JP5008855B2 - Method for producing unidirectional electrical steel sheet with excellent magnetic properties - Google Patents
Method for producing unidirectional electrical steel sheet with excellent magnetic properties Download PDFInfo
- Publication number
- JP5008855B2 JP5008855B2 JP2005311528A JP2005311528A JP5008855B2 JP 5008855 B2 JP5008855 B2 JP 5008855B2 JP 2005311528 A JP2005311528 A JP 2005311528A JP 2005311528 A JP2005311528 A JP 2005311528A JP 5008855 B2 JP5008855 B2 JP 5008855B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- laser beam
- electrical steel
- unidirectional electrical
- diffuse reflectance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、一方向性電磁鋼板にレーザビームを照射することにより磁区制御した、交流励磁したときの鉄損特性の優れた一方向性電磁鋼板の製造方法に関する。 The present invention has been domain control by applying a laser beam to the grain-oriented electrical steel sheet excellent method for producing a grain-oriented electrical steel sheet of the iron loss characteristics when AC excitation.
通常の一方向電磁鋼板の表面皮膜は、最終仕上げ焼鈍中に形成されたグラス皮膜(フォルステライト系皮膜)とその上に処理される絶縁皮膜とからなる。この時、グラス皮膜は地鉄を浸食しアンカーのように形成されるので、地鉄(鋼板)表面の凹凸は大きくなり、その凹凸のばらつきも大きく不規則な状態である。 The surface film of a normal unidirectional electrical steel sheet is composed of a glass film (forsterite film) formed during final finish annealing and an insulating film processed thereon. At this time, since the glass coating is formed like an anchor by eroding the base iron, the unevenness of the surface of the base iron (steel plate) becomes large, and the unevenness of the unevenness is large and irregular.
絶縁皮膜として良好な材質の例としては、特許文献6に開示されたものがある。 An example of a good material for the insulating film is disclosed in Patent Document 6.
ところで、一定の印加磁場で高い磁束密度を持つ、例えば磁場800A/mで磁化されたときに1.93T程度の高磁束密度を生ずる一方向性電磁鋼板を実現するため、地鉄表面の粗度を極力小さくした一方向性電磁鋼板がある。その例として、酸化物形成抑制剤を塗布してグラス皮膜を形成しないグラスレス材や、形成されたグラス皮膜を酸洗で除去した後に化学研磨や電解研磨した鏡面材がある。両方の材料ともその上に絶縁皮膜を施して用いる。 By the way, in order to realize a unidirectional electrical steel sheet that has a high magnetic flux density with a constant applied magnetic field, for example, produces a high magnetic flux density of about 1.93 T when magnetized at a magnetic field of 800 A / m, There are unidirectional electrical steel sheets made as small as possible. Examples thereof include a glassless material that does not form a glass film by applying an oxide formation inhibitor, and a mirror surface material that is chemically polished or electropolished after the formed glass film is removed by pickling. Both materials are used with an insulating film on them.
省エネルギーの観点から、一方向性電磁鋼板の鉄損を低減することが要望されている。そのために、特許文献1には一方向性電磁鋼板の製造方法として、YAGレーザのレーザビームを照射することにより圧延方向にほぼ垂直な線状で、圧延方向に周期的な歪みを導入し、鉄損を低減する方法が開示されている。レーザ磁区制御と呼ばれるこの方法の原理は、レーザビームを一方向性電磁鋼板の表面に照射、走査して、グラス皮膜及び絶縁皮膜、又は絶縁皮膜のみからなる表面皮膜を介して表面歪みを鋼板に導入することにより、一方向性電磁鋼板内の180°磁壁間隔が小さくして(磁区の細分化)、鉄損の一つ異常渦電流損が低減されるというものである。 From the viewpoint of energy saving, it is desired to reduce the iron loss of the unidirectional electrical steel sheet. Therefore, in Patent Document 1, as a method of manufacturing a unidirectional electrical steel sheet, a YAG laser beam is irradiated to form a line that is substantially perpendicular to the rolling direction and introduces periodic strain in the rolling direction. A method for reducing losses is disclosed. The principle of this method called laser magnetic domain control is to irradiate and scan the surface of a unidirectional electrical steel sheet with a laser beam, and to apply surface distortion to the steel sheet through a glass film and an insulating film or a surface film consisting only of an insulating film. By introducing this, the 180 ° domain wall interval in the unidirectional electrical steel sheet is reduced (magnetization of magnetic domains), and one abnormal eddy current loss of iron loss is reduced.
ところで、絶縁皮膜に関しては、絶縁性に加え、耐食性、張力付与性、すべり性、密着性、および耐焼鈍性の向上を目的として、従来から研究,開発が進められてきた。絶縁皮膜には、特許文献2、3、4に開示されているものがある。これらの絶縁皮膜は、YAGレーザやファイバレーザに代表される波長1μm帯のレーザビームに対しては透明で、ほぼ透過率100%であり、かつグラス皮膜(フォルステライト系皮膜)もほぼ透明なので、照射したレーザビームの殆どが地鉄に到達する。この時、グラス皮膜付きの電磁鋼板の場合、地鉄表面の凹凸、粗度が大きく、且つそれらのばらつきもあるので、鋼板の位置によって地鉄表面近傍に不規則な大きさの歪が導入されて、鉄損改善の度合いが場所によりばらついて、不安定となる問題があった。 By the way, research and development have been made on insulating films for the purpose of improving corrosion resistance, tension imparting property, slipping property, adhesion, and annealing resistance in addition to insulating properties. Some insulating films are disclosed in Patent Documents 2, 3, and 4. These insulating films are transparent to laser beams with a wavelength of 1 μm, typified by YAG lasers and fiber lasers, have almost 100% transmittance, and glass films (forsterite films) are also almost transparent. Most of the irradiated laser beam reaches the railway. At this time, in the case of an electromagnetic steel sheet with a glass film, irregularities and roughness on the surface of the ground iron are large, and there are variations in them, so irregular strains are introduced near the surface of the ground iron depending on the position of the steel sheet. As a result, the degree of iron loss improvement varies from place to place, resulting in instability.
特に近年、波長1μm帯で集光特性の極めて優れたファイバレーザの照射による磁区制御法が本発明者らによって開発されており、ファイバレーザのビームの集光スポットを0.1mm以下の値まで極小化することで、優れた鉄損特性を有する一方向性電磁鋼板を実現している(特許文献5)。レーザビームの集光スポットの極小化に伴い、地鉄表面粗度や凹凸の影響を受けやすくなり、鉄損がばらつく問題があった。一方、地鉄粗度の小さいグラスレス材や鏡面材の場合は、磁区制御による安定な鉄損改善が期待できる。しかしながら、地鉄の反射率が非常に高いため、レーザビームが吸収されにくく、磁区細分化効果を生み出す十分な歪の導入するには強力なレーザビームが必要であり、鉄損の低減が得にくいという問題があった。 In particular, in recent years, the inventors have developed a magnetic domain control method by irradiating a fiber laser with excellent light condensing characteristics at a wavelength of 1 μm, and minimizing the converging spot of the fiber laser beam to a value of 0.1 mm or less. Thus, a unidirectional electrical steel sheet having excellent iron loss characteristics is realized (Patent Document 5). Along with the minimization of the focused spot of the laser beam, there has been a problem that the iron loss tends to be affected by the surface roughness of the iron core and unevenness. On the other hand, in the case of a glassless material or a mirror surface material with a small roughness of the ground iron, stable iron loss improvement by magnetic domain control can be expected. However, since the reflectivity of the ground iron is very high, the laser beam is not easily absorbed, and a powerful laser beam is required to introduce sufficient strain to produce the magnetic domain refinement effect, and it is difficult to reduce iron loss. There was a problem.
本発明の課題は、集光特性の優れたレーザを用いたレーザ磁区制御法による一方向性電磁鋼板の鉄損改善において、地鉄表面粗度に関係なく、安定的に鉄損特性の優れた一方向性電磁鋼板が得られる製造方法を提供することである。 The object of the present invention is to improve the iron loss of a unidirectional electrical steel sheet by the laser magnetic domain control method using a laser with excellent light converging characteristics. It is providing the manufacturing method from which a unidirectional electrical steel sheet is obtained .
本発明者らは、レーザビームを照射することで磁区制御を施した低鉄損一方向性電磁鋼板について効果的なレーザビーム照射を鋭意研究の結果、新たに拡散反射率という指標に着目した。すなわち、拡散反射率とは、レーザビームを被測定表面に入射させたとき、当該表面による散乱光を半球に渡って積算した値と入射ビーム強度との比で定義される。 As a result of earnest research on effective laser beam irradiation for a low iron loss unidirectional electrical steel sheet that has been subjected to magnetic domain control by irradiating a laser beam, the present inventors have focused attention on a new index called diffuse reflectance. That is, the diffuse reflectance is defined by the ratio of the value obtained by integrating the scattered light from the surface over the hemisphere when the laser beam is incident on the surface to be measured and the incident beam intensity.
なお、本発明で拡散反射率に着目したのは、粗度を有する鋼板表面の実効的吸収率を正確に精度よく定量化できるためである。一般に行われている反射率の測定は、入射光に対する正反射光のみを測定する。しかし、この方法は、測定対象物の表面が鏡面状態においてのみ有効で、電磁鋼板のような測定対象物の表面に粗度を有する場合、反射光は正反射以外にも散乱してしまい、過小評価となり正確に定量化できない。積分球による拡散反射率測定では、散乱光を含めて全ての反射光を捕捉できるので、正確な反射率を得ることができる。 The reason why the present invention focuses on the diffuse reflectance is that the effective absorptance on the surface of the steel sheet having roughness can be quantified accurately and accurately. In general, the reflectance is measured by measuring only regular reflection light with respect to incident light. However, this method is effective only when the surface of the measurement object is in a mirror state, and when the surface of the measurement object such as an electromagnetic steel sheet has roughness, the reflected light is scattered in addition to regular reflection, and is too small. It becomes an evaluation and cannot be quantified accurately. In diffuse reflectance measurement using an integrating sphere, all reflected light including scattered light can be captured, so that accurate reflectance can be obtained.
拡散反射率の測定には、図5(a),(b)に示す積分球11を用いた。積分球はその内面に金が蒸着されほぼ完全拡散反射が得られる。図中の入射口から数mWのレーザビーム12を入射し、サンプル13に約45度の角度で照射する。反射光は表面皮膜や地鉄に一部吸収され、残りは反射して積分球の内面を、拡散反射を繰り返し均一に拡散される。その均一に拡散されたレーザパワーの一部をフォトディテクタセンサー14で検出し、その検出量で拡散反射率を求めるものである。なお、拡散均一場を正確に検出するためにフォトディテクタの位置は、正反射位置近傍以外とし、センサー前面数cmには金蒸着した遮蔽板を取り付ける。今回の測定では、レーザビームを入射しない時の検出量を0%、多層膜の反射ミラーにレーザビームを入射した時の検出量を100%として、各種皮膜塗布サンプルの拡散反射率を定量化した。 For the measurement of the diffuse reflectance, an integrating sphere 11 shown in FIGS. 5A and 5B was used. The integrating sphere is almost completely diffusely reflected by depositing gold on its inner surface. A laser beam 12 of several mW is incident from the entrance in the figure, and the sample 13 is irradiated at an angle of about 45 degrees. Part of the reflected light is absorbed by the surface coating and the steel, and the rest is reflected and diffused uniformly on the inner surface of the integrating sphere by repeating diffuse reflection. A part of the uniformly diffused laser power is detected by the photodetector sensor 14, and the diffuse reflectance is obtained by the detected amount. In order to accurately detect a uniform diffusion field, the position of the photo detector is not in the vicinity of the regular reflection position, and a gold-deposited shielding plate is attached to several cm in front of the sensor. In this measurement, the diffuse reflectance of various coating samples was quantified, assuming that the detection amount when the laser beam was not incident was 0%, and the detection amount when the laser beam was incident on the multilayer mirror was 100%. .
レーザビームの波長1μm帯近傍に対して、吸収率が一定以上に高くなるような所定の拡散反射率を有する絶縁皮膜を施すことによって、地鉄の表面粗度に関係なく磁区細分化の要因となる歪を安定かつ効率的に導入することができることにより、従来よりも安定して磁気特性の優れた一方向性電磁鋼板を実現できることを見出した。すなわち、本発明の要旨は次のとおりである。 By applying an insulating film with a predetermined diffuse reflectance such that the absorptance is higher than a certain value in the vicinity of the 1 μm wavelength band of the laser beam, it becomes a factor of magnetic domain subdivision regardless of the surface roughness of the ground iron. It has been found that a unidirectional electrical steel sheet having excellent magnetic properties can be realized more stably than in the past by stably and efficiently introducing the strain. That is, the gist of the present invention is as follows.
本発明の一方向性電磁鋼板の製造方法は、レーザビームを照射することにより磁区制御を行う、表面皮膜を有する一方向性電磁鋼板の製造方法であって、前記レーザビームは、その波長が1μmから2.1μmの間にあり、且つファイバレーザにより発生されたものであり、内面に金が蒸着された積分球の中に入れられた一方向性電磁鋼板に前記レーザビームを照射して測定される拡散反射率が30%以下、10%以上となるように前記表面皮膜を形成することを特徴とする。 A method for producing a unidirectional electrical steel sheet according to the present invention is a method for producing a unidirectional electrical steel sheet having a surface coating, in which a magnetic domain is controlled by irradiating a laser beam, wherein the laser beam has a wavelength of 1 μm. Measured by irradiating the laser beam to a unidirectional electrical steel sheet placed in an integrating sphere with gold deposited on the inner surface, and is generated by a fiber laser. The surface coating is formed so that the diffuse reflectance is 30% or less and 10 % or more.
また、本発明の一方向性電磁鋼板の製造方法は、上記表面皮膜は、グラス皮膜を有する鋼板表面に、リン酸塩と水酸化第二鉄とを含むコロイダル溶液とからなる処理剤を塗付し、焼付処理して形成することを特徴とする。 The manufacturing method of an oriented electrical steel sheet of the present invention, the surface coating, the surface of the steel sheet having a glass coating film, with coating a treating agent comprising a colloidal solution containing a phosphoric acid salt and the ferric hydroxide And is formed by baking .
本発明により、地鉄粗度の大きいグラス皮膜材では安定かつ効率的な磁区制御が可能となり、地鉄粗度の小さいグラスレス材、鏡面材においては、工業的に耐えうるコスト、生産性を実現しつつ、両者ともに優れた鉄損特性を有する一方向性電磁鋼板を製造することができる。そして、本発明の一方向性電磁鋼板を用いることで、高効率で小型のトランスが製造可能となる。 According to the present invention, stable and efficient magnetic domain control is possible with a glass coating material having a large ground iron roughness, and industrially cost-effective and productivity can be achieved with a glassless material and a mirror surface material having a small ground iron roughness. It is possible to produce a unidirectional electrical steel sheet having both excellent iron loss characteristics while realizing it. By using the unidirectional electrical steel sheet of the present invention, a highly efficient and small transformer can be manufactured.
本発明者らは、一方向性電磁鋼板の表面に、圧延方向にほぼ垂直で、一定間隔で線状の歪みをレーザビームにより導入して鉄損を改善する方法において、拡散反射率および絶縁皮膜の成分について着目して、安定且つ工業的に実現可能な、鉄損特性が均一で優れた一方向性電磁鋼板およびその製造方法を見出した。 In the method of improving iron loss by introducing a linear strain with a laser beam at a regular interval substantially perpendicular to the rolling direction on the surface of a unidirectional electrical steel sheet, In particular, the present inventors have found a unidirectional electrical steel sheet having a uniform and excellent iron loss characteristic and a method for producing the same, which can be stably and industrially realized.
以下、図を用いて、本発明の一方向性電磁鋼板およびその製造方法について、実施の形態を詳細に説明する。
(素材)
本発明者らは、最終仕上げ焼鈍を行った鋼板地鉄表面にグラス皮膜を有する板厚0.23mmの方向性電磁鋼板コイルからサンプルを切り出し、水洗後850℃×4時間の歪み取り焼鈍を行ったグラス材とこのグラス材を酸洗によりグラス皮膜を除去した後、電解研磨により粗度を改善した鏡面材を準備した。この時点で磁束密度B8と鉄損W17/50を測定した。ここで、B8は800A/mで磁化されたときに生ずる磁束密度である。W17/50は周波数50Hz、最大磁束密度1.7Tのときの鉄損である。磁束密度B8=1.925Tにおける鉄損W17/50はグラス材0.90 W/kg、鏡面材0.85 W/kgであった。
(皮膜作成)
表1に示すように水酸化第二鉄等の添加条件を変更して添加した処理剤を、コーテイングロールを用いて乾燥、焼き付け後の質量で5g/m2になるよう塗布し、850℃×30秒間の焼き付け処理を行った。各種絶縁皮膜材料について、積分球を用いた拡散反射率の測定を行い、さらにレーザビームを照射し、鉄損特性を調査した。
図2は、本実施の形態で用いたレーザ照射装置の一組の例である。レーザ発振器3で発生したレーザビームを、走査光学系4,5,6で一方向性電磁鋼板1上を走査する。磁区細分化を行うレーザビーム照射条件は種々考えられるが、工業化を念頭に100Wレーザで、照射間隔4mm、ビーム走査速度20m/sとした。平均照射エネルギー密度Ua(mJ/mm2)で表わすと、1.25となる。なお、Ua(mJ/mm2)は、鋼板長手方向の照射間隔PL(mm)、ビーム走査速度Vc(m/s)、レーザパワーをP(W)として、Ua(mJ/mm2)=P/(Vc×PL)で定義される。レーザビームの集光径は、圧延方向径dlを60μm、ビーム走査方向径を400μmにして行った。レーザ発振器としては種々考えられるが、集光特性の優れたファイバレーザを使用した。レーザ発振させるすなわち、誘導放出を起こさせるのに希土類金属をファイバに添加する必要がある。添加する希土類金属により発振波長が異なり、例えばイッテリビウム(Yb)は波長1.0から1.1μm、エルビウム(Er)は1.2から1.5μm、ツリウム(Tm)は1.8から2.1μmとなる。本実施の形態では、波長1.08μmであるイッテリビウムファイバレーザを使用したが、波長1.0から2.1μmの範囲のファイバレーザであれば同様の集光特性が得られる。
(拡散反射率と鉄損の相関)
表1に示した条件で作成したサンプルの拡散反射率及び鉄損の測定結果を、表2にグラス材、表3に鏡面材についてそれぞれ示す。その結果、水酸化第二鉄を添加していない場合、材料に含まれる元素や添加物の含有量にほとんど関係なく、拡散反射率がグラス材では30から32%、グラスレス鏡面材では72から75%であり、レーザビーム照射後の鉄損は各実施例サンプル間でほぼ同等であった。グラス材とグラスレス鏡面材に拡散反射率の違いが現れるのは、粗度が影響しており、粗度があると等価的に表面積が増えるため、拡散反射率は小さくなる。
(Material)
The present inventors cut out a sample from a 0.23 mm-thick directional electrical steel sheet coil having a glass film on the surface of the steel sheet base iron that had been subjected to final finish annealing, and performed strain relief annealing at 850 ° C. for 4 hours after washing with water. After removing the glass film by pickling the glass material and this glass material, a mirror surface material with improved roughness was prepared by electrolytic polishing. At this time, magnetic flux density B8 and iron loss W 17/50 were measured. Here, B8 is a magnetic flux density generated when magnetized at 800 A / m. W 17/50 is the iron loss when the frequency is 50 Hz and the maximum magnetic flux density is 1.7 T. The iron loss W 17/50 at the magnetic flux density B8 = 1.925T was 0.90 W / kg for the glass material and 0.85 W / kg for the mirror surface material.
(Film creation)
As shown in Table 1, the treatment agent added by changing the addition conditions such as ferric hydroxide was applied using a coating roll so that the mass after drying and baking was 5 g / m 2 , and 850 ° C. × A baking process for 30 seconds was performed. Various insulation film materials were measured for diffuse reflectance using an integrating sphere, and further irradiated with a laser beam to investigate iron loss characteristics.
FIG. 2 is an example of a set of laser irradiation apparatuses used in this embodiment. The laser beam generated by the laser oscillator 3 is scanned on the unidirectional electrical steel sheet 1 by the scanning optical systems 4, 5 and 6. There are various laser beam irradiation conditions for magnetic domain subdivision, but with a 100W laser in mind for industrialization, the irradiation interval was 4 mm and the beam scanning speed was 20 m / s. The average irradiation energy density Ua (mJ / mm 2 ) is 1.25. Ua (mJ / mm 2 ) is Ua (mJ / mm 2 ) = P, where irradiation length PL (mm) in the longitudinal direction of the steel sheet, beam scanning speed Vc (m / s), and laser power P (W). / (Vc × PL). The condensing diameter of the laser beam was set such that the rolling direction diameter dl was 60 μm and the beam scanning direction diameter was 400 μm. Although various laser oscillators are conceivable, a fiber laser having excellent condensing characteristics was used. Rare earth metals need to be added to the fiber for lasing, i.e., stimulated emission. The oscillation wavelength varies depending on the rare earth metal to be added. For example, ytterbium (Yb) has a wavelength of 1.0 to 1.1 μm, erbium (Er) has a wavelength of 1.2 to 1.5 μm, and thulium (Tm) has a wavelength of 1.8 to 2.1 μm. It becomes. In the present embodiment, an ytterbium fiber laser having a wavelength of 1.08 μm is used. However, a similar condensing characteristic can be obtained if the fiber laser has a wavelength in the range of 1.0 to 2.1 μm.
(Correlation between diffuse reflectance and iron loss)
Table 2 shows the measurement results of diffuse reflectance and iron loss of the samples prepared under the conditions shown in Table 1, Table 2 shows the glass material, and Table 3 shows the specular material. As a result, when ferric hydroxide is not added, the diffuse reflectance is from 30 to 32% for glass materials and from 72 for glassless mirror materials, regardless of the content of elements and additives contained in the material. It was 75%, and the iron loss after laser beam irradiation was almost the same among the samples of each example. The difference in diffuse reflectance between the glass material and the glassless mirror surface material is caused by the roughness, and if the roughness is present, the surface area is equivalently increased, so that the diffuse reflectance is reduced.
一方、水酸化第二鉄を添加した場合、添加物の量が多くなるにしたがい、拡散反射率が小さくなり、それに応じて鉄損も小さくなる。この要因として、水酸化第二鉄を添加した場合に、鋼板表面が焼き付け処理後に黒色に着色されることが挙げられる。すなわち、拡散反射率を下がり、レーザビームを効率よく吸収した結果、磁区細分化に必要な歪み導入が効率的に行われ、鉄損が下がったと考えられる。 On the other hand, when ferric hydroxide is added, the diffuse reflectance decreases as the amount of the additive increases, and the iron loss decreases accordingly. As this factor, when ferric hydroxide is added, the steel sheet surface is colored black after baking. That is, as a result of lowering the diffuse reflectance and efficiently absorbing the laser beam, it is considered that the strain necessary for magnetic domain subdivision was efficiently introduced and the iron loss was reduced.
本発明者らは、さらに添加する水酸化第二鉄の量と拡散反射率、鉄損の関係を詳細に検討した。図3に水酸化第二鉄の燐酸塩1モル当りのモル数と拡散反射率の関係を、図4に水酸化第二鉄の燐酸塩1モル当りのモル数と鉄損の関係を示す。図中内の点線は比較例である。図3の結果から、水酸化第二鉄のモル数が増えると、拡散反射率は小さくなり、0.1モルになると、グラス材と鏡面グラスレス材の拡散反射率が30%と同等になる。これは、絶縁皮膜でのレーザビームの吸収が支配的となり、地鉄の状態やグラス皮膜の粗度の影響がなくなったためである。さらにモル数が増えると、拡散反射率は下がり続ける。
図4の結果も同様に、水酸化第二鉄のモル数が増えると、鉄損改善は大きく、0.1モル以上になると、改善の割合は小さくなり、ほぼ飽和する。拡散反射率が小さくなることで、レーザビームの吸収は効率的に歪み導入すなわち磁区細分化に寄与するものと推測していたが、異なることが分かった。推測の域は出ないが、これを考察すると、拡散反射率が20%までは、レーザビームエネルギーは皮膜および地鉄両方で吸収されているが、20%以下の領域になると、レーザエネルギービームはほぼ皮膜のみで吸収されるものと考えられる。磁区細分化に必要な歪みは地鉄へ導入しなければならないことを考慮すると、レーザビームは地鉄に直接作用したほうが効率がよいのであるが、地鉄の拡散反射率が高いので限界がある。
一方、皮膜の拡散反射率を小さくすることは、レーザビームが皮膜を介して間接的に地鉄に歪みを導入することになる。この場合、レーザビームが地鉄に直接作用する場合に比較し効率は下がる。したがって皮膜の拡散反射率が例えば20%より低下しても地鉄への歪み導入の観点では、その効果が飽和してしまう。この結果、鉄損の改善はある点でバランスして、飽和するものと考えられる。このように、水酸化第二鉄の燐酸塩1モル当りのモル数を0.1以上にすることにより、優れた鉄損特性を得ることができる。
The present inventors have studied in detail the relationship between the amount of ferric hydroxide added, the diffuse reflectance, and the iron loss. FIG. 3 shows the relationship between the number of moles per mole of ferric hydroxide phosphate and the diffuse reflectance, and FIG. 4 shows the relationship between the number of moles per mole of ferric hydroxide phosphate and the iron loss. The dotted line in the figure is a comparative example. From the result of FIG. 3, when the number of moles of ferric hydroxide increases, the diffuse reflectance decreases, and when it reaches 0.1 mole, the diffuse reflectance of the glass material and the specular glassless material becomes equal to 30%. . This is because the absorption of the laser beam by the insulating film becomes dominant, and the influence of the state of the ground iron and the roughness of the glass film is eliminated. As the number of moles increases further, the diffuse reflectance continues to decrease.
Similarly, in the result of FIG. 4, when the number of moles of ferric hydroxide is increased, the iron loss improvement is large. When the number of moles is 0.1 mol or more, the improvement rate is small and almost saturated. Although it was assumed that the absorption of the laser beam efficiently contributes to the introduction of strain, that is, the magnetic domain fragmentation, due to the reduction of the diffuse reflectance, it was found that it is different. Although there is no speculation range, considering this, when the diffuse reflectance is up to 20%, the laser beam energy is absorbed by both the coating and the ground iron. It is thought that it is absorbed almost only by the film. Considering that the strain required for magnetic domain subdivision must be introduced into the iron, the laser beam is more efficient if it acts directly on the iron, but there is a limit due to the high diffuse reflectance of the iron .
On the other hand, to reduce the diffuse reflectance of the coating, the laser beam indirectly introduces distortion into the ground iron through the coating. In this case, the efficiency is lowered as compared with the case where the laser beam directly acts on the steel. Therefore, even if the diffuse reflectance of the film is lower than, for example, 20%, the effect is saturated from the viewpoint of introducing strain into the ground iron. As a result, the improvement of iron loss is considered to be balanced and saturated at a certain point. Thus, by setting the number of moles per mole of ferric hydroxide phosphate to 0.1 or more, excellent iron loss characteristics can be obtained.
なお、水酸化第二鉄が、2 . 1 0 モル% 超の場合には、特許文献6にも開示されているように、皮膜張力の若干の低下が生じる。また、上記の実施例においては、絶縁皮膜の付着量は5g/m2とした。本発明の皮膜材の場合には、2〜10g/m2であれば皮膜性能の優れた方向性電磁鋼板が得られる。 In addition, ferric hydroxide is 2. When it exceeds 10 mol%, as disclosed in Patent Document 6, there is a slight decrease in film tension. Further, in the above example, the amount of the insulating film deposited was 5 g / m 2 . In the case of the film material of the present invention, a grain-oriented electrical steel sheet having excellent film performance can be obtained at 2 to 10 g / m 2 .
図1に拡散反射率とレーザビーム照射後の鉄損の関係を示す。拡散反射率を30%以下にすることにより、優れた鉄損特性を得ることができる。 FIG. 1 shows the relationship between diffuse reflectance and iron loss after laser beam irradiation. By setting the diffuse reflectance to 30% or less, excellent iron loss characteristics can be obtained.
絶縁皮膜により拡散反射率を小さくすることで鉄損改善を向上させる効果を示したが、さらに、今回の検討でグラス材において鉄損の安定性の向上に効果があることが判明した。図6に水酸化第二鉄を0.5モル添加した場合の磁束密度B8とレーザビーム照射前後の鉄損の分布を示す。また、図7に比較例について示す。図6、7を比較することにより、レーザビーム照射後のばらつきに明確な違いがあり、ばらつきを表すR2乗値で約0.1以上の差があり、本発明例は1に近い値である。これは、レーザビームの吸収が主に絶縁皮膜で行われ、地鉄の粗度の影響がなくなり、磁区制御に必要なひずみの導入が均一に行われた結果と考えられる。 Although the effect of improving the iron loss by reducing the diffuse reflectance by the insulating film has been shown, it has been found that this study has the effect of improving the stability of the iron loss in the glass material. FIG. 6 shows the magnetic flux density B8 and the iron loss distribution before and after laser beam irradiation when 0.5 mol of ferric hydroxide is added. FIG. 7 shows a comparative example. By comparing FIGS. 6 and 7, there is a clear difference in the variation after laser beam irradiation, there is a difference of about 0.1 or more in the R-square value representing the variation, and the example of the present invention is a value close to 1. This is considered to be the result of the laser beam being absorbed mainly by the insulating film, the influence of the roughness of the ground iron is eliminated, and the strain necessary for magnetic domain control is uniformly introduced.
また、今回の実施の形態の水酸化第二鉄を0.5モル添加した絶縁皮膜の焼付け温度に対する拡散反射率の測定結果を図8に示す。これより、450℃以上の焼付け温度が必要である。これは、450℃以下の場合、皮膜の色が黄色ないし赤茶色であるためレーザビーム波長に対して、拡散反射率が高くなるためである。 Moreover, the measurement result of the diffuse reflectance with respect to the baking temperature of the insulating film which added 0.5 mol of ferric hydroxide of this embodiment to this is shown in FIG. Therefore, a baking temperature of 450 ° C. or higher is necessary. This is because, when the temperature is 450 ° C. or lower, the color of the film is yellow or reddish brown, so that the diffuse reflectance is high with respect to the laser beam wavelength.
本発明によれば、拡散反射率を30%以下にすることにより、優れた鉄損特性をもつ一方向性電磁鋼板を得ることができるとともに、その安定性も得られ、歩留まり向上につながる。特に、これまでレーザ設備のコストが高いため工業化が困難であったグラスレス材や鏡面材に関しては、既存のグラス材の設備で飛躍的に優れた鉄損特性をもつ一方向性電磁鋼板を得ることができることから、本発明の工業的意義は大きい。 According to the present invention, by setting the diffuse reflectance to 30% or less, a unidirectional electrical steel sheet having excellent iron loss characteristics can be obtained, and the stability thereof can be obtained, leading to an improvement in yield. Especially for glassless materials and mirror materials that have been difficult to industrialize due to the high cost of laser equipment so far, we can obtain unidirectional electrical steel sheets with dramatically improved iron loss characteristics with existing glass equipment. Therefore, the industrial significance of the present invention is great.
1 電磁鋼板
2 レーザビーム照射痕
3 レーザ装置
4 走査ミラー、ポリゴンミラー
5 集光レンズ、fθレンズ
6 円柱レンズ、組円柱レンズ
11 積分球
12 レーザビーム
13 サンプル
14 フォロディテクタ
LB レーザビーム
P レーザパワー
Vc スキャン速度
PL 圧延方向照射ピッチ
dl ビーム集光の圧延方向径
dc ビーム集光のスキャン方向径
DESCRIPTION OF SYMBOLS 1 Magnetic steel plate 2 Laser beam irradiation trace 3 Laser apparatus 4 Scanning mirror, polygon mirror 5 Condensing lens, f (theta) lens 6 Cylindrical lens, grouped cylindrical lens 11 Integrating sphere 12 Laser beam 13 Sample 14 Follow detector
LB Laser beam P Laser power Vc Scan speed PL Rolling direction irradiation pitch dl Rolling direction diameter of beam focusing dc Scanning diameter of beam focusing
Claims (2)
前記レーザビームは、その波長が1μmから2.1μmの間にあり、且つファイバレーザにより発生されたものであり、
内面に金が蒸着された積分球の中に入れられた一方向性電磁鋼板に前記レーザビームを照射して測定される拡散反射率が30%以下、10%以上となるように前記表面皮膜を形成することを特徴とする一方向性電磁鋼板の製造方法。 A method for producing a unidirectional electrical steel sheet having a surface coating, which performs magnetic domain control by irradiating a laser beam,
The laser beam has a wavelength between 1 μm and 2.1 μm and is generated by a fiber laser,
The surface coating so that the diffuse reflectance measured by irradiating the laser beam onto a unidirectional electrical steel sheet placed in an integrating sphere with gold deposited on the inner surface is 30% or less, 10 % or more. A method for producing a unidirectional electrical steel sheet, characterized in that is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005311528A JP5008855B2 (en) | 2005-10-26 | 2005-10-26 | Method for producing unidirectional electrical steel sheet with excellent magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005311528A JP5008855B2 (en) | 2005-10-26 | 2005-10-26 | Method for producing unidirectional electrical steel sheet with excellent magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007119821A JP2007119821A (en) | 2007-05-17 |
JP5008855B2 true JP5008855B2 (en) | 2012-08-22 |
Family
ID=38143965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005311528A Active JP5008855B2 (en) | 2005-10-26 | 2005-10-26 | Method for producing unidirectional electrical steel sheet with excellent magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5008855B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8277574B2 (en) | 2007-12-12 | 2012-10-02 | Nippon Steel Corporation | Method for manufacturing grain-oriented electromagnetic steel sheet whose magnetic domains are controlled by laser beam irradiation |
KR101389647B1 (en) * | 2010-04-01 | 2014-04-30 | 신닛테츠스미킨 카부시키카이샤 | Directional electromagnetic steel plate and method for manufacturing same |
KR20130140902A (en) | 2011-06-01 | 2013-12-24 | 신닛테츠스미킨 카부시키카이샤 | Device for producing grain-oriented magnetic steel sheet and method for producing grain-oriented magnetic steel sheet |
CN103562418B (en) * | 2011-06-13 | 2015-05-06 | 新日铁住金株式会社 | Manufacturing method for unidirectional electromagnetic steel sheet |
US9607744B2 (en) | 2012-11-08 | 2017-03-28 | Nippon Steel & Sumitomo Metal Corporation | Laser processing apparatus and laser irradiation method |
JP6341280B2 (en) | 2014-07-03 | 2018-06-13 | 新日鐵住金株式会社 | Laser processing equipment |
EP3165615B1 (en) | 2014-07-03 | 2022-12-21 | Nippon Steel Corporation | Use of a laser processing apparatus for refining magnetic domains of a grain-oriented electromagnetic steel sheet |
JP7260798B2 (en) * | 2019-01-16 | 2023-04-19 | 日本製鉄株式会社 | Manufacturing method of grain-oriented electrical steel sheet |
KR102580061B1 (en) * | 2019-01-16 | 2023-09-20 | 닛폰세이테츠 가부시키가이샤 | Grain-oriented electrical steel sheet and its manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0619112B2 (en) * | 1986-09-26 | 1994-03-16 | 新日本製鐵株式会社 | Method for improving iron loss value of electrical steel sheet |
JP3858382B2 (en) * | 1997-09-25 | 2006-12-13 | 株式会社村田製作所 | Laser processing sheet holding device |
RU2301839C2 (en) * | 2003-03-19 | 2007-06-27 | Ниппон Стил Корпорейшн | Grain-oriented electrical steel sheet at high electrical characteristics and method of manufacture of such sheet |
JP4264362B2 (en) * | 2004-01-15 | 2009-05-13 | 新日本製鐵株式会社 | Insulating coating agent for grain-oriented electrical steel sheet not containing chromium and grain-oriented electrical steel sheet having an insulating film not containing chromium |
-
2005
- 2005-10-26 JP JP2005311528A patent/JP5008855B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007119821A (en) | 2007-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5008855B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
EP2554685B1 (en) | Grain oriented electrical steel sheet and method for manufacturing same | |
JP4510757B2 (en) | Oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
RU2440426C1 (en) | Method for obtaining electromagnetic steel plate with orientation grains, magnetic domains of which are controlled by means of application of laser beam | |
US20090145526A1 (en) | Low core loss grain-oriented electrical steel sheet and method for producing the same | |
RU2238340C2 (en) | Method for improving magnetic qualities of textured electrical silicon steel sheets by laser treatment | |
EP0102732A2 (en) | Laser treatment of electrical steel and optical scanning assembly thereof | |
RU2749826C1 (en) | Electrical anisotropic steel sheet | |
CN101528951A (en) | Unidirectional magnetic steel sheet excellent in iron loss characteristic | |
JPH07220913A (en) | Magnetic steel plate excellent in magnetic characteristic | |
EP2918689A1 (en) | Laser processing device and laser radiation method | |
KR20200103096A (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
RU2547377C2 (en) | Fabrication of textured steel sheet | |
KR100479213B1 (en) | Grain-oriented electrical steel sheet excellent in magnetic properties | |
US4904312A (en) | Method of electrolytically etching linear impressions in electrical steel | |
CN114829639B (en) | Oriented electrical steel sheet and method for refining magnetic domains thereof | |
KR970008160B1 (en) | Method for treating electrical steel by electroetching and electrical steel having permanent domain refinement | |
RU2776383C1 (en) | Anisotropic electrical steel sheet and its production method | |
Dewi et al. | Laser beam absorption depending on the angle of incidence on ground surfaces | |
KR101626598B1 (en) | Method for refining magnetic domain of oriented electrical steel | |
CN113039622A (en) | Oriented electrical steel sheet and method for refining magnetic domain thereof | |
Divinsky et al. | Technology and equipment for laser treatment of anisotropic electrical-sheet steel | |
JPS5953684B2 (en) | Method for improving iron loss in magnetic steel sheet coils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120522 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120530 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5008855 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150608 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150608 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150608 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |