JP4682675B2 - Groundwater management system and groundwater management method - Google Patents

Groundwater management system and groundwater management method Download PDF

Info

Publication number
JP4682675B2
JP4682675B2 JP2005110004A JP2005110004A JP4682675B2 JP 4682675 B2 JP4682675 B2 JP 4682675B2 JP 2005110004 A JP2005110004 A JP 2005110004A JP 2005110004 A JP2005110004 A JP 2005110004A JP 4682675 B2 JP4682675 B2 JP 4682675B2
Authority
JP
Japan
Prior art keywords
condensate
well
pumping
groundwater
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005110004A
Other languages
Japanese (ja)
Other versions
JP2006291474A (en
Inventor
研二 友石
伸 松本
道孝 河野
實 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2005110004A priority Critical patent/JP4682675B2/en
Publication of JP2006291474A publication Critical patent/JP2006291474A/en
Application granted granted Critical
Publication of JP4682675B2 publication Critical patent/JP4682675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、土木工事、建築工事において地山を掘削する際の揚水による地下水位低下の防止に関する地下水の管理システム及び地下水の管理方法に関するものである。   The present invention relates to a groundwater management system and a groundwater management method related to prevention of groundwater level drop due to pumping when excavating natural ground in civil engineering and construction work.

例えば、特許文献1には、観測井の地下水位及び揚水井から揚水される揚水量から揚水井周辺の地下水位の分布状態を逆解析により推定し、この解析結果に基づいて揚水井周辺の地下水位が設定水位に達するように各揚水井に配設された電磁弁の開閉度をリアルタイムに制御する方法が開示されている。この方法は、揚水井及び観測井の孔内水位を水圧計にて、揚水井の揚水量を電磁流量計にて計測し、揚水量と地下水位との関係の推定に必要な地盤の浸透特性を、システム運転時の揚水井の揚水量及び観測井内の水位より逆解析し、現在の揚水量から揚水井周辺の現状の地下水位を推定し、観測井の水位と設定水位との差を解消するよう電動弁の開閉度を全開100%に対して0.1%の精度でリアルタイムに自動制御するものである。   For example, in Patent Document 1, the distribution state of the groundwater level around the pumping well is estimated from the groundwater level of the observation well and the pumped amount from the pumping well by reverse analysis, and the groundwater around the pumping well is based on the analysis result. There is disclosed a method for controlling in real time the degree of opening and closing of a solenoid valve disposed in each pumping well so that the position reaches a set water level. In this method, the water level in the borehole of the pumping well and observation well is measured with a hydrometer, the pumping volume of the pumping well is measured with an electromagnetic flow meter, and the infiltration characteristics of the ground necessary for estimating the relationship between the pumping volume and the groundwater level Is analyzed in reverse from the pumped-up well and the water level in the observation well during system operation, and the current groundwater level around the pumping well is estimated from the current pumped amount to eliminate the difference between the observed well level and the set water level. Thus, the degree of opening and closing of the motor-operated valve is automatically controlled in real time with an accuracy of 0.1% with respect to 100% fully opened.

また、特許文献2には、復水井に復水する際の復水圧に対する復水量の収束値が与えられれば、復水圧を変化させることにより復水圧とそれに応じた復水量との関係を求めることができることを利用して、復水井の目詰まりの現象を予測把握し、最適な復水圧にて復水する方法が開示されている。この方法は、初期復水圧P1 をP1=9.8KPa程度とし、復水圧をΔP≒9.8KPa毎増加させ、各復水圧における復水量Q,観測井内の水位上昇量Δhと時間tに関する初期データ(帯水層の目詰まりがあまり進行しない段階でのデータ)をもとに双曲線法等により復水量、観測井内の水位上昇量の収束値(Qfi,Δhfi)をパーソナルコンピュータにより予測計算し、Qfi,Δhfiが目標値(Qreq. Δhreq. )以上となった時点の復水圧PSにより復水を開始するものである。
特開2001−323477号公報 特開平6−220866号公報
Further, in Patent Document 2, if a convergence value of the condensate amount with respect to the condensate pressure when condensing the condensate well is given, the relationship between the condensate pressure and the condensate amount corresponding to the condensate pressure is obtained by changing the condensate pressure. A method of predicting and grasping the phenomenon of clogging of the condensate well and condensing at an optimal condensate pressure is disclosed. In this method, the initial condensate pressure P1 is set to about P1 = 9.8 KPa, the condensate pressure is increased by ΔP≈9.8 KPa, and the condensate amount Q at each condensate pressure, the water level rise amount Δh in the observation well, and the initial data regarding the time t. Based on (data at the stage where clogging of the aquifer does not progress so much), the converging amount (Qfi, Δhfi) of the condensate amount and the water level rise in the observation well is predicted and calculated by a personal computer by the hyperbola method etc. , Δhfi starts condensate with the condensate pressure PS at the time when it becomes equal to or greater than the target value (Qreq. Δhreq.).
JP 2001-323477 A JP-A-6-220866

しかしながら、特許文献1に記載されている方法では、揚水ポンプの吐出側に設けられた電動弁の開閉度により揚水量を調整しているために、揚水量を少なくした状態での揚水ポンプの運転はポンプ本体に負荷がかかり、揚水ポンプの寿命が短くなるという問題点があった。また、揚水ポンプが定格揚水能力よりも小さい能力で揚水しても、消費電力量は定格揚水能力時と同一であり、電気代が高いという問題点があった。更に、揚水を開始又は停止する際は揚水ポンプの稼働、停止時のウオーターハンマー現象による衝撃音が発生するという問題点があった。   However, in the method described in Patent Document 1, since the pumping amount is adjusted by the degree of opening and closing of the motor-operated valve provided on the discharge side of the pump, the operation of the pumping pump in a state where the pumping amount is reduced Has a problem that the pump body is loaded and the life of the pump is shortened. In addition, even if the pump is pumped at a capacity smaller than the rated pumping capacity, the power consumption is the same as that at the rated pumping capacity, and the electricity bill is high. Furthermore, when starting or stopping the pumping, there is a problem that an impact sound is generated due to a water hammer phenomenon when the pump is operated and stopped.

また、特許文献2に記載されている方法では、コンプレッサー、コンプレッサーの圧力を制御する制御手段、復水圧と観測井水位との関係を予測する予測計測手段等が必要であり、復水のみを制御する装置としてはコストが高いという問題点があった。また、復水圧と復水量との関係を示す際に取得される初期注入圧P1、増加圧力Δh等の計測結果は地山状況によりそれぞれ異なっており、経験を有する技術者でなければ双曲線法を用いる方法が困難であるという問題点があった。また、復水圧と復水量との関係を示すデータを取得中に復水井を目詰まりさせる可能性があるという問題点があった。   In addition, the method described in Patent Document 2 requires a compressor, a control means for controlling the pressure of the compressor, a predictive measurement means for predicting the relationship between the condensate pressure and the observation well level, and controls only the condensate. There is a problem that the cost of the apparatus is high. In addition, the measurement results such as the initial injection pressure P1 and the increase pressure Δh obtained when showing the relationship between the condensate pressure and the condensate amount are different depending on the natural conditions. There was a problem that the method used was difficult. In addition, there is a problem that the condensate well may be clogged during acquisition of data indicating the relationship between the condensate pressure and the condensate amount.

そして、特許文献1に記載されている方法では、揚水量及び揚水井周辺の地下水位の管理のみを対象としており、揚水した地下水の復水方法についての記載が無く、特許文献2に記載されている方法では、復水量及び復水井周辺の地下水位の管理のみを対象としており、揚水する揚水方法についての記載が無かった。   And in the method described in Patent Document 1, only the management of the amount of pumped water and the groundwater level around the pumping well is targeted, there is no description about the method of condensing the pumped groundwater, and it is described in Patent Document 2. However, there is no description of the pumping method for pumping, only for the management of condensate volume and groundwater level around the condensate well.

そこで、本発明は、上記の問題点を鑑みてなされたものであり、その目的は、揚水量、復水量、揚水井周辺の地下水位、復水井周辺の地下水位の管理を自動的に行い、ランニングコストが安価な地下水の管理システム及び地下水の管理方法を提供することである。   Therefore, the present invention has been made in view of the above problems, and its purpose is to automatically manage the amount of pumped water, the amount of condensate, the groundwater level around the pumping well, the groundwater level around the condensate well, It is to provide a groundwater management system and a groundwater management method with low running costs.

前記目的を達成するため、本発明の地下水の管理システムは、揚水井から揚水した地下水を復水井に復水することにより地下水位を管理するための管理システムであって、前記揚水井内の地下水位を検出するための揚水井内水位計と、揚水ポンプと、該揚水ポンプから吐出する吐出量を測定するための揚水流量計とを備える、前記揚水井から地下水を揚水するための揚水手段と、前記揚水手段による揚水量を測定するための揚水流量計と、前記揚水井からの揚水により地下水位が低下する影響を受ける範囲内に設置され、地下水位を検出するための揚水井側影響範囲内水位計と、前記揚水井からの揚水により地下水位が低下する影響を受ける範囲外に設置され、地山の自然状態における地下水位を検出するための揚水井側影響範囲外水位計と、前記揚水手段にて揚水される地下水を前記復水井に送水するための送水手段と、前記復水井に復水される復水量を測定するための復水流量計と、前記復水井内の地下水位を検出するための復水井内水位計とを備える、前記送水手段にて送水される地下水を前記復水井に復水するための復水手段と、前記復水手段による復水量を測定するための復水用流量計と、前記復水井からの復水により地下水位が上昇する影響を受ける範囲内に設置され、地下水位を検出するための復水井側影響範囲内水位計と、前記復水井からの復水により地下水位が上昇する影響を受ける範囲外に設置され、地山の自然状態における地下水位を検出するための復水井側影響範囲外水位計と、前記揚水井側影響範囲内水位計、前記揚水井側影響範囲外水位計、前記揚水井内水位計、前記揚水流量計の各計測データに基づいて、揚水井周辺における地下水位の分布状態を解析して所定水位まで地下水位を低下させるための前記揚水井の必要最小限の揚水量を算出するとともに、前記復水井側影響範囲内水位計、前記復水井側影響範囲外水位計、前記復水井内水位計、前記復水用流量計の各計測データに基づいて、復水井周辺における地下水位の分布状態を解析して前記復水井から復水がオーバーフローすることを防ぐために復水可能な最大の復水量を算出する演算処理部と、前記揚水井からの揚水量及び前記復水井への復水量が、それぞれ、前記該演算処理部により算出された揚水量及び復水量となるように、前記揚水手段による揚水量と前記復水手段による復水量と前記送水手段による送水量とを制御する制御部とを有する制御装置と、を備えることを特徴とする(第1の発明)。 To achieve the above object, the management system of the groundwater of the present invention is a management system for managing groundwater level by condensing the groundwater that is pumped from the pumping well to restore fluid well, groundwater level of the pumping Iuchi and pumping Iuchi water gauge for detecting the water pumps, and a pumping flow meter for measuring a discharge amount discharged from該揚water pump, and pumping means for pumping the groundwater from the pumping well, the A pumping flow meter for measuring the amount of water pumped by the pumping means, and a water level within the pumping well side influence range for detecting the groundwater level installed within the range where the groundwater level is affected by pumping from the pumping well. And a water level gauge outside the affected area on the side of the pumping well for detecting the groundwater level in the natural state of the natural ground, which is installed outside the area where the groundwater level is affected by the pumping from the pumping well. And water supply means for water and groundwater is pumped by said pumping means to said recovery fluid well, the condensate flow meter for measuring the recovery amount of water condensate in the condensate fluid well, groundwater level in the condensate Mizui A condensate well water level meter for detecting water, condensate means for condensing groundwater fed by the water feed means to the condensate well, and for measuring the amount of condensate by the condensate means A condensate flow meter, a condensate well-side affected range water level meter for detecting the groundwater level, installed in a range where the groundwater level rises due to condensate from the condensate well, and the condensate well The water level meter outside the condensate well side influence range for detecting the groundwater level in the natural state of the natural ground, and the water level meter within the influence range of the pumping well side , which are installed outside the range where the groundwater level rises due to the condensate , Water level gauge outside the pumping well side influence range, the pumping Based on the measured data of the internal water level meter and the pumped flow meter, the distribution of the groundwater level around the pumping well is analyzed, and the minimum required pumping amount of the pumping well for reducing the groundwater level to the predetermined water level is calculated. And calculating groundwater in the vicinity of the condensate well based on the measurement data of the condensate well-side affected water level meter, the condensate well-side unaffected water level meter, the condensate well water level meter, and the condensate flow meter. A calculation processing unit that calculates the maximum condensate amount that can be reconstituted in order to prevent the condensate from overflowing from the condensate well by analyzing the distribution state, and the amount of pumped water from the well and the condensate well condensate water, respectively, said to be the calculated pumping amount and the condensate water by the processing unit, controls the water supply amount by the water supply means and recovery water by pumping amount and the condensate means by said pumping means control And a control device having a unit (first invention).

第2の発明は、第1の発明において、前記揚水ポンプはインバータにて制御されるものであり、前記揚水手段は、前記揚水ポンプの回転数を変更して揚水量を調整することを特徴とする。 The second invention according to the first invention, the water pumps are intended to be controlled by the inverter, said pumping means, characterized by adjusting the pumping amount by changing the rotational speed of the front Symbol water pumps And

の発明は、第1又は第2の発明において、前記揚水井及び前記復水井はそれぞれ複数設けられ、前記送水手段は、揚水井と復水井とを接続する複数の送水管と、該送水管同士を接続する連絡管と、該連絡管に設置される流量調整バルブとを備え、前記制御部は、前記揚水井からの揚水量及び前記復水井への復水量が、それぞれ、前記該演算処理部により算出された揚水量及び復水量となるように、前記揚水ポンプの回転数、及び、前記流量調整バルブの開閉程度を制御することを特徴とする。 According to a third invention, in the first or second invention, a plurality of the pumping wells and the condensate wells are provided, and the water supply means includes a plurality of water pipes connecting the pumping wells and the condensate wells, A connecting pipe for connecting the water pipes to each other, and a flow rate adjusting valve installed in the connecting pipe, and the control unit is configured to calculate the amount of pumped water from the pumping well and the amount of condensed water to the condensate well, respectively. The number of rotations of the pump and the degree of opening and closing of the flow rate adjustment valve are controlled so that the amount of pumped water and the amount of condensed water calculated by the processing unit are obtained.

第4の発明は、第1の発明において、前記復水手段は、揚水される地下水を濾過し、復水井の目詰まりを防止するための目詰まり防止装置と、該目詰まり防止装置の入水側及び出水側に水圧を測定するための圧力計とを更に備え、前記制御装置は、前記入水側と前記出水側との圧力差が所定値よりも大きい目詰まり装置を有する復水井を検出すると他の復水井への復水量を増加させるように前記流量調整バルブの開閉程度を制御することを特徴とする。 According to a fourth invention, in the first invention, the condensate means filters the groundwater to be pumped to prevent clogging of the condensate well, and the inlet side of the clogging prevention device And a pressure gauge for measuring water pressure on the water discharge side, and the control device detects a condensate well having a clogging device in which a pressure difference between the water input side and the water discharge side is greater than a predetermined value. The degree of opening and closing of the flow rate adjusting valve is controlled to increase the amount of condensate to other condensate wells.

の発明は、第1〜第の何れかの発明において、前記揚水井から揚水される地下水は、大気に触れること無く前記復水井に復水されることを特徴とする。 A fifth invention is characterized in that, in any one of the first to fourth inventions, groundwater pumped from the pumping well is condensed into the condensate well without being exposed to the atmosphere.

の発明の地下水の管理方法は、複数の揚水井から揚水した地下水を複数の復水井に復水することにより地下水位を管理するための管理方法において、揚水井と復水井とを接続する複数の送水管と、該送水管同士を接続する連絡管とを設けると共に、前記連結管に流量調整バルブを設け、前記揚水井から地下水を揚水ポンプにて揚水して揚水量を揚水流量計にて計測し、前記揚水井内の地下水位を揚水井内水位計にて計測し、前記揚水井からの揚水により地下水位が低下する影響を受ける範囲内の地下水位を揚水井側影響範囲内水位計にて計測し、前記揚水井からの揚水により地下水位が低下する影響を受ける範囲外の地山の自然状態の地下水位を揚水井側影響範囲外水位計にて計測し、前記揚水井から揚水した地下水を送水管にて前記復水井に送水し、該送水手段にて送水される地下水を復水流量計にて計測して復水井に復水し、前記復水井内の地下水位を復水井内水位計にて計測し、前記復水井からの復水により地下水位が上昇する影響を受ける範囲内の地下水位を復水井側影響範囲内水位計にて計測し、前記復水井からの復水により地下水位が上昇する影響を受ける範囲外の地山の自然状態の地下水位を復水井側影響範囲外水位計にて計測し、前記揚水井側影響範囲内水位計、前記揚水井側影響範囲外水位計、前記揚水井内水位計、前記揚水流量計の各計測データに基づいて、揚水井周辺における地下水位の分布状態を解析して所定水位まで地下水位を低下させるための前記揚水井の揚水量を算出するとともに、前記復水井側影響範囲内水位計、前記復水井側影響範囲外水位計、前記復水井内水位計、前記復水用流量計の各計測データに基づいて、復水井周辺における地下水位の分布状態を解析して前記復水井から復水がオーバーフローすることを防ぐために復水可能な復水量を演算処理部にて算出し、該演算処理部の演算結果に基づいて、前記揚水ポンプの回転数、前記流量調整バルブの開閉程度を制御部にて制御し、前記揚水井から揚水する量を最小に、かつ、揚水した地下水のうち復水する量を最大とすることを特徴とする。 A groundwater management method according to a sixth aspect of the present invention is a management method for managing groundwater level by condensing groundwater pumped from a plurality of pumping wells to a plurality of condensate wells, wherein the pumping well and the condensate well are connected. In addition to providing a plurality of water pipes and a connecting pipe for connecting the water pipes to each other, a flow rate adjusting valve is provided in the connecting pipe, and groundwater is pumped from the pumping well by a pump, and the pumped amount is converted into a pumped flow meter. The groundwater level in the pumping well is measured with a pumping well water level meter, and the groundwater level in the range where the groundwater level is affected by the pumping from the pumping well is changed to the pumping well side affected range water level meter. The groundwater level in the natural state of the natural ground outside the range affected by lowering the groundwater level due to the pumping from the pumping well is measured with the water level gauge outside the pumping side influence range, and pumped from the pumping well. The groundwater is recovered by the water pipe. Water to the well, the groundwater sent by the water supply means is measured with a condensate flow meter to condensate into the condensate well, the groundwater level in the condensate well is measured with a condensate well water level meter, The groundwater level within the range affected by the rise from the condensate well is measured by the water level gauge within the condensate well side, and the groundwater level is affected by the condensate from the condensate well. The groundwater level in the natural state of the natural ground outside the range is measured with the condensate well side influence range outside water level meter, the pumping well side influence range water level meter, the pumping well side influence range outside water level meter, the pumping well water level meter Based on the measurement data of the pumped flow meter, the distribution state of the groundwater level around the pumping well is analyzed to calculate the pumping amount of the pumping well for lowering the groundwater level to a predetermined level, and the condensate well Water level meter within the side impact range, water outside the condensate side impact range In order to prevent the condensate from overflowing from the condensate well by analyzing the distribution state of the groundwater level around the condensate well based on the measurement data of the condensate well water level meter and the condensate flow meter. The amount of condensate that can be watered is calculated by an arithmetic processing unit, and based on the calculation result of the arithmetic processing unit, the number of rotations of the pump and the opening / closing degree of the flow rate adjustment valve are controlled by the control unit, and the pumping well It is characterized by minimizing the amount of water pumped from the ground and maximizing the amount of condensate of the groundwater pumped up.

の発明は、第の発明において、前記演算処理部の演算方法は、前記揚水井の揚水量を前記揚水流量計にて計測する工程と、前記復水井の復水量を復水用流量計にて計測する工程と、前記復水井内における最高水位として設定された限界水位hrmaxと、前記復水井側影響範囲外水位計により計測された水位H0’と、前記復水井内水位計により計測された水位hrと、前記検知された復水量Qrとに基づいて、復水可能な量の最大値である限界復水量Qrmaxを、Qrmax=(hrmax−H0’)/(hr−H0’)×Qrにより推定する工程と、前記揚水量が前記限界復水量に所定の安全率を乗じた流量よりも少ないことを確認する工程とを備えることを特徴とする。 In a seventh aspect based on the sixth aspect , the calculation method of the arithmetic processing unit includes a step of measuring the pumping amount of the pumping well with the pumping flowmeter, and the condensate amount of the condensate well. Measured by a meter, the critical water level hrmax set as the highest water level in the condensate well, the water level H0 'measured by the condensate well side out-of-range water level meter, and measured by the condensate well water level meter Based on the detected water level hr and the detected condensate amount Qr, the condensate condensate amount Qrmax, which is the maximum condensable amount, is calculated as Qrmax = (hrmax−H0 ′) / (hr−H0 ′) × A step of estimating by Qr, and a step of confirming that the pumped amount is less than a flow rate obtained by multiplying the limit condensate amount by a predetermined safety factor.

の発明は、第の発明において、前記揚水量が前記限界復水量に所定の安全率を乗じた流量よりも少ないことを確認する工程に際し、前記揚水量が前記限界復水量に所定の安全率を乗じた流量よりも多い場合においては、前記揚水量と前記限界復水量に所定の安全率を乗じた流量との差分量を他の揚水井の前記揚水量に加える工程を経て、前記他の揚水井の揚水量が他の復水井の限界復水量に所定の安全率を乗じた流量よりも少ないことを確認する工程を再実行することを特徴とする。 According to an eighth invention, in the seventh invention, in the step of confirming that the pumped amount is less than a flow rate obtained by multiplying the limit condensate amount by a predetermined safety factor, the pumped amount is set to the limit condensate amount. In the case where the flow rate is greater than the flow rate multiplied by the safety factor, the step of adding the difference amount between the pumped amount and the flow rate obtained by multiplying the critical condensate amount by a predetermined safety factor to the pumped amount of another pumping well, It is characterized by re-executing the step of confirming that the pumped amount of other wells is less than the flow rate obtained by multiplying the limit condensate amount of other condensate wells by a predetermined safety factor.

の発明は、第又は第の発明において、前記限界復水量は、復水井内の水位の最大値として設定する限界水位と前記復水井側影響範囲外水位計の水位との水頭差を、前記復水井内水位計の水位と前記復水井側影響範囲外水位計の水位との水頭差で除して水頭差の余裕率を算出し、該余裕率に復水量を乗じて算出することを特徴とする。 According to a ninth invention, in the seventh or eighth invention, the critical condensate amount is a water head difference between a critical water level set as a maximum value of the water level in the condensate well and a water level outside the condensate well side influence range water level gauge. Is divided by the head difference between the water level of the condensate well water level gauge and the water level gauge outside the condensate well side influence range to calculate the margin ratio of the head difference, and the result is calculated by multiplying the margin ratio by the amount of condensate. It is characterized by that.

本発明による地下水の管理システム及び地下水の管理方法によれば、揚水手段、復水手段、送水手段、これらのすべてを制御する制御装置を設けたことにより、揚水量、復水量、揚水井周辺の地下水位、復水井周辺の地下水位を管理することができる。   According to the groundwater management system and the groundwater management method according to the present invention, by providing a pumping means, a condensing means, a water feeding means, and a control device for controlling all of these, the amount of pumped water, the amount of condensate, It is possible to manage the groundwater level and the groundwater level around the condensate well.

また、制御装置が演算処理部と制御部とを備えることにより、揚水井から揚水される量を必要最小限とし、かつ、揚水した地下水のうち復水される量を最大とすることができ、周辺地盤への工事の影響を最小限とすることができる。そして、これらの管理を自動的に行うことができる。さらに、揚水した地下水のほとんどを復水することができ、下水道に流す地下水が減るために下水道使用料金を低減することができる。   Moreover, by providing the control unit with the arithmetic processing unit and the control unit, it is possible to minimize the amount of water pumped from the pumping well, and to maximize the amount of condensed water in the pumped ground water, The impact of construction on the surrounding ground can be minimized. And these management can be performed automatically. Furthermore, most of the pumped-up groundwater can be recovered, and the amount of groundwater flowing to the sewerage can be reduced, so the sewerage usage fee can be reduced.

揚水手段としてインバータにて制御される揚水ポンプを用いることにより、揚水ポンプのモータ回転数が揚水量に応じて調整可能となり、負荷が軽減されるために揚水ポンプの寿命が長くなる。また、揚水量が少ないときは消費電力が少なくなるために電気代を低減することができる。   By using a pumping pump controlled by an inverter as the pumping means, the motor rotation speed of the pumping pump can be adjusted according to the pumping amount, and the life of the pumping pump is extended because the load is reduced. In addition, when the amount of pumped water is small, power consumption is reduced, so the electricity bill can be reduced.

揚水井と復水井を接続する送水手段を設けることにより、揚水井から揚水される地下水を大気に触れさせること無く復水井に復水することができる。   By providing a water supply means for connecting the pumping well and the condensate well, the groundwater pumped from the pumping well can be condensed into the condensate well without being exposed to the atmosphere.

複数の揚水井及び復水井において、演算処理部が各揚水井、各復水井のそれぞれの揚水寄与率、復水寄与率を算出するとともに、制御部が演算結果と揚水寄与率と復水寄与率に基づいて、各揚水井の揚水ポンプの回転数、各流量調整バルブの開閉程度を制御することにより、効率良く揚水、復水が可能となるために容易に所定の地下水位とすることができる。   In multiple pumping wells and condensate wells, the processing unit calculates the pumping contribution rate and condensate contribution rate for each pumping well and condensate well, and the control unit calculates the results, pumping contribution rate, and condensate contribution rate. Based on the above, by controlling the number of rotations of the pumping pump of each pumping well and the opening / closing degree of each flow rate adjusting valve, it becomes possible to achieve a predetermined groundwater level easily because pumping and condensing can be performed efficiently. .

制御装置が目詰まり防止装置の入水側と出水側との圧力差が所定値よりも大きい状態を検知した場合においては、他の復水井へ地下水を送水することにより揚水した地下水をすべて復水することができる。また、他の復水井に送水している間に目詰まり防止装置を清掃することができる。   When the controller detects that the pressure difference between the inlet side and outlet side of the clogging prevention device is greater than the specified value, it will condense all the groundwater pumped by sending groundwater to other condensate wells. be able to. In addition, the clogging prevention device can be cleaned while water is being supplied to another condensate well.

本発明は、揚水量、復水量、揚水井周辺の地下水位、復水井周辺の地下水位の管理を自動的に行う地下水の管理システム及び地下水の管理方法に関するものである。   The present invention relates to a groundwater management system and a groundwater management method for automatically managing the amount of pumped water, the amount of condensate, the groundwater level around the pumping well, and the groundwater level around the condensate well.

以下、本発明に係る地下水の管理システム及び地下水の管理方法の好ましい実施形態について図面を用いて詳細に説明する。
図1は、本発明の第一実施形態に係る地下水の管理システムの設置状況を示す図である。また、図2は、本実施形態に係る揚水手段の設置状況を示す側面図、図3は、本実施形態に係る復水手段の設置状況を示す側面図である。
Hereinafter, preferred embodiments of a groundwater management system and a groundwater management method according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an installation status of a groundwater management system according to the first embodiment of the present invention. FIG. 2 is a side view showing the installation status of the pumping means according to the present embodiment, and FIG. 3 is a side view showing the installation status of the condensing means according to the present embodiment.

図1に示すように、地下水の管理システム1は、揚水井3から地下水を揚水するための揚水手段5と、揚水井3からの揚水により地下水位が低下する影響を受ける範囲内に設置され、地下水位を検出するための揚水井側影響範囲内水位計7と、揚水井3からの揚水により地下水位が低下する影響を受ける範囲外に設置され、地山の自然状態における地下水位を検出するための揚水井側影響範囲外水位計9と、揚水手段5にて揚水される地下水を復水井11に送水するための送水手段13と、送水手段13にて送水される地下水を復水井11に復水するための復水手段15と、復水井11からの復水により地下水位が上昇する影響を受ける範囲内に設置され、地下水位を検出するための復水井側影響範囲内水位計17と、復水井11からの復水により地下水位が上昇する影響を受ける範囲外に設置され、地山の自然状態における地下水位を検出するための復水井側影響範囲外水位計19と、揚水井3から揚水される量を必要最小限とし、かつ、揚水した地下水のうち復水される量を最大とするように、揚水手段5と復水手段15と送水手段13とを制御する制御装置21とを備える。   As shown in FIG. 1, the groundwater management system 1 is installed within a range where the groundwater level is lowered due to the pumping means 5 for pumping the groundwater from the pumping well 3 and the pumping from the pumping well 3, Water level gauge 7 within the pumping well side influence range for detecting the groundwater level and installed outside the range where the groundwater level drops due to pumping from the pumping well 3, and detects the groundwater level in the natural state of natural ground Water level gauge 9 outside the pumping well side influence range, water feeding means 13 for feeding ground water pumped by pumping means 5 to condensate well 11, and ground water sent by water feeding means 13 to condensate well 11 A condensate means 15 for condensing, and a condensate well-side affected range water level meter 17 for detecting the groundwater level, which is installed in a range where the groundwater level rises due to the condensate from the condensate well 11; Condensate from condensate well 11 Installed outside the range affected by the rise of the groundwater level, the water level gauge 19 outside the condensate well side for detecting the groundwater level in the natural state of the natural ground, and the amount pumped from the pumping well 3 is the minimum required And a control device 21 that controls the pumping means 5, the condensing means 15, and the water feeding means 13 so as to maximize the amount of groundwater that is pumped up.

揚水手段5は、図2に示すように、揚水井3内の地下水位を検出するための揚水井内水位計23と、インバータにて制御される揚水ポンプ25と、この揚水ポンプ25から吐出する吐出量を測定するための揚水流量計27とを備える。   As shown in FIG. 2, the pumping means 5 includes a pumping well water level meter 23 for detecting the groundwater level in the pumping well 3, a pumping pump 25 controlled by an inverter, and a discharge discharged from the pumping pump 25. And a pumping flow meter 27 for measuring the amount.

揚水井内水位計23にて計測される水位に基づいて揚水井側影響範囲内水位が目標とする所定水位となるようにインバータにて揚水ポンプ25の回転数を変化させ、揚水量を調整する。   Based on the water level measured by the pumping well water level gauge 23, the rotational speed of the pumping pump 25 is changed by the inverter so that the water level within the pumping well side influence range becomes the target predetermined water level, and the pumping amount is adjusted.

復水手段15は、図3に示すように、復水井11に復水される復水量を測定するための復水流量計29と、復水井11内の地下水位を検出するための復水井内水位計31と、揚水される地下水を濾過し、復水井11の目詰まりを防止するための目詰まり防止装置33と、この目詰まり防止装置33の入水側及び出水側にそれぞれ配設され、水圧を測定するための圧力計35、36とを備える。   As shown in FIG. 3, the condensing means 15 includes a condensate flow meter 29 for measuring the amount of condensate to be condensed in the condensate well 11, and a condensate well for detecting the groundwater level in the condensate well 11. A water level gauge 31, a clogging prevention device 33 for filtering the groundwater to be pumped and preventing clogging of the condensate well 11, and a water pressure gauge disposed on the water inlet side and the water outlet side of the clogging prevention device 33, respectively. Pressure gauges 35 and 36.

目詰まり防止装置33が復水中の土砂等の不純物を除去することにより復水井11の復水機能の低下を防止する。長期間復水して目詰まり防止装置33の濾過機能が低下し、前後に設置されている圧力計35、36の圧力差が所定値よりも大きくなった場合は、制御装置21にて連結管39の流量調整バルブ41(後述する)を調整して他の復水井11へ地下水を送水し、圧力差の大きい目詰まり防止装置33を有する復水井11への復水を停止する。他の復水井11へ送水することにより復水総量は変化しないために、揚水量を減少する必要が無い。また、他の復水井11へ送水中に目詰まり防止装置33を清掃することが可能となる。
復水井内水位計31にて計測される水位に基づいて復水がオーバーフローしないように制御装置21にて復水量が制御される。
The clogging prevention device 33 removes impurities such as earth and sand in the condensate, thereby preventing the condensate function of the condensate well 11 from being deteriorated. In the case where the condensate prevention device 33 has been filtered for a long time and the filtration function of the clogging prevention device 33 has been reduced, and the pressure difference between the pressure gauges 35 and 36 installed before and after becomes larger than a predetermined value, the control device 21 connects the connecting pipe The flow control valve 41 (described later) 39 is adjusted to supply groundwater to the other condensate wells 11, and the condensate to the condensate wells 11 having the clogging prevention device 33 having a large pressure difference is stopped. Since the total amount of condensate does not change by sending water to the other condensate wells 11, there is no need to reduce the pumped amount. In addition, it becomes possible to clean the clogging prevention device 33 during water feeding to the other condensate wells 11.
Based on the water level measured by the condensate well water level gauge 31, the condensate amount is controlled by the control device 21 so that the condensate does not overflow.

送水手段13は、揚水井3と復水井11とを接続し、揚水井3から揚水される地下水を大気に触れさせること無く復水井11に送水する送水管37と、この送水管37同士を接続する連絡管39と、連結管39に配設される流量調整バルブ41とを備える。ある揚水井3から揚水された地下水は連結管を介してすべての復水井11へ復水できるように送水管37同士が連結されている。   The water supply means 13 connects the pumping well 3 and the condensate well 11, and connects the water supply pipe 37 and the water supply pipe 37 that supplies the groundwater pumped from the pumping well 3 to the condensate well 11 without touching the atmosphere. A connecting pipe 39 and a flow rate adjusting valve 41 disposed in the connecting pipe 39. The water pipes 37 are connected to each other so that the groundwater pumped from a certain pumping well 3 can be returned to all the condensate wells 11 through the connecting pipe.

図4は、本実施形態に係る制御装置のシステムの概略図で、図5は、本実施形態に係る演算処理部の所定時間毎に行う演算の手順を示すフロー図で、図6は、本実施形態に係る演算処理部の常時行う演算の手順を示すフロー図である。   FIG. 4 is a schematic diagram of a system of the control device according to the present embodiment, FIG. 5 is a flowchart showing a calculation procedure performed every predetermined time of the calculation processing unit according to the present embodiment, and FIG. It is a flowchart which shows the procedure of the calculation always performed by the calculation process part which concerns on embodiment.

図4に示すように、制御装置21は演算処理部43と制御部45とを備えており、この演算処理部43は、揚水井側影響範囲内水位計7、揚水井側影響範囲外水位計9、揚水井内水位計23、揚水流量計27の各計測データに基づいて、揚水井3周辺における現在の地下水位の分布状態を解析して所定の水位まで地下水位を低下させるための揚水井3の揚水量を算出するとともに、復水井側影響範囲内水位計17、復水井側影響範囲外水位計19、復水井内水位計31、復水流量計29の各計測データに基づいて、復水井11から復水がオーバーフローすることを防ぐために復水可能な復水量を算出する機能を有する。更に、演算処理部43は複数の揚水井3及び復水井11において、すべての揚水井3から揚水される地下水の全揚水量に対する各揚水井3の揚水量の割合を示す揚水寄与率及びすべての復水井11に復水される地下水の全復水量に対する各復水井11の復水量の割合を示す復水寄与率を更に算出する機能を有する。
また、制御部45は、演算処理部43の演算結果に基づいて、揚水ポンプ25の回転数、流量調整バルブ41の開閉度を制御する機能を有する。
As shown in FIG. 4, the control device 21 includes an arithmetic processing unit 43 and a control unit 45, and the arithmetic processing unit 43 includes a pumping well side in-effect range water level meter 7, and a pumping well side effect range outside water level meter. 9. Pumping well 3 for lowering the groundwater level to a predetermined water level by analyzing the distribution state of the current groundwater level around the pumping well 3 based on the measurement data of the pumping well water level meter 23 and the pumping flow meter 27 Water level gauge 17 within the condensate well side influence range, water level gauge 19 outside the condensate well side influence range, condensate well water level gauge 31, and condensate flow meter 29 based on the respective measurement data 11 has a function of calculating the amount of condensate that can be condensed to prevent the condensate from overflowing. Further, in the plurality of pumping wells 3 and the condensate wells 11, the arithmetic processing unit 43 includes the pumping contribution ratio indicating the ratio of the pumping amount of each pumping well 3 to the total pumping amount of the groundwater pumped from all the pumping wells 3 and all It has a function of further calculating a condensate contribution ratio indicating the ratio of the condensate amount of each condensate well 11 to the total condensate amount of groundwater condensate in the condensate well 11.
Further, the control unit 45 has a function of controlling the rotation speed of the pumping pump 25 and the opening / closing degree of the flow rate adjustment valve 41 based on the calculation result of the calculation processing unit 43.

以下に、まず演算処理部43の所定時間毎に行う演算手順について説明する。
演算処理部43は、図5のS10において、揚水井側影響範囲内水位計7、揚水井側影響範囲外水位計9、揚水井内水位計23、揚水流量計27、復水井側影響範囲内水位計17、復水井側影響範囲外水位計19、復水井内水位計31、復水流量計29にてそれぞれ揚水井側影響範囲内水位、揚水井側影響範囲外水位、揚水井内水位、揚水流量、復水井側影響範囲内水位、復水井側影響範囲外水位、復水井内水位、復水流量を検知する。
Below, the calculation procedure performed at predetermined time intervals in the calculation processing unit 43 will be described first.
In S10 of FIG. 5, the arithmetic processing unit 43 determines the water level meter 7 within the pumping well side influence range, the water level meter 9 outside the pumping well side influence range, the water level meter 23 within the pumping well side, the pumping flow meter 27, and the water level within the condensate side influence range. Total water level 17 outside the condensate well side influence range 19, condensate well internal water level meter 31, condensate flow meter 29, the pumping well side influence range water level, the pumping well side influence range outside water level, the pumping well level, pumping flow rate Detects the water level within the condensate well side influence range, the water level outside the condensate well side influence range, the condensate well water level, and the condensate flow rate.

これらの計測データに基づいて、図5のS11において、現在の揚水井3及び復水井11の周辺における地下水位の分布状態を解析する。
そして、図5のS12において、揚水井側影響範囲内において目標とする所定の水位を設定し、この所定の水位を常に一定に保つために各揚水井3における最適な揚水量をそれぞれ算出する。ここで、揚水される地下水の全揚水量に対する各揚水井3の揚水量の割合を示す揚水寄与率も同時に算出する。
図5のS13において、各復水井11の復水量を考慮し、復水井11の周辺が復水井側影響範囲外水位と同じ水位になるように、各復水井11における最適な復水量をそれぞれ算出する。ここで、復水される地下水の全復水量に対する各復水井11の復水量の割合を示す復水寄与率も同時に算出する。これらの揚水寄与率及び復水寄与率は、揚水量は必要最小限で、かつ、揚水した地下水のうち復水する量が最大となるように算出される。
そして、制御部45は、算出された揚水寄与率及び復水寄与率に基づいて、各揚水井3のすべての揚水ポンプ25の回転数及び各連結管39に配設されているすべての流量調整バルブ41の開閉度を制御する。したがって、各揚水井3の揚水量は揚水寄与率に応じて揚水され、各復水井11の復水量は復水寄与率に応じて復水される。
Based on these measurement data, the distribution state of the groundwater level around the current pumping well 3 and condensate well 11 is analyzed in S11 of FIG.
Then, in S12 of FIG. 5, a predetermined predetermined water level is set within the pumping well side influence range, and the optimum pumping amount in each pumping well 3 is calculated in order to keep the predetermined water level constant. Here, the pumping contribution ratio indicating the ratio of the pumping amount of each pumping well 3 to the total pumping amount of the groundwater to be pumped is also calculated.
In S13 of FIG. 5, the optimum condensate amount in each condensate well 11 is calculated so that the condensate amount of each condensate well 11 is considered and the water level around the condensate well 11 is the same as the water level outside the condensate well side influence range. To do. Here, the condensate contribution ratio indicating the ratio of the condensate amount of each condensate well 11 to the total condensate amount of the groundwater to be condensed is also calculated. These pumping contribution rate and condensate contribution rate are calculated so that the pumped amount is the minimum necessary and the amount of pumped ground water is maximized.
And the control part 45 adjusts all the flow volume arrange | positioned by the rotation speed of all the pumps 25 of each pumping well 3, and each connection pipe | tube 39 based on the calculated pumping contribution rate and a condensate contribution rate. The degree of opening and closing of the valve 41 is controlled. Therefore, the pumped amount of each pumping well 3 is pumped according to the pumping contribution rate, and the pumped water amount of each condensate well 11 is pumped according to the condensate contributing rate.

上述したS10〜13の一連の工程は、所定の時間間隔で行われており、揚水又は復水による揚水井3又は復水井11の周辺の地下水位分布の変化に適宜対応することが可能である。   The series of steps S10 to 13 described above are performed at predetermined time intervals, and can appropriately correspond to changes in the groundwater level distribution around the pumping well 3 or the condensate well 11 due to pumping or condensate. .

次に、演算処理部43の常時行う演算手順について説明する。
演算処理部43は、図6のS20において、各揚水井3に設置される揚水流量計27にて揚水量Qdを検知する。揚水量Qdは揚水寄与率により各揚水井3によって異なる。
Next, a calculation procedure performed constantly by the calculation processing unit 43 will be described.
In S20 of FIG. 6, the arithmetic processing unit 43 detects the pumping amount Qd with the pumping flow meter 27 installed in each pumping well 3. The pumping amount Qd varies depending on each pumping well 3 depending on the contribution rate of pumping.

次に、図6のS21において、復水井11内における最高水位として設定する限界水位hrmax、復水井側影響範囲外水位計19の水位H0’、復水井内水位計31の水位hr、復水量Qrに基づいて算出される復水井11に復水可能な流量の最大値である限界復水量Qrmaxは(1)式となる。
Qrmax=(hrmax−H0’)/(hr−H0’)×Qr ・・・(1)
Next, in S21 of FIG. 6, the limit water level hrmax set as the maximum water level in the condensate well 11, the water level H0 'of the condensate well-side outside influence range water level meter 19, the water level hr of the condensate well water level meter 31, the condensate amount Qr The condensate condensate amount Qrmax, which is the maximum value of the flow rate that can be condensed into the condensate well 11 based on the equation (1), is expressed by equation (1).
Qrmax = (hrmax−H0 ′) / (hr−H0 ′) × Qr (1)

そして、図6のS22において、揚水量Qdが限界復水量Qrmaxよりも多い場合においては、復水井11から復水がオーバーフローする及び復水井11に復水できない地下水の処理には下水処理料金がかかる等の不具合が生じるために、揚水量Qdが限界復水量Qrmaxを超えないように管理される。つまり、揚水可能な揚水量Qdは、安全率αを限界復水量Qrmaxに乗じた(2)式となる。
Qd<α×Qrmax ・・・(2)
ここで、安全率αは0.8〜1程度とする。
そして、揚水量Qdが限界復水量Qrmaxに所定の安全率αを乗じた流量よりも少ないことを確認する。
In S22 of FIG. 6, when the pumped amount Qd is larger than the limit condensate amount Qrmax, a sewage treatment fee is charged for the treatment of groundwater that overflows the condensate well 11 and cannot condense into the condensate well 11. Therefore, the pumped water amount Qd is managed so as not to exceed the limit condensate water amount Qrmax. That is, the pumped water amount Qd that can be pumped is expressed by the equation (2) obtained by multiplying the safety factor α by the limit condensate water amount Qrmax.
Qd <α × Qrmax (2)
Here, the safety factor α is about 0.8 to 1.
Then, it is confirmed that the pumped amount Qd is less than the flow rate obtained by multiplying the limit condensate amount Qrmax by a predetermined safety factor α.

ここで、揚水量Qdが限界復水量Qrmaxに所定の安全率αを乗じた流量よりも多い場合においては、図6のS23において、揚水量Qdと限界復水量Qrmaxに所定の安全率αを乗じた流量との差分量ΔQdを他の揚水井3の揚水量Qd’に加える工程を経て、他の復水井11の限界復水量Qrmax’に所定の安全率αを乗じた流量よりも少ないことを確認する工程を再実行する。つまり、他の揚水井3の揚水可能な揚水量Qd’に差分量ΔQdを加算した値は、安全率αを限界復水量Qrmax’に乗じた(3)式となることを確認する。
Qd’+ΔQd<α×Qrmax’ ・・・(3)
そして、他の揚水井3の揚水可能な揚水量Qd’に差分量ΔQdを加算した値が、他の復水井11の限界復水量Qrmax’に所定の安全率αを乗じた流量より少ないことを確認できたら、制御部45は、この演算処理部43の演算結果に基づいて、揚水ポンプ25の回転数、流量調整バルブ41の開閉度を制御し、地下水を他の復水井11へ流す。
そして、揚水量Qdが限界復水量Qrmaxに所定の安全率αを乗じた流量よりも少ない場合においては、各揚水井3から揚水した地下水をそのまま復水井11へ復水する。
Here, when the pumped amount Qd is larger than the flow rate obtained by multiplying the limit condensate amount Qrmax by the predetermined safety factor α, the pumped amount Qd and the limit condensate amount Qrmax are multiplied by the predetermined safety factor α in S23 of FIG. The difference ΔQd from the flow rate is added to the pumping amount Qd ′ of the other pumping well 3, and is less than the flow rate obtained by multiplying the critical condensate amount Qrmax ′ of the other condensate well 11 by a predetermined safety factor α. Re-execute the process to check. That is, it is confirmed that the value obtained by adding the difference amount ΔQd to the pumped amount Qd ′ of other pumping wells 3 is obtained by multiplying the safety rate α by the limit condensate amount Qrmax ′.
Qd ′ + ΔQd <α × Qrmax ′ (3)
Then, the value obtained by adding the difference amount ΔQd to the pumped amount Qd ′ of the other pumping well 3 is less than the flow rate obtained by multiplying the limit condensate amount Qrmax ′ of the other condensate well 11 by the predetermined safety factor α. If confirmed, the control unit 45 controls the number of revolutions of the pump 25 and the degree of opening / closing of the flow rate adjustment valve 41 based on the calculation result of the calculation processing unit 43 to flow the ground water to the other condensate well 11.
When the pumped amount Qd is less than the flow rate obtained by multiplying the limit condensate amount Qrmax by a predetermined safety factor α, the groundwater pumped from each pumping well 3 is directly condensed into the condensate well 11.

上述したS20〜23の一連の工程は、常時行われており、揚水量Qdが限界復水量Qrmaxを超えることを防止する。   The series of steps S20 to 23 described above are always performed, and the pumped water amount Qd is prevented from exceeding the limit condensate water amount Qrmax.

したがって、本発明による地下水の管理システム1は、揚水手段5、復水手段15、送水手段13、これらのすべてを制御する制御装置21を設けたことにより、揚水量、復水量、揚水井3及び復水井11周辺の地下水位の管理を行うことができる。さらに、制御装置21が演算処理部43と制御部45とを備えることにより、これらの管理を自動的に行うことができる。   Therefore, the groundwater management system 1 according to the present invention is provided with the pumping means 5, the condensate means 15, the water supply means 13, and the control device 21 for controlling all of them, so that the pumping amount, the condensate amount, the pumping well 3 and The groundwater level around the condensate well 11 can be managed. Furthermore, since the control device 21 includes the arithmetic processing unit 43 and the control unit 45, these managements can be automatically performed.

また、複数の揚水井3及び復水井11において、演算処理部43が各揚水井3、各復水井11のそれぞれの揚水寄与率、復水寄与率を算出する。この算出結果に基づいて、制御部45が、各揚水井3の揚水ポンプ25の回転数、各流量調整バルブ41の開閉程度を制御することにより、効率良く揚水、復水が可能となるために揚水井3及び復水井11の周辺を容易に所定の水位とすることができる。   In the plurality of pumping wells 3 and condensate wells 11, the arithmetic processing unit 43 calculates the pumping contribution rate and the condensate contribution rate of each pumping well 3 and each condensate well 11. Based on this calculation result, the control unit 45 controls the number of rotations of the pump 25 of each pumping well 3 and the degree of opening / closing of each flow rate adjustment valve 41, thereby enabling efficient pumping and condensing. The periphery of the pumping well 3 and the condensate well 11 can be easily set to a predetermined water level.

なお、発明の理解の便宜上、本実施形態においては、2本の揚水井から揚水し、揚水した地下水を2本の復水井へ復水する方法について説明したが、本発明の適用対象は揚水井及び復水井は2本に限定されるものではなく、1以上の復水井、揚水井に適用が可能である。   For the convenience of understanding the invention, in the present embodiment, the method of pumping water from two pumping wells and returning the pumped ground water to the two condensate wells has been described. The condensate wells are not limited to two, and can be applied to one or more condensate wells and pumped wells.

本発明の第一実施形態に係る地下水の管理システムの設置状況を示す図である。It is a figure which shows the installation condition of the groundwater management system which concerns on 1st embodiment of this invention. 本実施形態に係る揚水手段の設置状況を示す側面図である。It is a side view which shows the installation condition of the pumping means which concerns on this embodiment. 本実施形態に係る復水手段の設置状況を示す側面図である。It is a side view which shows the installation condition of the condensing means which concerns on this embodiment. 本実施形態に係る制御装置のシステムの概略図である。It is the schematic of the system of the control apparatus which concerns on this embodiment. 本実施形態に係る演算処理部の所定時間毎に行う演算の手順を示すフロー図である。It is a flowchart which shows the procedure of the calculation performed for every predetermined time of the calculation process part which concerns on this embodiment. 本実施形態に係る演算処理部の常時行う演算の手順を示すフロー図である。It is a flowchart which shows the procedure of the calculation always performed by the calculation process part which concerns on this embodiment.

符号の説明Explanation of symbols

1 地下水の管理システム
3 揚水井
5 揚水手段
7 揚水井側影響範囲内水位計
9 揚水井側影響範囲外水位計
11 復水井
13 送水手段
15 復水手段
17 復水井側影響範囲内水位計
19 復水井側影響範囲外水位計
21 制御装置
23 揚水井内水位計
25 揚水ポンプ
27 揚水流量計
29 復水流量計
31 復水井内水位計
33 目詰まり防止装置
35 (入水側)圧力計
36 (出水側)圧力計
37 送水管
39 連絡管
41 流量調整バルブ
43 演算処理部
45 制御部
DESCRIPTION OF SYMBOLS 1 Groundwater management system 3 Pumping well 5 Pumping means 7 Water level meter within pumping well side influence range 9 Water level meter outside pumping well side influence range 11 Condensation well 13 Water supply means 15 Condensation means 17 Water level meter 19 within condensate side influence range Water level gauge outside the well-influenced area 21 Control device 23 Water level gauge in the pumping well 25 Pumping pump 27 Pumping flow meter 29 Condensate flow meter 31 Condensate water level meter 33 Clogging prevention device 35 (Inlet side) Pressure gauge 36 (Outlet side) Pressure gauge 37 Water supply pipe 39 Communication pipe 41 Flow rate adjusting valve 43 Arithmetic processing part 45 Control part

Claims (9)

揚水井から揚水した地下水を復水井に復水することにより地下水位を管理するための管理システムであって、
前記揚水井内の地下水位を検出するための揚水井内水位計と、揚水ポンプと、該揚水ポンプから吐出する吐出量を測定するための揚水流量計とを備える、前記揚水井から地下水を揚水するための揚水手段と、
前記揚水井からの揚水により地下水位が低下する影響を受ける範囲内に設置され、地下水位を検出するための揚水井側影響範囲内水位計と、
前記揚水井からの揚水により地下水位が低下する影響を受ける範囲外に設置され、地山の自然状態における地下水位を検出するための揚水井側影響範囲外水位計と、
前記揚水手段にて揚水される地下水を前記復水井に送水するための送水手段と、
前記復水井に復水される復水量を測定するための復水流量計と、前記復水井内の地下水位を検出するための復水井内水位計とを備える、前記送水手段にて送水される地下水を前記復水井に復水するための復水手段と、
前記復水井からの復水により地下水位が上昇する影響を受ける範囲内に設置され、地下水位を検出するための復水井側影響範囲内水位計と、
前記復水井からの復水により地下水位が上昇する影響を受ける範囲外に設置され、地山の自然状態における地下水位を検出するための復水井側影響範囲外水位計と、
前記揚水井側影響範囲内水位計、前記揚水井側影響範囲外水位計、前記揚水井内水位計、前記揚水流量計の各計測データに基づいて、揚水井周辺における地下水位の分布状態を解析して所定水位まで地下水位を低下させるための前記揚水井の必要最小限の揚水量を算出するとともに、前記復水井側影響範囲内水位計、前記復水井側影響範囲外水位計、前記復水井内水位計、前記復水流量計の各計測データに基づいて、復水井周辺における地下水位の分布状態を解析して前記復水井から復水がオーバーフローすることを防ぐために復水可能な最大の復水量を算出する演算処理部と、前記揚水井からの揚水量及び前記復水井への復水量が、それぞれ、前記該演算処理部により算出された揚水量及び復水量となるように、前記揚水手段による揚水量と前記復水手段による復水量と前記送水手段による送水量とを制御する制御部とを有する制御装置と、
を備えることを特徴とする地下水の管理システム。
A management system for managing groundwater level by condensing groundwater pumped from a pumping well into a condensate well,
In order to pump groundwater from the pumping well , comprising a pumping well water level meter for detecting the groundwater level in the pumping well, a pumping pump, and a pumping flow meter for measuring a discharge amount discharged from the pumping pump. Pumping means,
A water level meter within the pumping well side influence range for detecting the groundwater level, which is installed in a range where the groundwater level is affected by pumping from the pumping well; and
A water level gauge outside the pumping well side influence range for detecting the groundwater level in the natural state of the natural ground, installed outside the range where the groundwater level is affected by pumping from the pumping well,
Water supply means for supplying groundwater pumped by the pumping means to the condensate well;
Condensate flowmeter for measuring the amount of condensate to be condensed in the condensate well and a condensate well water level meter for detecting the groundwater level in the condensate well are fed by the water feeding means. Condensing means for condensing groundwater into the condensate well;
A water level meter in the condensate well-side influence range for detecting the groundwater level, which is installed in a range where the groundwater level rises due to the condensate from the condensate well,
A water level gauge outside the condensate well side influence range for detecting the groundwater level in the natural state of the natural ground, installed outside the range affected by the rise of the groundwater level due to the condensate from the condensate well,
Based on the measurement data of the pumping well side influence range water level meter, the pumping well side influence range outside water level meter, the pumping well water level meter, the pumping flow meter, the distribution state of the groundwater level around the pumping well is analyzed. And calculating the minimum required pumping amount of the pumping well for lowering the groundwater level to a predetermined water level, the water level meter within the condensate well side influence range, the water level meter outside the condensate well side effect range, the condensate well inside Based on the measurement data of the water level meter and the condensate flow meter, the maximum amount of condensate that can be condensed in order to prevent the condensate from overflowing from the condensate well by analyzing the distribution of the groundwater level around the condensate well an arithmetic processing unit for calculating a pumping amount and condensate water to the recovery fluid well from the pumping well is, as respectively, serving as the said pumping amount and condensate water calculated by the arithmetic processing unit, according to the pumping means pumping amount A control device and a control unit for controlling the water supply amount by the water supply means and recovery water by the condensate means,
A groundwater management system characterized by comprising:
前記揚水ポンプはインバータにて制御されるものであり、
前記揚水手段は、前記揚水ポンプの回転数を変更して揚水量を調整することを特徴とする請求項1に記載の地下水の管理システム。
The pump is controlled by an inverter,
It said pumping means, the management system of groundwater according to claim 1, characterized in that to adjust the pumping quantity by changing the rotational speed of the front Symbol water pumps.
前記揚水井及び前記復水井はそれぞれ複数設けられ、
前記送水手段は、揚水井と復水井とを接続する複数の送水管と、該送水管同士を接続する連絡管と、該連絡管に設置される流量調整バルブとを備え
前記制御部は、前記揚水井からの揚水量及び前記復水井への復水量が、それぞれ、前記該演算処理部により算出された揚水量及び復水量となるように、前記揚水ポンプの回転数、及び、前記流量調整バルブの開閉程度を制御することを特徴とする請求項1又は2に記載の地下水の管理システム。
A plurality of the wells and the condensate wells are provided,
The water supply means includes a plurality of water supply pipes connecting the pumping well and the condensate well, a communication pipe connecting the water supply pipes, and a flow rate adjusting valve installed in the communication pipe ,
The control unit is configured so that the amount of pumping from the pumping well and the amount of condensate to the condensate well are the pumping amount and the condensate amount calculated by the arithmetic processing unit, respectively, and the management system of groundwater according to claim 1 or 2, characterized in that controlling the degree of opening of the flow regulating valve.
前記復水手段は、揚水される地下水を濾過し、復水井の目詰まりを防止するための目詰まり防止装置と、該目詰まり防止装置の入水側及び出水側に水圧を測定するための圧力計とを更に備え、
前記制御装置は、前記入水側と前記出水側との圧力差が所定値よりも大きい目詰まり装置を有する復水井を検出すると他の復水井への復水量を増加させるように前記流量調整バルブの開閉程度を制御することを特徴とする請求項に記載の地下水の管理システム。
The condensate means filters groundwater to be pumped and prevents clogging of the condensate well, and a pressure gauge for measuring the water pressure on the inlet side and outlet side of the clogging prevention device And further comprising
The control device detects the condensate well having a clogging device in which a pressure difference between the inlet side and the outlet side is larger than a predetermined value, and increases the amount of condensate to other condensate wells. The groundwater management system according to claim 1 , wherein the opening / closing degree of the groundwater is controlled.
前記揚水井から揚水される地下水は、大気に触れること無く前記復水井に復水されることを特徴とする請求項1〜のいずれかに記載の地下水の管理システム。 The groundwater management system according to any one of claims 1 to 4 , wherein groundwater pumped from the pumping well is condensed into the condensate well without being exposed to the atmosphere. 複数の揚水井から揚水した地下水を複数の復水井に復水することにより地下水位を管理するための管理方法において、
揚水井と復水井とを接続する複数の送水管と、該送水管同士を接続する連絡管とを設けると共に、前記連結管に流量調整バルブを設け、
前記揚水井から地下水を揚水ポンプにて揚水して揚水量を揚水流量計にて計測し、
前記揚水井内の地下水位を揚水井内水位計にて計測し、
前記揚水井からの揚水により地下水位が低下する影響を受ける範囲内の地下水位を揚水井側影響範囲内水位計にて計測し、
前記揚水井からの揚水により地下水位が低下する影響を受ける範囲外の地山の自然状態の地下水位を揚水井側影響範囲外水位計にて計測し、
前記揚水井から揚水した地下水を前記送水管にて前記復水井に送水し、
該送水手段にて送水される地下水を復水流量計にて計測して復水井に復水し、
前記復水井内の地下水位を復水井内水位計にて計測し、
前記復水井からの復水により地下水位が上昇する影響を受ける範囲内の地下水位を復水井側影響範囲内水位計にて計測し、
前記復水井からの復水により地下水位が上昇する影響を受ける範囲外の地山の自然状態の地下水位を復水井側影響範囲外水位計にて計測し、
前記揚水井側影響範囲内水位計、前記揚水井側影響範囲外水位計、前記揚水井内水位計、前記揚水流量計の各計測データに基づいて、揚水井周辺における地下水位の分布状態を解析して所定水位まで地下水位を低下させるための前記揚水井の揚水量を算出するとともに、前記復水井側影響範囲内水位計、前記復水井側影響範囲外水位計、前記復水井内水位計、前記復水用流量計の各計測データに基づいて、復水井周辺における地下水位の分布状態を解析して前記復水井から復水がオーバーフローすることを防ぐために復水可能な復水量を演算処理部にて算出し、
該演算処理部の演算結果に基づいて、前記揚水ポンプの回転数、及び、前記流量調整バルブの開閉程度を制御部にて制御し、
前記揚水井から揚水する量を最小に、かつ、揚水した地下水のうち復水する量を最大とすることを特徴とする地下水の管理方法。
In a management method for managing the groundwater level by condensing groundwater pumped from a plurality of pumping wells to a plurality of condensate wells,
A plurality of water pipes for connecting the pumping well and the condensate well, and a connecting pipe for connecting the water pipes to each other, and a flow rate adjusting valve for the connecting pipe,
The groundwater is pumped from the pumping well by a pump, and the pumping volume is measured by a pumping flow meter.
Measure the groundwater level in the pumping well with a water level meter in the pumping well,
Measure the groundwater level within the range where the groundwater level is affected by the pumping from the pumping well with a pumping well side affected range water level meter,
Measure the groundwater level in the natural state of the natural ground outside the range affected by the lowering of the groundwater level due to the pumping from the pumping well with a water level gauge outside the pumping well side influence range,
Aforementioned water to recover Mizui groundwater that is pumped from the pumping well in the water pipe,
Measuring the groundwater sent by the water supply means with a condensate flow meter and condensing it into a condensate well;
Measure the groundwater level in the condensate well with a condensate well level meter,
Measure the groundwater level within the range where the groundwater level is affected by the condensate from the condensate well with a condensate-side impacted range water level meter,
Measure the groundwater level in the natural state of the natural ground outside the range affected by the rise of the groundwater level due to the condensate from the condensate well with a water level gauge outside the condensate side influence range,
Based on the measurement data of the pumping well side influence range water level meter, the pumping well side influence range outside water level meter, the pumping well water level meter, the pumping flow meter, the distribution state of the groundwater level around the pumping well is analyzed. And calculating the pumping amount of the pumping well for lowering the groundwater level to a predetermined water level, the water level meter within the condensate well side influence range, the water level meter outside the condensate well side effect range, the water level meter within the condensate well, Based on each measurement data of the condensate flowmeter, analyze the distribution of groundwater level around the condensate well and calculate the amount of condensate that can be condensate to the processing unit to prevent the condensate from overflowing from the condensate well. Calculated,
Based on the calculation result of the calculation processing unit, the number of rotations of the pump and the opening / closing degree of the flow rate adjustment valve are controlled by the control unit,
A groundwater management method characterized by minimizing the amount of water pumped from the pumping well and maximizing the amount of condensate of the pumped groundwater.
前記演算処理部の演算方法は、
前記揚水井の揚水量を前記揚水流量計にて計測する工程と、
前記復水井の復水量を復水用流量計にて計測する工程と、
前記復水井内における最高水位として設定された限界水位hrmaxと、前記復水井側影響範囲外水位計により計測された水位H0’と、前記復水井内水位計により計測された水位hrと、前記検知された復水量Qrとに基づいて、復水可能な量の最大値である限界復水量Qrmaxを、
Qrmax=(hrmax−H0’)/(hr−H0’)×Qr
により推定する工程と、
前記揚水量が前記限界復水量に所定の安全率を乗じた流量よりも少ないことを確認する工程とを備えることを特徴とする請求項に記載の地下水の管理方法。
The calculation method of the calculation processing unit is:
Measuring the pumping amount of the pumping well with the pumped flow meter;
Measuring the amount of condensate in the condensate well with a condensate flow meter;
The critical water level hrmax set as the highest water level in the condensate well, the water level H0 ′ measured by the water level gauge outside the condensate well side influence range, the water level hr measured by the condensate well water level meter, and the detection Based on the condensate amount Qr, the limit condensate amount Qrmax, which is the maximum value of the condensable amount,
Qrmax = (hrmax−H0 ′) / (hr−H0 ′) × Qr
The process of estimating by
The groundwater management method according to claim 6 , further comprising a step of confirming that the pumped amount is less than a flow rate obtained by multiplying the limit condensate amount by a predetermined safety factor.
前記揚水量が前記限界復水量に所定の安全率を乗じた流量よりも少ないことを確認する工程に際し、前記揚水量が前記限界復水量に所定の安全率を乗じた流量よりも多い場合においては、前記揚水量と前記限界復水量に所定の安全率を乗じた流量との差分量を他の揚水井の前記揚水量に加える工程を経て、前記他の揚水井の揚水量が他の復水井の限界復水量に所定の安全率を乗じた流量よりも少ないことを確認する工程を再実行することを特徴とする請求項に記載の地下水の管理方法。 In the step of confirming that the pumped amount is less than the flow rate obtained by multiplying the limit condensate amount by a predetermined safety factor, the pumped amount is greater than the flow rate obtained by multiplying the limit condensate amount by a predetermined safety factor. In addition, a step of adding a difference amount between the pumped amount and a flow rate obtained by multiplying the limit condensate amount by a predetermined safety factor to the pumped amount of another pumping well, and the pumped amount of the other pumping well is set to another condensate well. The groundwater management method according to claim 7 , wherein the step of confirming that the flow rate is less than a flow rate obtained by multiplying the critical condensate amount by a predetermined safety factor is re-executed. 前記限界復水量は、復水井内の水位の最大値として設定する限界水位と前記復水井側影響範囲外水位計の水位との水頭差を、前記復水井内水位計の水位と前記復水井側影響範囲外水位計の水位との水頭差で除して水頭差の余裕率を算出し、該余裕率に復水量を乗じて算出することを特徴とする請求項又はに記載の地下水の管理方法。 The critical condensate amount is the difference between the head water level of the critical water level set as the maximum value of the water level in the condensate well and the water level gauge outside the condensate well side influence range, the water level of the condensate well water level meter and the condensate well side 9. The groundwater according to claim 7 or 8 , wherein a margin ratio of the head difference is calculated by dividing by a head difference with a water level of an out-of-range water level gauge, and the margin ratio is calculated by multiplying the margin ratio by the amount of condensate. Management method.
JP2005110004A 2005-04-06 2005-04-06 Groundwater management system and groundwater management method Active JP4682675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110004A JP4682675B2 (en) 2005-04-06 2005-04-06 Groundwater management system and groundwater management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110004A JP4682675B2 (en) 2005-04-06 2005-04-06 Groundwater management system and groundwater management method

Publications (2)

Publication Number Publication Date
JP2006291474A JP2006291474A (en) 2006-10-26
JP4682675B2 true JP4682675B2 (en) 2011-05-11

Family

ID=37412325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110004A Active JP4682675B2 (en) 2005-04-06 2005-04-06 Groundwater management system and groundwater management method

Country Status (1)

Country Link
JP (1) JP4682675B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019159A (en) * 2011-07-11 2013-01-31 Shimizu Corp Recharge method
KR102514206B1 (en) * 2022-11-03 2023-03-27 (주)이피에스 엔지니어링 Apparatus and method for optimizing control parameter for re-injection of groundwater

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474101B2 (en) * 2015-05-22 2019-02-27 国立研究開発法人土木研究所 Piping phenomenon evaluation method and piping phenomenon evaluation apparatus
JP7026346B2 (en) * 2017-11-16 2022-02-28 鹿島建設株式会社 Condensate well control system and condensate well control method
KR102052587B1 (en) * 2017-11-30 2019-12-05 김윤정 Energy System having Underground Storage
CN109024639B (en) * 2018-07-19 2020-08-25 中国建筑第四工程局有限公司 Drainage system for large-scale ultra-deep foundation pit engineering
CN109932500B (en) * 2019-04-12 2023-12-29 中国地质科学院水文地质环境地质研究所 Regulation and control system and method for multistage groundwater level control in adjacent area
CN111119216A (en) * 2019-12-25 2020-05-08 上海同禾工程科技股份有限公司 Wireless-transmission foundation pit dewatering variable-frequency control system and application method thereof
CN113431069A (en) * 2021-06-30 2021-09-24 沈阳帝铂建筑工程有限公司 Unmanned control intelligent precipitation system
CN115094932B (en) * 2022-07-27 2023-10-24 中铁十二局集团有限公司 Deep foundation pit pressure-bearing water pumping and filling integrated device and use method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158633A (en) * 1992-11-20 1994-06-07 Kajima Corp Water injecting device into ground
JPH06193041A (en) * 1992-12-25 1994-07-12 Takenaka Komuten Co Ltd Recharge construction method
JPH07207651A (en) * 1994-01-11 1995-08-08 Kajima Corp Condensation method by control of condensation well water pressure
JP2001323477A (en) * 2000-05-15 2001-11-22 Takenaka Komuten Co Ltd Pumping control system
JP2003013436A (en) * 2001-07-03 2003-01-15 Ohbayashi Corp System and method for controlling groundwater level
JP2005002659A (en) * 2003-06-11 2005-01-06 East Japan Railway Co Groundwater circulation system in excavation of ground, and construction method for measure against groundwater in excavation of ground

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158633A (en) * 1992-11-20 1994-06-07 Kajima Corp Water injecting device into ground
JPH06193041A (en) * 1992-12-25 1994-07-12 Takenaka Komuten Co Ltd Recharge construction method
JPH07207651A (en) * 1994-01-11 1995-08-08 Kajima Corp Condensation method by control of condensation well water pressure
JP2001323477A (en) * 2000-05-15 2001-11-22 Takenaka Komuten Co Ltd Pumping control system
JP2003013436A (en) * 2001-07-03 2003-01-15 Ohbayashi Corp System and method for controlling groundwater level
JP2005002659A (en) * 2003-06-11 2005-01-06 East Japan Railway Co Groundwater circulation system in excavation of ground, and construction method for measure against groundwater in excavation of ground

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019159A (en) * 2011-07-11 2013-01-31 Shimizu Corp Recharge method
KR102514206B1 (en) * 2022-11-03 2023-03-27 (주)이피에스 엔지니어링 Apparatus and method for optimizing control parameter for re-injection of groundwater

Also Published As

Publication number Publication date
JP2006291474A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4682675B2 (en) Groundwater management system and groundwater management method
CN101203678B (en) Pump, method for operating the pump and pump station comprising the pump
EP2156007B1 (en) Determination and control of wellbore fluid level, output flow, and desired pump operating speed, using a control system for a centrifugal pump disposed within the wellbore
CN112119220B (en) Monitoring module and method for identifying operating situations in a wastewater pumping station
JP4812327B2 (en) Water supply equipment
JP2009103028A (en) Control device and control method of rain water pump
EP2890978B1 (en) Processing data obtained by operating a liquid treatment system
US20060089752A1 (en) Method of and system for reducing utility costs associated with machine operation
JP2015105649A (en) Rainwater pump control device
JP6447046B2 (en) Groundwater pumping management system and groundwater pumping method
JP4741312B2 (en) Variable speed water supply device
CA2943065C (en) Vapor blow through avoidance in oil production
WO2018170004A1 (en) Method of controlling a gas vent system for horizontal wells
KR101321349B1 (en) Pump performance estimation method and system using a water level sensor
US20230176563A1 (en) Method for monitoring and controlling the operation of a pump station
KR20170087241A (en) Method for operating inverter booster pump to save power by a flow-rate prediction
JP4420691B2 (en) Well device control method and well device
JP2003013436A (en) System and method for controlling groundwater level
JP3586805B2 (en) Excavation soil removal control device
JP6742018B2 (en) Unknown water estimation method
JP2008076291A (en) Displacement measuring method for precedence standby type vertical shaft pump
JP4108947B2 (en) Air lock / suction blockage determination apparatus and method for pump equipment
JP4843385B2 (en) Automatic water supply pump drought protection device
JP4905305B2 (en) Pump control device
JP3278932B2 (en) Rainwater pump controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4682675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150