JP5005304B2 - Drainage measurement method for advanced stand-by vertical pump - Google Patents

Drainage measurement method for advanced stand-by vertical pump Download PDF

Info

Publication number
JP5005304B2
JP5005304B2 JP2006257361A JP2006257361A JP5005304B2 JP 5005304 B2 JP5005304 B2 JP 5005304B2 JP 2006257361 A JP2006257361 A JP 2006257361A JP 2006257361 A JP2006257361 A JP 2006257361A JP 5005304 B2 JP5005304 B2 JP 5005304B2
Authority
JP
Japan
Prior art keywords
water
drainage
amount
water level
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006257361A
Other languages
Japanese (ja)
Other versions
JP2008075595A (en
Inventor
康雄 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2006257361A priority Critical patent/JP5005304B2/en
Publication of JP2008075595A publication Critical patent/JP2008075595A/en
Application granted granted Critical
Publication of JP5005304B2 publication Critical patent/JP5005304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、先行待機型立軸ポンプの排水量測定方法に関する。   The present invention relates to a method for measuring the amount of drainage of a prior standby vertical shaft pump.

近年、市街地化や道路の舗装化により雨水の地下浸透率が低下している。また、ヒートアイランド現象等による局地的集中豪雨の発生が増加している。これらの原因により、下水道の排水ポンプ場へ短時間に多量の雨水が流入する傾向がある。この短時間かつ多量の雨水流入に対処するために、降雨情報等に基づいて予めポンプを始動しておいて雨水が排水ポンプ場に流入するのと同時に排水を開始し、かつ吸水槽内の水位が変動しても運転状態を維持することができる先行待機型立軸ポンプに対する要求が高まっている。   In recent years, the underground penetration rate of rainwater has decreased due to urbanization and road paving. In addition, the occurrence of localized torrential rain due to the heat island phenomenon is increasing. Due to these causes, a large amount of rainwater tends to flow into the sewer drain pumping station in a short time. In order to cope with this short time and large amount of rainwater inflow, the pump is started in advance based on rainfall information, etc., and drainage starts at the same time as rainwater flows into the drainage pump station, and the water level in the water absorption tank There is an increasing demand for a stand-by-stand vertical pump that can maintain the operating state even if the air pressure fluctuates.

羽根車より下方のケーシングに空気を導入することで先行待機運転を実現した立軸ポンプが知られている(特許文献1)。この方式の先行待機型立軸ポンプでは、吸水槽内の水位がケーシング内の羽根車より上方の排水水位より低い状態でも運転を行うため、吸水槽内の水位が排水水位以上であって空気が混入しない状態で水を排水する運転状態(通常排水運転状態)に加え、空気が混入した状態で水を排水する運転状態(気水混合運転)と、羽根車の下方に空気だまりが形成され羽根車の上方に水柱が形成される運転状態(エアロック運転)がある。   A vertical shaft pump that realizes a preliminary standby operation by introducing air into a casing below the impeller is known (Patent Document 1). This type of stand-by type vertical shaft pump operates even when the water level in the water absorption tank is lower than the drain water level above the impeller in the casing, so the water level in the water absorption tank is above the drain water level and air is mixed in. In addition to the operation state in which water is drained (normal drainage operation state), the operation state in which water is drained in a state where air is mixed (air-water mixing operation), and the impeller is formed with an air pool below the impeller There is an operation state (air lock operation) in which a water column is formed above.

エネルギ消費の低減、管理レベルの向上等の観点から、先行待機型立軸ポンプの排水量の高精度での測定に対する要求が高まっている。しかし、気水混合運転時の排水量を通常排水運転時と同様に実揚程(測定値)、排水量と全揚程の関係を示す特性曲線、及び管路抵抗から算出すると、排水量を過大に見積ることになる。逆に、気水混合運転の際の排水量をゼロとすると排水量を過小に見積ることなる。従って、これらの手法はいずれも正確さに欠ける。特許文献2に気水混合運転を含む先行待機型立軸ポンプの排水量測定方法が記載されている。しかし、この特許文献2に記載の測定方法では、複雑な演算を実行する必要がある。   From the viewpoint of reducing energy consumption, improving the management level, etc., there is an increasing demand for highly accurate measurement of the amount of drainage of the stand-by type vertical shaft pump. However, if the amount of water discharged in the air / water mixing operation is calculated from the actual head (measured value), the characteristic curve indicating the relationship between the amount of water discharged and the total head, and the pipe resistance, the amount of water discharged is overestimated. Become. On the contrary, if the amount of water discharged in the air-water mixing operation is zero, the amount of water discharged will be underestimated. Therefore, none of these methods is accurate. Patent Document 2 describes a method for measuring the amount of drainage of a prior standby vertical shaft pump including air-water mixing operation. However, in the measurement method described in Patent Document 2, it is necessary to execute complicated calculations.

特開2004−162644号公報JP 2004-162644 A 特開平6−26899号公報JP-A-6-26899

本発明は、気水混合運転状態を含む先行待機型立軸ポンプの排水量を、簡易かつ高精度で測定することを課題とする。   This invention makes it a subject to measure the amount of drainage of a prior | preceding standby type | formula vertical shaft pump including an air-water mixing operation state simply and with high precision.

本発明の第1の態様は、ケーシングの羽根車よりも吸込口側の位置に空気供給口を備える先行待機型立軸ポンプが吸水槽内の水を吐出水槽に排水する排水量を測定する方法であって、前記吸水槽の水位である吸水位を第1の水位センサで測定し、前記吐出水槽の水位である吐出水位を第2の水位センサで測定し、前記第1の水位センサで測定された前記吸水位が前記羽根車の前縁よりも吸込口側の位置にあり、かつ前記空気供給口に対応する水位である上側閾値を上回っていれば、前記第1の水位センサで測定された前記吸水位、前記第2の水位センサで測定された前記吐出水位、予め測定された通常排水運転状態における全揚程と前記排水量の関係、及び予め測定された管路抵抗に基づいて前記排出量を算出し、前記第1の水位センサで測定された前記吸水位が前記上側閾値以下であり、かつ前記吸込口の水位より上方の所定の水位である下側閾値を上回っていれば、予め測定された前記吸水位と前記排水量の関係を用いて前記排水量を算出し、前記第1の水位センサで測定された前記吸水位が前記下側閾値以下であれば、前記排水量をゼロとする、先行待機型立軸ポンプの排水量測定方法を提供する。 The first aspect of the present invention is a method for measuring the amount of drainage in which a prior standby vertical shaft pump having an air supply port at a position closer to the suction port than the impeller of the casing drains the water in the water absorption tank to the discharge water tank. The water absorption level that is the water level of the water absorption tank is measured by the first water level sensor, the discharge water level that is the water level of the discharge water tank is measured by the second water level sensor, and is measured by the first water level sensor. If the water absorption level is at a position closer to the suction port than the front edge of the impeller and exceeds an upper threshold value that is a water level corresponding to the air supply port, the water level measured by the first water level sensor The discharge amount is calculated based on the water absorption level, the discharge water level measured by the second water level sensor, the relationship between the total head and the drainage amount in the normal drainage operation state measured in advance, and the pipe resistance measured in advance. And measured by the first water level sensor. If the water absorption level is equal to or lower than the upper threshold value and exceeds a lower threshold value that is a predetermined water level above the water level of the suction port, the relationship between the water absorption level and the drainage amount measured in advance is used. The amount of drainage is calculated, and if the water absorption level measured by the first water level sensor is equal to or lower than the lower threshold, the drainage amount measurement method for a prior standby vertical shaft pump is provided.

本発明の第2の態様は、ケーシングの羽根車よりも吸込口側の位置に空気供給口を備える先行待機型立軸ポンプが吸水槽内の水を吐出水槽に排水する排水量を測定する方法であって、前記吸水槽の水位である吸水位を第1の水位センサで測定し、前記吐出水槽の水位である吐出水位を第2の水位センサで測定し、前記第1の水位センサで測定された前記吸水位が前記羽根車の前縁よりも吸込口側の位置にあり、かつ前記空気供給口に対応する水位である上側閾値を上回っていれば、前記第1の水位センサで測定された前記吸水位、前記第2の水位センサで測定された前記吐出水位、予め測定された通常排水運転状態における全揚程と前記排水量の関係、及び予め測定された管路抵抗に基づいて前記排出量を算出し、前記第1の水位センサで測定された前記吸水位が前記上側閾値以下であり、かつ前記吸込口の水位より上方の所定の水位である下側閾値を上回っていれば、前記排出量を予め定められた規定排水量とし、前記第1の水位センサで測定された前記吸水位が前記下側閾値以下であれば、前記排水量をゼロとする、先行待機型立軸ポンプの排水量測定方法を提供する。 The second aspect of the present invention is a method of measuring the amount of drainage by which a prior standby vertical shaft pump having an air supply port at a position closer to the suction port than the impeller of the casing drains the water in the water absorption tank to the discharge water tank. The water absorption level that is the water level of the water absorption tank is measured by the first water level sensor, the discharge water level that is the water level of the discharge water tank is measured by the second water level sensor, and is measured by the first water level sensor. If the water absorption level is at a position closer to the suction port than the front edge of the impeller and exceeds an upper threshold value that is a water level corresponding to the air supply port, the water level measured by the first water level sensor The discharge amount is calculated based on the water absorption level, the discharge water level measured by the second water level sensor, the relationship between the total head and the drainage amount in the normal drainage operation state measured in advance, and the pipe resistance measured in advance. And measured by the first water level sensor. If the water absorption level is not more than the upper threshold value and exceeds a lower threshold value that is a predetermined water level above the water level of the suction port, the discharge amount is set as a predetermined specified drainage amount, If the water absorption level measured by one water level sensor is less than or equal to the lower threshold value, a method for measuring the amount of drainage of a stand-by type vertical shaft pump is provided in which the amount of drainage is zero.

本発明の排水量測定方法により、気水混合運転状態を含む先行待機型立軸ポンプの排水量を簡易かつ高精度で測定できる。   By the method for measuring the amount of waste water of the present invention, the amount of waste water of the preceding standby vertical shaft pump including the air-water mixing operation state can be measured easily and with high accuracy.

次に、添付図面を参照して本発明の実施形態を詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(第1実施形態)
図1を参照すると、先行待機型立軸ポンプ(以下、単に立軸ポンプという)1は、図示しない流入側管路から排水ポンプ場の吸水槽2内に流入する雨水等の水を吐出水槽3に排水する。立軸ポンプ1は鉛直方向に延びるケーシング5を備え、このケーシング5内には鉛直方向に延びる回転軸6が配置されている。回転軸6の下端には羽根車7が固定されている。回転軸6の上端はケーシング5の外部に突出し、概略的に示すモータ8に連結されている。ケーシング5の上端(吐出側)には吐出側の配管9の一端が接続されている。この配管9の他端は吐出水槽3内で開放している。羽根車7よりも下方(吸込口5a側)のケーシング5には空気導入管10の一端である空気供給口10aが開口している。空気導入管10の他端は大気に開放されている。
(First embodiment)
Referring to FIG. 1, a prior standby vertical shaft pump (hereinafter simply referred to as a vertical pump) 1 drains water, such as rainwater, flowing into a water absorption tank 2 of a drainage pump station from an inflow side pipe (not shown) into a discharge water tank 3. To do. The vertical shaft pump 1 includes a casing 5 extending in the vertical direction, and a rotating shaft 6 extending in the vertical direction is disposed in the casing 5. An impeller 7 is fixed to the lower end of the rotating shaft 6. The upper end of the rotating shaft 6 protrudes outside the casing 5 and is connected to a motor 8 schematically shown. One end of a discharge-side pipe 9 is connected to the upper end (discharge side) of the casing 5. The other end of the pipe 9 is open in the discharge water tank 3. An air supply port 10a which is one end of the air introduction pipe 10 is opened in the casing 5 below the impeller 7 (on the suction port 5a side). The other end of the air introduction pipe 10 is open to the atmosphere.

吸水槽2には第1水位センサ11が配置されている。本実施形態では、第1水位センサ11が測定する吸水槽2内の水位(吸水位TP)は、吸水槽2の上方に設定された基準高さから下向きに測った距離である(下向きであることを示すため吸水位TPの符号はマイナスとする。)。同様に、吐出水槽3には、吐出水槽3内の水位(吐出水位TE)を測定する第2水位センサが配置されている。第1水位センサ11が測定する吸水位TPと第1水位センサ12が測定する吐出水位TEは演算装置15に常時入力されている。なお、実揚程hdは吸水位TPと吐出水位TEから得られる(hd=TE−TP)。   A first water level sensor 11 is arranged in the water absorption tank 2. In the present embodiment, the water level (water absorption level TP) in the water absorption tank 2 measured by the first water level sensor 11 is a distance measured downward from a reference height set above the water absorption tank 2 (downward). In order to show that, the sign of the water absorption level TP is minus.) Similarly, a second water level sensor that measures the water level (discharge water level TE) in the discharge water tank 3 is disposed in the discharge water tank 3. The water absorption level TP measured by the first water level sensor 11 and the discharge water level TE measured by the first water level sensor 12 are always input to the arithmetic unit 15. The actual head height hd is obtained from the water absorption level TP and the discharge water level TE (hd = TE-TP).

立軸ポンプ1には、概ね3つの運転状態がある。まず、吸水位TPが十分に高い場合、例えば羽根車7の上端に対応する水位TPよりも高い場合に、空気が混入しない状態で水を排水する通常排水運転状態がある。また、吸水位TPの低下に伴って生じる空気が混入した状態で水を排水する気水運転状態がある。さらに、気水運転状態からさらに吸水位TPが低下することにより生じる、羽根車7の下方に空気だまりが形成されると共に羽根車7の上方に水柱が形成されるエアロック運転状態がある。 The vertical pump 1 has approximately three operating states. First, when the water absorption level TP is sufficiently high, for example, when the water absorption level TP is higher than the water level TP 1 corresponding to the upper end of the impeller 7, there is a normal drainage operation state in which water is drained without air being mixed therein. In addition, there is an air-water operation state in which water is drained in a state where air generated as the water absorption level TP decreases is mixed. Further, there is an air lock operation state in which an air pool is formed below the impeller 7 and a water column is formed above the impeller 7, which is generated by further lowering the water absorption level TP from the air-water operation state.

演算装置15は、記憶部16と処理部17を備える。   The arithmetic device 15 includes a storage unit 16 and a processing unit 17.

記憶部16には、少なくとも以下の情報とそれに基づいて立軸ポンプ1の排水量Qを演算する方法ないしは手順が予め記憶されている。
1)立軸ポンプ1が通常排水運転の状態にあるときの全揚程Hと排水量Qの関係(H−Q特性)。
2)立軸ポンプ1の吸込口から配管9の出口までの管路抵抗。
3)実揚程hd、H−Q特性、及び管路抵抗から排水量Qを計算するための関係式。この関係式は当業者に広く知られている。
4)空気供給口に対応する水位である上側閾値TPUP
5)上側閾値TPUPよりも低く吸込口5aの水位TPよりも高い下側閾値TPLW。この下側閾値TPLWは、それ以上水位が低下すると立軸ポンプ1がエアロック運転に移行する吸水位TPに対応している。さらに具体的には、この下側閾値TPLWは、ケーシング5の下端の吸込口5aからケーシング5内に流入する空気の損失と、空気導入管10を介して空気供給口10aからケーシング5内に流入する空気の損失とが釣り合う吸水位TPに対応している。
6)吸水位TPが上側閾値TPUPと同一又はそれよりも低く、かつ下側閾値TPLWよりも高い場合の吸水位TPと立軸ポンプ1の排水量Qの関係(図3参照)。この場合、吸水位TPが低下するほど排水量Qが減少する。
The storage unit 16 stores in advance at least the following information and a method or procedure for calculating the drainage amount Q of the vertical shaft pump 1 based on the following information.
1) Relationship between total head H and drainage amount Q when the vertical shaft pump 1 is in a normal drainage operation state (HQ characteristics).
2) Pipe line resistance from the suction port of the vertical shaft pump 1 to the outlet of the pipe 9.
3) Relational expression for calculating the amount Q of drainage from the actual head hd, HQ characteristics, and pipe resistance. This relation is well known to those skilled in the art.
4) Upper threshold value TP UP which is the water level corresponding to the air supply port.
5) A lower threshold value TP LW lower than the upper threshold value TP UP and higher than the water level TP 0 of the suction port 5a. This lower threshold value TP LW corresponds to the water absorption level TP at which the vertical pump 1 shifts to the air lock operation when the water level further decreases. More specifically, the lower threshold value TP LW is determined by the loss of air flowing into the casing 5 from the suction port 5a at the lower end of the casing 5 and the air supply port 10a through the air introduction pipe 10 into the casing 5. It corresponds to the water absorption level TP that balances the loss of inflowing air.
6) Relationship between the water absorption level TP and the drainage amount Q of the vertical pump 1 when the water absorption level TP is equal to or lower than the upper threshold value TP UP and higher than the lower threshold value TP LW (see FIG. 3). In this case, the amount of drainage Q decreases as the water absorption level TP decreases.

処理部17は水位センサ11,12から入力される吸水位TP及び吐出水位TEと、記憶部16に記憶されている情報及び手順とにより立軸ポンプ1の排水量Qを算出し、算出した排水量Qを表示装置18に表示させる。具体的には、処理部17は以下のよう立軸ポンプ1の排水量Qを算出する。   The processing unit 17 calculates the drainage amount Q of the vertical pump 1 based on the water absorption level TP and the discharge water level TE input from the water level sensors 11 and 12 and the information and procedure stored in the storage unit 16, and calculates the calculated drainage amount Q. It is displayed on the display device 18. Specifically, the processing unit 17 calculates the drainage amount Q of the vertical shaft pump 1 as follows.

吸水位TPが上側閾値TPUPよりも高い場合(TPUP<TP)には、前述の情報1)〜3)に基づいて立軸ポンプ1の排水量Qが算出される。具体的には、水位センサ11,12から入力される吸水位TPと吐出水位TEから立軸ポンプ1の実揚程hdを求める。また、求めた実揚程hd、H−Q特性、及び管路抵抗から排水量Qを計算する。吸水位TPが上側閾値TPUPよりも高い場合(TPUP<TP)は、立軸ポンプ1が通常排水運転の状態にある場合に相当する。 When the water absorption level TP is higher than the upper threshold value TP UP (TP UP <TP), the drainage amount Q of the vertical pump 1 is calculated based on the information 1) to 3) described above. Specifically, the actual head hd of the vertical pump 1 is obtained from the water absorption level TP and the discharge water level TE input from the water level sensors 11 and 12. Moreover, the amount Q of drainage is calculated from the calculated actual head height hd, HQ characteristics, and pipe resistance. The case where the water absorption level TP is higher than the upper threshold value TP UP (TP UP <TP) corresponds to the case where the vertical shaft pump 1 is in the normal drain operation state.

吸水位TPが上側閾値TPUPと同一又はそれよりも低く、かつ下側閾値TPLWよりも高い場合(TPUP≧TP>TPLW)には、図3の関係を使用して吸水水位TPから排水量Qを求める。吸水位TPが上側閾値TPUPと同一又はそれよりも低く、かつ下側閾値TPLWよりも高い場合(TPUP≧TP>TPLW)は、立軸ポンプ1が気水混合運転状態となったことにより排水量の低下が生じている状態に対応する。 When the water absorption level TP is equal to or lower than the upper threshold value TP UP and higher than the lower threshold value TP LW (TP UP ≧ TP> TP LW ), the water absorption level TP is determined from the water absorption level TP using the relationship of FIG. Calculate the amount of drainage Q. When the water absorption level TP is equal to or lower than the upper threshold value TP UP and higher than the lower threshold value TP LW (TP UP ≧ TP> TP LW ), the vertical pump 1 is in the air-water mixing operation state. This corresponds to the state where the amount of drainage is reduced.

吸水位TPが下側閾値TPLWと同一又はそれよりも低い場合(TPLW≧TP)は、立軸ポンプ1がエアロック運転又は気中運転の状態にある場合に相当し、立軸ポンプ1の排水量Qはゼロに設定される(Q=0)。 When the water absorption level TP is equal to or lower than the lower threshold value TPLW (TP LW ≧ TP), this corresponds to the case where the vertical pump 1 is in the air lock operation or the air operation, and the drainage amount Q of the vertical pump 1 Is set to zero (Q = 0).

以下の表1に処理部17が実行する立軸ポンプ1の排水量Qの算出方法をまとめて示す。   Table 1 below collectively shows a method for calculating the drainage amount Q of the vertical shaft pump 1 executed by the processing unit 17.

Figure 0005005304
Figure 0005005304

H−Q特性、上側閾値TPUP、下側閾値TPLW、及び図3に示す吸水位TPと吸水量Qの関係は、例えば製造工場において立軸ポンプ1を実際に通常排水運転や気水混合運転の状態で動作させ、その際の排水量Q、吸水位TP、及び吐出水位TEを測定することによって得られる。 The relationship between the HQ characteristic, the upper threshold value TP UP , the lower threshold value TP LW , and the water absorption level TP and the water absorption amount Q shown in FIG. It is obtained by measuring the amount of drainage Q, the water absorption level TP, and the discharge water level TE at that time.

以下、吸水位TPがTPUP≧TP>TPLWの範囲にあるときの吸水位TPと排水量Qの関係の決定方法の一例を説明する。まず、定格排水量(300m3/min)を最大とする6種類の流量、すなわち50m3/min、100m3/min、150m3/min、200m3/min、250、及び300m3/minについて、排水量Qを一定に維持したままで、吸水位TPを徐々に低下させつつ全揚程Hを測定する。測定結果を図4に示す。6種類の排水量Qのそれぞれについて吸水位TPが特定の水位まで低下すると、気水混合運転状態であることの影響で全揚程の急激な降下が始まっている。例えば、排水量Qが定格の300m3/minの場合には、空気供給口10aの高さ位置(上側閾値TPUP)である、−16.4mの吸水位TPで全揚程Hの急激な降下が開始する。排水量Qの減少に伴い、ケーシング5内への空気の吸込量が減少するので、全揚程Hの急激な降下が開始する吸水位TPも低下していく。図4において全揚程Hの急激な降下の開始点を結ぶ曲線Lを求める。この曲線Lと6種類の流量について吸水位TPと全揚程Hの交点を横軸が流量Qで縦軸が吸水位である座標平面上にプロットしたものが図3のグラフである。すなわち、この例ではTPUP≧TP>TPLWの範囲にあるときの吸水位TPと排水量Qの関係を、排水量Qと気水混合運転状態となることによる全揚程Hの降下が始まる吸水位TPとの関係から求められている。 Hereinafter, an example of a method for determining the relationship between the water absorption level TP and the drainage amount Q when the water absorption level TP is in the range of TP UP ≧ TP> TP LW will be described. First of all, the six types of flow rates that maximize the rated drainage (300 m 3 / min), that is, 50 m 3 / min, 100 m 3 / min, 150 m 3 / min, 200 m 3 / min, 250, and 300 m 3 / min The total head H is measured while gradually decreasing the water absorption level TP while keeping Q constant. The measurement results are shown in FIG. When the water absorption level TP drops to a specific water level for each of the six types of drainage amount Q, a sudden drop in the total head begins due to the influence of the air-water mixing operation state. For example, when the drainage amount Q is the rated 300 m 3 / min, there is a sudden drop in the total head H at a water absorption level TP of −16.4 m, which is the height position of the air supply port 10a (upper threshold value TP UP ). Start. As the amount of drainage Q decreases, the amount of air sucked into the casing 5 decreases, so that the water absorption level TP at which a sudden drop in the total lift H starts also decreases. In FIG. 4, a curve L connecting the start points of the rapid drop of the total head H is obtained. FIG. 3 is a graph in which the intersection of the water absorption level TP and the total head H is plotted on the coordinate plane with the horizontal axis indicating the flow rate Q and the vertical axis indicating the water absorption level for the curve L and the six types of flow rates. That is, in this example, the relationship between the water absorption level TP and the water discharge amount Q in the range of TP UP ≧ TP> TP LW is the water absorption level TP at which the total head H starts to drop due to the water discharge amount Q and the air-water mixing operation state. It is demanded from the relationship.

本実施形態では、気水混合運転状態により排水量Qの減少が生じているTPUP≧TP>TPLWの範囲における排水量Qを図3の関係に基づいて求めており、気水混合運転状態の排水量Qを過大(定格排水量である通常排水運転と同一)に見積ることも、過小(排水量がゼロ)に見積もることもない。またTPUP≧TP>TPLWの範囲における排水量Qを求めるために複雑な演算を実行する必要もない。よって、本実施形態の方法により方法により排水量Qを簡易かつ高精度で測定できる。 In the present embodiment, the drainage amount Q in the range of TP UP ≧ TP> TP LW in which the decrease in the drainage amount Q occurs due to the air-water mixing operation state is obtained based on the relationship of FIG. Q is not estimated to be excessive (same as the normal drainage operation, which is the rated drainage amount), nor is it estimated to be too small (the drainage amount is zero). Further, it is not necessary to perform a complicated calculation in order to obtain the drainage amount Q in the range of TP UP ≧ TP> TP LW . Therefore, the amount Q of drainage can be measured easily and with high accuracy by the method of the present embodiment.

(第2実施形態)
第2実施形態は演算装置15が実行する立軸ポンプ1の排水量Qの測定方法のみが異なり、立軸ポンプ1自体の構造等は第1実施形態と同様である(図1参照)。以下の表2に示すように、処理部17が実行する立軸ポンプ1の排水量Qの算出方法も、吸水位TPがTPUP≧TP>TPLWの範囲にある場合を除いて第1実施形態と同一である。
(Second Embodiment)
The second embodiment differs only in the method of measuring the drainage amount Q of the vertical pump 1 executed by the arithmetic device 15, and the structure of the vertical pump 1 itself is the same as that of the first embodiment (see FIG. 1). As shown in Table 2 below, the drainage amount Q of the vertical pump 1 executed by the processing unit 17 is also the same as that of the first embodiment except when the water absorption level TP is in the range of TP UP ≧ TP> TP LW. Are the same.

Figure 0005005304
Figure 0005005304

本実施形態では、吸水位TPがTPUP≧TP>TPLWである場合、排水量Qは予め定められた一定の排水量である規定排水量QREであると推定される。この規定排水量QREは少なくとも定格排水量での通常排水運転状態での排水量(本実施形態では300m3/min)よりも少なく設定する必要がある。また、この規定排水量QREを通常排水運転状態での排水量に近い値に設定すると、実際に立軸ポンプ1が吸水槽2から排出している排水量よりも多くの水が排出されていると推定する可能性があり好ましくない。逆に、規定排水量QREを通常排水運転状態での排水量よりも十分に少なく設定しておけば、実際に立軸ポンプ1が吸水槽2から排出している排水量よりも少ない量の水が排出されていると推定する可能性はあっても、実際の排水量よりも多くの水が排出されていると推定する可能性を排除できる。従って、規定排水量QREを通常排水運転状態での排水量よりも十分に少なく、具体的には定格排水量での通常排水運転状態での排水量(本実施形態では300m3/min)の1/10以上1/5以下の範囲の排水量に設定される。例えば、規定排水量QREは定格排水量での通常排水運転状態での排水量(300m3/min)の1/6である50m3/minに設定される。 In the present embodiment, when the water absorption level TP is TP UP ≧ TP> TP LW , the drainage amount Q is estimated to be a specified drainage amount QRE that is a predetermined constant drainage amount. This specified drainage amount QRE needs to be set to be at least smaller than the drainage amount in the normal drainage operation state at the rated drainage amount (300 m 3 / min in this embodiment). Further, if the specified drainage amount QRE is set to a value close to the drainage amount in the normal drainage operation state, it is estimated that more water is discharged than the drainage amount actually discharged from the water absorption tank 2 by the vertical shaft pump 1. There is a possibility that it is not preferable. Conversely, if the specified drainage amount QRE is set sufficiently smaller than the drainage amount in the normal drainage operation state, the amount of water that is smaller than the drainage amount actually discharged from the water tank 2 by the vertical shaft pump 1 is discharged. Even if there is a possibility that it is estimated that the water is discharged, it is possible to eliminate the possibility that it is estimated that more water is discharged than the actual amount of waste water. Therefore, the specified drainage amount QRE is sufficiently smaller than the drainage amount in the normal drainage operation state, specifically, 1/10 or more of the drainage amount in the normal drainage operation state at the rated drainage amount (300 m 3 / min in this embodiment). The drainage amount is set within a range of 1/5 or less. For example, the specified drainage amount QRE is set to 50 m 3 / min, which is 1/6 of the drainage amount (300 m 3 / min) in the normal drainage operation state at the rated drainage amount.

本実施形態では、気水混合運転状態により排水量Qの減少が生じているTPUP≧TP>TPLWの範囲における排水量Qを規定排水量QREに設定しているので、気水混合運転状態の排水量Qを過大(定格排水量である通常排水運転と同一)に見積ることも、過小(排水量がゼロ)に見積ることもない。またTPUP≧TP>TPLWの範囲における排水量Qを求めるために複雑な演算を実行する必要もない。よって、本実施形態の方法により方法により排水量Qを簡易かつ高精度で測定できる。 In the present embodiment, the drainage amount Q in the range of TP UP ≧ TP> TP LW in which the reduction of the drainage amount Q occurs due to the air-water mixing operation state is set to the specified wastewater amount QRE , so the wastewater amount in the air-water mixing operation state Q is not estimated to be excessive (same as the normal drainage operation, which is the rated drainage amount), nor is it estimated to be too small (the drainage amount is zero). Further, it is not necessary to perform a complicated calculation in order to obtain the drainage amount Q in the range of TP UP ≧ TP> TP LW . Therefore, the amount Q of drainage can be measured easily and with high accuracy by the method of the present embodiment.

本発明は前記実施形態に限定されず種々の変形が可能である。例えば、先行待機型立軸ポンプの構造は図1のものに限定されず、ケーシングの羽根車よりも吸込口側の位置に空気供給口を備えるものであればよい。   The present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the structure of the stand-by type vertical shaft pump is not limited to that shown in FIG. 1, and any structure may be used as long as the air supply port is provided at a position closer to the suction port than the impeller of the casing.

先行待機型立軸ポンプを示す模式図。The schematic diagram which shows a prior | preceding standby type | formula vertical shaft pump. 立軸ポンプの部分拡大図。The partial enlarged view of a vertical shaft pump. 吸水位と排水量の関係を示す線図。The diagram which shows the relationship between a water absorption level and the amount of drainage. 種々の排水量について吸水位と全揚程の関係を示す線図。The diagram which shows the relationship between a water absorption level and a total lift about various amounts of drainage.

符号の説明Explanation of symbols

1 先行待機型立軸ポンプ
2 吸水槽
3 吐出水槽
5 ケーシング
5a 吸込口
6 回転軸
7 羽根車
8 モータ
9 配管
10 空気導入管
10a 空気供給口
11 第1水位センサ
12 第2水位センサ
15 演算装置
16 記憶部
17 処理部
18 表示装置
DESCRIPTION OF SYMBOLS 1 Leading-stand type vertical shaft pump 2 Water absorption tank 3 Discharge water tank 5 Casing 5a Suction port 6 Rotating shaft 7 Impeller 8 Motor 9 Piping 10 Air introduction pipe 10a Air supply port 11 1st water level sensor 12 2nd water level sensor 15 Calculation apparatus 16 Memory | storage Unit 17 Processing unit 18 Display device

Claims (6)

ケーシングの羽根車よりも吸込口側の位置に空気供給口を備える先行待機型立軸ポンプが吸水槽内の水を吐出水槽に排水する排水量を測定する方法であって、
前記吸水槽の水位である吸水位を第1の水位センサで測定し、
前記吐出水槽の水位である吐出水位を第2の水位センサで測定し、
前記第1の水位センサで測定された前記吸水位が前記羽根車の前縁よりも吸込口側の位置にあり、かつ前記空気供給口に対応する水位である上側閾値を上回っていれば、前記第1の水位センサで測定された前記吸水位、前記第2の水位センサで測定された前記吐出水位、予め測定された通常排水運転状態における全揚程と前記排水量の関係、及び予め測定された管路抵抗に基づいて前記排出量を算出し、
前記第1の水位センサで測定された前記吸水位が前記上側閾値以下であり、かつ前記吸込口の水位より上方の所定の水位である下側閾値を上回っていれば、予め測定された前記吸水位と前記排水量の関係を用いて前記排水量を算出し、
前記第1の水位センサで測定された前記吸水位が前記下側閾値以下であれば、前記排水量をゼロとする、先行待機型立軸ポンプの排水量測定方法
A method of measuring the amount of drainage in which the standby stand-by vertical pump having an air supply port at a position closer to the suction port than the impeller of the casing drains the water in the water absorption tank to the discharge water tank,
The water absorption level that is the water level of the water absorption tank is measured by a first water level sensor,
A discharge water level which is a water level of the discharge water tank is measured by a second water level sensor;
If the water absorption level measured by the first water level sensor is at a position closer to the suction port than the front edge of the impeller and exceeds the upper threshold value which is the water level corresponding to the air supply port, The water absorption level measured by the first water level sensor, the discharge water level measured by the second water level sensor, the relationship between the total head in the normal drainage operation state measured in advance and the amount of drainage, and the pipe measured in advance Calculate the emissions based on road resistance,
If the water absorption level measured by the first water level sensor is less than or equal to the upper threshold value and exceeds a lower threshold value that is a predetermined water level above the water level of the suction port, the water absorption measured in advance Calculating the amount of wastewater using the relationship between the position and the amount of wastewater,
If the water absorption level measured by the first water level sensor is equal to or lower than the lower threshold value, the drainage amount measuring method for a stand-by type vertical shaft pump that sets the drainage amount to zero .
前記下側閾値は、前記吸込口から前記ケーシング内に流入する空気の損失と、前記空気供給口から前記ケーシング内に流入する空気の損失とが釣り合う水位である、請求項1に記載の先行待機型立軸ポンプの排水量測定方法。   The preceding standby according to claim 1, wherein the lower threshold value is a water level in which a loss of air flowing into the casing from the suction port and a loss of air flowing into the casing from the air supply port are balanced. Drainage measurement method for vertical shaft pump. 前記吸水位と前記排水量の関係は、排水量と気水混合運転状態となることによる全揚程の降下が始まる吸水位との関係から求められている、請求項1又は請求項2に記載の先行待機型立軸ポンプの排水量測定方法。   The prior standby according to claim 1 or claim 2, wherein the relationship between the water absorption level and the amount of drainage is obtained from the relationship between the amount of water discharge and the water absorption level at which the drop of the total lift starts due to the mixed operation state. Drainage measurement method for vertical shaft pump. ケーシングの羽根車よりも吸込口側の位置に空気供給口を備える先行待機型立軸ポンプが吸水槽内の水を吐出水槽に排水する排水量を測定する方法であって、
前記吸水槽の水位である吸水位を第1の水位センサで測定し、
前記吐出水槽の水位である吐出水位を第2の水位センサで測定し、
前記第1の水位センサで測定された前記吸水位が前記羽根車の前縁よりも吸込口側の位置にあり、かつ前記空気供給口に対応する水位である上側閾値を上回っていれば、前記第1の水位センサで測定された前記吸水位、前記第2の水位センサで測定された前記吐出水位、予め測定された通常排水運転状態における全揚程と前記排水量の関係、及び予め測定された管路抵抗に基づいて前記排出量を算出し、
前記第1の水位センサで測定された前記吸水位が前記上側閾値以下であり、かつ前記吸込口の水位より上方の所定の水位である下側閾値を上回っていれば、前記排出量を予め定められた規定排水量とし、
前記第1の水位センサで測定された前記吸水位が前記下側閾値以下であれば、前記排水量をゼロとする、
先行待機型立軸ポンプの排水量測定方法。
A method of measuring the amount of drainage in which the standby stand-by vertical pump having an air supply port at a position closer to the suction port than the impeller of the casing drains the water in the water absorption tank to the discharge water tank,
The water absorption level that is the water level of the water absorption tank is measured by a first water level sensor,
A discharge water level which is a water level of the discharge water tank is measured by a second water level sensor;
If the water absorption level measured by the first water level sensor is at a position closer to the suction port than the front edge of the impeller and exceeds the upper threshold value which is the water level corresponding to the air supply port, The water absorption level measured by the first water level sensor, the discharge water level measured by the second water level sensor, the relationship between the total head in the normal drainage operation state measured in advance and the amount of drainage, and the pipe measured in advance Calculate the emissions based on road resistance,
If the water absorption level measured by the first water level sensor is equal to or lower than the upper threshold value and exceeds a lower threshold value that is a predetermined water level above the water level of the suction port, the discharge amount is determined in advance. Specified sewage amount,
If the water absorption level measured by the first water level sensor is less than or equal to the lower threshold, the amount of drainage is set to zero.
A method for measuring the amount of water discharged from a stand-by type vertical shaft pump.
前記下側閾値は、前記吸込口から前記ケーシング内に流入する空気の損失と、前記空気供給口から前記ケーシング内に流入する空気の損失とが釣り合う水位である、請求項4に記載の先行待機型立軸ポンプの排水量測定方法。   The preceding standby according to claim 4, wherein the lower threshold is a water level in which a loss of air flowing into the casing from the suction port and a loss of air flowing into the casing from the air supply port are balanced. Drainage measurement method for vertical shaft pump. 前記規定排水量は、前記通常排水運転状態の排水量の1/10以上1/5以下の範囲で設定されている、請求項4又は請求項5に記載の先行待機型立軸ポンプの排水量測定方法。   6. The method for measuring the amount of drainage of a stand-by type vertical shaft pump according to claim 4 or 5, wherein the specified amount of drainage is set in a range of 1/10 to 1/5 of the amount of drainage in the normal drainage operation state.
JP2006257361A 2006-09-22 2006-09-22 Drainage measurement method for advanced stand-by vertical pump Active JP5005304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257361A JP5005304B2 (en) 2006-09-22 2006-09-22 Drainage measurement method for advanced stand-by vertical pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257361A JP5005304B2 (en) 2006-09-22 2006-09-22 Drainage measurement method for advanced stand-by vertical pump

Publications (2)

Publication Number Publication Date
JP2008075595A JP2008075595A (en) 2008-04-03
JP5005304B2 true JP5005304B2 (en) 2012-08-22

Family

ID=39347918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257361A Active JP5005304B2 (en) 2006-09-22 2006-09-22 Drainage measurement method for advanced stand-by vertical pump

Country Status (1)

Country Link
JP (1) JP5005304B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030518B2 (en) * 2006-09-22 2012-09-19 株式会社酉島製作所 Drainage measurement method for advanced stand-by vertical pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830661B2 (en) * 1992-04-02 1996-03-27 株式会社電業社機械製作所 Discharge water amount measuring device and discharge water amount measuring method of preceding standby type pump
JP2791382B2 (en) * 1992-05-06 1998-08-27 株式会社クボタ Operating method of vertical pump
JP2002332983A (en) * 2001-05-11 2002-11-22 Kubota Corp Pull-out type vertical shaft double-suction volute pump

Also Published As

Publication number Publication date
JP2008075595A (en) 2008-04-03

Similar Documents

Publication Publication Date Title
KR101900678B1 (en) Apparatus and operating method for Smart Pump Gate
CN107034632A (en) Washing machine water consumption quantity monitoring method, washing machine and washing machine
JP4682675B2 (en) Groundwater management system and groundwater management method
CN109764931A (en) A kind of sponge city river water level forecast method for early warning
JP6967864B2 (en) Pump control system and control method, as well as drainage system
JP5005304B2 (en) Drainage measurement method for advanced stand-by vertical pump
JP5030518B2 (en) Drainage measurement method for advanced stand-by vertical pump
CN105091973A (en) Device and method for detecting water level in water tank
JP3839361B2 (en) Rainwater runoff coefficient prediction method, rainwater inflow prediction method, rainwater runoff coefficient prediction program, and rainwater inflow forecast program
CN107167197A (en) A kind of measuring method and system of non-full pipe intermittent current instantaneous delivery
Lucke et al. Capacity loss in siphonic roof drainage systems due to aeration
KR101321349B1 (en) Pump performance estimation method and system using a water level sensor
US8740574B2 (en) Method and apparatus for adjusting a pump drive so that a pump flow corresponds with an incoming flow
JP4895140B2 (en) Drainage operation support device and method for operation in confluence type pumping station
JP5308033B2 (en) Pump equipment
CN109443454B (en) Flow monitoring device and method suitable for limited space
CN103995976A (en) Prediction and diagnosis method for blocking of recharge wells based on permeability coefficient model
CN112483903A (en) Pipe network inflow detection method, device and system
JP2004234422A (en) Rainwater inflow prediction device
JP3984006B2 (en) Inflow liquid amount prediction calculation apparatus and inflow liquid amount prediction calculation method below lower limit liquid level of pump equipment
JP7297656B2 (en) Rainwater inflow prediction device, rainwater inflow prediction method, computer program, rainwater pump control system, and rainwater pumping station system
CN102003397A (en) Submerged pump control system and submerged pump control method
CN114876025B (en) Park drainage method, park drainage system, storage medium and intelligent terminal
CN110489811B (en) Water level determination method and system applied to drainage and waterlogging drainage and storage medium
JP2007187002A (en) Pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5005304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250