mass production processability can be obtained and damage to the conductor layer can be avoided even if the grounding portions are provided on the four circumferences of the mesh-like region of the conductor layer. Furthermore, a sheet-like sheet having a size corresponding to one display can be finally obtained.

以下、図面を参照しながら本発明を実施するための最良の形態を、実施例を兼ねて説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

《(A)電磁波遮蔽シートを準備する工程;》
(A)の工程では、電磁波遮蔽シートとして、厚み方向に於いて、透明基材と、その一方の面に導電体層が少なくとも積層されて成り、平面内に於いて、該導電体層は、適用されるディスプレイの画像表示領域を全て覆うことが可能なメッシュ状領域と、該メッシュ状領域の4周を囲繞する接地用領域とから成る1単位を、1方向に周期的に接続して配列してなる連続帯状シートを準備する工程である。
<< (A) Step of preparing an electromagnetic wave shielding sheet; >>
In the step (A), as an electromagnetic wave shielding sheet, in the thickness direction, the transparent substrate and at least one conductor layer is laminated on one surface, and in the plane, the conductor layer is: A unit composed of a mesh area that can cover the entire image display area of the display to be applied and a grounding area that surrounds the four circumferences of the mesh area is periodically connected in one direction and arranged. This is a step of preparing a continuous belt-like sheet.

図1は、本発明によるディスプレイ用複合フィルタの製造方法を、その参考例で概念的に示す説明図で、図1(A)は平面図であり、図1(B)は1台のディスプレイに対応する製品単位で示す断面図である。また、図2は、本発明で用いる電磁波遮蔽性シートを、そ参考によって製品単位となった後の一状態例示し、図2(A)は平面図で、図2(B)は断面図である。これら図1及び図2では、電磁波遮蔽性シートの接地用領域がその周縁に額縁状領域を含まない構成である点で、参考例となっている。 FIG. 1 is an explanatory view conceptually showing a method for manufacturing a composite filter for display according to the present invention in a reference example, FIG. 1 (A) is a plan view, and FIG. 1 (B) is a single display. It is sectional drawing shown by the corresponding product unit. Also, FIG. 2, the electromagnetic wave shielding sheet for use in the present invention, the reference examples of its indicated by a state example after a product unit, in FIG. 2 (A) a plan view, FIG. 2 (B) It is sectional drawing. 1 and 2 are reference examples in that the grounding region of the electromagnetic wave shielding sheet has a configuration that does not include a frame-shaped region at the periphery thereof.

電磁波遮蔽シートは、光学フィルタと積層する時点では、連続帯状シート(ウェッブとも言う)として提供する。また、電磁波遮蔽シートは、図1(B)及び図2(B)で例示する電磁波遮蔽性シート10の様に、厚み方向に於いて、透明基材11と其の上に積層した導電体層12とから成る。なお、図1(A)、また後述図3(A)及び図5も含めて、その平面図は、製品単位3uが連続帯状シートの長手方向(流れ方向)に3単位配列された部分のみ示す電磁波遮蔽性シート10の上に、製品単位として少なくとも4単位以上が連続帯状シートの長手方向に配列された光学フィルタ20を重ねて概念的に一部(図面右側の方)が接着積層された状態を示す、光学フィルタ側から見た場合の平面図である。また、光学フィルタ20に於ける斜線のハッチング部分は、下側の電磁波遮蔽性シート10の導電体層が有するメッシュ状領域101と接地用領域102の形状・配置等が見える様に、透明なハッチングとして描いてある。   The electromagnetic wave shielding sheet is provided as a continuous belt-like sheet (also referred to as a web) when it is laminated with the optical filter. In addition, the electromagnetic wave shielding sheet is a conductive layer laminated on the transparent base material 11 in the thickness direction, like the electromagnetic wave shielding sheet 10 illustrated in FIGS. 1B and 2B. Twelve. In addition, the top view including FIG. 1 (A) and FIG. 3 (A) and FIG. 5 which will be described later shows only a part in which 3 units of product units 3u are arranged in the longitudinal direction (flow direction) of the continuous belt-like sheet. On the electromagnetic wave shielding sheet 10, the optical filter 20 in which at least 4 units or more as product units are arranged in the longitudinal direction of the continuous belt-like sheet is overlapped and conceptually a part (on the right side of the drawing) is adhesively laminated. It is a top view at the time of seeing from the optical filter side which shows these. The hatched portion of the optical filter 20 is transparent so that the shape and arrangement of the mesh region 101 and the grounding region 102 included in the conductive layer of the lower electromagnetic wave shielding sheet 10 can be seen. It is drawn as.

該導電体層12は、図1(A)及び図2(A)で例示する電磁波遮蔽性シート10の様に、平面内方向に於いて、中心部に位置して、ディスプレイの画面部に対峙するメッシュ状領域101と、その周囲を囲繞する接地用領域102から、1単位が構成される。この1単位に、図1(A)に例示する電磁波遮蔽性シート10の様に、1台のディスプレイに対応するディスプレイ用複合フィルタの製品単位3uが含まれ、前記1単位の領域全てを製品単位3uとしても良いし、図3(A)に例示する電磁波遮蔽性シート10の様に、前記1単位の領域内の一部を製品単位3uとしても良い。
更に該1単位を1方向(具体的には連続帯状シートの流れ方向、言い換えれば長手方向)に、周期的に、所望の数、連続的に接続したものが、連続帯状シートの電磁波遮蔽性シートと成る。また、透明基材11も連続帯状シートから成る。
Like the electromagnetic wave shielding sheet 10 illustrated in FIGS. 1 (A) and 2 (A), the conductor layer 12 is positioned in the center in the in-plane direction and faces the screen portion of the display. One unit is constituted by the mesh-like region 101 to be grounded and the grounding region 102 surrounding the periphery thereof. This unit includes a product unit 3u of a composite filter for display corresponding to one display, like the electromagnetic wave shielding sheet 10 illustrated in FIG. 1A, and the entire region of the one unit is a product unit. 3u may be used, or a part of the 1 unit region may be used as the product unit 3u as in the electromagnetic wave shielding sheet 10 illustrated in FIG.
Further, an electromagnetic wave shielding sheet of a continuous belt-like sheet is obtained by continuously connecting a desired number of the units in one direction (specifically, the flow direction of the continuous belt-like sheet, in other words, the longitudinal direction). It becomes. Moreover, the transparent base material 11 also consists of a continuous belt-like sheet.

メッシュ状領域101は、適用されるディスプレイの画像表示領域を全て覆うことが可能な領域であり、当該メッシュ状領域101の周囲の少なくとも一部に接地用領域102を有する。メッシュ状領域101は、適用されるディスプレイの画像表示領域を全て覆うことが可能な寸法及び形状を有し、適用されるディスプレイの画像表示領域に対峙する部分40が必ず含まれる。当該ディスプレイの画像表示領域に対峙する部分40の外の領域となる外縁部は、メッシュ状領域101が含まれても良いし、接地用領域102のみからなっても良い。   The mesh area 101 is an area that can cover the entire image display area of the display to which the mesh area 101 is applied, and has a grounding area 102 in at least a part of the periphery of the mesh area 101. The mesh area 101 has a size and shape that can cover the entire image display area of the applied display, and always includes a portion 40 that faces the image display area of the applied display. The outer edge portion that is an area outside the portion 40 facing the image display area of the display may include the mesh-shaped area 101 or may include only the grounding area 102.

接地用領域102は、メッシュ状領域101の4周を囲繞する領域として設ける。また、接地用領域102は、通常四角形のディスプレイの画像表示領域に対峙する部分40の外の領域となる外縁部である画像表示に影響しない部分に設ける。
接地用領域102は、通常ならば、メッシュ状領域101と同じ層構成を有しながら開口部を形成しないものであり、ディスプレイに設置した場合に接地(アース)をとり易くする為に設ける。但し、本発明においては、接地用領域102は、開口部が形成されたメッシュ状である領域を含む
すなわち、本発明においては、接地用領域102は、図1(A)に例示の様に、開口部の無い連続した導電体層から成る構成とはしないで、図3(A)及び(B)で概念的に例示する一実施形態例の様に、メッシュ状領域と同様にメッシュを形成して成る領域を有し、該接地用領域102の周縁に更に開口部の無いメッシュ非形成の額縁状領域102aを含む。図3(A)及び(B)の形態は、接地用領域102は、該領域内に於ける4周囲の周縁強度確保の為にメッシュ非形成の額縁状領域102aを含む形態である。なお、接地用領域102に該額縁状領域102a無く、全面全てメッシュから成る構成では、強度面で実用性には乏しい。
The grounding region 102 is provided as a region surrounding the circumference of the mesh region 101. The grounding region 102 is provided in a portion that does not affect the image display, which is an outer edge portion that is an outer region of the portion 40 facing the image display region of a normal rectangular display.
Ground region 102, typically if, which does not form an opening while having the same layer structure as a mesh-like area 101 is provided in order to facilitate taking the grounded when installed in the display. However, in the present invention, the ground area 102 includes a mesh der Ru region where the opening portion is formed.
That is, in the present invention , as shown in FIG. 1A , the grounding region 102 is not formed of a continuous conductor layer having no opening, and is not shown in FIGS. 3A and 3B. in as one embodiment that schematically shows an example has an area obtained by forming a mesh like the mesh-like area, further frame without mesh unformed the opening in the periphery of the ground area 102 -Like region 102a . Embodiment of FIG. 3 (A) and (B), the ground region 102 is a configuration containing a frame-shaped region 102a of the mesh not formed for ensuring strength in at 4 around the peripheral edge within that region. Incidentally, there is no該額edged regions 102a to the grounding region 102, in the structure consisting of the entire surface of all the mesh, scarce practicality in terms of strength.

また、接地用領域102は、図3(A)及び(B)に例示する様に、該領域内に於ける周縁の4周囲全て或いは1部に、最終的に1台のディスプレイに対応する形状に切断、分離するときに、不要で切り落とす「余白」部分を含んでいても良い。図3(A)では、余白切断部分103aを切断する。余白は、余白の全部又は一部が額縁状領域でも良く、メッシュ状でも良く、どちらでも良い。図3の場合は、余白の一部として余白内の4周囲周縁に額縁状領域102aが存在し、額縁状領域102aの内側の余白部分がメッシュ状となった場合の余白の例である。   In addition, as illustrated in FIGS. 3A and 3B, the grounding region 102 has a shape corresponding to one display at the end of all four or one part of the periphery in the region. When cutting and separating, a “margin” portion that is unnecessary and cut off may be included. In FIG. 3A, the margin cutting portion 103a is cut. As for the margin, all or a part of the margin may be a frame-shaped region, a mesh shape, or either. The case of FIG. 3 is an example of a margin when a frame-like region 102a exists at the four peripheral edges in the margin as a part of the margin, and the margin portion inside the frame-like region 102a is in a mesh shape.

また、図1(B)に示すように、本発明での電磁波遮蔽用シート10は、厚み方向においては、透明基材11の一方の面に、メッシュ状領域101と接地用領域102を有する導電体層12が少なくとも積層されて形成されている。
また、電磁波遮蔽用シートは、導電体層の表裏面上に、導電性を有しない層が更に積層されていても良い。当該導電性を有しない層としては、例えば、導電性を有しない防錆層や導電性を有しない黒化層、平坦化層等が挙げられる。なお、防錆層や黒化層等であっても、(電磁波遮蔽性に対して有効な)導電性を有する限り、本発明において導電体層に含まれる。導電体層の表裏面上に更に積層された導電性を有しない層は、導電体層と一体となって、メッシュ状領域や接地用領域を形成する。
As shown in FIG. 1B, the electromagnetic wave shielding sheet 10 according to the present invention has a conductive region having a mesh region 101 and a grounding region 102 on one surface of the transparent substrate 11 in the thickness direction. The body layer 12 is formed by being laminated at least.
In addition, the electromagnetic wave shielding sheet may further include a layer having no conductivity on the front and back surfaces of the conductor layer. Examples of the layer that does not have conductivity include a rust preventive layer that does not have conductivity, a blackened layer that does not have conductivity, and a planarized layer. In addition, even if it is a rust prevention layer, a blackening layer, etc., as long as it has electroconductivity (effective with respect to electromagnetic wave shielding), it is contained in a conductor layer in this invention. The non-conductive layer further laminated on the front and back surfaces of the conductor layer is integrated with the conductor layer to form a mesh region and a grounding region.

なお、本発明に用いられる電磁波遮蔽性シートにて、透明基材11や導電体層12等の材料或いはそれらの積層法や形成法等は、従来公知のものを用途に応じて適宜採用すれば良く特に制限はない。
ここで、電磁波遮蔽性シートの代表的な構成層を、透明基材11から順に説明する。
In addition, in the electromagnetic wave shielding sheet used in the present invention, materials such as the transparent base material 11 and the conductor layer 12, or a lamination method or a forming method thereof may be appropriately selected from conventionally known ones depending on the application. There are no particular restrictions.
Here, typical constituent layers of the electromagnetic wave shielding sheet will be described in order from the transparent substrate 11.

〔透明基材〕
透明基材11は、機械的強度が弱いメッシュ層を補強する為の層であり、連続帯状シートの形態をとり得る層である。従って、機械的強度と共に光透過性を有すれば、その他、耐熱性、絶縁性等も適宜勘案した上で、用途に応じたものを選択使用すれば良い。透明基材の具体例としては、樹脂シート(乃至はフィルム、以下同様)である。樹脂シート等として用いる透明樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、セルロース系樹脂、アクリル系樹脂シート、スチレン系樹脂、ポリカーボネート樹脂等である。
なお、これら樹脂は、樹脂材料的には、単独、又は複数種類の混合樹脂(ポリマーアロイを含む)として用いられ、また層的には、単層、又は2層以上の積層体として用いられる。また、これら樹脂中には、必要に応じて適宜、紫外線吸収剤、近赤外線吸収剤、充填剤、可塑剤、帯電防止剤などの添加剤を加えても良い。
なお、樹脂シートは、1軸延伸や2軸延伸した延伸シートが機械的強度の点でより好ましい。
(Transparent substrate)
The transparent substrate 11 is a layer for reinforcing a mesh layer having a low mechanical strength, and is a layer that can take the form of a continuous belt-like sheet. Therefore, as long as it has light transmittance as well as mechanical strength, it may be selected and used depending on the application, taking into account heat resistance, insulation, etc. as appropriate. A specific example of the transparent substrate is a resin sheet (or film, the same applies hereinafter). Examples of the transparent resin used as the resin sheet include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, cellulose resins, acrylic resin sheets, styrene resins, and polycarbonate resins.
In addition, these resins are used as a single or a plurality of types of mixed resins (including polymer alloys) as a resin material, and as a layer, they are used as a single layer or a laminate of two or more layers. Moreover, you may add additives, such as a ultraviolet absorber, a near-infrared absorber, a filler, a plasticizer, an antistatic agent, suitably in these resin as needed.
The resin sheet is more preferably a uniaxially stretched or biaxially stretched sheet in terms of mechanical strength.

また、また、透明基材の厚さは、用途に応じたものとすれば良く特に制限は無く、通常12〜1000μm程度、好ましくは50〜700μm、より好ましくは100〜500μmが望ましい。また、透明基材は、適宜その表面に公知の易接着処理を行ってもよい。   The thickness of the transparent substrate is not particularly limited as long as it is suitable for the application, and is usually about 12 to 1000 μm, preferably 50 to 700 μm, more preferably 100 to 500 μm. Further, the transparent substrate may be appropriately subjected to a known easy adhesion treatment on the surface thereof.

また、透明基材の透明性は高いほどよいが、好ましくは可視光線透過率で80%以上となる光透過性が良い。
また、透明基材は色素等で着色しても良い。着色により、近赤外線吸収、ネオン光吸収、色調整、外光反射防止等が図れる。例えば、樹脂の透明基材に対しては、近赤外線吸収剤、ネオン光吸収剤、色調整用色素、外光反射防止用色素、等の、従来公知の各種色素を添加すればよい。
Moreover, although the transparency of a transparent base material is so good that it is good, Preferably the light transmittance which becomes 80% or more by visible light transmittance | permeability is good.
The transparent substrate may be colored with a pigment or the like. By coloring, near infrared absorption, neon light absorption, color adjustment, prevention of external light reflection, and the like can be achieved. For example, various conventionally known dyes such as a near-infrared absorber, a neon light absorber, a color adjusting dye, and an external light antireflection dye may be added to the resin transparent substrate.

〔導電体層〕
導電体層12は、導電性を有し電磁波遮蔽機能を担う層であり、またそれ自体は不透明性であっても、メッシュ状の形状で開口部を有することで、電磁波遮蔽性と光透過性を両立させた層である。この様な導電体層は、通常金属層を主とし、これに加えて、後述するような導電処理層、導電性を有する黒化層、導電性を有する防錆層等が電磁波遮蔽性能に寄与し得る導電性を有する場合には、これら導電性を有する、導電処理、層黒化層、防錆層等を含むものである。
[Conductor layer]
The conductor layer 12 is a layer that has conductivity and has an electromagnetic wave shielding function, and even if it is opaque, it has an opening in a mesh shape so that it has an electromagnetic wave shielding property and light transmittance. It is a layer that balances. Such a conductor layer usually consists mainly of a metal layer, and in addition to this, a conductive treatment layer, a conductive blackening layer, a conductive rust prevention layer, etc. contribute to electromagnetic wave shielding performance. When it has the electroconductivity which can be performed, the electroconductive process, layer blackening layer, rust prevention layer, etc. which have these electroconductivity are included.

導電体層12のメッシュ状領域101は、開口部が密に配列したメッシュ状であり、開口部と該開口部間に存在する枠状のライン部とから構成される。
メッシュの形状は、任意で特に限定されないが、開口部の形状としては正方形が代表的である。開口部の形状は、例えば、正三角形等の三角形、正方形、長方形、菱形、台形等の四角形、六角形、等の多角形、或いは、円形、楕円形などが挙げられる。メッシュはこれら形状からなる複数の開口部を有し、開口部間は通常幅均一のライン状のライン部となり、通常は、開口部及びライン部は全面で同一形状同一サイズである。具体的サイズを例示すれば、開口率及びメッシュの非視認性の点で、開口部間のライン部の幅は25μm以下、好ましくは20μm以下が良い。但し、電磁波遮蔽性能、破断防止のためには、少なくとも5μm以上が好ましい。また、開口部の間口幅は〔ラインピッチ〕−〔ライン幅〕で表され、150μm以上、好ましくは200μm以上とするのが、光透過性、及び後述する光学フィルタとの積層時に開口部内に気泡が残留し難い点から好ましい。但し、MHz〜GHz帯の電磁波遮蔽性発現のためには、最大3000μm以下とする。
また、メッシュ状領域のバイアス角度(メッシュのライン部と電磁波遮蔽シートの外周辺とのなす角度)は、ディスプレイの画素ピッチや発光特性を考慮して、モアレが出難い角度に適宜設定すれば良い。
The mesh region 101 of the conductor layer 12 has a mesh shape in which openings are densely arranged, and includes an opening and a frame-shaped line portion existing between the openings.
The shape of the mesh is arbitrary and not particularly limited, but the shape of the opening is typically a square. Examples of the shape of the opening include a triangle such as a regular triangle, a square such as a square, a rectangle, a rhombus, and a trapezoid, a polygon such as a hexagon, a circle, and an ellipse. The mesh has a plurality of openings having these shapes, and the openings are usually line-shaped line portions having a uniform width. Usually, the openings and the line portions have the same shape and the same size on the entire surface. To illustrate the specific size, the width of the line portion between the openings is 25 μm or less, preferably 20 μm or less in terms of the aperture ratio and the invisibility of the mesh. However, at least 5 μm is preferable for electromagnetic wave shielding performance and prevention of breakage. The opening width of the opening is represented by [line pitch]-[line width], and is 150 μm or more, preferably 200 μm or more. Light transmittance and bubbles are formed in the opening when laminated with an optical filter described later. Is preferable because it is difficult to remain. However, in order to exhibit electromagnetic wave shielding properties in the MHz to GHz band, the maximum is 3000 μm or less.
In addition, the bias angle of the mesh region (angle formed between the mesh line portion and the outer periphery of the electromagnetic wave shielding sheet) may be appropriately set to an angle at which moire is difficult to occur in consideration of the pixel pitch of the display and the light emission characteristics. .

また、本発明においては、最終的に得られるメッシュ状領域の厚み(具体的には開口部間に存在するライン部の高さである)は3μm以下が好ましい。それは、メッシュ面に対する平坦化を省略しても、電磁波遮蔽シートと光学フィルタの積層時に上記開口部内に接着剤層が均一に入り易く、開口部内に気泡が残留し難い為である。一方、電磁波遮蔽性能の点では、相応の導電性の為にある程度の厚みが必要で、メッシュ状領域の厚みは、結局1〜3μmとするのが更に好ましい。ライン部の高さとは、ライン部を形成する層の厚みを全て含む総厚みを意味する。従って、例えば、ライン部が導電体層、非導電性黒化層、及び非導電性防錆層とから成る場合は、ライン部の高さとはこれら全層の総厚となる。   In the present invention, the thickness of the finally obtained mesh region (specifically, the height of the line part existing between the openings) is preferably 3 μm or less. This is because even if the flattening of the mesh surface is omitted, the adhesive layer easily enters the opening when the electromagnetic wave shielding sheet and the optical filter are laminated, and bubbles do not easily remain in the opening. On the other hand, in terms of electromagnetic wave shielding performance, a certain amount of thickness is required for appropriate conductivity, and the thickness of the mesh-like region is more preferably 1 to 3 μm after all. The height of a line part means the total thickness including all the thickness of the layer which forms a line part. Therefore, for example, when the line part is composed of a conductor layer, a non-conductive blackening layer, and a non-conductive rust preventive layer, the height of the line part is the total thickness of all these layers.

以上の様なメッシュ状領域101及び接地用領域102を有する導電体層12が、透明基材11上に少なくとも積層された連続帯状シートとしての電磁波遮蔽性シート10を準備する方法としては、特に制限は無く、用途等に応じて従来公知の方法を適宜採用することができる。例えば、次の(1)〜(4)の方法である。   The method for preparing the electromagnetic wave shielding sheet 10 as a continuous belt-like sheet in which the conductor layer 12 having the mesh region 101 and the grounding region 102 as described above is laminated on the transparent substrate 11 is particularly limited. There are no known methods, and conventionally known methods can be appropriately employed depending on the application. For example, it is the following methods (1) to (4).

(1)透明基材へ導電インキをパターン状に印刷し、該導電インキ層の上へ金属めっきする方法(特開2000−13088号公報等参照)。
(2)透明基材へ、導電インキ又は化学めっき触媒含有感光性塗布液を全面に塗布し、該塗布層をフォトリソグラフィー法でメッシュ状とした後に、該メッシュの上へ金属めっきする方法(住友大阪セメント株式会社新規材料研究所新材料研究グループ、“光解像性化学めっき触媒”、[online]、掲載年月日記載なし、住友大阪セメント株式会社、[平成16年11月22日検索]、インターネット<URL : http://www.socnb.com/report/ptech/2000p52.pdf>参照)。
(3)透明基材と金属箔とを接着剤で積層した後に、金属箔をフォトリソグラフィー法でメッシュ状とする方法(特開平11−145678号公報参照)。
(4)透明基材の一方の面へ、金属薄膜をスパッタ等により形成して導電処理層を形成し、その上に電解めっきにより金属めっき層として金属層を形成した透明基材を準備し、該金属めっきした透明基材の金属めっき層及び導電処理層を、フォトリソグラフィー法でメッシュ状とする方法(特許第3502979号公報、特開2004−241761号公報、等参照)。
(1) A method in which conductive ink is printed in a pattern on a transparent substrate, and metal plating is performed on the conductive ink layer (see JP 2000-13088 A).
(2) A method in which a conductive ink or a photosensitive plating solution containing a chemical plating catalyst is applied to the entire surface of a transparent substrate, and the coating layer is made into a mesh by photolithography, followed by metal plating on the mesh (Sumitomo Osaka Cement Co., Ltd., New Materials Research Institute, New Materials Research Group, “Photoresolvable Chemical Plating Catalyst”, [online], date not listed, Sumitomo Osaka Cement Co., Ltd. [searched November 22, 2004] Internet <URL: http://www.socnb.com/report/ptech/2000p52.pdf>).
(3) A method in which a transparent substrate and a metal foil are laminated with an adhesive, and then the metal foil is meshed by a photolithography method (see Japanese Patent Application Laid-Open No. 11-145678).
(4) On one surface of the transparent substrate, a metal thin film is formed by sputtering or the like to form a conductive treatment layer, and a transparent substrate on which a metal layer is formed as a metal plating layer by electrolytic plating is prepared. A method in which the metal plating layer and the conductive treatment layer of the transparent substrate subjected to metal plating are meshed by a photolithography method (see Japanese Patent No. 3502979, Japanese Patent Application Laid-Open No. 2004-241761, etc.).

上記(1)〜(4)の中でも、透明性、メッシュ精度、視認性、反りや気泡混入に対する歩留、コスト等の観点から、(4)の方法は特に好ましい方法の一つである。そこで、(4)の方法による場合での電磁波遮蔽用シートを準備する方法を更に説明する。   Among the above (1) to (4), the method (4) is one of the particularly preferable methods from the viewpoints of transparency, mesh accuracy, visibility, yield against warpage and bubble mixing, cost, and the like. Therefore, a method for preparing an electromagnetic wave shielding sheet in the case of the method (4) will be further described.

上記(4)の方法では、透明基材上に、導電処理層と金属めっき層が順次積層され、導電体層はこれら両層(以下これら両層を総称して単に「金属層」とも呼ぶ)を含む構成となる。   In the method (4), a conductive treatment layer and a metal plating layer are sequentially laminated on a transparent substrate, and the conductor layer is composed of both layers (hereinafter, these layers are collectively referred to simply as “metal layer”). It becomes the composition which includes.

導電処理層は、透明基材の表面を導電処理して得られる層であり、該導電処理の方法としては、公知の導電性を持つ材料の薄膜を形成すればよい。該導電性を持つ材料としては、例えば銅、ニッケル、クロム等の金属、或いはこれら金属の合金(例えば、ニッケル−クロッム合金)、酸化スズ等の透明金属酸化物を用いる。そして、これら導電性材料を公知の真空蒸着法、スパッタリング法、無電解めっき法などの方法で透明基材面に適用して導電処理層を形成する。なお、導電処理層は単層でも多層(異種材料や同種材料の層の)でも良い。また、導電処理層の厚さは、次の金属めっき層をめっき時に必要な導電性が得られれば良く、0.001〜1μm程度の薄膜が好ましい。   The conductive treatment layer is a layer obtained by conducting a conductive treatment on the surface of the transparent substrate. As a method for the conductive treatment, a thin film of a known conductive material may be formed. As the conductive material, for example, a metal such as copper, nickel, or chromium, or an alloy of these metals (for example, nickel-chromium alloy) or a transparent metal oxide such as tin oxide is used. And these electroconductive materials are applied to a transparent base material surface by methods, such as a well-known vacuum evaporation method, sputtering method, and electroless-plating method, and an electroconductive process layer is formed. Note that the conductive processing layer may be a single layer or a multilayer (a layer of different materials or the same material). Moreover, the thickness of a conductive treatment layer should just have the electroconductivity required at the time of plating the following metal plating layer, and a thin film about 0.001-1 micrometer is preferable.

金属めっき層は、上記導電処理層面上に電解めっき法で形成するが、その材料としては、例えば銅、ニッケル等の電磁波遮蔽性を満足し得る導電性の金属或いは合金を用いるが、なかでも導電性の点で銅又は銅合金が好ましい。また、金属めっき層は単層でも多層でも良い。なお、該金属めっき層の厚さは最大2μm程度とするのが良い。それは、メッシュ状領域の導電体層の厚さを好ましくは1〜3μmに収める為でもある。   The metal plating layer is formed on the surface of the conductive treatment layer by electrolytic plating, and as the material thereof, for example, a conductive metal or alloy that can satisfy electromagnetic wave shielding properties such as copper and nickel is used. From the viewpoint of properties, copper or a copper alloy is preferable. The metal plating layer may be a single layer or a multilayer. The thickness of the metal plating layer is preferably about 2 μm at the maximum. This is also for keeping the thickness of the conductor layer in the mesh-like region preferably within 1 to 3 μm.

また更に、黒化層を設けるのがコントラストの点で好ましい。このためには、金属めっき層の面に少なくとも観察者側面に黒化層を設ける。黒化層としては金属めっき層面を粗化したものでも良く、或いは、光吸収性(黒い)の層を設ける。なお、透明基材側に設ける場合は、透明基材面に透明導電薄膜による導電処理を行い、黒化層として黒色めっき層を設けた後に、金属めっき層14を設ける等すれば良い。   Furthermore, it is preferable in terms of contrast to provide a blackened layer. For this purpose, a blackened layer is provided at least on the side of the observer on the surface of the metal plating layer. As the blackening layer, the metal plating layer surface may be roughened, or a light absorbing (black) layer is provided. In addition, when providing in the transparent base material side, after performing the electroconductive process by a transparent conductive thin film on a transparent base material surface and providing a black plating layer as a blackening layer, the metal plating layer 14 should just be provided.

また更に防錆層を設けても良い。防錆層は金属めっき層の少なくとも片面を覆うように、その際黒化層を設けてある場合は黒化層を覆うように、設けるのが黒化層の脱落防止の意味でも好ましい。防錆層としては、ニッケル、亜鉛、クロム等の金属或いはその酸化物や化合物等を公知のめっき法を利用して形成すれば良い。なかでも、亜鉛めっき後、クロメート処理する得られるクロム化合物層は代表的である。なお、防錆層の厚さは0.001〜1μm、より好ましくは0.001〜0.1μm程度である。   Further, a rust prevention layer may be provided. It is also preferable to provide the rust preventive layer so as to cover at least one surface of the metal plating layer, and when the blackened layer is provided at that time, in order to prevent the blackened layer from falling off. The anticorrosive layer may be formed of a metal such as nickel, zinc or chromium or an oxide or compound thereof using a known plating method. Especially, the chromium compound layer obtained by carrying out chromate treatment after galvanization is typical. In addition, the thickness of a rust prevention layer is 0.001-1 micrometer, More preferably, it is about 0.001-0.1 micrometer.

なお、透明基材上の全面等として形成した場合の導電体層に、メッシュ状領域と接地用領域を設けるには、フォトリソグラフィー法を利用した公知のパターンニング技術を利用すれば良い。例えば、フォトリソグラフィー法では、フォトレジスト層をメッシュパターン状に形成した後、該レジスト層で覆われていない露出部分をエッチング除去後、該レジスト層を除去することで、メッシュ状領域と、接地用領域を所望の形状にパターンニングする。
パターンニングの際、上記例示した様な導電処理層と金属めっき層とを導電体層として利用する場合には、導電処理層と金属めっき層とが積層された導電体層に対して、パターンニングしても良いが、導電処理層に対してパターンニングして、このパターンニングされた導電処理層に対して金属めっきすれば、金属めっき層はエッチングせずに、最初から所望の形状にパターンニングできる。
In order to provide the mesh region and the grounding region in the conductor layer when formed on the entire surface of the transparent substrate, a known patterning technique using a photolithography method may be used. For example, in the photolithography method, after a photoresist layer is formed in a mesh pattern, an exposed portion that is not covered with the resist layer is removed by etching, and then the resist layer is removed so that the mesh region and the grounding layer are removed. Pattern the region into the desired shape.
When using the conductive treatment layer and the metal plating layer as exemplified above as the conductor layer during patterning, the patterning is performed on the conductor layer in which the conductive treatment layer and the metal plating layer are laminated. However, if the conductive treatment layer is patterned and then metal plating is applied to the patterned conductive treatment layer, the metal plating layer is not etched and patterned to the desired shape from the beginning. it can.

また、例えば上記の様にして形成されるメッシュ状領域及び接地用領域を有する導電体層に対して、そのメッシュの開口部等による表面凹凸を平坦化する平坦化層を設けても良い。平坦化層を設けることで、電磁波遮蔽性シートを光学フィルタと積層するときに、メッシュの開口部に気泡が残留する場合に、これを防げる。
平坦化層としては、透明性、接着性等が有れば良い、アクリル系樹脂等からなる樹脂層を利用できる。この様な平坦化層は、例えば、液状の樹脂組成物を塗布後、その塗膜に対して、平面性に優れた剥離性シートをその表面に積層した状態で、塗膜を加熱や電離放射線等で硬化後、剥離性シートを剥離除去する方法等で形成する。
Further, for example, a planarizing layer for planarizing surface irregularities due to openings or the like of the mesh may be provided on the conductor layer having the mesh region and the grounding region formed as described above. By providing the planarizing layer, when the electromagnetic wave shielding sheet is laminated with the optical filter, this can be prevented when bubbles remain in the opening of the mesh.
As the flattening layer, a resin layer made of an acrylic resin or the like that has only to have transparency, adhesiveness, etc. can be used. Such a flattening layer is, for example, after coating a liquid resin composition, with a peelable sheet having excellent flatness laminated on the surface of the coating film, heating the coating film or ionizing radiation. After curing with, for example, a method of peeling and removing the peelable sheet.

《(B)光学フィルタを準備する工程;》
(B)の工程では、光学フィルタとして、一方の面に接着剤層が積層されてなり、上記電磁波遮蔽シートに於けるディスプレイの画像表示領域に対峙する部分の全て、及び該接地用領域の少なくとも一部を被覆することが可能な形状及び寸法を有する連続帯状シートであって、且つ上記電磁波遮蔽シートの接地用領域の4周に於ける接地必要箇所に対峙する領域が切り抜かれて成る、光学フィルタを準備する工程である。
<< (B) Step of preparing an optical filter; >>
In the step (B), as an optical filter, an adhesive layer is laminated on one surface, and all the portions of the electromagnetic wave shielding sheet facing the image display area of the display, and at least the grounding area. An optical device comprising a continuous belt-like sheet having a shape and a dimension capable of covering a part, and a region facing a grounding required portion in the four circumferences of the grounding region of the electromagnetic wave shielding sheet is cut out. It is a step of preparing a filter.

図1(A)及び図3(A)に例示の図面では、切抜き領域2cとして上記接地必要箇所に対峙する領域が切り抜かれている例である。また、これら図面に例示の切抜き領域2cは、製品単位3uを含む隣接する1単位の各接地必要箇所の内、連続帯状シートの長手方向(前記1単位の配列方向)で隣接する接地必要箇所同士にまたがる共通の切抜き領域2cが長方形の形状で設けられた例でもある。また、光学フィルタ20の幅を電磁波遮蔽性シート10の幅よりも狭く、電磁波遮蔽性シートの幅方向外側が光学フィルタからはみ出す様に積層することで、メッシュ状領域101の4周のうち幅方向両側の2箇所の接地用領域は、光学フィルタが対峙せず光学フィルタを切り抜かずに接地必要箇所が露出する様にした、光学フィルタ及び電磁波遮蔽性シートの組合せ例でもある。
なお、切抜き領域の形状、個数、配置等は、所望の接地用領域が確保できれば特に制限は無い。
また、接地必要箇所は接地用領域に存在し面積的に接地用領域以下であり、切抜き領域2cは接地必要箇所含む形状で面積的には接地必要箇所以上である。
In the drawings illustrated in FIG. 1A and FIG. 3A, an example is shown in which a region facing the grounding required portion is cut out as the cutout region 2c. In addition, the cutout region 2c illustrated in these drawings includes the grounding required portions adjacent to each other in the longitudinal direction of the continuous belt-like sheet (arrangement direction of the one unit) among the adjacent grounding required portions of one unit including the product unit 3u. This is also an example in which the common cutout region 2c that extends over the two is provided in a rectangular shape. Further, the width of the optical filter 20 is narrower than the width of the electromagnetic wave shielding sheet 10 and is laminated so that the outer side in the width direction of the electromagnetic wave shielding sheet protrudes from the optical filter. The two grounding areas on both sides are also examples of a combination of an optical filter and an electromagnetic wave shielding sheet in which the optical filter does not face and the necessary grounding area is exposed without cutting out the optical filter.
The shape, number, arrangement, etc. of the cutout regions are not particularly limited as long as a desired grounding region can be secured.
In addition, the grounding required location exists in the grounding area and is area-wise or smaller than the grounding area, and the cutout region 2c is in a shape including the grounding required location and is larger than the grounding required area.

また、接地必要箇所に対峙した部分の光学フィルタの切り抜きは、打ち抜きプレス、ロータリーカッティグマシン、レーザ等の公知の切断装置を切抜き手段として適宜採用すれば良い。また、切抜きの瞬間だけ、連続帯状シートの走行を停止した間欠送りや、走行したまま切抜きも行う連続送り等、どちらでも良い。
切抜き領域を設ける時期は、連続帯状の光学フィルタを、ロール状態にする前でも良いが、ロールを巻き出した後の方が切抜き領域部分の厚み差が残り難い点で好ましい。また、切り抜いてから接着剤層を形成するのも不可能では無いが、接着剤層形成後に切り抜くのがより容易である。また、接着剤(粘着剤)層面に剥離シートが積層されている場合は、剥離シートごと切抜き抜くと良い。また、切抜き領域の形成は、光学フィルタをロールラミネータに装填した後、インラインで行うのが生産性の点でより好ましい。
In addition, for cutting out the optical filter at the portion facing the grounding required portion, a known cutting device such as a punching press, a rotary cutting machine, or a laser may be appropriately employed as the cutting means. Also, only the moment of cutting may be either intermittent feeding in which the running of the continuous belt-like sheet is stopped or continuous feeding in which cutting is performed while running.
The time for providing the cutout region may be before the continuous belt-shaped optical filter is brought into a roll state, but after the roll is unwound, the thickness difference in the cutout region is less likely to remain. It is not impossible to form an adhesive layer after cutting, but it is easier to cut out after forming the adhesive layer. Moreover, when the peeling sheet is laminated | stacked on the adhesive agent (adhesive) layer surface, it is good to cut out with the peeling sheet whole. In addition, it is more preferable in terms of productivity that the cut-out region is formed in-line after the optical filter is loaded on the roll laminator.

本発明で用いる光学フィルタは、該フィルタの一方の面に積層された接着剤層を有する構成の連続帯状シートである。光学フィルタとしての光学フィルタ機能は、該機能を担う機能発現層で付与する。また、更にこれら層を担持する透明基材シートを有する構成としても良い。また、透明基材シート自体を機能発現層と兼用させても良い。また、1つの光学フィルタ機能を1層にしても良いし、2以上の光学フィルタ機能を1層に集約しても良い。各光学フィルタ機能を独立層としても良い。2以上の光学フィルタ機能を1層に集約する例としては、透明基材シート中に、近赤外線吸收剤、紫外線吸収剤、及びネオン光吸収剤(色素)を添加して、1層で近赤外線吸収フィルタ、ネオン光吸収フィルタ、及び紫外線吸収フィルタを兼ねる形態が挙げられる。或いは、接着剤層に近赤外線吸收剤等を添加して、接着剤層と光学フィルタとを兼ねても良い。   The optical filter used in the present invention is a continuous belt-like sheet having an adhesive layer laminated on one surface of the filter. The optical filter function as an optical filter is provided by a function-expressing layer that bears this function. Moreover, it is good also as a structure which has a transparent base material sheet which carry | supports these layers further. Further, the transparent base sheet itself may be used also as the function expressing layer. Moreover, one optical filter function may be made into one layer, and two or more optical filter functions may be integrated into one layer. Each optical filter function may be an independent layer. As an example of integrating two or more optical filter functions into one layer, a near infrared absorbing agent, an ultraviolet absorber, and a neon light absorbing agent (pigment) are added to the transparent base sheet, and the near infrared ray is formed in one layer. The form which serves as an absorption filter, a neon light absorption filter, and an ultraviolet absorption filter is mentioned. Or you may add a near-infrared absorber etc. to an adhesive bond layer, and may serve as an adhesive bond layer and an optical filter.

ここで、本発明で用い得る光学フィルタの一例を図4(A)の断面図で示す。図4で示す光学フィルタ20では、透明基材シート21の一方の面に接着剤層22が積層され、前記透明基材シート21の他方の面に機能発現層23が積層された構成例である。もろちん、接着剤層22と機能発現層23とが同一面側となる構成も可能である。   Here, an example of an optical filter that can be used in the present invention is shown in the cross-sectional view of FIG. The optical filter 20 shown in FIG. 4 is a configuration example in which an adhesive layer 22 is laminated on one surface of a transparent substrate sheet 21 and a function expressing layer 23 is laminated on the other surface of the transparent substrate sheet 21. . Of course, a configuration in which the adhesive layer 22 and the function expressing layer 23 are on the same surface side is also possible.

本発明で用いる光学フィルタの機能発現層としては、特に限定されず、例えば、近赤外線吸収層、ネオン光吸収層、紫外線吸収層、色調整用着色層、反射防止層、防眩層等が代表的である。この他、光学フィルタ機能以外の追加的機能として、更に必要に応じて、ハードコート層、防汚層等の光学フィルタ機能以外の追加的機能層を設けたものでも良い。また、追加的機能層は機能発現層と兼用した層としても良い。
なお、接着剤層は電磁波遮蔽性シートと接着する側に必須であるが、他方の側に(更に他の物と接着する為に)別の接着剤層があっても良い。
The functional expression layer of the optical filter used in the present invention is not particularly limited, and representative examples thereof include a near infrared absorption layer, a neon light absorption layer, an ultraviolet absorption layer, a color adjusting coloring layer, an antireflection layer, an antiglare layer and the like. Is. In addition, as an additional function other than the optical filter function, an additional functional layer other than the optical filter function such as a hard coat layer and an antifouling layer may be provided as necessary. Further, the additional functional layer may be a layer that also serves as a function-expressing layer.
The adhesive layer is indispensable on the side to be bonded to the electromagnetic wave shielding sheet, but another adhesive layer may be provided on the other side (to be bonded to another object).

なお、上記の様な、接着剤層、機能発現層、透明基材シート、追加的機能層の各層としては、特に制限は無く、従来公知のものを適宜採用することができる。
ここで、主要な層について更に説明する。
In addition, there is no restriction | limiting in particular as each layer of the above adhesive layers, a function expression layer, a transparent base material sheet, and an additional functional layer, A conventionally well-known thing can be employ | adopted suitably.
Here, the main layers will be further described.

〔透明基材シート〕
透明基材シートとしては、前述電磁波遮蔽シートにて記載したのと同様な透明基材を用いることができる。
[Transparent substrate sheet]
As the transparent substrate sheet, the same transparent substrate as described in the electromagnetic wave shielding sheet can be used.

〔機能発現層〕
機能発現層の近赤外線吸収層としては、例えば、近赤外線吸収剤を含有させた樹脂フィルムや、透明基材シート上に近赤外線吸収剤を樹脂バインダー中に含有させた塗液を塗布形成しても良い。近赤外線吸収色素としては、例えば、ポリメチン系化合物等の公知の、有機系や無機系の色素を用いることができる。樹脂バインダーの樹脂としては、例えば、ポリエステル樹脂、アクリル樹脂等の熱可塑性或いは熱や紫外線などで硬化する硬化性樹脂等を用いることができる。
[Functional expression layer]
As the near-infrared absorbing layer of the function-expressing layer, for example, a resin film containing a near-infrared absorber or a coating solution containing a near-infrared absorber in a resin binder on a transparent substrate sheet is formed by coating. Also good. As the near-infrared absorbing dye, for example, a known organic or inorganic dye such as a polymethine compound can be used. As the resin of the resin binder, for example, a thermoplastic resin such as a polyester resin or an acrylic resin, or a curable resin that is cured by heat, ultraviolet light, or the like can be used.

機能発現層のネオン光吸収層としては、例えば、ネオン光吸収色素を含有させた樹脂フィルムや、透明基材シート上にネオン光吸収色素を樹脂バインダー中に含有させた塗液を塗布形成しても良い。ネオン光吸収色素としては、例えばシアニン系等の公知の色素を用いることができる。また、樹脂バインダーの樹脂としては、上記近赤外線吸収層で記載の樹脂等を用いることができる。   As the neon light absorbing layer of the function expressing layer, for example, a resin film containing a neon light absorbing dye or a coating liquid containing a neon light absorbing dye in a resin binder on a transparent substrate sheet is formed by coating. Also good. As the neon light absorbing dye, for example, a known dye such as cyanine can be used. Moreover, as resin of a resin binder, the resin etc. which are described in the said near-infrared absorption layer can be used.

機能発現層の紫外線吸収層としては、例えば、紫外線吸収剤を含有させた樹脂フィルムや、透明基材シート上に、紫外線吸収剤を樹脂バインダー中に含有させた塗液を塗布形成しても良い。紫外線吸収剤としては、例えば、ベンゾトリアゾール、微粒子状酸化亜鉛等の公知の有機系や無機系の化合物を用いることができる。また、樹脂バインダーの樹脂としては、上記近赤外線吸収層で記載の樹脂等を用いることができる。   As the ultraviolet absorbing layer of the function expressing layer, for example, a resin film containing an ultraviolet absorber or a coating liquid containing an ultraviolet absorber in a resin binder may be applied and formed on a transparent substrate sheet. . As the ultraviolet absorber, for example, a known organic or inorganic compound such as benzotriazole or particulate zinc oxide can be used. Moreover, as resin of a resin binder, the resin etc. which are described in the said near-infrared absorption layer can be used.

機能発現層の色調整用着色層としては、例えば、着色剤を含有させた樹脂フィルムや、透明基材シート上に、着色剤を樹脂バインダー中に含有させた塗液を塗布形成しても良い。着色剤としては、公知の着色顔料や染料等を用いることができる。また、樹脂バインダーの樹脂としては、上記近赤外線吸収層で記載の樹脂等を用いることができる。   As the colored layer for color adjustment of the function-expressing layer, for example, a resin film containing a colorant or a coating liquid containing a colorant in a resin binder may be applied and formed on a transparent substrate sheet. . As the colorant, known color pigments and dyes can be used. Moreover, as resin of a resin binder, the resin etc. which are described in the said near-infrared absorption layer can be used.

機能発現層の反射防止層としては、例えば、低屈性率層と高屈折率層とを交互に積層した多層膜が一般的だが、蒸着やスパッタ等の乾式法、或いは塗工等の湿式法も膜形成に利用できる。なお、低屈折率層には、ケイ素酸化物、フッ化マグネシウム、フッ素含有樹脂等が用いられ、高屈折率層には、酸化チタン、酸化ジルコニウム等が用いられる。   As the antireflection layer of the function expressing layer, for example, a multilayer film in which a low refractive index layer and a high refractive index layer are alternately laminated is generally used, but a dry method such as vapor deposition or sputtering, or a wet method such as coating. Can also be used for film formation. Note that silicon oxide, magnesium fluoride, fluorine-containing resin, or the like is used for the low refractive index layer, and titanium oxide, zirconium oxide, or the like is used for the high refractive index layer.

機能発現層の防眩層としては、例えば、樹脂バインダー中にシリカなどの無機フィラーを添加した塗膜形成や、或いは賦形シートや賦形版等を用いた賦形加工により、層表面に微細凹凸を設けた層として形成する。樹脂バインダーの樹脂としては、好ましくは表面強度等の点で、下記ハードコート層等と同様に電離放射線硬化性樹脂等の硬化性樹脂が使用される。   As the antiglare layer of the function-expressing layer, for example, the surface of the layer can be finely formed by forming a coating using an inorganic filler such as silica in a resin binder, or by forming using a shaping sheet or a shaping plate. It is formed as a layer with unevenness. As the resin of the resin binder, a curable resin such as an ionizing radiation curable resin is preferably used in the same manner as the hard coat layer described below in terms of surface strength and the like.

〔追加的機能層〕
一方、追加的機能層は、例えば表面物性を改善する表面物性改善層であり、具体的には、ハードコート層や防汚層等が挙げられる。例えば、ハードコート層としては、通常、光学フィルタの最表面に設けられ、例えば、アクリレート系のモノマーやプレポリマー等の電離放射線硬化性樹脂を用いた塗膜として形成する。また、防汚層も、通常、光学フィルタの最表面に設けられ、例えば、フッ素系樹脂やシリコーン系樹脂を含む塗膜として形成する。
(Additional functional layer)
On the other hand, the additional functional layer is, for example, a surface physical property improving layer that improves surface physical properties, and specifically includes a hard coat layer and an antifouling layer. For example, the hard coat layer is usually provided on the outermost surface of the optical filter and is formed, for example, as a coating film using an ionizing radiation curable resin such as an acrylate monomer or a prepolymer. Also, the antifouling layer is usually provided on the outermost surface of the optical filter, and is formed as a coating film containing, for example, a fluorine resin or a silicone resin.

〔接着剤層〕
接着剤層は、透明で、電磁波遮蔽性シートの導電体層と接着可能であれば、特に限定は無い。但し好ましくは、導電体層のメッシュ状領域等でメッシュの開口部が成す凹部に、接着時に気泡残留が無く、更により好ましくは、平坦化層を形成する余分な工程や、材料の追加も無しで、光学フィルタを電磁波遮蔽性シートに接着、積層する為には、少なくとも積層時には流動性の接着剤が好ましい。流動性の接着剤の代表例が粘着剤である。また、接着剤でもホットメルト型接着剤等も接着時に流動化するので使用できる。なお、これら粘着剤を含む接着剤は、熱可塑性樹脂でも良いし、熱硬化性や電離放射線硬化性等の各種硬化性樹脂(この場合、電磁波遮蔽性シートと接着後完全硬化させることになる)でも良い。なお、粘着剤としてはアクリル系粘着剤、ゴム系粘着剤等が代表的である。
また、導電体層のメッシュ状領域等のメッシュ面に平坦化層を形成して該メッシュの開口部が成す凹部を充填して平坦化した場合は、必ずしも、積層時に流動性の接着剤層を用いる必要は無い。
[Adhesive layer]
The adhesive layer is not particularly limited as long as it is transparent and can adhere to the conductor layer of the electromagnetic wave shielding sheet. Preferably, however, there is no air bubble remaining in the concave portion formed by the mesh opening in the mesh region of the conductor layer, etc., and even more preferably, there is no extra step for forming the flattening layer and no additional material. In order to adhere and laminate the optical filter to the electromagnetic wave shielding sheet, a fluid adhesive is preferable at least during lamination. A typical example of the fluid adhesive is a pressure-sensitive adhesive. Also, an adhesive or a hot-melt adhesive can be used because it fluidizes during bonding. The adhesive containing these pressure-sensitive adhesives may be a thermoplastic resin, or various curable resins such as thermosetting and ionizing radiation curable (in this case, the adhesive is completely cured after bonding with the electromagnetic wave shielding sheet). But it ’s okay. In addition, as an adhesive, an acrylic adhesive, a rubber adhesive, etc. are typical.
In addition, when a flattening layer is formed on a mesh surface such as a mesh-like region of the conductor layer and the concave portion formed by the opening of the mesh is filled and flattened, a fluid adhesive layer is not necessarily provided at the time of lamination. There is no need to use it.

接着剤層としては、粘着剤、つまり粘着剤層が接着積層が簡便な点等で好ましいが、粘着剤を用いる場合は、接着剤層表面を電磁波遮蔽性シートと積層時まで保護し積層時は剥離する、剥離シートを表面に積層するのが好ましい。剥離シートには、表面を適宜シリコーンや剥離性樹脂等で剥離性とした樹脂フィルムや紙等の公知の剥離シートを適宜使用すれば良い。   As the adhesive layer, a pressure-sensitive adhesive, that is, the pressure-sensitive adhesive layer is preferable in terms of easy adhesion lamination, etc., but when using a pressure-sensitive adhesive, the surface of the adhesive layer is protected until the lamination with the electromagnetic wave shielding sheet. A release sheet that peels off is preferably laminated on the surface. As the release sheet, a known release sheet such as a resin film or paper whose surface is appropriately peeled with silicone or a peelable resin may be appropriately used.

なお、接着剤層は光学フィルタを電磁波遮蔽性シートと積層する直前に、接着剤層形成前状態の未完成光学フィルタと、電磁波遮蔽性シートとをロールラミネータに装填した後に、これらをそのラミネートロールで接触させ接着積層するまでの機上でインラインで該接着剤層を形成することで、所望の光学フィルタを準備しても良い。
もちろん、接着剤層を形成済みの光学フィルタをロールとしてロールラミネータに装填しても良い。
The adhesive layer is loaded immediately after the optical filter is laminated with the electromagnetic wave shielding sheet, after the unfinished optical filter in the state before the adhesive layer is formed, and the electromagnetic wave shielding sheet are loaded on the roll laminator, A desired optical filter may be prepared by forming the adhesive layer in-line on the machine until it is contacted and bonded and laminated.
Of course, an optical filter having an adhesive layer formed thereon may be loaded as a roll on a roll laminator.

《(C)電磁波遮蔽シートの接地用領域を露出させる工程;》
(C)の工程では、光学フィルタとして、一方の面に接着剤層が積層されてなり、光学フィルタの接着剤層側を、上記電磁波遮蔽シートの導電体層側に向けると共に、上記光学フィルタが上記電磁波遮蔽シートにおけるディスプレイの画像表示領域に対峙する部分直上に対峙し、且つ上記光学フィルタの切り抜かれた領域が4周の接地必要箇所に対峙する様に、位置合わせした状態で、上記電磁波遮蔽シートに上記光学フィルタを接着、及び積層し、上記電磁波遮蔽シート4周の接地必要箇所に於いて、導電体層を露出させる工程である。
<< (C) Step of exposing the grounding area of the electromagnetic wave shielding sheet; >>
In the step (C), as an optical filter, an adhesive layer is laminated on one surface, the adhesive layer side of the optical filter is directed to the conductor layer side of the electromagnetic wave shielding sheet, and the optical filter is In the electromagnetic wave shielding sheet, the electromagnetic wave shielding sheet is positioned in such a manner that the electromagnetic wave shielding sheet is located directly above a portion facing the image display area of the display, and is aligned so that the cut-out area of the optical filter faces a grounding-required portion of four rounds. In this step, the optical filter is bonded and laminated on the sheet, and the conductor layer is exposed at a place where the grounding of the electromagnetic wave shielding sheet 4 is necessary.

本発明では、上記光学フィルタは、電磁波遮蔽シートの接地用領域の4周に於ける接地必要箇所に対峙する領域が切り抜かれ、切抜き領域を有するので、該切抜き領域によって、前記接地必要箇所に於いて導電体層を露出させることができる。
なお、電磁波遮蔽性シートと光学フィルタとを、接着及び積層するには、公知のラミネータを使用すると良い。電磁波遮蔽性シート及び光学フィルタは各々ロールとしてロールラミネータに装填すれば、ロールツーロールで、連続帯状シートとしてディスプレイ用複合フィルタを製造することができる。
In the present invention, since the optical filter has a cutout region that is cut out from the grounding required region in the four circumferences of the grounding region of the electromagnetic wave shielding sheet, the cutout region allows the above-mentioned grounding region to be provided at the required grounding point. Thus, the conductor layer can be exposed.
In addition, in order to adhere | attach and laminate | stack an electromagnetic wave shielding sheet and an optical filter, it is good to use a well-known laminator. If the electromagnetic wave shielding sheet and the optical filter are each loaded in a roll laminator as a roll, a composite filter for display can be produced as a continuous belt-like sheet by roll-to-roll.

ここで、1製品単位の断面図で例示する図4で説明すれば、図4(A)は積層前の光学フィルタ20と電磁波遮蔽性シート10を示す。電磁波遮蔽性シート10は透明基材11上の導電体層12がメッシュ状領域101とその4周に接地用領域102を有する。そして、図4(B)に様に、これらの積層後は、接地用領域102の接地必要箇所に対峙する部分の光学フィルタ20は存在せず導電体層12が露出する様に、接着剤層22によって、光学フィルタ20と電磁波遮蔽性シート10が接着積層した、ディスプレイ用複合フィルタ30となる。なお、図4の光学フィルタ20は前述した様に、透明基材シート21の一方の面に接着剤層22が積層され、他方の面に機能発現層23が積層された例である。   Here, if it demonstrates in FIG. 4 illustrated in sectional drawing of 1 product unit, FIG. 4 (A) will show the optical filter 20 and the electromagnetic wave shielding sheet 10 before lamination | stacking. In the electromagnetic wave shielding sheet 10, the conductive layer 12 on the transparent substrate 11 has a mesh region 101 and a grounding region 102 around its circumference. Then, as shown in FIG. 4B, after these layers are stacked, the adhesive layer is exposed so that the portion of the optical filter 20 facing the grounding required portion of the grounding region 102 does not exist and the conductor layer 12 is exposed. 22, the composite filter 30 for display in which the optical filter 20 and the electromagnetic wave shielding sheet 10 are bonded and laminated. 4 is an example in which the adhesive layer 22 is laminated on one surface of the transparent base sheet 21 and the function-expressing layer 23 is laminated on the other surface, as described above.

《(D)枚葉化切断工程;》
(D)の工程では、導電体層が1方向に周的に接続して配列してなる連続帯状シート形態のディスプレイ用複合フィルタを、1台のディスプレイに対応する1単位毎に切断、分離させる工程である。好ましくは、この(D)の工程を、上記(C)工程の後に設ける。
これにより、最終的に製品単位の枚葉状シートのディスプレイ用複合フィルタが得られる。この際、図3で例示する様に、接地用領域102に前述余白103部分が有る場合は、該余白を切断すると良い。
なお、この(D)の工程は、(C)の工程とは別の機械を行っても良いが、同一機械でインラインで連続して行うのが、生産性の点でより好ましい。
なお、この工程に限らず、連続して行うとは、連続帯状シートを連続走行或いは間欠走行させて行うことを意味する。
<< (D) Single wafer cutting process; >>
In the step (D), the composite filter for display in the form of a continuous belt-like sheet in which the conductor layers are circumferentially connected and arranged in one direction is cut and separated for each unit corresponding to one display. It is a process. Preferably, the step (D) is provided after the step (C).
Thereby, the composite filter for display of the sheet-like sheet of a product unit is finally obtained. At this time, as illustrated in FIG. 3, when the margin 103 has the margin 103, the margin may be cut.
In addition, although the process of (D) may be performed by a machine different from the process of (C), it is more preferable from the viewpoint of productivity to perform continuously in-line with the same machine.
In addition, not only this process but performing continuously means performing by making a continuous strip | belt-shaped sheet | seat run continuously or intermittently.

《(A)〜(D)の全工程を含めた製造例の一例》
なお、上記(A)〜(C)乃至は(D)の全工程に対して、好ましい製造方法の一実施例を更にここで挙げれば、ロールラミネータとして、その前半に(切抜き前未完成)光学フィルタに対して切抜き領域を切り抜く切断装置を追加し、更に後半には製品単位の枚葉状シートに切断する切断装置(幅方向の分は前半でも良い)を配置した装置を用いて、このロールラミネータに、(A)で準備する電磁波遮蔽性シートのロールを装填し、また(B)で準備する光学フィルタとしてその(切抜き前未完成)光学フィルタのロールを装填し、これらロールを巻きだして、(切抜き前未完成)光学フィルタは切抜き領域を切り抜く切断装置で切り抜いて完成された光学フィルタにインラインで準備して、(C)の工程としてこの光学フィルタと電磁波遮蔽性シートにラミネートして接着積層後、装置後半で(D)の工程としてインラインで製品単位の枚葉状シートとして完成させる、製造方法である。
<< Example of Production Example Including All Processes (A) to (D) >>
In addition, if one Example of a preferable manufacturing method is further mentioned here with respect to all the processes of said (A)-(C) thru | or (D) here, as a roll laminator, in the first half (unfinished before cutting) optical This roll laminator is used by adding a cutting device that cuts out the cutting area to the filter, and in the second half, a device that has a cutting device that cuts into sheet-like sheets in product units (the first half may be used in the width direction). In (A), the roll of the electromagnetic shielding sheet prepared in (A) is loaded, and the roll of the optical filter (unfinished before cutting) is loaded as the optical filter prepared in (B), and these rolls are unwound, (Incomplete before cutting) The optical filter is prepared in-line to the completed optical filter by cutting with a cutting device that cuts out the cut region. After bonding lamination was laminated on the shield sheet, to complete in-line as a sheet form a sheet product units as a step in the second half of device (D), a manufacturing method.

本発明によるディスプレイ用複合フィルタの製造方法を参考例(額縁状領域無し)で概念的に示す説明図で(A)は平面図、(B)は1台のディスプレイに対応する製品単位で示す断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows notionally the manufacturing method of the composite filter for displays by this invention by a reference example (no frame-shaped area | region) , (A) is a top view, (B) is the cross section shown by the product unit corresponding to one display. Figure. 本発明で用いる電磁波遮蔽性シートの参考(額縁状領域無し)を製品単位となった後の一状態例で示し、(A)は平面図、(B)は断面図。The reference example (the frame-shaped area | region absence) of the electromagnetic wave shielding sheet used by this invention is shown by one state example after becoming a product unit, (A) is a top view, (B) is sectional drawing. 本発明によるディスプレイ用複合フィルタの製造方法の形態例を平面図で概念的に示す説明図で、(A)は連続帯状シートのとき、(B)は1台のディスプレイに対応する製品単位となったとき。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows one form example of the manufacturing method of the composite filter for displays by this invention notionally with a top view, (A) is a continuous strip sheet, (B) is a product unit corresponding to one display, When it became. 本発明で用い得る光学フィルタ、電磁波遮蔽性シート(参考例;額縁状領域無し)、ディスプレイ用複合フィルタの各一例を示す断面図で、(A)は光学フィルタ及び電磁波遮蔽性シート、(B)はディスプレイ用複合フィルタ。Sectional drawing which shows each example of the optical filter which can be used by this invention, an electromagnetic wave shielding sheet (reference example; frame-shaped area | region) , and the composite filter for a display, (A) is an optical filter and an electromagnetic wave shielding sheet, (B) Is a composite filter for display. 従来法での、ディスプレイ用複合フィルタの製造方法を概念的に平面図で例示する説明図。Explanatory drawing which illustrates notionally the manufacturing method of the composite filter for displays in a conventional method with a top view.

符号の説明Explanation of symbols

10 電磁波遮蔽シート
11 透明基材
12 導電体層
20 光学フィルタ
21 透明基材シート
22 接着剤層
23 機能発現層
2c 切抜き領域
30 ディスプレイ用複合フィルタ
3u 製品単位
40 ディスプレイの画像表示領域に対峙する部分
101 メッシュ状領域
102 接地用領域
102a 額縁状領域
103 余白
103a 余白切断部分
104 接地不能領域

DESCRIPTION OF SYMBOLS 10 Electromagnetic shielding sheet 11 Transparent base material 12 Conductor layer 20 Optical filter 21 Transparent base material sheet 22 Adhesive layer 23 Function expression layer 2c Cutout area 30 Display composite filter 3u Product unit 40 Portion which opposes display image display area 101 Mesh-like region 102 Grounding region 102a Frame-like region 103 Margin 103a Margin cut portion 104 Ungroundable region

Claims (2)

電磁波遮蔽シートと光学フィルタとの積層体から成るディスプレイ用複合フィルタの製造方法において、
少なくとも次の(A)、(B)、(C)の各工程を有する、ディスプレイ用複合フィルタの製造方法。
(A)電磁波遮蔽シートを準備する工程;該電磁波遮蔽シートは、厚み方向に於いて、透明基材と、其の一方の面に導電体層が少なくとも積層されて成り、平面内に於いて、該導電体層は、適用されるディスプレイの画像表示領域を全て覆うことが可能なメッシュ状領域と、該メッシュ状領域の4周を囲繞してメッシュを形成した接地用領域と、該接地用領域の周縁に、更に開口部の無い額縁状領域を形成して成る1単位を、1方向に周期的に接続して配列してなる連続帯状シートである。
(B)光学フィルタを準備する工程;該光学フィルタは、一方の面に接着剤層が積層されてなり、上記電磁波遮蔽シートに於けるディスプレイの画像表示領域に対峙する部分の全て、及び該接地用領域の少なくとも一部を被覆することが可能な形状及び寸法を有する連続帯状シートであって、且つ上記電磁波遮蔽シートの接地用領域の4周に於ける接地必要箇所に対峙する領域が切り抜かれて成る。
(C)電磁波遮蔽シートの接地用領域を露出させる工程;上記光学フィルタの接着剤層側を、上記電磁波遮蔽シートの導電体層側に向けると共に、上記光学フィルタが上記電磁波遮蔽シートにおけるディスプレイの画像表示領域に対峙する部分直上に対峙し、且つ上記光学フィルタの切り抜かれた領域が4周の接地必要箇所に対峙する様に、位置合わせした状態で、上記電磁波遮蔽シートに上記光学フィルタを接着、及び積層し、上記電磁波遮蔽シート4周の接地必要箇所に於いて、導電体層を露出させる。
In the manufacturing method of a composite filter for a display comprising a laminate of an electromagnetic wave shielding sheet and an optical filter,
The manufacturing method of the composite filter for a display which has each process of following (A), (B), (C) at least.
(A) A step of preparing an electromagnetic wave shielding sheet; the electromagnetic wave shielding sheet is formed by laminating a transparent substrate and a conductor layer on one surface thereof in the thickness direction, and in a plane. The conductor layer includes a mesh region that can cover the entire image display region of the display to be applied, a grounding region that forms a mesh surrounding four circumferences of the meshed region, and the grounding region. 1 is a continuous belt-like sheet in which one unit formed by forming a frame-like region having no opening on the periphery is periodically connected and arranged in one direction.
(B) a step of preparing an optical filter; the optical filter is formed by laminating an adhesive layer on one surface, and all the portions of the electromagnetic wave shielding sheet facing the image display area of the display, and the grounding A continuous belt-like sheet having a shape and a dimension capable of covering at least a part of the working area, and an area facing a grounding required portion in the four circumferences of the grounding area of the electromagnetic wave shielding sheet is cut out. It consists of
(C) exposing the grounding area of the electromagnetic wave shielding sheet; the adhesive layer side of the optical filter is directed to the conductor layer side of the electromagnetic wave shielding sheet, and the optical filter is an image of the display on the electromagnetic wave shielding sheet Adhering the optical filter to the electromagnetic wave shielding sheet in an aligned state so as to face directly above the part facing the display area and so that the cut-out area of the optical filter faces a grounding required place of 4 rounds, Then, the conductor layer is exposed at the place where the grounding is required around the electromagnetic wave shielding sheet 4.
上記(C)工程の後に更に次の(D)工程を有する、請求項1記載のディスプレイ用複合フィルタの製造方法。
(D)枚葉化切断工程;導電体層が1方向に周期的に接続して配列してなる連続帯状シート形態のディスプレイ用複合フィルタを、1台のディスプレイに対応する1単位毎に切断、分離させる。
The manufacturing method of the composite filter for displays of Claim 1 which has the following (D) process further after the said (C) process.
(D) Single wafer cutting step; cutting a composite filter for display in the form of a continuous belt-like sheet in which conductor layers are periodically connected and arranged in one direction for each unit corresponding to one display; Separate.
JP2005281907A 2005-09-28 2005-09-28 Manufacturing method of composite filter for display Expired - Fee Related JP5011694B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005281907A JP5011694B2 (en) 2005-09-28 2005-09-28 Manufacturing method of composite filter for display
KR1020060094114A KR101239507B1 (en) 2005-09-28 2006-09-27 Method of manufacturing composite filter for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281907A JP5011694B2 (en) 2005-09-28 2005-09-28 Manufacturing method of composite filter for display

Publications (2)

Publication Number Publication Date
JP2007095915A JP2007095915A (en) 2007-04-12
JP5011694B2 true JP5011694B2 (en) 2012-08-29

Family

ID=37981256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281907A Expired - Fee Related JP5011694B2 (en) 2005-09-28 2005-09-28 Manufacturing method of composite filter for display

Country Status (2)

Country Link
JP (1) JP5011694B2 (en)
KR (1) KR101239507B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268508A (en) * 2007-04-19 2008-11-06 Dainippon Printing Co Ltd Filter for display device, method for manufacturing the same, and display device with filter
JP5194616B2 (en) * 2007-07-31 2013-05-08 大日本印刷株式会社 Adhesive composition, sheet-like composite filter for plasma display using the adhesive composition, and plasma display panel display device
JP5178097B2 (en) * 2007-08-30 2013-04-10 藤森工業株式会社 Manufacturing method of optical filter for display and optical filter for display
JP5297612B2 (en) * 2007-08-30 2013-09-25 藤森工業株式会社 Manufacturing method of optical filter for display and optical filter for display
KR100991320B1 (en) 2007-10-18 2010-11-01 삼성코닝정밀소재 주식회사 Filter for display and manufacturing method the same
JP5883565B2 (en) * 2011-02-08 2016-03-15 グンゼ株式会社 Method for manufacturing electromagnetic shielding material
JP5231670B1 (en) * 2011-10-20 2013-07-10 株式会社フジクラ Decorative film for display device and protective panel
WO2013057850A1 (en) * 2011-10-20 2013-04-25 株式会社フジクラ Decorative film for display device, method for producing same, protective panel for display device, and method for producing same
JP6168726B2 (en) * 2012-02-21 2017-07-26 日本信号株式会社 Optical filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231338A (en) * 1998-12-24 2000-08-22 Mitsubishi Chemicals Corp Production of filter for plasma display panel
JP4445858B2 (en) * 2002-08-08 2010-04-07 大日本印刷株式会社 Electromagnetic wave shielding sheet
JP2004117545A (en) * 2002-09-24 2004-04-15 Mitsui Chemicals Inc Method for manufacturing display filter
JP2004206076A (en) * 2002-12-10 2004-07-22 Pioneer Electronic Corp Flat display device
JP4334920B2 (en) * 2003-06-19 2009-09-30 大日本印刷株式会社 Electromagnetic wave shielding sheet, front plate, and display device
JP2005166881A (en) * 2003-12-02 2005-06-23 Victor Co Of Japan Ltd Nitride semiconductor laser element
JP2007080930A (en) * 2005-09-12 2007-03-29 Bridgestone Corp Filter for plasma display panel

Also Published As

Publication number Publication date
JP2007095915A (en) 2007-04-12
KR101239507B1 (en) 2013-03-05
KR20070035995A (en) 2007-04-02

Similar Documents

Publication Publication Date Title
JP5011694B2 (en) Manufacturing method of composite filter for display
JP4288235B2 (en) Electromagnetic wave shielding sheet
JP5308782B2 (en) Method for producing frequency selective electromagnetic shielding material, and electromagnetic wave absorber using the same
US20070042654A1 (en) Electromagnetic wave shielding sheet
US20150301659A1 (en) Touch panel member and manufacturing method therefor
JP2002116700A (en) Method of forming electrode part on inner periphery of translucent electromagnetic wave shielding plate and translucent electromagnetic wave shielding plate obtained by this method
WO2004093513A1 (en) Electromagnetic shielding sheet, front plate for display, and method for producing electromagnetic shielding sheet
JP2007324524A (en) Composite filter
JP2007096111A (en) Composite filter for display and its manufacturing method
JP2008311416A (en) Manufacturing method of electromagnetic wave shielding mesh using metal transfer foil, and electromagnetic wave shielding mesh
TWI272893B (en) Electromagnetic shielding sheet, front plate and display
JP5238370B2 (en) Front plate for display and method for producing laminated film for front plate
JP2007048789A (en) Method of manufacturing composite filter for display
JP2007266239A (en) Method of manufacturing sheet-like composite filter for plasma display and sheet-like composite filter for plasma display
WO2010082514A1 (en) Conductive member for leading out earth electrode of electromagnetic shielding front filter, structure using same, and display
CN101006543A (en) PDP filter and manufacturing method thereof using a fully etched electromagnetic interference film
JPWO2006123612A1 (en) Display panel and film therefor
JP2979020B2 (en) EMI shielding material and manufacturing method thereof
JP4249426B2 (en) Electromagnetic wave shielding member
JP2006128421A (en) Electromagnetic wave shielding filter with adhesive agent layer
JP2006119345A (en) Near infrared absorbing transfer sheet and method of manufacturing composite electromagnetic wave shield filter using the same
JP5157218B2 (en) Composite filter for display
JP2008209486A (en) Composite filter for display
JP2000315889A (en) Electromagnetic wave shielding sheet for game machine, electromagnetic wave shielding material for game machine, and manufacture of the electromagnetic wave shielding material
JP2008292745A (en) Front glass filter for plasma display and method for manufacturing the filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees