JP5003552B2 - Urine component concentration measuring device, toilet device including urine component concentration measuring device, and solution component concentration measuring method - Google Patents

Urine component concentration measuring device, toilet device including urine component concentration measuring device, and solution component concentration measuring method Download PDF

Info

Publication number
JP5003552B2
JP5003552B2 JP2008081678A JP2008081678A JP5003552B2 JP 5003552 B2 JP5003552 B2 JP 5003552B2 JP 2008081678 A JP2008081678 A JP 2008081678A JP 2008081678 A JP2008081678 A JP 2008081678A JP 5003552 B2 JP5003552 B2 JP 5003552B2
Authority
JP
Japan
Prior art keywords
urine
concentration
measurement
water
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008081678A
Other languages
Japanese (ja)
Other versions
JP2008268195A (en
Inventor
博 橋本
聡子 野口
一博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008081678A priority Critical patent/JP5003552B2/en
Publication of JP2008268195A publication Critical patent/JP2008268195A/en
Application granted granted Critical
Publication of JP5003552B2 publication Critical patent/JP5003552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、尿中の特定成分(測定対象とする溶液に含まれる成分のうち濃度測定対象とする成分を、以下では「特定成分」と呼ぶ)の濃度を測定する尿成分濃度測定装置、尿成分濃度測定装置を備えた便器装置、及び、被検査溶液中に含まれる特定成分の濃度を測定する溶液成分濃度測定方法に関する。   The present invention relates to a urine component concentration measuring device for measuring the concentration of a specific component in urine (a component to be measured for concentration among components contained in a solution to be measured is hereinafter referred to as “specific component”), urine The present invention relates to a toilet device provided with a component concentration measuring device, and a solution component concentration measuring method for measuring the concentration of a specific component contained in a solution to be tested.

人々の長寿高齢化に伴い、健康管理に関する個人の関心が高まっており、近年では疾病の早期発見と疾病治療中或いは治療後の健康管理を目的とした自己健康チェックが重要なテーマとなっている。特に、尿中の特定成分(例えば、尿糖やタンパク等)の濃度は、被験者の種々の疾病に伴い変化することから、個人の健康状態を把握するための重要な情報源として知られている。そこで、従来から、尿中の特定成分の濃度を測定する尿成分濃度測定装置、尿成分濃度測定装置を備えた便器装置等が種々提案されている。   With the longevity and aging of people, personal interest in health management has increased, and in recent years, self-health checks for the purpose of early detection of diseases and health management during or after treatment have become important themes. . In particular, the concentration of specific components in urine (for example, urine sugar, protein, etc.) varies with various illnesses of the subject, so it is known as an important information source for grasping individual health conditions. . Therefore, various urine component concentration measuring devices for measuring the concentration of a specific component in urine, toilet devices equipped with a urine component concentration measuring device, and the like have been proposed.

例えば、特許文献1には、被験者が排泄する尿(以下、この排泄されたままの状態の尿を「原尿」ともいう。)を受ける採尿ノズルを便器とは別途設けた尿成分濃度測定装置が開示されている。この尿成分濃度測定装置は、採尿時には採尿ノズルを便器ボール内の採尿位置に移動し、移動後の採尿ノズルにより原尿を受けることで採尿するものである。採尿ノズルにて採尿された尿は、所定の計測装置に送液され、この計測装置により原尿中に含まれる特定成分の濃度が算出される。   For example, Patent Document 1 discloses a urine component concentration measuring apparatus in which a urine collection nozzle for receiving urine excreted by a subject (hereinafter, this urine in an excreted state is also referred to as “original urine”) is provided separately from a toilet. Is disclosed. This urine component concentration measuring apparatus collects urine by moving the urine collection nozzle to the urine collection position in the toilet bowl and receiving the original urine by the moved urine collection nozzle during urine collection. The urine collected by the urine collection nozzle is fed to a predetermined measuring device, and the concentration of the specific component contained in the raw urine is calculated by this measuring device.

また、特許文献2には、便器ボール内に穿設され、便器ボール内に排泄される被験者の尿を採尿するための採尿用穴を有する尿成分濃度測定装置が開示されている。この検尿装置は、採尿用穴を便器ボール内の溜水面よりも上方に設けることにより、原尿を採尿用穴により採尿するようになっている。そして、採尿用穴により採尿された原尿は、所定の計測装置に送液され、この計測装置により原尿中に含まれる特定成分の濃度が算出される。   Further, Patent Document 2 discloses a urine component concentration measuring device having a urine collection hole for collecting urine of a subject perforated in a toilet bowl and excreted in the toilet bowl. This urinalysis apparatus collects raw urine through a urine collection hole by providing a urine collection hole above the water storage surface in the toilet bowl. Then, the raw urine collected through the urine collection hole is sent to a predetermined measuring device, and the concentration of the specific component contained in the raw urine is calculated by this measuring device.

一方、特許文献3には、原尿が便器ボール内の溜水に混入した混合溶液の導電率を測定する導電率測定手段と、混合溶液の導電率と原尿の希釈率との関係を示すデータを予め格納した記憶装置とを有する尿成分濃度測定装置が開示されている。この尿成分濃度測定装置は、導電率測定手段により混合溶液の導電率を測定し、記憶装置に格納した導電率と原尿の希釈率との関係を示すデータに基いて原尿の希釈率を算出し、算出された原尿の希釈率に、別途測定した混合溶液中に含まれる特定成分濃度を乗算することによって、原尿中の特定成分の濃度を算出する。
特開平6−258315号公報 特開平6−230006号公報 特開平10−267925号公報
On the other hand, Patent Document 3 shows a relationship between the conductivity measuring means for measuring the conductivity of the mixed solution in which the raw urine is mixed in the water stored in the toilet bowl, and the relationship between the conductivity of the mixed solution and the dilution rate of the raw urine. A urine component concentration measuring device having a storage device storing data in advance is disclosed. This urine component concentration measuring device measures the conductivity of the mixed solution by the conductivity measuring means, and calculates the dilution rate of the raw urine based on the data indicating the relationship between the conductivity stored in the storage device and the dilution rate of the raw urine. The concentration of the specific component in the raw urine is calculated by multiplying the calculated dilution rate of the raw urine by the specific component concentration contained in the separately measured mixed solution.
JP-A-6-258315 JP-A-6-230006 JP-A-10-267925

しかし、特許文献1及び特許文献2に記載の尿成分濃度測定装置は、原尿のままの状態で原尿中に含まれる特定成分の濃度を測定するものであり、この方法では原尿が便器ボール内の溜水に混入すると希釈され、その後の工程で特定成分の濃度を測定することができなくなることから、原尿が便器ボール内の溜水に混入する前に原尿を採取するために採尿ノズルや採尿用穴等の採尿器を、便器ボール内の溜水面よりも上方位置に設置して原尿を採尿器により直接採取している。採尿器により直接採尿する方法は、子供や女性にとっては採尿器に向けて的確に排尿することが困難であるという問題を有し、また、採尿器に、被験者が排泄する尿が残ることで悪臭や汚れの原因ともなる。さらには、便器ボール内において被験者により採尿器が視認され、意匠性が低下するという問題があった。   However, the urine component concentration measuring devices described in Patent Document 1 and Patent Document 2 measure the concentration of a specific component contained in the raw urine in the state of the raw urine. In order to collect the raw urine before the raw urine is mixed into the stored water in the toilet bowl, it is diluted when mixed in the stored water in the bowl and the concentration of a specific component cannot be measured in the subsequent process. A urine collection device such as a urine collection nozzle or a urine collection hole is installed at a position higher than the reservoir surface in the toilet bowl, and the raw urine is directly collected by the urine collection device. The method of collecting urine directly with a urine collector has the problem that it is difficult for children and women to urinate accurately toward the urine collector, and the urine that the subject excretes remains in the urine collector, which causes a bad odor. It may also cause dirt. Furthermore, there is a problem that the urine collection device is visually recognized by the subject in the toilet bowl, and the design property is lowered.

また、尿等の被検査溶液を所定の希釈液によって希釈した希釈混合溶液を対象として、被検査溶液中の特定成分濃度を測定する場合、希釈混合溶液の特定成分濃度計測値及び希釈混合溶液における被検査溶液の希釈率に基づいて、演算によって被検査溶液中の特定成分濃度を求める方法もあった。   In addition, when measuring the concentration of a specific component in a solution to be inspected for a diluted mixed solution obtained by diluting a solution to be inspected such as urine with a predetermined diluent, the measured value of the specific component concentration of the diluted mixed solution and the diluted mixed solution There is also a method for obtaining a specific component concentration in the solution to be inspected by calculation based on the dilution rate of the solution to be inspected.

その場合、この被検査溶液の希釈率を希釈混合溶液の被検査溶液と希釈液との混合比としていたため、希釈混合溶液の被検査溶液と希釈液との混合状態が全体として均一でないと被検査溶液の希釈率が不明となるため、得られる被検査溶液中の特定成分濃度も不正確となる。   In this case, since the dilution rate of the solution to be inspected is the mixing ratio of the solution to be inspected and the diluted solution of the diluted mixed solution, the mixed state of the solution to be inspected and the diluted solution in the diluted mixed solution is not uniform as a whole Since the dilution rate of the test solution is unknown, the concentration of the specific component in the obtained test solution is also inaccurate.

一方、特許文献3に記載の尿成分濃度測定装置では、原尿が溜水に混入した後の混合溶液を計測対象として、得られる混合溶液の尿成分濃度と原尿の希釈率とに基づいて原尿中の尿成分濃度を算出するようにしているので、上述のような原尿と溜水との混合による原尿の希釈率が不明となる問題は生じない。   On the other hand, in the urine component concentration measuring device described in Patent Document 3, the mixed solution after the raw urine is mixed into the stored water is used as a measurement target, based on the urine component concentration of the obtained mixed solution and the dilution rate of the raw urine. Since the concentration of the urine component in the raw urine is calculated, there is no problem that the dilution rate of the raw urine due to the mixing of the raw urine and the stored water is unknown.

即ち、この尿成分濃度測定装置では、原尿の導電率は常に一定であるという仮定の下で、計測して得られる混合溶液の導電率と、予め設定された混合溶液の導電率と原尿の希釈率との関係を示すデータと、から混合溶液における原尿の希釈率を求め、混合溶液中の尿成分濃度及び原尿の希釈率から最終的に原尿中の尿成分濃度を算出している。   That is, in this urine component concentration measuring device, the conductivity of the mixed solution obtained by measurement under the assumption that the conductivity of the raw urine is always constant, the conductivity of the mixed solution set in advance, and the raw urine The dilution ratio of the original urine in the mixed solution is obtained from the data showing the relationship with the dilution ratio of the urine, and finally the urine component concentration in the original urine is calculated from the urine component concentration in the mixed solution and the dilution ratio of the original urine ing.

しかしながら、実際には被験者の体調や摂取する食物により原尿の導電率は大幅に変化するためこの仮定は成立せず、混合溶液の導電率と原尿の希釈率との関係も一定しない。したがってこの方法によって尿中の特定成分の濃度を正確に測定することは不可能であった。   However, in practice, the conductivity of the raw urine varies greatly depending on the physical condition of the subject and the food to be consumed, so this assumption does not hold, and the relationship between the conductivity of the mixed solution and the dilution rate of the raw urine is not constant. Therefore, it was impossible to accurately measure the concentration of a specific component in urine by this method.

そこで、本発明は、原尿が溜水に混入して希釈された後の希釈混合溶液を計測することによって、原尿中の特定成分の濃度を確実かつ高精度に測定することのできる尿成分濃度測定装置、尿成分濃度測定装置を備えた便器装置、及び、希釈された被検査溶液を計測することによって、被検査溶液中に含まれる特定成分の濃度を確実かつ高精度に測定することのできる溶液成分濃度測定方法を提供することを目的とするものである。   Therefore, the present invention provides a urine component capable of reliably and accurately measuring the concentration of a specific component in the raw urine by measuring the diluted mixed solution after the raw urine is mixed with the stored water and diluted. By measuring the concentration measuring device, the toilet device equipped with the urine component concentration measuring device, and the diluted solution to be tested, the concentration of a specific component contained in the solution to be tested can be reliably and accurately measured. An object of the present invention is to provide a solution component concentration measurement method that can be used.

上記目的を達成するため、請求項1に記載の発明は、尿中に含まれる特定成分の濃度を測定する尿成分濃度測定装置において、溜水を貯留し下水道に連通したボールを備え、被験者の排泄する尿を前記ボールで受けて前記溜水とともに前記下水道に排出する便器と、前記尿が排出される前の前記溜水に混入される基準物質と、前記溜水に前記基準物質を混入することにより当該基準物質の濃度を所定濃度である尿混入前基準物質濃度とした測定用溜水を、前記ボール内に供給する測定用溜水供給手段と、前記尿の混入後における前記測定用溜水である尿混入測定用溜水の前記基準物質の濃度である尿混入後基準物質濃度を計測する尿混入後基準物質濃度計測手段と、前記尿混入測定用溜水中に含まれる前記特定成分の濃度である溜水中成分濃度を計測する溜水中成分濃度計測手段と、前記尿混入前基準物質濃度と、前記尿混入後基準物質濃度と、前記溜水中成分濃度とに基づいて、前記尿中に含まれる前記特定成分の濃度を算出する尿中成分濃度算出手段と、を有し、前記尿混入後基準物質濃度計測手段は、前記溜水中成分濃度計測手段が前記溜水中成分濃度を計測する計測位置における前記尿混入測定用溜水を計測対象として、前記尿混入後基準物質濃度を計測することを特徴とする。   In order to achieve the above object, the invention described in claim 1 is a urine component concentration measuring device for measuring the concentration of a specific component contained in urine, comprising a ball that stores the reservoir water and communicates with the sewer, A toilet that receives the excreted urine with the ball and discharges it to the sewer together with the stored water, a reference material mixed in the stored water before the urine is discharged, and the reference material mixed in the stored water Accordingly, the measurement reservoir water supply means for supplying the measurement reservoir water in which the concentration of the reference substance is a predetermined concentration before the urine contamination reference substance concentration into the ball, and the measurement reservoir after the urine contamination Urine contamination reference substance concentration measuring means for measuring a reference substance concentration after urine contamination which is the concentration of the reference substance of the urine contamination measurement reservoir water, and the specific component contained in the urine contamination measurement reservoir water Concentration of water component The concentration of the specific component contained in the urine based on the concentration of the component content in the stored water, the concentration of the reference material before urine mixing, the concentration of the reference material after urine mixing, and the concentration of the component of the stored water Urinary component concentration calculating means for calculating urinary component concentration, and the post-urine contamination reference substance concentration measuring means is for measuring urine contamination at a measurement position where the concentration of component content in the accumulated water measures the concentration of the component in the accumulated water. The concentration of the reference substance after mixing with urine is measured using stored water as a measurement target.

請求項2に記載の発明は、請求項1に記載の発明において、前記溜水中成分濃度計測手段は、前記ボールの底部近傍を前記計測位置として計測を行なうことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the concentration component measuring means for measuring the concentration in the vicinity of the bottom of the ball is the measurement position.

請求項3に記載の発明は、請求項2に記載の発明において、前記ボールの底部に設けた開口部を備え、前記開口部から前記ボールの底部近傍における前記尿混入測定用溜水の一部を計測サンプルとして採取してその計測サンプルを前記ボール外に移送する計測サンプル採取手段を有するとともに、前記ボール外に前記尿混入後基準物質濃度計測手段及び前記溜水中成分濃度計測手段を配設し、前記計測サンプルを計測対象として、前記尿混入後基準物質濃度計測手段による前記尿混入後基準物質濃度、及び前記溜水中成分濃度計測手段による前記溜水中成分濃度の各計測を行なうことを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the urine-mixing measurement reservoir is provided at the bottom portion of the ball, and a part of the urinary mixing measurement water in the vicinity of the bottom portion of the ball. A measurement sample collecting means for collecting the measurement sample as a measurement sample and transferring the measurement sample to the outside of the ball, and the post-urine mixed reference substance concentration measurement means and the stored water component concentration measurement means are provided outside the ball. The measurement sample is used as a measurement target, and the post-urine-mixed reference substance concentration measurement unit measures the post-urine-mixed reference substance concentration, and the stored-water component concentration measurement unit measures each of the stored-water component concentration. To do.

請求項4に記載の発明は、請求項3に記載の発明において、前記開口部が前記ボールの底部に設けた便器洗浄水吐水口であることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the opening is a toilet flushing water spout provided at the bottom of the ball.

請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の発明において、前記尿混入測定用溜水中における前記尿の混合状態が、所定の混合状態に達したか否かを判断する尿混合状態判断手段を有し、前記尿混合状態判断手段が前記所定の混合状態に達したと判断したときに、前記尿混入後基準物質濃度計測手段による前記尿混入後基準物質濃度、及び前記溜水中成分濃度計測手段による前記溜水中成分濃度の各計測を開始することを特徴とする。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein whether or not the mixed state of the urine in the urine contamination measurement reservoir has reached a predetermined mixed state. Urine mixing state determination means for determining the urine mixing reference substance concentration by the urine mixing reference substance concentration measuring means when the urine mixing state determination means determines that the predetermined mixing state has been reached. And each measurement of the concentration of the components in the stored water by the stored water component concentration measuring means is started.

請求項6に記載の発明は、請求項5に記載の発明において、前記尿混合状態判断手段は、前記測定用溜水への前記尿の混入を検知する尿混入検知手段と、前記尿混入検知手段により前記尿の混入が検知されてからの経過時間を計時する経過時間計測手段と、を有し、前記経過時間計測手段により計時される前記経過時間が所定時間以上経過したときに、前記所定の混合状態に達したと判断することを特徴とする。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the urine mixing state determination means includes a urine contamination detection means for detecting the urine contamination in the measurement reservoir, and the urine contamination detection. And an elapsed time measuring means for measuring an elapsed time after the urine contamination is detected by the means, and the predetermined time when the elapsed time measured by the elapsed time measuring means has exceeded a predetermined time. It is characterized in that it is determined that the mixed state has been reached.

請求項7に記載の発明は、請求項1〜6のいずれか1項に記載の発明において、前記測定用溜水の量を減らすための溜水減量手段を設けたことを特徴とする。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, characterized in that a stored water reducing means for reducing the amount of the stored water for measurement is provided.

請求項8に記載の発明は、請求項1〜7のいずれか1項に記載の発明において、前記尿混入前基準物質濃度及び前記尿混入後基準物質濃度は、吸光度、又は蛍光強度から算出される濃度であることを特徴とする。   The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the reference substance concentration before urine contamination and the reference substance concentration after urine contamination are calculated from absorbance or fluorescence intensity. It is characterized by having a concentration.

請求項9に記載の発明は、請求項1〜8のいずれか1項に記載の発明において、前記測定用溜水供給手段は、所定の給水源から前記ボール内へ前記溜水となる水を供給する給水手段と、前記給水手段により供給される水に前記基準物質を混入する基準物質混入手段と、を有し、前記基準物質混入手段は、前記基準物質の濃度が前記尿混入前基準物質濃度となる量の前記基準物質を前記水に混入することを特徴とする。   The invention according to claim 9 is the invention according to any one of claims 1 to 8, wherein the measuring water supply means supplies water to be stored into the ball from a predetermined water supply source. Water supply means for supplying, and reference substance mixing means for mixing the reference substance into the water supplied by the water supply means, wherein the reference substance mixing means has a concentration of the reference substance before the urine mixing reference substance The reference substance in an amount to be a concentration is mixed in the water.

請求項10に記載の発明は、請求項1〜9のいずれか1項に記載の発明において、前記特定成分は、糖やタンパク等の尿中に漏出する被験者の生体情報を反映する成分であることを特徴とする。   The invention according to claim 10 is the invention according to any one of claims 1 to 9, wherein the specific component is a component reflecting biological information of a subject leaking into urine such as sugar or protein. It is characterized by that.

請求項11に記載の発明は、請求項1〜10のいずれか一項に記載の尿成分濃度測定装置を備えた便器装置である。   Invention of Claim 11 is a toilet device provided with the urine component density | concentration measuring apparatus as described in any one of Claims 1-10.

請求項12に記載の発明は、被検査溶液中に含まれる特定成分の濃度を測定する溶液成分濃度測定方法において、所定の液体に基準物質を混入し当該基準物質の濃度を所定の濃度である混入前基準物質濃度とした測定用溶液を準備し、前記測定用溶液に前記被検査溶液を混入して測定用混合溶液を作り、前記測定用混合溶液中の任意の位置に含まれる前記特定成分の濃度である混合溶液成分濃度を計測すると共に、前記測定用混合溶液の前記基準物質の濃度である混合後基準物質濃度も併せて計測し、前記混合前基準物質濃度と、前記混合後基準物質濃度と、前記混合溶液成分濃度とに基いて前記被検査溶液中に含まれる前記特定成分の濃度を算出することを特徴とする。   The invention according to claim 12 is a solution component concentration measurement method for measuring the concentration of a specific component contained in a solution to be inspected, wherein a reference substance is mixed in a predetermined liquid and the concentration of the reference substance is a predetermined concentration. Preparing a measurement solution having a reference material concentration before mixing, mixing the solution to be inspected into the measurement solution to form a measurement mixed solution, and the specific component contained in an arbitrary position in the measurement mixed solution The concentration of the mixed solution component that is the concentration of the reference material, and the concentration of the reference material after mixing that is the concentration of the reference material of the measurement mixed solution are also measured, and the concentration of the reference material before mixing and the reference material after mixing The concentration of the specific component contained in the test solution is calculated based on the concentration and the concentration of the mixed solution component.

請求項1に記載の発明によれば、希釈混合溶液である尿混入定用溜水中の特定成分の濃度の計測を行なう位置における基準物質の濃度変化を計測し、その計測した基準物質の濃度変化から得られる原尿の希釈率を用いて原尿中に含まれる特定成分の濃度を算出することになるので、測定用溜水と原尿とが混合した尿混入定用溜水の混合状態に依らずに、原尿中に含まれる特定成分の濃度を正確に演算できる。   According to the first aspect of the present invention, the concentration change of the reference substance is measured at the position where the concentration of the specific component in the fixed urine mixed water that is the diluted mixed solution is measured, and the concentration change of the measured reference substance is measured. The concentration of the specific component contained in the raw urine is calculated using the dilution ratio of the raw urine obtained from the urine. Regardless, the concentration of the specific component contained in the raw urine can be calculated accurately.

従って、測定用溜水と原尿との混合が不均一となる可能性のあるボール内の尿混入定用溜水を計測対象として、任意の位置で計測を行なっても高精度な原尿中の特定成分濃度の測定結果を確実に得ることが可能となる。   Therefore, high-precision raw urine can be obtained even if measurement is performed at an arbitrary position using the urine-mixed fixed water in the bowl, where mixing of the measurement water and raw urine may be uneven. It becomes possible to reliably obtain the measurement result of the specific component concentration.

このため、測定する場合に開口部が大きく且つ溜水がある状態の便器のボールを採尿容器として利用できるため、女性や子供でも容易に採尿することが可能となり、測定対象とする被験者の範囲を広げても測定の確実性を確保することができる。また、便器を使用することから、測定後の排尿の処理も便器の洗浄機能を利用して行なえるため、清潔な測定環境を容易に維持できる。   For this reason, since a toilet bowl with a large opening and water storage can be used as a urine collection container when measuring, it is possible for women and children to easily collect urine, and the range of subjects to be measured The reliability of measurement can be secured even if it is spread. In addition, since a toilet is used, urination after measurement can be performed using the cleaning function of the toilet, so that a clean measurement environment can be easily maintained.

請求項2に記載の発明によれば、溜水中成分濃度計測手段は、色々な排尿環境においても溜水よりも比重の大きい原尿が滞留し易く、相対的に尿混入割合の高い部分となる可能性の高いボールの底部近傍の尿混入測定用溜水を計測対象とすることになるため、排泄される尿の溜水に対する投入位置や排泄される尿量が異なる任意の被験者に対してより確実かつ高精度な測定結果を得ることが可能となる。   According to the second aspect of the present invention, the component concentration measuring means for the stored water easily retains the raw urine having a specific gravity larger than that of the stored water even in various urination environments, and becomes a portion having a relatively high urine mixing ratio. Since the urine contamination measurement reservoir near the bottom of the ball is likely to be measured, it is more suitable for any subject with different urine input position and urine output. A reliable and highly accurate measurement result can be obtained.

請求項3に記載の発明によれば、繊細な環境を必要とする尿混入後基準物質濃度計測手段及び前記溜水中成分濃度計測手段にとって適切な環境となる装置構成を設計することが容易となるため、尿成分濃度測定装置としての信頼度が向上する。   According to the third aspect of the present invention, it becomes easy to design an apparatus configuration that provides an appropriate environment for the post-urine-mixed reference substance concentration measuring unit and the stored water component concentration measuring unit that require a delicate environment. Therefore, the reliability as a urine component concentration measuring device is improved.

請求項4に記載の発明によれば、既存の便器部に設けられた構成を利用することになるため、尿成分濃度測定装置として計測サンプルを採取するときに、誤ってボール内の異物も一緒に吸引することによって開口部が閉塞することがあっても、本来、便器洗浄水吐水口として使用されるものであるため、使用後に行なわれる便器洗浄動作よって、吐水される洗浄水の勢いで異物の除去ができる。これにより、装置の測定環境を正常な状態に維持することが容易となり、装置の信頼性を向上できる。   According to the invention described in claim 4, since the configuration provided in the existing toilet bowl is used, when a measurement sample is taken as a urine component concentration measuring device, foreign matter in the ball is mistakenly added together. Even if the opening may be blocked due to suction, it is originally used as a toilet flushing water outlet. Can be removed. Thereby, it becomes easy to maintain the measurement environment of the apparatus in a normal state, and the reliability of the apparatus can be improved.

請求項5に記載の発明によれば、尿混入測定用溜水中における尿の混合状態が予め決められた混合状態となったことを尿混合状態判断手段で確認するので、複数の被験者の間で尿の混入状態に個人差がある場合であっても、各々の測定毎に、計測に必要な混合状態となった計測開始時期を確実に設定出来るため、任意の被験者に対してより確実かつ高精度な測定結果を得ることが可能となる。   According to the fifth aspect of the present invention, the urine mixing state determination means confirms that the mixing state of urine in the urine contamination measurement reservoir water has become a predetermined mixing state. Even if there are individual differences in the state of urine contamination, it is possible to reliably set the measurement start time when the measurement is in the mixed state for each measurement. Accurate measurement results can be obtained.

請求項6に記載の発明によれば、計測に必要な量の原尿が尿混入測定用溜水中に混合したことの判断を管理の容易な経過時間で行なうため装置の構成を簡単にすることができる。   According to the invention described in claim 6, since the determination that the amount of raw urine necessary for measurement is mixed in the urine contamination measurement reservoir water is made in an easily managed elapsed time, the configuration of the apparatus is simplified. Can do.

請求項7に記載の発明によれば、尿の混入前における測定用溜水の量を減らすことで、測定用溜水の量に対する相対的な尿の量を増加させ、ボールの底部近傍の尿混入測定用溜水中における原尿の濃度を計測に必要な濃度範囲内とすることができるため、確実かつ高精度な測定結果を得ることが可能である。   According to the seventh aspect of the invention, the amount of urine relative to the amount of measurement water is increased by reducing the amount of measurement water before mixing with urine, and urine near the bottom of the ball is increased. Since the concentration of the raw urine in the contaminated measurement reservoir water can be within the concentration range necessary for measurement, it is possible to obtain a reliable and highly accurate measurement result.

請求項8に記載の発明によれば、測定用溜水に含まれる基準物質の、尿混入前後における物性値を計測することによって基準物質の濃度を正確に計測することができるので、確実かつ高精度な測定結果を得ることが可能である。   According to the invention described in claim 8, since the concentration of the reference substance can be accurately measured by measuring the physical property value of the reference substance contained in the measurement water before and after mixing with urine, it is reliable and high. Accurate measurement results can be obtained.

請求項9に記載の発明によれば、基準物質を混入した水溶液を測定用溜水として予め作成して保管するための設備を別途用意する必要がなくなる。   According to the ninth aspect of the present invention, there is no need to separately prepare equipment for preparing and storing an aqueous solution mixed with a reference substance as measurement water.

請求項10に記載の発明によれば、糖尿病などに代表される生活習慣病と密接に関連した成分を測定対象とすることにより、自覚症状のないまま緩やかに進行していく生活習慣病に関する健康チェックに、尿成分濃度測定装置を有意義に活用することが可能となる。   According to the invention of claim 10, health related to lifestyle-related diseases that progress slowly without subjective symptoms by measuring components closely related to lifestyle-related diseases such as diabetes It is possible to use the urine component concentration measuring device meaningfully for checking.

請求項11に記載の発明によれば、尿成分濃度測定装置が便器装置に一体的に組み付けられているので、取付け現場での施工が配水・配管接続が便器装置だけとなり簡単になる。   According to the eleventh aspect of the present invention, since the urine component concentration measuring device is integrally assembled with the toilet device, the installation at the installation site becomes simple because only the toilet device is used for water distribution and piping connection.

請求項12に記載の発明によれば、尿以外の被検査溶液、例えば、人間の血液や汗などに含まれる特定成分の濃度を確実かつ高精度に測定することを実現する。   According to the twelfth aspect of the present invention, it is possible to reliably and accurately measure the concentration of a specific component contained in a solution to be tested other than urine, for example, human blood or sweat.

本発明を実施する形態について以下で詳細に説明するが、その前に、特定成分を含んだ被検査溶液を希釈液で希釈した希釈混合溶液を用いて測定を行なう場合に適用可能な、本発明の特定成分濃度の測定原理について以下で説明する。   The embodiment for carrying out the present invention will be described in detail below, but before that, the present invention can be applied when measurement is performed using a diluted mixed solution obtained by diluting a solution to be inspected containing a specific component with a diluent. The measurement principle of the specific component concentration will be described below.

ここで、原理説明の便宜上、前記特定成分を測定物質、前記希釈液を溶液A、前記被検査溶液を溶液Bとする。そして、この溶液Aと溶液Bとが混合されて測定物質が希釈された前記希釈混合溶液を混合溶液(A+B)とする。   Here, for convenience of explanation of the principle, the specific component is a measurement substance, the diluent is a solution A, and the solution to be inspected is a solution B. The diluted mixed solution in which the solution A and the solution B are mixed to dilute the measurement substance is referred to as a mixed solution (A + B).

この混合溶液(A+B)中の任意の位置において、混合によって溶液Aが希釈された割合を溶液Aの希釈率Daとし、逆に、被検査溶液である溶液Bが希釈された割合を溶液Bの希釈率Dbとし、以下の式のように定義する。即ち、
Da=溶液Aの量/混合溶液(A+B)の量、
Db=溶液Bの量/混合溶液(A+B)の量 ・・・(式1)
一方、この希釈率Dbはまた、その位置の溶液B中に含まれる前記測定物質の濃度がQ、混合溶液(A+B)中の測定物質の濃度がQであったとすると、以下の[式2]で表される。
At an arbitrary position in the mixed solution (A + B), the ratio of the solution A diluted by mixing is defined as the dilution ratio Da of the solution A, and conversely, the ratio of the solution B that is the solution to be tested is diluted. The dilution rate Db is defined as the following equation. That is,
Da = amount of solution A / amount of mixed solution (A + B),
Db = Amount of Solution B / Amount of Mixed Solution (A + B) (Formula 1)
On the other hand, if the concentration of the measurement substance contained in the solution B at that position is Q 0 and the concentration of the measurement substance in the mixed solution (A + B) is Q 1 , 2].

Db=Q/Q ・・・(式2)
従って、溶液B中の測定物質の濃度Qは、[式1]及び[式2]から導かれる以下の[式3]で表されることとなる。
Db = Q 1 / Q 0 (Formula 2)
Therefore, the concentration Q 0 of the measurement substance in the solution B is expressed by the following [Expression 3] derived from [Expression 1] and [Expression 2].

=Q/Db ・・・(式3)
即ち、濃度測定の目的である溶液B中の測定物質濃度Qは、混合溶液(A+B)における測定物質濃度Qと溶液Bの希釈率Dbとから求められることとなる。
Q 0 = Q 1 / Db (Formula 3)
That is, analyte concentration Q 0 in the solution B is the object of the concentration measurement, and thus obtained from the dilution Db measured substance concentration Q 1, the solution B in the mixed solution (A + B).

そこで、従来においてもこの[式3]の関係を利用して、被検査溶液中の測定物質濃度Qを、被検査溶液を希釈溶液で希釈した希釈混合測定溶液の測定物質濃度Qを計測することによって求める希釈溶液測定法が用いられていた。 Therefore, the measurement substance concentration Q 0 in the solution to be inspected and the measurement substance concentration Q 1 in the diluted mixed measurement solution obtained by diluting the solution to be inspected with the diluting solution are measured using the relationship of [Equation 3]. The dilution solution measurement method determined by doing so was used.

しかしながら、その場合は、事前に分かる希釈混合測定溶液全体での被検査溶液と希釈溶液との混合割合(以下、この希釈混合測定溶液全体としての両液の混合割合を「混合比」と呼ぶ)をこの希釈率Dbと見做して[式3]を適用していた。   However, in that case, the mixing ratio of the solution to be inspected and the diluted solution in the whole diluted mixed measuring solution that can be known in advance (hereinafter, the mixing ratio of both solutions as the whole diluted mixed measuring solution is referred to as “mixing ratio”). Was considered as the dilution ratio Db, and [Equation 3] was applied.

そのため、従来の方法では、この混合比が希釈率Dbと見做せること、即ち、希釈混合測定溶液全体が均一な混合状態となっていることが正確な測定の大前提となっていた。従って、希釈混合測定溶液が均一な混合状態となっていない場合は、希釈混合測定溶液中の任意の地点での希釈率はこの混合比とは限らなくなり、この混合比を[式3]の希釈率Dbと見做すことは測定誤差を生じることとなるため、均一な混合状態にする何らかの手段を講じる必要があった。   Therefore, in the conventional method, it has been a major premise of accurate measurement that this mixing ratio can be regarded as the dilution rate Db, that is, that the entire diluted mixed measuring solution is in a uniform mixed state. Therefore, when the diluted mixed measurement solution is not in a uniform mixed state, the dilution rate at an arbitrary point in the diluted mixed measurement solution is not limited to this mixing ratio. Considering the rate Db causes a measurement error, so it was necessary to take some means to achieve a uniform mixed state.

そこで、本発明においては、混合溶液(A+B)における実際に測定物質濃度の計測を行なう位置の希釈率Dbを、混合溶液(A+B)における測定物質濃度Qと併せて計測をして求める構成とすることによって、混合溶液(A+B)の混合状態に依らずに正確に溶液B中の測定物質の濃度Qを測定することができるようにしている。 Therefore, in the present invention, the dilution rate Db at the position where the measurement substance concentration is actually measured in the mixed solution (A + B) is obtained by measuring together with the measurement substance concentration Q 1 in the mixed solution (A + B). By doing so, the concentration Q 0 of the measurement substance in the solution B can be accurately measured regardless of the mixed state of the mixed solution (A + B).

具体的には、混合溶液(A+B)中の測定物質濃度の計測を行なう位置を位置Xとした場合、その位置Xにおける希釈率Dbと希釈率Daとを以下、それぞれ希釈率Dax、希釈率Dbxとすると、両者は同一位置のものであるため、両者の間には以下の[式4]で表される関係が常に成立する。   Specifically, when the position where the measurement substance concentration in the mixed solution (A + B) is measured is the position X, the dilution rate Db and the dilution rate Da at the position X are hereinafter referred to as the dilution rate Dax and the dilution rate Dbx, respectively. Then, since both are in the same position, the relationship represented by the following [Equation 4] always holds between them.

Dbx=1−Dax ・・・(式4)
即ち、混合溶液(A+B)中の任意の位置Xにおける希釈率Dbxは、その位置での溶液Aの希釈率Daxが判れば求められることとなる。そしてその場合は、[式3]はこの[式4]を適用すると、以下の[式5]で表されることとなる。
Dbx = 1−Dax (Formula 4)
That is, the dilution rate Dbx at an arbitrary position X in the mixed solution (A + B) can be obtained if the dilution rate Dax of the solution A at that position is known. In that case, [Expression 3] is expressed by the following [Expression 5] when this [Expression 4] is applied.

=Q/(1−Dax) ・・・(式5)
即ち、測定の目的とする溶液B中の測定物質の濃度Qは、混合溶液(A+B)における測定物質濃度Qとその位置における溶液Aの希釈率Daxとが判れば求められることとなる。
Q 0 = Q 1 / (1-Dax) (Formula 5)
That is, the concentration Q 0 of the measurement substance in the solution B to be measured can be obtained if the measurement substance concentration Q 1 in the mixed solution (A + B) and the dilution rate Dax of the solution A at that position are known.

ここで、希釈混合によるこの希釈率Daxは、溶液Aと溶液Bとの混合前後の溶液Aに含まれる測定物質の濃度の比でもあるため、本発明においてはこのことに着目して、この濃度の目印となる物質を予め溶液Aに混入させておき、溶液Aと溶液Bとの混合前後のこの物質の濃度変化からこの希釈率Daxを求めることとしている。以下、この物質を標的物質と呼び、希釈率Daxの算出原理を説明する。   Here, this dilution rate Dax by dilution mixing is also a ratio of the concentration of the measurement substance contained in the solution A before and after the mixing of the solution A and the solution B. In the present invention, paying attention to this, this concentration A substance serving as a mark of the above is mixed in the solution A in advance, and the dilution rate Dax is obtained from the concentration change of the substance before and after the mixing of the solution A and the solution B. Hereinafter, this substance is referred to as a target substance, and the calculation principle of the dilution rate Dax will be described.

ここで、溶液Bとの混合前の溶液Aにおける前記標的物質の濃度を混合前標的物質濃度Ma、溶液Bとの混合後の混合溶液(A+B)中の前記測定物質濃度Qを計測した位置Xにおける標的物質濃度を混合後標的物質濃度Mbxとすると、前記の希釈率Daxは以下の[式6]で表わされる。 Here, a mixed solution (A + B) position measuring said analyte concentration to Q 1 in after mixing with pre-mixing concentration target substance concentration Ma, solution B of the target substance in the mixed prior to solution A and the solution B Assuming that the target substance concentration in X is the target substance concentration Mbx after mixing, the dilution rate Dax is expressed by the following [Equation 6].

Dax=Mbx/Ma ・・・(式6)
従って、この[式6]の関係より、目的とする溶液Bの測定物質濃度Qを求める[式5]はさらに以下の[式7]で表されることとなる。
Dax = Mbx / Ma (Formula 6)
Therefore, [Expression 5] for obtaining the measured substance concentration Q 0 of the target solution B from the relationship of [Expression 6] is further expressed by the following [Expression 7].

=Q/(1−Max/Ma) ・・・(式7)
即ち、混合前の溶液Bの測定物質濃度Qは、混合前の溶液Aの標的物質濃度Ma、混合後の混合溶液(A+B)中の任意の位置Xにおける測定物質濃度Q及び標的物質濃度Maxとが判れば、求められることとなる。
Q 0 = Q 1 / (1-Max / Ma) (Expression 7)
That is, the measurement substance concentration Q 0 of the solution B before mixing is the target substance concentration Ma of the solution A before mixing, the measurement substance concentration Q 1 and the target substance concentration at an arbitrary position X in the mixed solution (A + B) after mixing. If Max is known, it will be obtained.

即ち、予め混合前の溶液A中に所定の標的物質を均一な所定濃度Maとなるように混入させておき、混合後の混合溶液(A+B)における測定物質濃度Qの計測時に、同じ位置Xで併せてこの標的物質の濃度Maxの計測も行ない、その位置Xにおける希釈率Daxを正確に算出することによって、最終的に溶液B中の測定物質の濃度Qを正確に算出することが可能となる。 That is, a predetermined target substance is previously mixed in the solution A before mixing so as to have a uniform predetermined concentration Ma, and the same position X is measured when measuring the measured substance concentration Q 1 in the mixed solution (A + B) after mixing. In addition, the concentration Max of the target substance is also measured, and the dilution rate Dax at the position X is accurately calculated, so that the concentration Q 0 of the measurement substance in the solution B can be finally calculated accurately. It becomes.

以上のことより、本発明の尿成分濃度測定装置においては、前述した溶液Aを測定用溜水、溶液Bを被験者の排泄する尿(原尿)、溶液(A+B)を尿混入測定用溜水、標的物質を基準物質、測定物質を尿中の特定成分とした構成とし、測定用溜水の基準物質濃度並びに任意の位置の尿混入測定用溜水の特定成分濃度及び基準物質濃度を計測して、目的とする尿中の特定成分濃度を求めている。   From the above, in the urine component concentration measuring apparatus of the present invention, the above-described solution A is the measurement reservoir water, the solution B is the urine (original urine) excreted by the subject, and the solution (A + B) is the urinary mixture measurement reservoir water. The target substance is a reference substance and the measurement substance is a specific component in the urine, and the reference substance concentration of the measurement water and the specific component concentration and reference substance concentration of the urine contamination measurement water at any location are measured. Thus, the target component concentration in urine is obtained.

また、本発明の溶液成分濃度測定方法においては、前述した溶液Aを測定用溶液、溶液Bを被検査溶液、溶液(A+B)を測定用混合溶液、標的物質を基準物質、測定物質を特定成分、とした構成とし、測定用溶液の基準物質濃度並びに測定用混合溶液の特定成分濃度及び基準物質濃度を求めて、目的とする被検査溶液中の特定成分濃度を得ている。   Further, in the solution component concentration measuring method of the present invention, the above-mentioned solution A is a measurement solution, solution B is a solution to be tested, solution (A + B) is a mixed solution for measurement, a target substance is a reference substance, and a measurement substance is a specific component. The reference substance concentration of the measurement solution, the specific component concentration and the reference substance concentration of the measurement mixed solution are obtained, and the specific component concentration in the target solution to be inspected is obtained.

なお、本発明において使用する前記基準物質濃度や前記特定成分濃度は、計測対象の溶液の濃度を直接計測して得られるものだけでなく、濃度との関連性が既知な所定の物性値を濃度の代用特性として計測して濃度を求める場合も含まれる。   The reference substance concentration and the specific component concentration used in the present invention are not only those obtained by directly measuring the concentration of the solution to be measured, but also predetermined physical property values that are known to be related to the concentration. It also includes the case where the concentration is obtained by measurement as a substitute characteristic of the above.

即ち、一般に、溶液中のある物質の物質濃度Qとその物質の物性Sとが下記する[式8]で示すような既知の相関関係にあれば、計測して得られる物性値Sxから濃度値Qxが求められる。従って、本発明においても物質濃度Qの代用特性としてその物性Sを計測することも採用することが出来る。なおこの点の詳細説明は、後述する実施形態の説明において行なう。   That is, generally, if the substance concentration Q of a certain substance in the solution and the physical property S of the substance have a known correlation as shown in the following [Equation 8], the concentration value is obtained from the measured physical property value Sx. Qx is determined. Therefore, in the present invention, it is also possible to employ measurement of the physical property S as a substitute characteristic of the substance concentration Q. This point will be described in detail in the embodiments described later.

Q=f(s) ・・・(式8)
但し、関数f(s)は既知の関数。
Q = f (s) (Formula 8)
However, the function f (s) is a known function.

以上が本発明の測定原理の詳細であるが、次に、本発明の好ましい実施形態の詳細について以下に説明する。   The details of the measurement principle of the present invention have been described above. Next, details of a preferred embodiment of the present invention will be described below.

本発明に係わる尿成分濃度測定装置は、尿中に含まれる特定成分の濃度を測定する尿成分濃度測定装置において、溜水を貯留し下水道に連通したボールを備え、被験者の排泄する尿を前記ボールで受けて前記溜水とともに前記下水道に排出する便器と、前記尿が排出される前の前記溜水に混入される基準物質と、前記溜水に前記基準物質を混入することにより当該基準物質の濃度を所定濃度である尿混入前基準物質濃度とした測定用溜水を、前記ボール内に供給する測定用溜水供給手段と、前記尿の混入後における前記測定用溜水である尿混入測定用溜水の前記基準物質の濃度である尿混入後基準物質濃度を計測する尿混入後基準物質濃度計測手段と、前記尿混入測定用溜水中に含まれる前記特定成分の濃度である溜水中成分濃度を計測する溜水中成分濃度計測手段と、前記尿混入前基準物質濃度と、前記尿混入後基準物質濃度と、前記溜水中成分濃度とに基づいて、前記尿中に含まれる前記特定成分の濃度を算出する尿中成分濃度算出手段と、を有し、前記尿混入後基準物質濃度計測手段は、前記溜水中成分濃度計測手段が前記溜水中成分濃度を計測する計測位置における前記尿混入測定用溜水を計測対象として、前記尿混入後基準物質濃度を計測することを特徴とする。   The urine component concentration measuring device according to the present invention is a urine component concentration measuring device for measuring the concentration of a specific component contained in urine, comprising a ball that stores stored water and communicated with a sewer, A toilet bowl received by a ball and discharged to the sewer together with the stored water, a reference material mixed in the stored water before the urine is discharged, and the reference material by mixing the reference material into the stored water The measurement reservoir water supply means for supplying the measurement reservoir water into the ball with the concentration of the reference substance before mixing with urine as a predetermined concentration, and the urine contamination as the measurement reservoir water after mixing the urine A post-urine mixed reference substance concentration measuring means for measuring a post-urine mixed reference substance concentration that is the concentration of the reference substance in the measurement reservoir water, and a retained water that is the concentration of the specific component contained in the urine mixed measurement reservoir water Measure component concentration Urine that calculates the concentration of the specific component contained in the urine based on the component concentration measuring means in water, the reference substance concentration before urine mixing, the reference substance concentration after urine mixing, and the component concentration of the stored water Medium concentration calculation means, and the post-urine contamination reference substance concentration measurement means measures the urine contamination measurement reservoir water at the measurement position where the retention water component concentration measurement means measures the retention water component concentration. As a target, the reference substance concentration after urine contamination is measured.

すなわち、便器のボール内に貯留される溜水を、基準物質を予め混入し、その基準物質の濃度が所定濃度である尿混入前基準物質濃度とした測定用溜水とし、この測定用溜水に尿が混入した尿混入測定用溜水における尿中成分濃度を計測するとともに、その尿中成分濃度の計測位置における原尿の希釈率に対応する基準物質濃度の変化量に基づいて、原尿に含まれる特定成分の濃度を求めるようにしている。   In other words, the stored water stored in the bowl of the toilet bowl is a measurement stored water in which a reference substance is mixed in advance and the reference substance concentration is a predetermined concentration before the urine mixture, and the measured stored water The urine component concentration in the urine contamination measurement water containing urine was measured and the urine concentration was determined based on the amount of change in the reference substance concentration corresponding to the dilution ratio of the urine component at the measurement position of the urine component concentration. The concentration of the specific component contained in is determined.

従って、本発明において基準物質の濃度である所定濃度とは、尿混入前の測定用溜水の基準物質の濃度が均一な濃度となっていれば良く、特定の濃度である必要はない。即ち、後述するように尿混入前後の測定用溜水における基準物質濃度が、尿混入後基準物質濃度計測手段が計測可能な濃度範囲となる濃度範囲内の任意の濃度であればよい。   Therefore, the predetermined concentration which is the concentration of the reference substance in the present invention is not limited to a specific concentration as long as the concentration of the reference substance in the measurement water before mixing with urine is uniform. That is, as will be described later, the reference substance concentration in the measurement reservoir before and after mixing with urine may be any concentration within the concentration range that can be measured by the reference substance concentration measuring means after mixing with urine.

また、測定時の便器ボール内の測定用溜水の量は、尿混入後の特定成分濃度が溜水中成分濃度計測手段の計測可能範囲内となる範囲で任意に設定可能である。即ち、使用する便器の形式によって被験者の排尿により採尿容器である便器ボールから尿混入測定用溜水があふれて下水配管へ流失する現象が発生して溜水と尿との混合比が経時的に変化する場合でも、尿混入後の特定成分濃度が溜水中成分濃度計測手段の計測可能範囲内であれば原尿中に含まれる特定成分の濃度を正確に測定することが可能である。   Further, the amount of water for measurement in the toilet bowl at the time of measurement can be arbitrarily set within a range in which the specific component concentration after mixing with urine is within the measurable range of the component concentration measuring means for the stored water. That is, depending on the type of toilet used, a phenomenon occurs in which the urine contamination measurement reservoir overflows from the toilet bowl, which is a urine collection container, and flows out to the sewage pipe due to the urination of the subject. Even in the case of a change, it is possible to accurately measure the concentration of the specific component contained in the raw urine if the concentration of the specific component after mixing with urine is within the measurable range of the component concentration measuring means in the stored water.

また、本発明に係わる尿成分濃度測定装置では、前記溜水中成分濃度計測手段は、前記ボールの底部近傍の前記尿混入測定用溜水を計測対象とするが、このボールの底部近傍とは、ボールの垂直断面においてのボール底部に接した位置近傍で溜水よりも比重の大きい原尿が滞留し易い場所であれば良い。   Further, in the urine component concentration measuring device according to the present invention, the stored water component concentration measuring means is intended to measure the urine contamination measurement stored water near the bottom of the ball, the vicinity of the bottom of the ball, It may be a place where the raw urine having a specific gravity larger than the stored water is likely to stay near the position in contact with the bottom of the ball in the vertical cross section of the ball.

また、本発明に係わる尿成分濃度測定装置では、尿混入測定用溜水の一部をボール外に移送する計測サンプル採取手段は、計測サンプルを採取してボール外に移送することが可能な構成であれば良いため、吸入口を設けて吸引する方式やその他の任意の方式を採用可能である。   Further, in the urine component concentration measuring apparatus according to the present invention, the measurement sample collecting means for transferring a part of the urinary mixed measurement water to the outside of the ball is capable of collecting the measurement sample and transferring it to the outside of the ball. As long as it is sufficient, a suction method by providing a suction port or any other method can be adopted.

例えば、ボール底部近傍で小型の採取容器に計測に必要な量の計測サンプルを採取した後、採取容器ごとボール外に移動させるような構成とすることも可能である。その場合は、計測サンプルを採取した採取容器を密閉して移送する構成とすれば、移送経路において計測サンプルに異物が混入する問題がなくなる。このため、移送経路で異物の混入が心配される特定成分を本装置の測定対象とする場合であっても、より高精度の濃度測定が可能となる。   For example, a configuration may be adopted in which an amount of measurement sample necessary for measurement is collected in a small collection container near the bottom of the ball, and then moved to the outside of the ball together with the collection container. In that case, if the collection container from which the measurement sample is collected is sealed and transferred, there is no problem that foreign matters are mixed into the measurement sample in the transfer path. For this reason, it is possible to measure the concentration with higher accuracy even when a specific component that is a concern about contamination by foreign substances in the transfer path is used as a measurement target of the present apparatus.

なお、計測サンプル採取手段は、ボールの底部に設けた便器洗浄水吐水口を、尿混入測定用溜水の採取用の開口部としてもよい。便器洗浄水吐水口としては、便器部に設けられたゼット吐水ノズルのゼット孔を採用することができる。   Note that the measurement sample collecting means may use a toilet flushing water outlet provided at the bottom of the ball as an opening for collecting urine-mixing measurement water. As the toilet flushing water discharge port, a zet hole of a zet water discharge nozzle provided in the toilet unit can be employed.

ここで、測定用溜水に対する放尿位置や放尿量には、一般に被験者間の個人差があるため、排泄された尿(原尿)がボール内の測定用溜水に混入したとしても、、混入後の尿混入測定用流水中における尿の混合状態は時間的にも位置的にも一様ではなく、従って、溜水中成分濃度計測手段の計測位置における尿混入測定用溜水中に含まれる特定成分の濃度は、各手段における計測に必要な濃度範囲に達していない可能性がある。   Here, since the urination position and the amount of urination for the measurement water are generally different among subjects, even if excreted urine (original urine) is mixed into the measurement water in the ball, The mixed state of urine in the subsequent urine contamination measurement running water is not uniform in terms of time and position. Therefore, the specific component contained in the urine contamination measurement reservoir at the measurement position of the component concentration measuring means May not reach the concentration range necessary for measurement by each means.

そこで、本発明に係わる尿成分濃度測定装置では、尿混入測定用溜水中における尿の混合状態が、所定の混合状態に達したか否かを判断する尿混合状態判断手段を有し、尿混合状態判断手段が所定の混合状態に達したと判断したときに、尿混入後濃度計測手段による尿混入後基準物質濃度、及び溜水中成分濃度計測手段による溜水中成分濃度の各計測を開始するようにしても良い。   Therefore, the urine component concentration measuring apparatus according to the present invention has urine mixing state determination means for determining whether or not the mixing state of urine in the urine mixed measurement reservoir has reached a predetermined mixing state, When the state determining means determines that the predetermined mixing state has been reached, the measurement of the post-urine-mixed reference substance concentration by the post-urine-mixed concentration measuring means and the measurement of the stored water component concentration by the stored water component concentration measuring means are started. Anyway.

なお、所定の混合状態としては、尿混入後物性値計測手段による尿混入後基準物質濃度、及び溜水中成分濃度計測手段による溜水中成分濃度の計測が可能な濃度範囲に、尿が尿混入測定用溜水中に混合している状態を言う。   In addition, as the predetermined mixed state, urine is mixed in the urine within a concentration range in which the post-urine mixed physical property value measuring unit can measure the post-urine mixed reference substance concentration and the stored water component concentration measuring unit. This refers to the state of being mixed in the reservoir water.

また、本発明に係わる尿成分濃度測定装置では、尿混合状態判断手段は、測定用溜水への尿の混入を検知する尿混入検知手段と、尿混入検知手段により尿の混入が検知されてからの経過時間を計時する経過時間計測手段と、を有し、経過時間計測手段により計時される経過時間が所定時間以上経過したときに、尿混入測定用溜水中の原尿の混合状態が所定の混合状態に達したと判断するようにしても良い。   Further, in the urine component concentration measuring device according to the present invention, the urine mixing state determination means detects urine contamination by the urine contamination detection means for detecting the urine contamination in the measurement water and the urine contamination detection means. And an elapsed time measuring means for measuring an elapsed time from the time when the elapsed time measured by the elapsed time measuring means has exceeded a predetermined time, the mixing state of the raw urine in the urinary mixed measurement reservoir is predetermined. It may be determined that the mixed state is reached.

なお、この所定時間としては、測定用溜水へ原尿が混入してから、溜水中成分濃度計測手段による計測が可能な程度に尿混入測定用溜水中で原尿が拡散するまでに必要な時間を予め求め、その時間以上の適宜な時間を選択すれば良い。   The predetermined time is necessary until the raw urine is diffused in the urine-mixed measurement water after the raw urine is mixed into the measurement water. What is necessary is just to obtain | require time beforehand and to select the appropriate time more than the time.

ここで、一般に被験者が男性である場合には、便座に着座した状態で排尿するよりも立位で排尿する方が、測定用溜水に対して高い位置からの尿の入射となり、入射時における尿の流速が大きく、そのため、尿混入測定用溜水中において尿が拡散し易くなる。したがって、ボールの底部近傍に滞留する尿量が減少しボールの底部近傍の尿混入測定用溜水中に含まれる尿濃度が相対的に高くならない場合がある。また、もともと被験者が排泄する尿の量が少ない場合も想定される。かかる場合に、ボールの底部近傍の尿混入測定用溜水を溜水中成分濃度計測手段の計測対象としても、該計測対象中の特定成分濃度が溜水中成分濃度計測に必要な最低限の濃度以上となるだけの量の原尿が含まれない可能性がある。   Here, in general, when the subject is a male, urinating in a standing position rather than urinating while sitting on a toilet seat results in incidence of urine from a higher position with respect to the measurement water, The flow rate of urine is large, so that urine is easily diffused in the urine contamination measurement reservoir. Therefore, the amount of urine staying in the vicinity of the bottom of the ball may be reduced, and the concentration of urine contained in the urine contamination measurement reservoir near the bottom of the ball may not be relatively high. It is also assumed that the amount of urine excreted by the subject is small. In such a case, even if the urine contamination measurement reservoir near the bottom of the ball is used as a measurement target of the component concentration measurement means, the specific component concentration in the measurement target is higher than the minimum concentration necessary for the measurement of the component concentration of the pool May not contain enough raw urine.

そこで、本発明に係わる尿成分濃度測定装置においては、測定用溜水の量を減らすための溜水減量手段を設けて、溜水減量手段により測定用溜水の量を減らすことにより、測定用溜水の量に対する尿量を相対的に増加させるようにしても良い。   Therefore, in the urine component concentration measuring apparatus according to the present invention, a retention water reducing means for reducing the amount of the measurement water is provided, and the amount of the measurement water is reduced by the retention water reduction means. The amount of urine relative to the amount of stored water may be increased relatively.

溜水減量手段としては、便器部に設けられたゼット吐水ノズルを用いることができる。この場合、被験者の排泄する尿が測定用溜水に混入する前に、ゼット吐水ノズルから洗浄水を噴射するとよい。即ち、ゼット吐水ノズルから噴射された洗浄水は、ボールに貯留する測定用溜水を押し出してボール外に排出する。これにより、満水水位と所定の水位との間における測定用溜水の分だけ、測定用溜水の量が減少する。   As the accumulated water reducing means, a jet water discharge nozzle provided in the toilet part can be used. In this case, before the urine excreted by the subject is mixed into the measurement water, the washing water may be jetted from the jet water discharge nozzle. That is, the washing water sprayed from the jet water discharge nozzle pushes out the measurement water stored in the ball and discharges it outside the ball. As a result, the amount of the measurement reservoir water is reduced by the amount of the measurement reservoir water between the full water level and the predetermined water level.

また、測定用溜水の量を減少させた後における測定用溜水の水位は、ボールの満水水位から下水管との連通を遮断する最低水位である封水水位を下回らないような所定の水位とするとよい。これにより、測定時に下水管からの汚臭の逆流を防止することが出来る。   In addition, the water level of the measurement water after the amount of the measurement water is reduced is a predetermined water level that does not fall below the sealed water level, which is the lowest water level that blocks communication with the sewer pipe from the full water level of the ball. It is good to do. Thereby, the backflow of the foul odor from a sewer pipe can be prevented at the time of measurement.

このように、溜水減量手段により測定用溜水の量を減らすことにより、例えば、溜水中成分濃度計測手段の計測位置をボールの底部近傍とした場合は、計測位置における特定成分の濃度が高まるだけでなく、尿が測定用溜水に着水する位置とボール底部との距離が小さくなり測定用溜水中を拡散する尿がボールの底部近傍に到達し易くなる。このため、ボールの底部近傍における特定成分の濃度は、より短時間で溜水中成分濃度計測手段により計測可能な特定成分の濃度となる。その結果、測定に要する時間をより短時間とすることが可能となる。   In this way, by reducing the amount of water for measurement by the stored water reducing means, for example, when the measurement position of the stored water component concentration measuring means is near the bottom of the ball, the concentration of the specific component at the measurement position increases. In addition, the distance between the position where the urine lands on the measurement reservoir and the bottom of the ball is reduced, and the urine diffusing in the measurement reservoir is likely to reach the vicinity of the bottom of the ball. For this reason, the density | concentration of the specific component in the bottom part vicinity of a ball | bowl becomes a density | concentration of the specific component which can be measured by the stored water component density | concentration measuring means in a short time. As a result, the time required for measurement can be shortened.

ここで、本発明に係わる尿成分濃度測定装置における測定用溜水の基準物質濃度は、基準物質として採用する物質がその濃度に対応した関係を示す物性値を計測する方法によって求めるようにしても良い。その場合、本発明に係わる尿成分濃度測定装置において適用できる物性値としては、測定用溜水中の基準物質と原尿とを識別することが可能な物性値であれば良い。その場合、溜水に混入される基準物質としては、原尿と接触しても化学反応を生起せず、基準物質の物性値変化を、原尿の混入による影響を受けずに計測できる物質であれば、いかなる物質を採用しても良い。   Here, the reference substance concentration of the measurement reservoir water in the urine component concentration measuring apparatus according to the present invention may be obtained by a method of measuring a physical property value indicating a relation corresponding to the concentration of the substance adopted as the reference substance. good. In this case, the physical property values that can be applied in the urine component concentration measuring apparatus according to the present invention may be physical property values that can distinguish the reference substance and the raw urine in the measurement water. In that case, the reference substance mixed into the stored water is a substance that does not cause a chemical reaction even when it comes into contact with the raw urine, and can measure changes in the physical properties of the reference substance without being affected by the contamination of the raw urine. Any substance may be used as long as it is present.

従って、本発明に係わる尿成分濃度測定装置において適用できる物性値としては、例えば、吸光度や蛍光強度が採用出来る。そして、物性値として吸光度を選択する場合は、基準物質として尿の吸光特性とは異なる波長帯に吸光特性を持つ物質を用いることができる。これにより、測定用溜水中に含まれる基準物質の排尿前後の吸光度を、尿の混入に影響されずに計測することができ、その結果、原尿の特定成分の濃度を算出することができる。   Therefore, as physical property values applicable in the urine component concentration measuring apparatus according to the present invention, for example, absorbance or fluorescence intensity can be adopted. When absorbance is selected as the physical property value, a substance having an absorption characteristic in a wavelength band different from that of urine can be used as a reference substance. As a result, the absorbance before and after urination of the reference substance contained in the measurement water can be measured without being affected by urine contamination, and as a result, the concentration of the specific component of the original urine can be calculated.

さらに、この計測する物性値として吸光度を選択する場合においては、尿混入前濃度計測手段及び尿混入後濃度計測手段を、ガラス等の透明材料からなるサンプルセル中に尿混入前後の測定用溜水を充填し、この測定用溜水に所定の光源から平行光を照射することにより、測定用溜水の吸光度を計測する吸光度計等とすることができる。   Further, in the case of selecting the absorbance as the physical property value to be measured, the concentration measuring means before urine mixing and the concentration measuring means after urine mixing are stored in a sample cell made of a transparent material such as glass before and after mixing with urine. And irradiating the measurement water with parallel light from a predetermined light source, an absorptiometer for measuring the absorbance of the measurement water can be obtained.

この場合、吸光度を計測する基準物質として、例えば、メチレンブルーを選択することができる。このメチレンブルーは吸光度の波長帯が、原尿の波長帯と異なっているため測定用溜水中において原尿と識別することが可能となり、測定用溜水中に含まれる基準物質の、尿混入前後における吸光度の変化を正確に計測することができる。   In this case, for example, methylene blue can be selected as a reference substance for measuring absorbance. Since this methylene blue has a wavelength band of absorbance different from that of raw urine, it can be distinguished from raw urine in the measurement reservoir, and the absorbance of the reference substance contained in the measurement reservoir before and after urine contamination. Can be measured accurately.

ここで、本発明に係わる尿成分濃度測定装置において適用できる物性値としては、吸光度や蛍光強度の他に、基準物質と原尿との計測値に顕著な差異がある場合には、例えば、導電率、比重、浸透圧、屈折率等であっても良い。この場合、前述の吸光度計に代えて、それぞれの物性値を計測する装置を用いることができる。   Here, as physical property values applicable in the urine component concentration measuring apparatus according to the present invention, in addition to absorbance and fluorescence intensity, in the case where there is a significant difference in measured values between the reference substance and raw urine, for example, conductivity It may be a ratio, specific gravity, osmotic pressure, refractive index, or the like. In this case, instead of the above-described absorbance meter, an apparatus for measuring each physical property value can be used.

また、本発明に係わる尿成分濃度測定装置における測定用溜水供給手段は、所定の水源から前記ボール内に水を供給する給水手段と、前記給水手段により供給される水に前記基準物質を混入する基準物質混入手段と、を有する構成として、前記基準物質混入手段は、前記基準物質の濃度が尿混入前基準物質濃度となる量の前記基準物質を前記水に混入するようにしても良い。   The measuring water supply means in the urine component concentration measuring apparatus according to the present invention includes a water supply means for supplying water into the ball from a predetermined water source, and the reference substance is mixed in the water supplied by the water supply means. The reference substance mixing means may mix the reference substance in an amount such that the concentration of the reference substance becomes the reference substance concentration before mixing with urine.

このようにすることによって、測定用溜水供給手段が前記ボール内に測定用溜水を供給する前に、基準物質の濃度が均一である測定用溜水を作成することができる。   By doing so, it is possible to create a measurement reservoir having a uniform concentration of the reference substance before the measurement reservoir supply means supplies the measurement reservoir into the ball.

また、本発明に係わる尿成分濃度測定装置における基準物質混入手段は、基準物質を貯留する基準物質貯留タンクと、基準物質貯留タンク内の基準物質を、強制的に圧送するポンプとから構成することができ、前記給水手段を構成する給水管路に対して、このポンプによって基準物質貯留タンク内の基準物質を供給し混入することにより、便器のボール内に供給される溜水が基準物質の濃度が均一である測定用溜水となるようにしても良い。   Further, the reference substance mixing means in the urine component concentration measuring apparatus according to the present invention comprises a reference substance storage tank that stores the reference substance, and a pump that forcibly pumps the reference substance in the reference substance storage tank. The reference material in the reference material storage tank is supplied to and mixed with the water supply pipes constituting the water supply means by this pump, so that the water stored in the bowl of the toilet bowl has a concentration of the reference material. It is also possible to make the reservoir water for measurement uniform.

このようにすると、便器のボール内に流れ込むまでの給水管路内における道程で、管路曲がり等の流水に対する攪拌作用により、溜水と基準物質とが均一に混合されるため、溜水と基準物質とを均一に混合するための攪拌手段等を別途設ける必要がなくなり、装置の構成を簡素化することが可能となる。   In this way, the stagnant water and the reference substance are uniformly mixed by the stirring action on the flowing water such as a pipe bend in the path in the water supply pipe until it flows into the bowl of the toilet bowl. It is not necessary to separately provide a stirring means or the like for uniformly mixing the substance, and the configuration of the apparatus can be simplified.

この場合、例えば、この給水管路の終端をリム吐水ノズルとすれば、リム吐水ノズルから吐水された基準物質混じりの水は、ボールの上部から下部に向って螺旋状に流下し、この螺旋状の流れにより水と基準物質とがさらに混合されて、基準物質濃度変化量の計測に必要な均一の混合状態の測定用溜水となる。   In this case, for example, if the end of the water supply pipe is a rim water discharge nozzle, the water mixed with the reference material discharged from the rim water discharge nozzle flows spirally from the upper part of the ball toward the lower part. The water and the reference material are further mixed by the flow of the water, so that the measurement mixed water necessary for the measurement of the reference substance concentration change amount is obtained.

また、本発明に係わる尿成分濃度測定装置によって測定される特定成分として、糖やタンパク等の尿中に漏出する被験者の生体情報を反映する成分を測定する場合、例えば、特定成分として糖の濃度を計測する場合は、溜水中成分濃度計測手段は、既存の検出原理にてグルコース濃度を計測する濃度計とすることができる。さらに、尿成分濃度測定装置の給電や給水関係の接続部を便器装置と共通化した構成とすれば、通常の便器装置の設置工事で兼ねることとなるため、便器装置を据付けるだけで尿成分濃度測定装置の施工が完了することとなり、取付け現場での取付け施工も簡単となる。   Moreover, when measuring a component that reflects biological information of a subject leaking into the urine, such as sugar or protein, as the specific component measured by the urine component concentration measuring apparatus according to the present invention, for example, the concentration of sugar as the specific component In the case of measuring the concentration, the component concentration measuring means of the stored water can be a concentration meter that measures the glucose concentration by the existing detection principle. In addition, if the urine component concentration measuring device has a common power supply and water supply connection with the toilet device, it can also be used for normal toilet device installation work. The installation of the concentration measuring device will be completed, and the installation at the installation site will be simplified.

また、尿成分濃度測定装置は、排泄行為で通常使用する便器部とは別に設けた筐体内に収納配設し、便器部と配管や配線を介して接続することによって便器部が備えた給水手段等の便器機能を利用する構成とすることもできるが、この構成の他、便器部自体を収納筐体として使用して、尿成分濃度測定装置を一体的に収納した構成の便器装置とすることも可能である。このようにすれば、意匠性を向上することができ、設置するトイレ内をすっきりとすることも可能であり、また、便器装置と一体に取り扱うことができるため、物流上の管理も容易となる。   In addition, the urine component concentration measuring device is housed and disposed in a casing provided separately from the toilet part normally used for excretion, and connected to the toilet part via piping or wiring to provide water supply means provided in the toilet part In addition to this configuration, the toilet unit itself may be used as a storage case, and a toilet device having a configuration in which the urine component concentration measuring device is integrally stored may be used. Is also possible. In this way, the design can be improved, the interior of the toilet to be installed can be made clean, and since it can be handled integrally with the toilet device, distribution management is also facilitated. .

また、本発明に係る尿成分濃度測定装置においては、原尿中に含まれる特定成分の濃度を測定していたが、本発明は、尿以外の溶液、例えば、人間の血液や汗などの成分分析に適用しても良い。   In the urine component concentration measuring apparatus according to the present invention, the concentration of a specific component contained in the raw urine was measured. However, the present invention is not limited to a solution other than urine, for example, a component such as human blood or sweat. It may be applied to analysis.

かかる場合には本発明は、被検査溶液中に含まれる特定成分の濃度を測定する溶液成分濃度測定方法において、所定の液体に基準物質を混入し当該基準物質の濃度を所定の濃度である混入前基準物質濃度とした測定用溶液を準備し、前記測定用溶液に前記被検査溶液を混入して測定用混合溶液を作り、前記測定用混合溶液中の任意の位置に含まれる前記特定成分の濃度である混合溶液成分濃度を計測すると共に、前記測定用混合溶液の前記基準物質の濃度である混合後基準物質濃度も併せて計測し、前記混合前基準物質濃度と、前記混合後基準物質濃度と、前記混合溶液成分濃度とに基いて前記被検査溶液中に含まれる前記特定成分の濃度を算出することを特徴とするものである。   In such a case, the present invention provides a solution component concentration measurement method for measuring the concentration of a specific component contained in a solution to be inspected, wherein a reference substance is mixed in a predetermined liquid and the concentration of the reference substance is a predetermined concentration. Prepare a measurement solution having a pre-reference substance concentration, mix the solution to be inspected into the measurement solution to create a measurement mixed solution, and add the specific component contained in any position in the measurement mixed solution. The concentration of the mixed solution component, which is a concentration, is measured together with the concentration of the reference material after mixing, which is the concentration of the reference material in the measurement mixed solution, and the concentration of the reference material before mixing and the concentration of the reference material after mixing And the concentration of the specific component contained in the solution to be inspected is calculated based on the mixed solution component concentration.

ここで、本発明に係る溶液成分濃度測定方法においては、被検査溶液としてはこれらの人間の血液や汗以外にも唾液など溶液状であれば、混入する基準物質や測定用溶液を適宜選定することによって、被検査溶液に含まれる特定成分の濃度を確実かつ高精度に測定することを実現することができる。   Here, in the solution component concentration measurement method according to the present invention, as a solution to be inspected, if it is in the form of a solution such as saliva in addition to these human blood and sweat, a reference substance to be mixed and a measurement solution are appropriately selected. By doing so, it is possible to reliably and accurately measure the concentration of the specific component contained in the solution to be inspected.

さらには、固体状の物質に含まれる成分であっても、この物質を混入させる適宜な溶液を選択することによって溶液化して被検査溶液とすることが可能である場合には、本発明に係る溶液成分濃度測定方法を適用してその物質に含まれる特定成分の濃度を確実かつ高精度に測定することが可能である。尚、この場合であっても、混入前基準物質濃度、混入後基準物質濃度、及び混合溶液成分濃度の代用特性として、対応する溶液中の物質が示す夫々の物性値を計測する構成とすることができる。   Furthermore, even if it is a component contained in a solid substance, when it can be made into a solution to be inspected by selecting an appropriate solution in which this substance is mixed, the present invention is applied. By applying the solution component concentration measurement method, it is possible to reliably and accurately measure the concentration of a specific component contained in the substance. Even in this case, each physical property value indicated by the substance in the corresponding solution is measured as a substitute characteristic of the reference substance concentration before mixing, the reference substance concentration after mixing, and the mixed solution component concentration. Can do.

[1.第1実施形態]
[1.1 全体構成]
以下に、本発明の実施形態について図面を参照しながら説明する。
[1. First Embodiment]
[1.1 Overall configuration]
Embodiments of the present invention will be described below with reference to the drawings.

図1〜図4に本発明を適用した第1実施形態に係る尿成分濃度測定装置を備えた便器装置の概略を示す。   1 to 4 show an outline of a toilet apparatus provided with a urine component concentration measuring apparatus according to a first embodiment to which the present invention is applied.

図1は、尿成分濃度測定装置を備えた便器装置全体の外観を示した概略図、図2は、便器装置が備える便器部の側断面図、図3は、便器装置の全体構成及びその電気的構成を示す模式的説明図、図4は、図2に示す便器部が備えるゼット吐水ノズルの部分拡大断面図である。なお、図3において、電気的信号の流れは破線で示し、水、尿等の物質の流れは実線で示すものとする。   FIG. 1 is a schematic diagram showing the appearance of the entire toilet device provided with the urine component concentration measuring device, FIG. 2 is a side sectional view of the toilet unit provided in the toilet device, and FIG. 3 is the overall configuration of the toilet device and its electrical FIG. 4 is a partially enlarged cross-sectional view of the jet water discharge nozzle provided in the toilet part shown in FIG. 2. In FIG. 3, the flow of electrical signals is indicated by broken lines, and the flow of substances such as water and urine is indicated by solid lines.

図1に示すように、便器装置1は、任意の形式の従来型の便器部2と、便器部2の後方に配設され後述で詳説する尿成分濃度測定装置5の一部を内部に収納する背面キャビネット3と、トイレ空間の所定の位置に配設された、尿成分濃度測定装置5の操作・表示部4とを有している。   As shown in FIG. 1, a toilet device 1 contains a conventional toilet unit 2 of any type and a part of a urine component concentration measuring device 5 which is disposed behind the toilet unit 2 and will be described in detail later. And the operation / display unit 4 of the urine component concentration measuring device 5 disposed at a predetermined position in the toilet space.

[1.2.便器部の構成]
便器部2は、既存のサイホンゼット式洋式便器であり、図1及び図2に示すように、便器本体2aの上面開口部に開閉自在に配設された便座6と、この便座6の上に同じく開閉自在に配設された便蓋7と、を具備している。なお、図2では便座6及び便蓋7の記載を省略している。また、便器本体2aの後部には、機能部ケーシング8が載置されており、この機能部ケーシング8内には、後述する給水弁22や水路切替弁24など便器洗浄水の給排水機能を担う洗浄部20(図3参照)と、図示しない局部洗浄装置とを収納配設している。
[1.2. Configuration of toilet bowl]
The toilet unit 2 is an existing siphon-zette type western toilet, and as shown in FIGS. 1 and 2, a toilet seat 6 disposed in an openable manner on the upper surface opening of the toilet body 2 a and a toilet seat 6 on the toilet seat 6. The toilet lid 7 is also provided so as to be openable and closable. 2, illustration of the toilet seat 6 and the toilet lid 7 is omitted. In addition, a functional part casing 8 is placed at the rear part of the toilet body 2a, and the functional part casing 8 has a cleaning function for supplying and discharging toilet flushing water such as a water supply valve 22 and a water channel switching valve 24 described later. The unit 20 (see FIG. 3) and a local cleaning device (not shown) are accommodated.

便器本体2aの内部は、隔壁10aによりボール10とトラップ部14とに区画されており、ボール10の上部周縁にはリム部11が形成され、このリム部11のやや後方側には、図示しない水源に連通するリム吐水ノズル12を配設している。   The interior of the toilet main body 2a is partitioned into a ball 10 and a trap part 14 by a partition wall 10a. A rim part 11 is formed on the upper peripheral edge of the ball 10, and a rim part 11 is not shown slightly behind the rim part 11. A rim water spouting nozzle 12 communicating with the water source is provided.

また、トラップ部14は、ボール10の後下部に形成したトラップ流入口14aと、便器部2の下面に開口したトラップ排水口14bとを連絡するように略逆U字状に形成されている。   Further, the trap portion 14 is formed in a substantially inverted U shape so as to connect a trap inlet 14 a formed in the lower rear portion of the ball 10 and a trap drain port 14 b opened in the lower surface of the toilet portion 2.

また、ボール10の底部10cには、トラップ流入口14aに向けて洗浄水を噴射するゼット吐水ノズル16が、トラップ流入口14aと対向するように設けられている。このゼット吐水ノズル16の先端部には、ボール10の底部からトラップ流入口14aに向けて洗浄水を噴射し、トラップ部14内にてサイホン現象を誘発する便器洗浄水吐水口としてのゼット孔16aを開口している。   Moreover, the bottom 10c of the ball | bowl 10 is provided with the jet water discharge nozzle 16 which injects washing water toward the trap inflow port 14a so as to oppose the trap inflow port 14a. At the tip of the jet water discharge nozzle 16, washing water is jetted from the bottom of the ball 10 toward the trap inlet 14 a, and a jet hole 16 a as a toilet flushing water outlet that induces a siphon phenomenon in the trap portion 14. Is open.

機能部ケーシング8の内部には、図3に示すように、洗浄部20が収納されており、この洗浄部20は、所定の水源に直結し該水源の給水圧を利用することにより給水を行う給水弁22と、この給水弁22に配管R1を介して連通連結され給水弁22から供給された洗浄水を、流路を切り替えて供給可能なソレノイド式の水路切替弁24と、水路切替弁24に電気的に接続されこの水路切替弁24の開閉を制御する等、便器部2全体の動作を制御する便器制御部21と、を有している。また、水路切替弁24は、配管R2及び配管R3を介してそれぞれリム吐水ノズル12及びゼット吐水ノズル16に連通連結されている。便器制御部21は、後述する尿成分濃度測定装置5の制御部40と電気的に接続されており、制御部40との間で各種データの送受信を行うようになっている。   As shown in FIG. 3, a cleaning unit 20 is housed inside the functional unit casing 8, and the cleaning unit 20 supplies water by directly connecting to a predetermined water source and using the water supply pressure of the water source. A water supply valve 22, a solenoid-type water path switching valve 24 that is connected to the water supply valve 22 through a pipe R <b> 1 and is supplied with the cleaning water supplied from the water supply valve 22 by switching the flow path, and a water path switching valve 24. And a toilet control unit 21 that controls the operation of the entire toilet unit 2 such as controlling the opening and closing of the water channel switching valve 24. Further, the water channel switching valve 24 is connected to the rim water discharge nozzle 12 and the jet water discharge nozzle 16 through a pipe R2 and a pipe R3, respectively. The toilet control unit 21 is electrically connected to a control unit 40 of the urine component concentration measuring device 5 described later, and transmits and receives various data to and from the control unit 40.

かかる構成により、便器本体2a内に設けた洗浄スイッチ(図示せず)を押下するなどして汚物洗浄処理を実行すると、便器制御部21は、水路切替弁24を開放する制御信号を出力し、水源と配管R2側とを連通させ、水をリム吐水ノズル12に供給する。水源からの水はこのリム吐水ノズル12からボール10(図2参照)内に洗浄水として吐水され、ボール10内の内壁を旋回しながら洗浄を開始する。   With this configuration, when the filth washing process is performed by pressing a washing switch (not shown) provided in the toilet body 2a, the toilet control unit 21 outputs a control signal for opening the water channel switching valve 24, The water source is connected to the pipe R2 side, and water is supplied to the rim water discharge nozzle 12. Water from the water source is discharged from the rim water discharge nozzle 12 into the ball 10 (see FIG. 2) as cleaning water, and cleaning is started while turning the inner wall of the ball 10.

所定時間経過すると、便器制御部21は、配管R2から配管R3へ流路を切替える制御信号を水路切替弁24に出力する。これにより、水源からの水は配管R2へは流れずに配管R3へ流れ込み、ゼット吐水ノズル16のゼット孔16aからトラップ流入口14a(図2参照)に向って洗浄水として噴射されトラップ部14内にサイホン現象を生起させ、汚物をトラップ排水口14b(図2参照)へと流出させるゼット洗浄が行われる。   When the predetermined time has elapsed, the toilet controller 21 outputs a control signal for switching the flow path from the pipe R2 to the pipe R3 to the water channel switching valve 24. Thereby, the water from the water source flows into the pipe R3 without flowing into the pipe R2, and is jetted as cleaning water from the jet hole 16a of the jet water discharge nozzle 16 toward the trap inlet 14a (see FIG. 2). In this case, a siphon phenomenon is caused to occur, and zet cleaning is performed in which the filth flows out to the trap drain 14b (see FIG. 2).

ゼット洗浄の開始から所定時間が経過すると、便器制御部21は、水路切替弁24に制御信号を出力して流路を再び配管R3から配管R2へ切替える。これにより、水源からの水は洗浄水として再びリム吐水ノズル12に供給され、ボール10内に溜水18(図2参照)を形成し便器本体2aのボール10を水封する。このとき、便器制御部21、水路切替弁24、及び給水弁22を備える洗浄部20は、ボール10内に貯留される溜水18となる水を供給する給水手段として機能する。なお、本実施形態では、洗浄部20を便器部2の機能部ケーシング8内に設けたが、この洗浄部20を尿成分濃度測定装置5に設けて背面キャビネット3内に収納配設しても良い。   When a predetermined time has elapsed from the start of the zet cleaning, the toilet controller 21 outputs a control signal to the water channel switching valve 24 and switches the flow channel from the pipe R3 to the pipe R2 again. As a result, water from the water source is supplied again to the rim water spouting nozzle 12 as washing water, forming the pool 18 (see FIG. 2) in the ball 10 and sealing the ball 10 of the toilet body 2a. At this time, the cleaning unit 20 including the toilet control unit 21, the water channel switching valve 24, and the water supply valve 22 functions as a water supply unit that supplies water to be stored water 18 stored in the ball 10. In this embodiment, the cleaning unit 20 is provided in the functional unit casing 8 of the toilet unit 2. However, the cleaning unit 20 may be provided in the urine component concentration measuring device 5 and housed in the back cabinet 3. good.

[1.3 尿成分濃度測定装置の構成]
次に、本実施形態の特徴的な構成である尿成分濃度測定装置5の構成について具体的に説明する。本実施形態に係る尿成分濃度測定装置5は、被験者が排泄した尿、即ち、原尿を採取して原尿中に含まれる特定成分としての糖の濃度を測定するものであり、上述したように、既存の便器部2と共に便器装置1に組み込まれている。
[1.3 Configuration of urine component concentration measuring device]
Next, the configuration of the urine component concentration measuring apparatus 5 that is a characteristic configuration of the present embodiment will be specifically described. The urine component concentration measuring device 5 according to the present embodiment measures urine excreted by a subject, that is, collects raw urine and measures the concentration of sugar as a specific component contained in the raw urine, as described above. In addition, it is incorporated in the toilet device 1 together with the existing toilet unit 2.

そして、尿成分濃度測定装置5は、前述した測定原理に関する説明における、基準物質をメチレンブルー液、測定物質を尿(原尿)の特定成分の一つである糖(尿糖)、測定用溶液を測定用溜水、被検査溶液を被験者の排泄する尿(原尿)、測定用混合溶液を尿混入測定用溜水、とした構成としている。また、本実施形態では基準物質の濃度の代用特性として物性値の一つである吸光度を計測している。   Then, the urine component concentration measuring device 5 uses a methylene blue liquid as a reference substance, a sugar (urine sugar) which is one of specific components of urine (raw urine), a measurement solution as a reference substance in the description of the measurement principle described above. The measurement reservoir water, urine (original urine) excreted by the test subject solution, and the measurement mixed solution are urine mixed measurement reservoir water. In the present embodiment, the absorbance, which is one of the physical property values, is measured as a substitute characteristic of the concentration of the reference substance.

また、尿成分濃度測定装置5は、尿混入測定用溜水の特定成分の濃度である溜水成分濃度の計測を、所定位置として予め決められたボール10の底部近傍位置で採取した尿混入測定用溜水の一部を計測対象として実施する構成としている。従って、まず、ボール10の底部近傍を計測する所定位置とした理由について、以下に説明する。   In addition, the urine component concentration measuring device 5 measures the measurement of the concentration of the retained water component, which is the concentration of the specific component of the urine contamination measurement reservoir water, at a position near the bottom of the ball 10 determined in advance as a predetermined position. It is set as the structure which implements a part of stored water as a measuring object. Accordingly, first, the reason why the predetermined position for measuring the vicinity of the bottom of the ball 10 will be described.

尿成分濃度測定装置5において、尿混入後基準物質濃度計測手段として用いる吸光度計や、溜水中成分濃度計測手段として用いる糖濃度計などの計測機器は、その計測精度を保障できる濃度範囲がある。すなわち、計測する尿混入測定用溜水中に、この濃度範囲となる量のこの基準物質や特定成分が含まれている必要がある。   In the urine component concentration measuring device 5, measuring devices such as an absorbance meter used as a reference substance concentration measuring unit after urine mixing and a sugar concentration meter used as a component concentration measuring unit for stored water have a concentration range in which the measurement accuracy can be ensured. That is, it is necessary that the reference substance and the specific component in an amount that falls within this concentration range are contained in the urine contamination measurement reservoir.

このうち、基準物質の濃度に関しては、尿成分濃度測定装置5の計測環境を予め想定して、その環境下において基準物質の濃度変化幅が、糖濃度計などの計測機器の計測可能な濃度範囲内になるように設定することが可能なため、特段の問題は生じない。   Among these, regarding the concentration of the reference substance, assuming the measurement environment of the urine component concentration measuring device 5 in advance, the concentration change range of the reference substance in the environment is a concentration range that can be measured by a measuring instrument such as a sugar concentration meter. Since it can be set to be within, no particular problem occurs.

ところが、特定成分の濃度に関しては、測定用溜水量に含まれる原尿量の割合が比較的小さい状態で計測する場合には、計測機器の低濃度側における計測限界が問題となることが多い。従って、計測を確実なものにするためには、出来るだけ原尿の相対的割合が高くなることの多い位置の尿混入測定用溜水を計測機器の計測対象とする必要がある。   However, regarding the concentration of the specific component, the measurement limit on the low concentration side of the measuring instrument often becomes a problem when the ratio of the amount of raw urine contained in the amount of stored water for measurement is relatively small. Therefore, in order to ensure the measurement, it is necessary to set the measurement water of the measurement device to the urine mixture measurement water at a position where the relative ratio of the raw urine is as high as possible.

ところが、排泄される尿の溜水に対する入射位置は被験者によって種々異なり、排泄される尿量も被験者や排尿毎に異なる。そのため、尿混入測定用溜水における尿の混合状態は、尿混入測定用溜水全体における計測位置により不均一であるばかりでなく、同じ計測位置であっても測定の都度、変化する。   However, the incident position of the excreted urine with respect to the stored water varies depending on the subject, and the amount of excreted urine varies depending on the subject and urination. Therefore, the mixed state of urine in the urine contamination measurement reservoir is not only uneven depending on the measurement position in the entire urine contamination measurement reservoir, but also changes at each measurement even at the same measurement location.

そのため、本発明者達は多数の被験者による尿混入測定用溜水における尿の混合状態の確認試験を行なったが、それによると、被験者によりボールに向けて排泄された原尿は、測定用溜水よりも比重が大きいため、ボールの底部に向けて拡散していき滞留することが判った。そしてこの傾向は、被験者が異なっても共通していることも判った。   For this reason, the present inventors conducted a confirmation test of the mixed state of urine in the urine contamination measurement reservoir water by a large number of subjects. According to this, the original urine excreted by the subjects toward the ball is not measured. Since the specific gravity is greater than that of water, it was found that it diffused and stayed toward the bottom of the ball. And this tendency was found to be common even if the subjects were different.

即ち、ボールの底部近傍は、放尿後比較的短時間で相対的に原尿濃度が高くなり、その結果として特定成分も計測可能な濃度範囲となる可能性の高い箇所であることが判明した。従って、このボールの底部近傍位置を尿の特定成分濃度を計測する所定位置とした。以下に、その他の構成も含めた尿成分濃度測定装置5の具体的な構成について説明する。   That is, it has been found that the vicinity of the bottom of the ball is a portion where the concentration of raw urine is relatively high in a relatively short time after urination, and as a result, the concentration of a specific component is likely to be measurable. Therefore, the position in the vicinity of the bottom of the ball is set as a predetermined position for measuring the specific component concentration of urine. Below, the specific structure of the urine component concentration measuring apparatus 5 including other structures is demonstrated.

尿成分濃度測定装置5は、図3に示すように、給水手段である配管R2内を通過する水に(図2参照)、基準物質としての所定量のメチレンブルー液を混入し、ボール10内に形成される溜水をメチレンブルー液の濃度が所定濃度である測定用溜水とする基準物質混入手段である基準物質混入装置32と、原尿の混入後における測定用溜水である尿混入測定用溜水の基準物質濃度の代用特性である吸光度を計測する尿混入後基準物質濃度計測手段である吸光度計36と、尿混入測定用溜水中に含まれる糖の濃度である溜水中成分濃度を計測する溜水中成分濃度計測手段である糖濃度計38と、便器本体2aのボール10内に貯留された測定用溜水及び尿混入測定用溜水(以下、測定用溜水等という。)をボール10から背面キャビネット3側へ吸引し、吸光度計36や糖濃度計38へ搬送するシリンジポンプ34と、を有している。なお、配管R2と基準物質混入装置32とは、測定用溜水供給手段を構成している。   As shown in FIG. 3, the urine component concentration measuring device 5 mixes a predetermined amount of methylene blue liquid as a reference substance into water passing through the pipe R <b> 2 that is a water supply means (see FIG. 2), and enters the ball 10. A reference substance mixing device 32 that is a reference substance mixing means that uses the formed water as a measurement water whose concentration of methylene blue liquid is a predetermined concentration, and urine contamination measurement that is a measurement water after mixing raw urine Absorbance meter 36, which is a post-urine-mixed reference material concentration measuring means for measuring absorbance, which is a substitute characteristic of the reference material concentration of the stored water, and the concentration of the components in the stored water, which is the concentration of sugar contained in the stored urine-mixed measured water The sugar concentration meter 38, which is a component concentration measuring means for the stored water, and the measurement water stored in the ball 10 of the toilet body 2a and the urine mixed measurement water (hereinafter referred to as measurement water) are used as balls. 10 to rear cabinet 3 side Aspirated, and a syringe pump 34 for conveying to the absorbance meter 36 and the sugar concentration meter 38, a. Note that the pipe R2 and the reference substance mixing device 32 constitute measuring water supply means.

これら基準物質混入装置32、吸光度計36、糖濃度計38、及びシリンジポンプ34は、原尿中に含まれる糖の濃度を測定するための測定部30を構成しており、この測定部30は、便器部2の背面に配設された背面キャビネット3内に収納配設されている。   The reference substance mixing device 32, the absorbance meter 36, the sugar concentration meter 38, and the syringe pump 34 constitute a measurement unit 30 for measuring the concentration of sugar contained in the raw urine. It is housed and disposed in a back cabinet 3 disposed on the back surface of the toilet unit 2.

また、尿成分濃度測定装置5は、原尿中に含まれる糖の濃度を算出する尿中成分濃度算出手段として機能する等、測定部30の動作を制御するための各種演算処理を実行するCPU42を備えた後述の制御部40と、測定用溜水への尿の混入を検知する尿混入検知手段として機能する後述の電極16c、16cと、電極16c、16cにより尿の混入が検知されてからの経過時間を経時する経過時間計測手段として機能する後述の時計部41と、を有している。   In addition, the urine component concentration measuring device 5 executes various arithmetic processes for controlling the operation of the measuring unit 30, such as functioning as a urine component concentration calculating unit that calculates the concentration of sugar contained in the raw urine. After detection of urine contamination by the control unit 40 described later, electrodes 16c and 16c described later functioning as urine contamination detection means for detecting urine contamination in the measurement reservoir, and electrodes 16c and 16c And a later-described clock unit 41 functioning as elapsed time measuring means for measuring the elapsed time.

基準物質混入手段の一例である基準物質混入装置32の構成について説明する。図5は、基準物質混入装置32の構成を示す模式的説明図である。図3及び図5に示すように、基準物質混入装置32は、配管R4を介して配管R2の中途位置、すなわち、水路切替弁24から供給された水がリム吐水ノズル12へ至るまでの位置に連通連結されている。この基準物質混入装置32は、内部に貯留した基準物質としてのメチレンブルー液に配管R4の始端を浸漬した略矩形箱形状の基準物質貯留タンク32aと、基準物質貯留タンク32a内のメチレンブルー液を配管R4の終端である配管R2の中途位置へ向って供給するためのポンプ32bと、配管R4におけるポンプ32bの出口側の所定位置に配設された逆止弁32cとを有している。逆止弁32cは、制御部40に電気的に接続されており、制御部40の制御信号に従って開閉動作する。   A configuration of the reference substance mixing device 32 as an example of the reference substance mixing unit will be described. FIG. 5 is a schematic explanatory view showing the configuration of the reference substance mixing device 32. As shown in FIGS. 3 and 5, the reference substance mixing device 32 is located at a midway position of the pipe R <b> 2 via the pipe R <b> 4, that is, a position until the water supplied from the water channel switching valve 24 reaches the rim water spouting nozzle 12. It is connected and connected. This reference substance mixing device 32 includes a substantially rectangular box-shaped reference substance storage tank 32a in which the start end of the pipe R4 is immersed in methylene blue liquid as a reference substance stored therein, and a methylene blue liquid in the reference substance storage tank 32a. And a check valve 32c disposed at a predetermined position on the outlet side of the pump 32b in the pipe R4. The check valve 32 c is electrically connected to the control unit 40 and opens and closes according to a control signal from the control unit 40.

かかる構成により、基準物質混入装置32は、ポンプ32bの作動により、基準物質貯留タンク32aに貯留した基準物質としてのメチレンブルー液を、配管R4を介して配管R2、すなわち、水路切替弁24からボール10へ至るまでの管路に、溜水が所定濃度(尿混入前基準物質濃度)の測定用溜水となるように供給し、当該メチレンブルー液をこの配管R2を通過する水に混入する。メチレンブルー液が混入された水は、リム吐水ノズル12からボール10内に吐水され(図2参照)、ボール10の内壁を上部から下部へ向って流下し、溜水として貯留される。   With this configuration, the reference substance mixing device 32 causes the methylene blue liquid stored as the reference substance stored in the reference substance storage tank 32a by the operation of the pump 32b to pass the ball 10 from the pipe R2, that is, the water channel switching valve 24 via the pipe R4. Is supplied so that the stored water becomes a measurement stored water having a predetermined concentration (reference substance concentration before mixing with urine), and the methylene blue liquid is mixed into the water passing through the pipe R2. The water mixed with the methylene blue liquid is discharged from the rim water discharge nozzle 12 into the ball 10 (see FIG. 2), flows down the inner wall of the ball 10 from the upper part to the lower part, and is stored as stored water.

このとき、混入されたメチレンブルー液はボール10内へ移送される途中で水流自身の攪拌作用によって水と均一に混合されるため、この貯留される溜水は、基準物質としてのメチレンブルー液が均一な所定の尿混入前基準物質濃度に混入された測定用溜水となっている。本実施形態の場合はボール10内への吐水口として一穴式のリム吐水ノズル12を使用しているため、ボール10内を流下するときに螺旋状の流れが発生することにより、この水流自身の攪拌作用はさらに強くなる。   At this time, since the mixed methylene blue liquid is uniformly mixed with water by the stirring action of the water flow itself while being transferred into the ball 10, the stored methylene blue liquid as a reference substance is uniform. This is a measurement reservoir mixed with a predetermined reference substance concentration before urine mixing. In the case of the present embodiment, since the single-rim type rim water discharge nozzle 12 is used as a water discharge port into the ball 10, this water flow itself is generated by generating a spiral flow when flowing down the ball 10. The stirring action becomes stronger.

このように、ボール10内に供給される水に基準物質としてのメチレンブルー液を混入することにより、洗浄水と基準物質とが均一に混合された測定用溜水がボール10内に貯留されるので、本実施形態のように尿成分濃度測定装置5内で測定用溜水を作成する場合でも、測定用溜水を攪拌する手段を基準物質濃度が均一な混合状態とするために別途設ける必要がなくなり装置全体の構成を簡略化することができる。また、配管R4に逆止弁32cが設けられていることにより、配管R2を流れる洗浄水やメチレンブルー液が基準物質貯留タンク32a内へ逆流することを確実に防止している。   Thus, by mixing the methylene blue liquid as the reference material into the water supplied into the ball 10, the measurement reservoir water in which the cleaning water and the reference material are uniformly mixed is stored in the ball 10. Even when the measurement urine water is created in the urine component concentration measuring device 5 as in the present embodiment, it is necessary to separately provide a means for stirring the measurement basin in order to obtain a uniform mixed state of the reference substance concentration. The configuration of the entire apparatus can be simplified. In addition, since the check valve 32c is provided in the pipe R4, the washing water and the methylene blue liquid flowing through the pipe R2 are reliably prevented from flowing back into the reference material storage tank 32a.

ここで、測定用溜水の基準物質の濃度は、尿の混入後における測定用溜水における基準物質の濃度変化を計測できる濃度であればいかなる濃度でも構わない。例えば、濃度変化の計測の際に濃度の代用として吸光度を計測するために一般に用いられる複光束式吸光度計においては、最も精度良く吸光度の計測が可能な濃度範囲が、吸光度で0.4〜1.4程度といわれており、この範囲に収まるように、測定用溜水に対する基準物質の濃度を規定するとよい。基準物質がメチレンブルーの場合は、約5〜17μmol/l程度となる。また、基準物質として、洗浄効果を持たせた物質を選択することで、便器の洗浄機能を持たせることもできる。   Here, the concentration of the reference substance in the measurement reservoir water may be any concentration as long as the concentration change of the reference substance in the measurement reservoir water after the urine is mixed can be measured. For example, in a double beam type absorptiometer generally used for measuring absorbance as a substitute for concentration when measuring a change in concentration, the concentration range in which absorbance can be measured with the highest accuracy is 0.4 to 1 in absorbance. It is said that the concentration of the reference substance with respect to the water for measurement is regulated so as to be within this range. When the reference material is methylene blue, the amount is about 5 to 17 μmol / l. Further, by selecting a substance having a cleaning effect as a reference substance, it is possible to provide a toilet cleaning function.

また、本実施形態では後述するように、測定に際しては、被験者の排尿前に測定用溜水の基準物質の濃度を実際に計測した計測値を本発明における尿混入前基準物質濃度とする構成のため、基準物質混入装置32の基準物質混入精度は尿混入前後の吸光度が吸光度計36で計測できる濃度範囲内となる濃度範囲内であれば良い。従って、このような形態では基準物質の混入量を決めるポンプ32bや溜水量を決める給水弁22など尿混入前基準物質濃度を制御する部材は比較的精度の高くないものでも使用可能となる。   Further, as will be described later in the present embodiment, when measuring, the measurement value obtained by actually measuring the concentration of the reference substance in the measurement water before urination is used as the reference substance concentration before urine mixing in the present invention. Therefore, the reference substance mixing accuracy of the reference substance mixing apparatus 32 may be within a concentration range in which the absorbance before and after urine mixing is within the concentration range that can be measured by the absorbance meter 36. Therefore, in such a configuration, members that control the concentration of the reference material before urine mixing, such as the pump 32b that determines the mixing amount of the reference material and the water supply valve 22 that determines the amount of stored water, can be used even if the accuracy is not high.

シリンジポンプ34の構成について説明する。図6は、シリンジポンプ34の構成を示す模式的説明図である。図3及び図6に示すように、シリンジポンプ34は、ゼット吐水ノズル16のゼット孔16a、吸光度計36、及び糖濃度計38に連通連結されている。このシリンジポンプ34は、略円筒状のシリンダ34aと、シリンダ34aの内周に挿入される略円柱状のピストン34bとを有している。このピストン34bは、シリンジ駆動モータ34cの回転運動を、リードスクリュウ機構34dによって直線運動に変換することによりシリンダ34aの内周面に沿って上下動するようになっている。   The configuration of the syringe pump 34 will be described. FIG. 6 is a schematic explanatory view showing the configuration of the syringe pump 34. As shown in FIGS. 3 and 6, the syringe pump 34 is communicatively connected to the jet hole 16 a of the jet water discharge nozzle 16, the absorbance meter 36, and the sugar concentration meter 38. The syringe pump 34 has a substantially cylindrical cylinder 34a and a substantially columnar piston 34b inserted into the inner periphery of the cylinder 34a. The piston 34b moves up and down along the inner peripheral surface of the cylinder 34a by converting the rotational movement of the syringe drive motor 34c into a linear movement by the lead screw mechanism 34d.

シリンジ駆動モータ34cは、制御部40に電気的に接続されており、制御部40は、このシリンジ駆動モータ34cを駆動することによりピストン34bの上下動を制御する。   The syringe drive motor 34c is electrically connected to the controller 40, and the controller 40 controls the vertical movement of the piston 34b by driving the syringe drive motor 34c.

シリンダ34aにおけるシリンジ駆動モータ34cと反対側の端部には、シリンダ34aよりも小径の略円筒状を形成したポート34eが突設されており、このポート34eは、電動ロータリバルブ35に連通されている。電動ロータリバルブ35は、複数のポート35a,35b,35cを備えており、複数のポート35a,35b,35cは、所定の配管を介して、それぞれ吸光度計36、ゼット吐水ノズル16のゼット孔16a、及び糖濃度計38に連通連結されている。   A port 34e having a substantially cylindrical shape smaller in diameter than the cylinder 34a protrudes from the end of the cylinder 34a opposite to the syringe drive motor 34c. The port 34e communicates with the electric rotary valve 35. Yes. The electric rotary valve 35 includes a plurality of ports 35a, 35b, and 35c. The plurality of ports 35a, 35b, and 35c are respectively connected to the absorptiometer 36 and the jet holes 16a of the jet water discharge nozzle 16 via predetermined pipes. And a sugar concentration meter 38.

この電動ロータリバルブ35の内部には、制御部40により制御される図示しないロータリバルブ駆動モータが設けられており、制御部40は、このロータリバルブ駆動モータを駆動することにより、複数のポート35a,35b,35cのうちいずれか一つを開放させた状態で、ピストン34bの上下動を実行することにより、シリンジポンプ34の吸引又は排出動作を実行する。   Inside the electric rotary valve 35, a rotary valve drive motor (not shown) controlled by the control unit 40 is provided. The control unit 40 drives the rotary valve drive motor, whereby a plurality of ports 35a, The suction or discharge operation of the syringe pump 34 is performed by performing the vertical movement of the piston 34b in a state where any one of 35b and 35c is opened.

ところで、本実施形態においては、ゼット吐水ノズル16のゼット孔16aとシリンジポンプ34とが連通されている(図2及び図4参照)。したがって、ピストン34bがシリンダ34a内を下方に動作すると、ゼット孔16aからボール10内の測定用溜水等が所定の量だけ採取され、この採取された測定用溜水等がポート35b及びポート34eを介してシリンダ34a内へ吸引、搬送される。   By the way, in this embodiment, the jet hole 16a of the jet water discharge nozzle 16 and the syringe pump 34 are connected (refer FIG.2 and FIG.4). Therefore, when the piston 34b moves downward in the cylinder 34a, a predetermined amount of the measurement water in the ball 10 is collected from the jet hole 16a, and the collected measurement water is used as the port 35b and the port 34e. Is sucked and conveyed into the cylinder 34a.

一方、ピストン34bがシリンダ34a内を上方に動作すると、シリンダ34a内へ吸引された測定用溜水等は、ポート34e、及び、ポート35a又はポート35cを介して吸光度計36や糖濃度計38へ排出、搬送されることとなる。   On the other hand, when the piston 34b moves upward in the cylinder 34a, the water for measurement and the like sucked into the cylinder 34a is transferred to the absorbance meter 36 and the sugar concentration meter 38 via the port 34e and the port 35a or 35c. It will be discharged and transported.

本実施形態では従って、上記したゼット吐水ノズル16のゼット孔16aは、自身の周りのボール10の底部10c近傍位置の尿混入測定用溜水の一部を吸光度計36及び糖濃度計38の計測対象とする計測サンプルとして採取するようになっている。   Accordingly, in the present embodiment, the zet hole 16a of the above-described zet water spouting nozzle 16 measures a part of the urinary mixed measurement reservoir water in the vicinity of the bottom 10c of the ball 10 around itself by the absorbance meter 36 and the sugar concentration meter 38. It is designed to be collected as a target measurement sample.

即ち、本実施形態では、便器洗浄水吐水口であるゼット孔16aを、尿混入測定用溜水の採取用の吸入口としている。ゼット孔16aから採取された尿混入測定用溜水の計測サンプルは、シリンジポンプ34を介して吸光度計36や糖濃度計38へ搬送される。   In other words, in the present embodiment, the jet hole 16a, which is a toilet flushing water discharge port, is used as an intake port for collecting urine contamination measurement reservoir water. The measurement sample of urine contamination measurement water collected from the zet hole 16 a is conveyed to the absorbance meter 36 and the sugar concentration meter 38 via the syringe pump 34.

即ち、ゼット吐水ノズル16とシリンジポンプ34は、本発明における計測サンプル採取手段として機能し、また、便器洗浄水吐水口であるゼット孔16aは、尿混入測定用溜水の一部を計測対象とする計測サンプルとして採取する時の吸入口として機能するため、本発明におけるボール底部に設けた開口部に相当する。   That is, the jet water discharge nozzle 16 and the syringe pump 34 function as a measurement sample collecting means in the present invention, and the jet hole 16a which is a toilet flushing water discharge port uses a part of the urine contamination measurement water storage as a measurement target. In order to function as an inlet when the measurement sample is collected, it corresponds to the opening provided at the bottom of the ball in the present invention.

したがって、糖濃度計38における計測に適した濃度の計測対象物質を含むことが多いボール10の底部10c近傍の尿混入測定用溜水をゼット孔16aを介して確実に採取することができる。もちろん、ゼット吐水ノズル16のゼット孔16aに代えて、ボール10の底部10cに別途開口部(図示せず)を設け、この開口部を、尿混入測定用溜水の採取用の吸入口としてもよい。   Therefore, it is possible to reliably collect the urine-mixing measurement reservoir water in the vicinity of the bottom 10c of the ball 10 that often contains a measurement target substance having a concentration suitable for measurement by the sugar concentration meter 38 through the jet hole 16a. Of course, instead of the jet hole 16a of the jet water discharge nozzle 16, a separate opening (not shown) is provided in the bottom 10c of the ball 10, and this opening may be used as an intake for collecting urine mixed measurement water. Good.

このように、計測サンプル採取手段の計測サンプルを採取するための開口部として既存のゼット孔16aを利用するため、別途にサンプル採取用の開口部を設ける必要もなく装置構成を簡略化することができる。   As described above, since the existing jet hole 16a is used as the opening for collecting the measurement sample of the measurement sample collecting means, it is not necessary to separately provide an opening for collecting the sample, thereby simplifying the apparatus configuration. it can.

また、ゼット吐水ノズル16の内周面であってゼット孔16a(図4参照)の近傍には、一対の電極16c,16cが先端を互いに対向させた状態で突設されており、この一対の電極16c,16cは、制御部40に電気的に接続され、制御部40から両電極16c,16c間に微弱な電流を流すように設定されている。ボール10内の測定用溜水に原尿が混入し、底部に設置されたこの両電極16c,16c間に到達することによって、到達した原尿を導体として一対の電極16c,16c間の抵抗値が変化すると、制御部40は、この抵抗値の変化による両電極16c,16c間の電位の変化を検知して、ゼット吐水ノズル16近傍、即ち本発明におけるボール10の底部近傍の測定用溜水に原尿が混入し尿混入測定用溜水となったことを検知する。したがって、電極16c,16cは、本発明における尿混入検知手段として機能する。この制御部40による原尿の検知に基いて、シリンジポンプ34の吸引又は排出動作のタイミングが制御されることになる。このように、尿混入検知手段を既存のゼット吐水ノズル16に設けることにより、別途尿検知センサ等を設ける必要もなく装置構成を簡略化することができる。   Further, a pair of electrodes 16c and 16c are provided on the inner peripheral surface of the jet water discharge nozzle 16 and in the vicinity of the jet hole 16a (see FIG. 4) with the tips facing each other. The electrodes 16c and 16c are electrically connected to the control unit 40, and are set so that a weak current flows from the control unit 40 between the electrodes 16c and 16c. The raw urine is mixed into the measurement water stored in the ball 10 and reaches between the electrodes 16c and 16c installed at the bottom, whereby the resistance value between the pair of electrodes 16c and 16c using the reached raw urine as a conductor. Changes, the control unit 40 detects a change in the potential between the electrodes 16c and 16c due to the change in resistance value, and the measurement reservoir in the vicinity of the jet water discharge nozzle 16, that is, in the vicinity of the bottom of the ball 10 in the present invention. It is detected that the raw urine is mixed into the urine mixture measurement water. Therefore, the electrodes 16c and 16c function as urine contamination detection means in the present invention. Based on the detection of the raw urine by the control unit 40, the timing of the suction or discharge operation of the syringe pump 34 is controlled. Thus, by providing the urine mixing detection means in the existing jet water discharge nozzle 16, it is not necessary to separately provide a urine detection sensor or the like, and the apparatus configuration can be simplified.

次に、本発明における尿混入後基準物質濃度計測手段の一例として本実施形態で使用される吸光度計36の構成について説明する。図7は、吸光度計36の構成を示す模式的説明図である。吸光度計36は、シリンジポンプ34から排出、搬送された測定用溜水等の吸光度を計測する。ここで、吸光度とは、特定の波長の光に対する物質の吸収強度を示す尺度である。図3及び図7に示すように、吸光度計36は、シリンジポンプ34に接続されシリンジポンプ34から排出・搬送される測定用溜水等を収容するサンプルセル36aと、原尿やメチレンブルーの有する吸光波長を持つ略平行状の光をサンプルセル36a内の測定用溜水等に対して照射光F1として照射する光源36bと、サンプルセル36aを挟んで光源36bと対向する位置に配設されサンプルセル36a内の測定用溜水等を透過した透過光F2を受光する光センサ36cとを有している。   Next, the configuration of the absorptiometer 36 used in the present embodiment will be described as an example of the post-urine reference substance concentration measuring means in the present invention. FIG. 7 is a schematic explanatory view showing the configuration of the absorbance meter 36. The absorptiometer 36 measures the absorbance of the measurement water stored and discharged from the syringe pump 34. Here, the absorbance is a scale indicating the absorption intensity of a substance with respect to light of a specific wavelength. As shown in FIGS. 3 and 7, the absorptiometer 36 includes a sample cell 36a that is connected to the syringe pump 34 and stores measurement water discharged and conveyed from the syringe pump 34, and the absorbance of the raw urine and methylene blue. A light source 36b that irradiates the measurement light in the sample cell 36a with a substantially parallel light as the irradiation light F1, and a sample cell disposed at a position facing the light source 36b across the sample cell 36a. And an optical sensor 36c that receives the transmitted light F2 that has passed through the measurement water stored in 36a.

光源36bとしては、基準物質の吸光度変化を計測できる波長帯の光を発する光源であればよく、例えば、Arレーザ等のガスレーザや、半導体レーザ等、ハロゲンランプ、LED等がある。サンプルセル36aは、ガラス等の透光性材料から形成されている。光源36bは、制御部40に電気的に接続されており、制御部40は、光源36bの点灯及び消灯を制御する。光センサ36cもまた制御部40に電気的に接続されており、制御部40は、光センサ36cの受光信号を受信し照射光F1の強度と照射光F1よりも減衰された透過光F2の強度とに基いて測定用溜水等の吸光度を算出するのである。   The light source 36b may be any light source that emits light in a wavelength band that can measure the change in absorbance of the reference substance. Examples of the light source 36b include a gas laser such as an Ar laser, a semiconductor laser, a halogen lamp, and an LED. The sample cell 36a is formed from a translucent material such as glass. The light source 36b is electrically connected to the control unit 40, and the control unit 40 controls turning on and off of the light source 36b. The optical sensor 36c is also electrically connected to the control unit 40. The control unit 40 receives the light reception signal of the optical sensor 36c, and the intensity of the irradiation light F1 and the intensity of the transmitted light F2 attenuated from the irradiation light F1. Based on the above, the absorbance of the measurement water is calculated.

さらに、この制御部40においては、吸光度計36により計測された測定用溜水等の吸光度に基いて原尿の希釈率が算出される。吸光度計36による測定用溜水等の吸光度の計測について、図8を参照して具体的に説明する。図8は、吸光度計36により計測された測定用溜水等の吸光度と波長との関係の一例を示す吸光度スペクトル線図である。図8において、破線で示す1つの吸光度スペクトルは、測定用溜水の吸光度スペクトルであり、実線で示す2つの吸光度スペクトルは、尿混入測定用溜水の吸光度スペクトルである。図8に示すように、実線で示す尿混入測定用溜水の吸光度スペクトルにおいては、原尿の吸光度がピーク値を示す波長帯X1と、基準物質であるメチレンブルーの吸光度がピーク値を示す波長帯X2とは異なる波長帯に存在しており、原尿とメチレンブルーとが明確に区別される。   Further, in the control unit 40, the dilution rate of the raw urine is calculated based on the absorbance of the measurement water stored in the absorbance meter 36. The measurement of the absorbance of measurement water or the like by the absorbance meter 36 will be specifically described with reference to FIG. FIG. 8 is an absorbance spectrum diagram showing an example of the relationship between the absorbance of the measurement water stored in the absorbance meter 36 and the wavelength. In FIG. 8, one absorbance spectrum indicated by a broken line is an absorbance spectrum of measurement reservoir water, and two absorbance spectra indicated by a solid line are absorbance spectra of urine-mixed measurement reservoir water. As shown in FIG. 8, in the absorbance spectrum of the urine contamination measurement water indicated by the solid line, the wavelength band X1 in which the absorbance of the raw urine exhibits a peak value and the wavelength band in which the absorbance of the reference substance methylene blue exhibits the peak value. It exists in a wavelength band different from X2, and the raw urine and methylene blue are clearly distinguished.

このように、尿混入測定用溜水中で原尿とメチレンブルーとが波長帯により明確に区別されるので、測定用溜水に原尿が混入した場合であっても、吸光度計36により測定用溜水の吸光度と尿混入測定用溜水の吸光度とを計測し両吸光度を対比することで、尿混入前後における基準物質の吸光度の変化が原尿の吸光度とは独立して計測されるのである。すなわち、図8に示すように、測定用溜水中に含まれるメチレンブルーの吸光度S0は、原尿が混入されることにより、尿混入測定用溜水中に含まれるメチレンブルーの吸光度S1まで低下している。この吸光度の変化が吸光度計36により計測される。   In this way, since the raw urine and methylene blue are clearly distinguished by the wavelength band in the urine-mixed measurement water, even if the raw urine is mixed into the measurement water, the absorptiometer 36 uses the measurement water. By measuring the absorbance of water and the absorbance of urine contamination measurement water and comparing both absorbances, the change in absorbance of the reference substance before and after urine contamination is measured independently of the absorbance of raw urine. That is, as shown in FIG. 8, the absorbance S0 of methylene blue contained in the measurement reservoir is lowered to the absorbance S1 of methylene blue contained in the urine contamination measurement reservoir due to the mixing of the raw urine. This change in absorbance is measured by an absorptiometer 36.

このように本実施形態では、本発明における尿混入後濃度計測手段として、濃度の代用特性の一例である吸光度を計測する吸光度計を採用しているが、ここでこの吸光度の計測によって原尿に含まれている特定物質濃度を求める原理について説明する。   As described above, in this embodiment, as the post-urine contamination concentration measuring means in the present invention, an absorptiometer that measures the absorbance, which is an example of the concentration substitute characteristic, is employed. The principle for obtaining the concentration of the specific substance contained will be described.

本実施形態で採用している吸光度計測は従来用いられている濃度計測方法の一つであり、その原理は以下のとおりである。   The absorbance measurement employed in the present embodiment is one of the concentration measurement methods used conventionally, and the principle thereof is as follows.

即ち、特定物質を混入した溶液の特定物質濃度Qは、溶液の吸光度S、特定物質の吸光係数α、光路長L、とすると以下の[式9]で表される。   That is, the specific substance concentration Q of the solution mixed with the specific substance is expressed by the following [Equation 9] where the absorbance S of the solution, the extinction coefficient α of the specific substance, and the optical path length L are expressed.

Q=αS/L ・・・(式9)
ここで、吸光係数αは特定物質によって決まり、光路長Lも計測装置の光路構成で決まるため、溶液の吸光度Sと特定物質濃度Qとは正比例の関係となる。即ち、溶液の物質濃度Qと溶液の吸光度Sとの間には前述した[式8]の関係が成立することになる。従って、前述したとおり、吸光度Sは本発明における溶液の特定物質濃度Qの代用特性として使用できることが判る。
Q = αS / L (Formula 9)
Here, since the extinction coefficient α is determined by the specific substance and the optical path length L is also determined by the optical path configuration of the measuring device, the absorbance S of the solution and the specific substance concentration Q are in a directly proportional relationship. That is, the above-described relationship of [Equation 8] is established between the substance concentration Q of the solution and the absorbance S of the solution. Therefore, as described above, it can be seen that the absorbance S can be used as a substitute characteristic of the specific substance concentration Q of the solution in the present invention.

そこで、本実施形態では、前述した測定原理説明における測定用溶液を測定用溜水、基準物質をメチレンブルー液、特定物質を糖(尿糖)として、原尿混入前後の測定用溜水中のメチレンブルー液の吸光度を濃度の代用特性として計測し、この原尿混入前後の吸光度から尿(原尿)の糖濃度を算出している。   Therefore, in the present embodiment, the measurement solution in the above description of the measurement principle is the measurement water, the reference material is the methylene blue solution, and the specific substance is sugar (urine sugar), and the methylene blue solution in the measurement water before and after mixing in the raw urine. As a substitute for concentration, the sugar concentration of urine (original urine) is calculated from the absorbance before and after mixing with the original urine.

すなわち、このときの尿混入によるメチレンブルーの吸光度変化から算出される測定用溜水の希釈率Dsは、尿混入前の測定用溜水中に含まれるメチレンブルー液の吸光度をS0とし、尿混入後の測定用溜水である尿混入測定用溜水中に含まれるメチレンブルー液の吸光度をS1とすれば、[式6]に[式9]を適用して以下の[式10]で表される。   That is, the dilution rate Ds of the measurement water stored in the methylene blue due to the urine contamination at this time is the measurement after the urine contamination with the absorbance of the methylene blue solution contained in the measurement water before the urine contamination as S0. Assuming that the absorbance of the methylene blue liquid contained in the urine contamination measurement reservoir water, which is the reservoir water, is S1, the following [Expression 10] is applied by applying [Expression 9] to [Expression 6].

Ds=S1/S0 ・・・(式10)
この測定用溜水の希釈率Dsから、原尿の希釈率Dnは、これらの値が同じ位置同士の場合であれば前述した[式4]が適用できるため、以下の[式11]で表される。
Ds = S1 / S0 (Formula 10)
Since the dilution rate Dn of the raw urine from the dilution rate Ds of the measurement reservoir water can be expressed by the following [Equation 11] because the above-mentioned [Equation 4] can be applied if these values are at the same position. Is done.

Dn=1−S1/S0 ・・・(式11)
従って、この原尿の希釈率Dnを前述の[式3]における被検査溶液の希釈率Dbに当てはめることによって、求める原尿中の特定成分の濃度は、以下の[式12]における測定物質濃度Qとして求めることができることとなる。
Dn = 1−S1 / S0 (Formula 11)
Therefore, by applying the dilution rate Dn of the raw urine to the dilution rate Db of the solution to be tested in the above-mentioned [Equation 3], the concentration of the specific component in the raw urine to be obtained is the measured substance concentration in the following [Equation 12]. so that the can be calculated as Q 0.

=Q/(1−S1/S0) ・・・(式12)
即ち、測定用溜水中に含まれるメチレンブルー液の吸光度S0と、尿混入測定用溜水中の任意の位置における特定成分の濃度Qと、メチレンブルーの吸光度S1とから、[式12]を用いて測定の目的とする原尿の特定成分の濃度である尿中成分濃度Qが算出されるのである。なお、[式12]は、後述する制御部40のROM44(図3)に予め記憶されている。
Q 0 = Q 1 / (1-S1 / S0) (Formula 12)
That is, a measurement reservoir absorbance S0 methylene blue solution contained in the water, the concentration to Q 1 specific component at an arbitrary position of the reservoir water urine contamination measurement, the methylene blue absorbance S1 Prefecture, measured using [Expression 12] The urinary component concentration Q 0, which is the concentration of the specific component of the original urine, is calculated. [Equation 12] is stored in advance in a ROM 44 (FIG. 3) of the control unit 40 described later.

なお、本実施形態では、原尿の糖濃度を算出をするために、吸光度計36を用いて吸光度を計測したが、吸光度と同じように前述の[式8]が成立する蛍光強度を用いることとして、吸光度計36の代わりに蛍光強度計(図示せず)を用いて測定用溜水等の蛍光強度を計測する構成としても良い。従って、蛍光強度を濃度の代用特性として用いる場合についてここで説明する。なお、蛍光強度計の構成については、既存の構成を採用しているのでここでは説明を省略する。   In this embodiment, in order to calculate the sugar concentration of the raw urine, the absorbance was measured using the absorptiometer 36, but the fluorescence intensity that satisfies the above-mentioned [Equation 8] is used in the same manner as the absorbance. As an alternative, a fluorescence intensity meter (not shown) may be used instead of the absorbance meter 36 to measure the fluorescence intensity of the measurement water. Therefore, the case where the fluorescence intensity is used as a substitute characteristic of concentration will be described here. In addition, about the structure of a fluorescence intensity meter, since the existing structure is employ | adopted, description is abbreviate | omitted here.

図9は、蛍光強度計により計測された尿混入測定用溜水の蛍光強度と波長との関係の一例を示す蛍光強度スペクトル線図である。図9に示す2つの等高線は、縦軸の励起波長を有する照射光を照射して横軸の蛍光波長を有する透過光を計測した場合の、尿混入測定用溜水中に含まれる原尿の蛍光強度と基準物質の蛍光強度とをそれぞれ示しており、この等高線の高さの高低が蛍光強度の差を示している。ここでの基準物質としては、原尿とは異なった波長帯に励起波長及び蛍光波長を持ち、基準物質の蛍光強度と原尿の蛍光強度とをそれぞれ識別して計測可能な物質であればいかなる物質でも良く、例えば、励起波長650nm、蛍光波長670nmである蛍光試薬のCy5を用いることができる。   FIG. 9 is a fluorescence intensity spectrum diagram showing an example of the relationship between the fluorescence intensity and the wavelength of the urine contamination measurement reservoir water measured by the fluorescence intensity meter. The two contour lines shown in FIG. 9 indicate the fluorescence of the original urine contained in the urinary mixed measurement reservoir when the transmitted light having the fluorescence wavelength on the horizontal axis is measured by irradiating the irradiation light having the vertical excitation wavelength. The intensity and the fluorescence intensity of the reference substance are respectively shown, and the height of the contour line indicates the difference in fluorescence intensity. As the reference substance here, any substance can be used as long as it has an excitation wavelength and a fluorescence wavelength in a wavelength band different from that of raw urine, and can distinguish and measure the fluorescence intensity of the reference substance and the fluorescence intensity of the raw urine. For example, a fluorescent reagent Cy5 having an excitation wavelength of 650 nm and a fluorescence wavelength of 670 nm can be used.

図9に示すように、尿混入測定用溜水の蛍光強度を計測する場合、Cy5の等高線の高低の変化、すなわち、基準物質であるCy5の蛍光強度の変化は、原尿の蛍光強度とは独立して計測出来る。そして、蛍光強度はCy5の濃度と一定の関係があり、前述の[式8]が成立する。したがって、測定用溜水中に含まれるCy5の蛍光強度と、尿混入測定用溜水中に含まれるCy5の蛍光強度とを蛍光強度計により計測することで、前述した[式11]を用いて原尿の希釈率が算出出来るため、[式12]を用いて測定物質濃度Qを求めることが出来る。 As shown in FIG. 9, when measuring the fluorescence intensity of the urine contamination measurement reservoir water, the change in the contour line of Cy5, that is, the change in the fluorescence intensity of Cy5, which is the reference substance, is the fluorescence intensity of the original urine. It can be measured independently. The fluorescence intensity has a certain relationship with the concentration of Cy5, and the above-described [Expression 8] is established. Therefore, the fluorescence intensity of Cy5 contained in the measurement reservoir and the fluorescence intensity of Cy5 contained in the urine contamination measurement reservoir are measured by a fluorescence intensity meter. Therefore, the measured substance concentration Q 0 can be obtained using [Equation 12].

なお、[式11]におけるS0及びS1に代入する数値、即ち、測定用溜水等の基準物質濃度の代用特性として使用可能な物性値は、以上で説明した吸光度や蛍光強度に限られず、測定用溜水中の基準物質と原尿とを識別することが可能で、且つ、濃度との関係が前述した[式8]を満足するような物性値であれば良い。その物性値としては、基準物質と原尿との計測値に顕著な差異がある場合には、例えば、導電率、比重、浸透圧、屈折率等が適用可能であり、それらの値を計測することによって[式12]から特定成分濃度が算出できる。   Note that the numerical values to be substituted for S0 and S1 in [Equation 11], that is, the physical property values that can be used as a substitute characteristic of the reference substance concentration such as measurement water are not limited to the absorbance and fluorescence intensity described above, but are measured. Any physical property value can be used as long as the reference substance and raw urine in the stored water can be discriminated and the relationship with the concentration satisfies the above-described [Equation 8]. As the physical property values, for example, when there is a marked difference between the measured values of the reference substance and the raw urine, for example, conductivity, specific gravity, osmotic pressure, refractive index, etc. can be applied, and those values are measured. Thus, the specific component concentration can be calculated from [Equation 12].

本実施形態では、溜水中成分濃度計測手段の一例である糖濃度計38は、シリンジポンプ34に接続されシリンジポンプ34から排出・搬送される尿混入測定用溜水の糖濃度、すなわち、グルコース濃度を計測する。糖濃度計38は、プローブとして原尿中の多くの成分の中からグルコースを特異的に酸化する酵素であるグルコースオキシターゼ(GOD)を用い、トランデューサとして過酸化水素水を用いて、既存の検出原理にてグルコース濃度を計測する。糖濃度計38におけるグルコース濃度の検出原理については既知のものを用いているのでここでは説明を省略する。糖濃度計38は、制御部40に電気的に接続されており、制御部40は、糖濃度計38により送信された出力信号を尿混入測定用溜水の糖濃度として受信する。   In the present embodiment, the sugar concentration meter 38, which is an example of the component concentration measuring unit for the stored water, is connected to the syringe pump 34 and is discharged / conveyed from the syringe pump 34. Measure. The sugar concentration meter 38 uses glucose oxidase (GOD), which is an enzyme that specifically oxidizes glucose from among many components in raw urine as a probe, and hydrogen peroxide water as a transducer, and detects existing detection. The glucose concentration is measured in principle. Since the known glucose concentration detection principle in the sugar concentration meter 38 is used, the description thereof is omitted here. The sugar concentration meter 38 is electrically connected to the control unit 40, and the control unit 40 receives the output signal transmitted by the sugar concentration meter 38 as the sugar concentration of the urine contamination measurement reservoir water.

制御部40は、図3に示すように、尿成分濃度測定装置5全体の制御を行うものであり、各種の演算や制御を行う中央処理ユニットとしてのCPU42と、各種制御プログラム等を記憶するROM44と、CPU42の作業用メモリ等として使用されるRAM46とを有している。   As shown in FIG. 3, the control unit 40 controls the urine component concentration measuring apparatus 5 as a whole, and includes a CPU 42 as a central processing unit that performs various calculations and controls, and a ROM 44 that stores various control programs and the like. And a RAM 46 used as a working memory for the CPU 42.

CPU42には、ROM44、RAM46等が接続されており、このROM44に記憶された各種のプログラムに従って、各種の処理を実行する機能を有する。ROM44には、CPU42により尿成分濃度測定装置5の動作を制御するためのプログラム等が記憶されている。RAM46は、CPU42の一時記憶領域として各種のデータを記憶する機能を有する。   The CPU 42 is connected to a ROM 44, a RAM 46, and the like, and has a function of executing various processes in accordance with various programs stored in the ROM 44. The ROM 44 stores a program for controlling the operation of the urine component concentration measuring device 5 by the CPU 42. The RAM 46 has a function of storing various data as a temporary storage area of the CPU 42.

また、制御部40は、測定制御回路50と、通信手段52とを有している。   The control unit 40 includes a measurement control circuit 50 and a communication unit 52.

測定制御回路50は、測定部30に接続されており、CPU42から送信される制御信号に従って、基準物質混入装置32による基準物質の洗浄水への混入、シリンジポンプ34による測定用溜水等の吸引・移送、吸光度計36及び糖濃度計38による計測等、測定部30の各種の動作を制御する。   The measurement control circuit 50 is connected to the measurement unit 30, and in accordance with a control signal transmitted from the CPU 42, the reference substance mixing device 32 mixes the reference substance into the cleaning water, and the syringe pump 34 sucks the measurement reservoir water and the like. Control various operations of the measurement unit 30 such as transfer, measurement by the absorbance meter 36 and sugar concentration meter 38, and the like.

通信手段52は、操作・表示部4とCPU42との間で操作情報や測定結果等の各種情報を送受信する。   The communication means 52 transmits and receives various information such as operation information and measurement results between the operation / display unit 4 and the CPU 42.

また、制御部40は、便器部2の便器制御部21と電気的に接続されており、便器部2の汚物洗浄等の通常便器としての各種動作や尿成分測定装置としての各種のデータの送受信が可能となっている。例えば、便器部2の汚物洗浄処理が実行されると、制御部40は、その旨の信号を便器制御部21から受信する。   Further, the control unit 40 is electrically connected to the toilet control unit 21 of the toilet unit 2, and performs various operations as a normal toilet such as filth washing of the toilet unit 2 and transmission / reception of various data as a urine component measurement device. Is possible. For example, when the waste cleaning process of the toilet unit 2 is executed, the control unit 40 receives a signal to that effect from the toilet control unit 21.

このように構成された制御部40において、CPU42は、ROM44に記憶された尿中成分濃度算出プログラム等の各種プログラムを読み出して実行することにより、糖濃度計38により計測された溜水中成分濃度とに基いて原尿中に含まれる糖の濃度を算出する尿中成分濃度算出手段等として機能する。   In the control unit 40 configured as described above, the CPU 42 reads out and executes various programs such as the urinary component concentration calculation program stored in the ROM 44, thereby determining the concentration of the components in the stored water measured by the sugar concentration meter 38. Functions as a urine component concentration calculating means for calculating the concentration of sugar contained in the raw urine based on the above.

ここで、尿中成分濃度算出手段による原尿中に含まれる糖(尿糖)の濃度の算出について説明する。   Here, calculation of the concentration of sugar (urine sugar) contained in the raw urine by the urine component concentration calculating means will be described.

尿糖濃度を前述した[式12]における測定物質濃度として[式12]を適用して、尿混入測定用溜水中の任意の位置において糖濃度計38により計測された溜水中成分濃度である尿糖濃度U1を測定物質濃度Qとすると、原尿中に含まれる尿糖の濃度U0は、以下の[式13]で表される。 By applying [Equation 12] as the measured substance concentration in [Equation 12] described above, the urine that is the concentration of the component in the stored water measured by the sugar concentration meter 38 at an arbitrary position in the urine contamination measurement stored water. When the sugar concentration U1 and analyte concentration Q 1, concentration U0 of urine sugar contained in Although primary urine is represented by the following [equation 13].

U0=U1/(1−S1/S0) ・・・(式13)
即ち、測定用溜水の尿混入前後の吸光度S0及びS1と、糖濃度計38により計測された尿糖濃度U1とを[式13]に代入することにより、尿中成分濃度算出手段は、原尿中に含まれる糖の濃度U0を算出するのである。なお、[式13]は、ROM44に予め記憶されている。
U0 = U1 / (1-S1 / S0) (Formula 13)
That is, by substituting the absorbances S0 and S1 before and after urine contamination of the measurement water and the urine sugar concentration U1 measured by the sugar concentration meter 38 into [Equation 13], the urine component concentration calculating means The sugar concentration U0 contained in the urine is calculated. [Equation 13] is stored in the ROM 44 in advance.

ところで、本実施形態においては、例えば、尿混入測定用溜水を攪拌するといった特別な構成を備えていない。従って、ボールに貯留する尿混入測定用溜水中の位置によっては、溜水中成分濃度である糖濃度が、溜水中成分濃度計測手段として用いる糖濃度計の計測可能範囲の下限値に対して下回ることも考えられる。   By the way, in this embodiment, for example, it does not have a special configuration that stirs urine contamination measurement water. Therefore, depending on the position of the urine contamination measurement water stored in the ball, the sugar concentration, which is the concentration of the components in the stored water, may be lower than the lower limit of the measurable range of the sugar concentration meter used as the concentration measurement component of the stored water. Is also possible.

即ち、本実施形態においては、この糖濃度は所定位置での測定用溜水と原尿との自然な混合状態で決まるため、前述したとおり被験者の排尿状態(排尿位置や排尿量等)によっても変化するが、一回の測定においても、被験者が排尿した後も時間の経過とともに変化する。従って、計測のタイミングによってはこの計測可能な範囲の下限を下回る場合があることが想定された。   That is, in this embodiment, the sugar concentration is determined by the natural mixing state of the measurement water and the raw urine at a predetermined position. Therefore, as described above, the sugar concentration also depends on the urination state of the subject (such as the urination position and the amount of urination). Although it changes, even in a single measurement, it changes over time even after the subject urinates. Therefore, depending on the timing of measurement, it was assumed that the lower limit of the measurable range may be exceeded.

そのため、本発明者たちは本実施形態における尿混入測定用溜水中の糖濃度を調べるために各種の確認試験を行なった。以下に述べるのはその確認試験の代表的な例である。   Therefore, the present inventors performed various confirmation tests in order to investigate the sugar concentration in the urine contamination measurement water in this embodiment. The following are typical examples of the confirmation test.

図10は、尿を模擬するため比重等の特性が尿と同じとなるように調製した所定濃度のNaCl溶液をボール10内に貯留される溜水に所定位置から投入(混入)した場合における、ボール内の溜水中のNaCl濃度の時間的変化を計測した結果を、溜水中の位置別に示している。尚、ここでは本発明における溜水中成分濃度を計測する所定位置であるボール底部近傍位置としてのボール10の底部10cと上部10bとを代表的な計測位置とし、その位置でのNaCl濃度の時間的推移を模式的に表示している。   FIG. 10 shows a case where a NaCl solution having a predetermined concentration prepared so that characteristics such as specific gravity are the same as that of urine in order to simulate urine is poured (mixed) from a predetermined position into the stored water stored in the ball 10. The result of measuring the temporal change of the NaCl concentration in the stored water in the ball is shown for each position in the stored water. Here, the bottom 10c and top 10b of the ball 10 as positions near the bottom of the ball, which is a predetermined position for measuring the concentration of the components in the stored water in the present invention, are representative measurement positions, and the NaCl concentration at that position is temporally measured. The transition is schematically shown.

すなわち、図10に示すように、NaCl溶液を溜水に投入(t)後、ボール10の底部10c及び上部10bのどちらの計測箇所においても、NaCl溶液の到達に伴って溜水中のNaCl濃度は急激に上昇しピーク値(Db、Dc)を迎えた後、NaCl濃度は、それぞれ一定値で安定した状態になる。この場合、底部10cのNaCl濃度上昇開始時刻(t)は上部10bのNaCl濃度上昇開始時刻より遅れているが、これは、溜水中のNaCl溶液がボール10の上部10bから底部10cへ移動するのに要する時間差があるためと考えられる。 That is, as shown in FIG. 10, after the NaCl solution is poured into the stored water (t 0 ), the NaCl concentration in the stored water is reached with the arrival of the NaCl solution at both the bottom 10 c and the top 10 b of the ball 10. Rises rapidly and reaches peak values (Db, Dc), and then the NaCl concentration becomes stable at a constant value. In this case, the NaCl concentration increase start time (t 1 ) of the bottom 10c is delayed from the NaCl concentration increase start time of the upper portion 10b. This is because the NaCl solution in the stored water moves from the upper portion 10b of the ball 10 to the bottom portion 10c. This is thought to be due to the time difference required for this.

このとき、実線で示すボール10の底部10cの近傍におけるNaCl濃度変化のピーク値(Dc)は、破線で示すボール10の上部10bにおけるNaCl濃度変化のピーク値(Db)よりも大きい。また、ピーク後の安定濃度も底部10cの近傍の方が大きい。   At this time, the peak value (Dc) of the NaCl concentration change in the vicinity of the bottom portion 10c of the ball 10 indicated by the solid line is larger than the peak value (Db) of the NaCl concentration change in the upper portion 10b of the ball 10 indicated by the broken line. Also, the stable concentration after the peak is larger near the bottom 10c.

つまり、ボール10内に貯留される尿混入測定用溜水中では、ボール10の底部10c近傍ほど、相対的に含まれる尿量が多いことを意味する。これは、尿の比重が溜水の比重よりも大きく、尿混入測定用溜水中で尿が流下してボール10の底部10c近傍に多く滞留するからである。   In other words, in the urine contamination measurement stored water stored in the ball 10, it means that the amount of urine contained relatively increases in the vicinity of the bottom 10 c of the ball 10. This is because the specific gravity of the urine is larger than the specific gravity of the stored water, and the urine flows down in the stored urine mixed measurement water and stays in the vicinity of the bottom 10 c of the ball 10.

そこで、特に、本実施形態では、尿混入後物性値計測手段としての吸光度計36、及び溜水中成分濃度計測手段としての濃度計38は、ボール10の底部10c近傍の尿混入測定用溜水をそれぞれ計測対象としている。   Therefore, in particular, in the present embodiment, the absorbance meter 36 as the physical property value measuring unit after urine mixing and the concentration meter 38 as the component concentration measuring unit for the stored water are used to store the urinary mixing measurement water near the bottom 10c of the ball 10. Each is a measurement target.

これにより、排泄される尿の溜水に対する投入位置や排泄される尿量により尿混入測定用溜水における原尿の混合が不均一となる場合であっても、溜水よりも比重の大きい原尿が滞留し易く、吸光度計36及び濃度計38における計測に必要な量の原尿を含むことが多いボール10の底部10c近傍の尿混入測定用溜水を計測対象とすることができる。   As a result, even if the mixing of the raw urine in the urine-mixed measurement urine is uneven due to the position of the urine to be collected and the amount of urine excreted, the raw material having a higher specific gravity than the urine The measurement target can be urine contamination measuring water in the vicinity of the bottom 10c of the ball 10, which is likely to retain urine and often contains the amount of raw urine necessary for measurement by the absorbance meter 36 and the concentration meter 38.

さらに、図10において、本実施形態で糖濃度計38による計測位置としているボール10の底部近傍位置においても、模式的にNaCl濃度(Dl)で示されている糖濃度計38の計測範囲の下限濃度に満たない濃度となる時刻が存在すること、即ち、計測タイミングによっては、尿成分濃度計測手段である糖濃度計38の一般的な計測精度保障範囲の低濃度側の限界以下の糖濃度となる場合が生じる可能性があることが判った。   Further, in FIG. 10, the lower limit of the measurement range of the sugar concentration meter 38 schematically indicated by the NaCl concentration (Dl) also in the vicinity of the bottom of the ball 10 as the measurement position by the sugar concentration meter 38 in the present embodiment. There is a time when the concentration becomes less than the concentration, that is, depending on the measurement timing, the sugar concentration below the lower limit of the general measurement accuracy guarantee range of the sugar concentration meter 38 which is a urine component concentration measuring means It has been found that this may occur.

言い換えれば、本実施形態のように固定された所定位置において糖濃度計38による適切な糖濃度計測を行なうためには、所定位置の選択だけでは不十分であり、適切な計測タイミング(時期)を設定することが必要なことが判った。そこで、さらに各種の追加試験を行ったところ、測定毎にこの所定位置の糖濃度変化は被験者の放尿位置や排尿量のバラツキにより無視できない程度に変動することが判った。   In other words, in order to perform an appropriate sugar concentration measurement by the sugar concentration meter 38 at a fixed position as in this embodiment, it is not sufficient to select a predetermined position, and an appropriate measurement timing (time) is set. I found it necessary to set. Therefore, when various additional tests were conducted, it was found that the sugar concentration change at the predetermined position fluctuated to a degree that cannot be ignored due to variations in the urination position of the subject and the amount of urination for each measurement.

そこで、本実施形態では、前述したとおり糖濃度計38による計測位置については所定位置としてボール10の底部10c近傍位置を設定しているが、実際に計測を行なう時期については、このボール10の底部10c近傍位置の測定用溜水に原尿が到達して混入したことを検知する尿混入検知手段と、その検知時からの経過時間を計時する経過時間計測手段とを備えて、この経過時間によって計測に適切な時期を決める構成としている。この計測時期の設定についての考え方を、図10を使用しながら以下で説明する。   Therefore, in the present embodiment, as described above, the position near the bottom 10c of the ball 10 is set as a predetermined position for the measurement position by the sugar concentration meter 38, but the bottom of the ball 10 is actually measured when it is measured. A urine contamination detecting means for detecting that the raw urine has reached and mixed in the measurement reservoir in the vicinity of 10c, and an elapsed time measuring means for measuring the elapsed time from the detection time. It is configured to determine an appropriate time for measurement. The concept of setting the measurement time will be described below with reference to FIG.

図10において、NaCl溶液を溜水に投入した時刻をtとし、ボール10の底部10c近傍位置の溜水中のNaCl濃度が時刻tから上昇を始めて時刻tに計測下限濃度Dlを越えたとすると、時刻t以降が濃度計測を実施すべき時期となり、この計測下限濃度Dlを越えるまでに要する時間をここでは計測待機下限時間ΔT(=t−t)とする。即ち、ボール10の底部10c近傍位置においては、時刻tからΔT経過すれば、糖濃度計38により濃度計測可能なNaCl濃度状態となっていることになる。 In FIG. 10, the time when the NaCl solution is poured into the stored water is t 0, and the NaCl concentration in the stored water near the bottom 10c of the ball 10 starts to rise from time t 1 and exceeds the measurement lower limit concentration Dl at time t 2. Then, a time t 2 later becomes when to implement the concentration measurement, and the measurement lower limit concentration here the time required to over the Dl measurement wait limit time ΔT (= t 2 -t 1) . That is, in the bottom portion 10c near the position of the ball 10, if ΔT elapsed from the time t 1, so that has a concentration measurable NaCl concentration state by sugar concentration meter 38.

従って、NaCl溶液により模擬した尿も測定用溜水中で同様な挙動を示すことから、測定用溜水中の特定成分濃度として糖(尿糖)を計測する本実施形態でも、予め尿を用いて種々の排尿状況を想定した実験を行なって尿糖の場合のこのΔTに相当する時間を求め、さらにその時間にバラツキを考慮した適宜な余裕時間を加えた時間を所定の計測待機時間Tdとして設定している。   Therefore, since urine simulated by the NaCl solution also shows the same behavior in the measurement water, the present embodiment for measuring sugar (urine sugar) as the specific component concentration in the measurement water also uses urine in advance. A time corresponding to this ΔT in the case of urine sugar is obtained by conducting an experiment assuming the urination situation of the urine, and a time obtained by adding an appropriate margin time considering the variation is set as a predetermined measurement waiting time Td. ing.

即ち、本実施形態では、詳細は後述するが、尿混入検知手段が尿の混入を検知してからの経過時間を経過時間計測手段で計測し、この経過時間が予め定めた所定時間としての計測待機時間Tdとなったときに、本発明における所定の混合状態となったと判断して尿成分濃度計測を開始する構成としている。そのため、任意の被験者に対してより確実かつ高精度な測定結果を得ることが可能となる。   That is, in this embodiment, although details will be described later, the elapsed time after the urine contamination detection means detects the urine contamination is measured by the elapsed time measurement means, and this elapsed time is measured as a predetermined time. When the waiting time Td is reached, it is determined that the predetermined mixed state in the present invention has been reached, and urine component concentration measurement is started. Therefore, it is possible to obtain a more reliable and highly accurate measurement result for any subject.

[1.4 尿成分濃度測定装置の動作]
以上のように構成された第1実施形態に係る尿成分濃度測定装置5について、その動作の一例を、図11を参照して詳細に説明する。図11は、尿成分濃度測定装置5の動作を示すフローチャートである。
[1.4 Operation of urine component concentration measurement device]
An example of the operation of the urine component concentration measuring apparatus 5 according to the first embodiment configured as described above will be described in detail with reference to FIG. FIG. 11 is a flowchart showing the operation of the urine component concentration measuring apparatus 5.

図11に示すように、まず、ステップS1において、尿成分濃度測定装置5の電源がONになると、尿成分濃度測定装置5のCPU42は、ROM44、RAM46等のアクセス許可、作業領域確保を初期化する等の初期設定動作を実行し、ROM44に記憶された各プログラムを実行状態とし、各種の機能を動作させる。なお、このステップS1においては、前回動作時のステップS13における後述の基準物質混入処理によるメチレンブルー液が、便器部2のボール10内に貯留された溜水に混入されており、測定用溜水がボール10内に貯留されているものとする。この処理が終了すると、CPU42は処理をステップS2に移行する。   As shown in FIG. 11, first, in step S1, when the power of the urine component concentration measuring device 5 is turned on, the CPU 42 of the urine component concentration measuring device 5 initializes access permission and work area reservation for the ROM 44, RAM 46, etc. The initial setting operation such as performing is performed, each program stored in the ROM 44 is set to the execution state, and various functions are operated. In this step S1, methylene blue liquid by the reference substance mixing process described later in step S13 at the previous operation is mixed in the stored water stored in the ball 10 of the toilet unit 2, and the measurement stored water is It is assumed that it is stored in the ball 10. When this process ends, the CPU 42 shifts the process to step S2.

ステップS2において、CPU42は、被験者により操作・表示部4の測定スイッチ(図示せず)が押下されたか否かを判定し、測定スイッチが押下されたと判定すると(ステップS2:Yes)、処理をステップS3に移行し、測定スイッチが押下されていないと判定すると(ステップS2:No)、処理をステップS12に移行する。   In step S2, the CPU 42 determines whether or not the measurement switch (not shown) of the operation / display unit 4 has been pressed by the subject, and determines that the measurement switch has been pressed (step S2: Yes), the process is performed. If it transfers to S3 and it determines with the measurement switch not being pressed down (step S2: No), a process will transfer to step S12.

ステップS3において、CPU42は、測定用溜水吸引処理を実行する。この処理において、CPU42は、シリンジポンプ34を作動させ、ゼット吐水ノズル16のゼット孔16aからボール10内の測定用溜水を所定の量だけ吸引し、この測定用溜水を吸光度計36に向けて排出、搬送する。この処理が終了すると、CPU42は、処理をステップS4に移行する。   In step S <b> 3, the CPU 42 executes a measurement accumulated water suction process. In this process, the CPU 42 operates the syringe pump 34 and sucks a predetermined amount of measurement water in the ball 10 from the jet hole 16 a of the jet water discharge nozzle 16, and directs this measurement water to the absorptiometer 36. Eject and transport. When this process ends, the CPU 42 shifts the process to step S4.

ステップS4において、CPU42は、吸光度計測処理を実行する。この処理において、CPU42は、吸光度計36を作動させ、ステップS3においてボール10内から吸光度計36に搬送された測定用溜水の吸光度を計測する。これにより、測定用溜水中に含まれるメチレンブルーの吸光度(例えば、図8に示すS0)が計測され、このメチレンブルーの吸光度は、本発明における尿混入前基準物質濃度としてRAM46の所定領域に記憶される。この処理が終了すると、CPU42は、処理をステップS5に移行する。   In step S4, the CPU 42 executes an absorbance measurement process. In this process, the CPU 42 operates the absorbance meter 36 and measures the absorbance of the measurement water stored in the ball 10 to the absorbance meter 36 in step S3. As a result, the absorbance of methylene blue contained in the measurement water (for example, S0 shown in FIG. 8) is measured, and this absorbance of methylene blue is stored in a predetermined area of the RAM 46 as the urine contamination reference substance concentration in the present invention. . When this process ends, the CPU 42 shifts the process to step S5.

ステップS5において、CPU42は、ボール10内の本発明における所定位置である底部10c近傍位置で尿が検知されたか否かを判定する。具体的には、被験者によって排泄されて測定用溜水へ投入された原尿が、尿混入測定用溜水中を拡散しボール10の底部10cに設けられたゼット吐水ノズル16へ到達すると、原尿は測定用溜水よりも導電率が大きいため、吐水ノズル16の先端部に設けられた一対の電極16c,16c間の抵抗値が変化(低下)する。この抵抗値の変化をCPU42が検知して尿が吐水ノズル16の先端部に到達したと判断して尿が検知されたとする。   In step S <b> 5, the CPU 42 determines whether or not urine is detected in the vicinity of the bottom 10 c, which is a predetermined position in the present invention, in the ball 10. Specifically, when the raw urine excreted by the subject and thrown into the measurement reservoir is diffused in the urine contamination measurement reservoir and reaches the jet water discharge nozzle 16 provided at the bottom 10c of the ball 10, the original urine Since the conductivity is higher than that of the measurement water, the resistance value between the pair of electrodes 16c and 16c provided at the tip of the water discharge nozzle 16 changes (decreases). It is assumed that the CPU 42 detects this change in resistance value, determines that urine has reached the tip of the water discharge nozzle 16, and detects urine.

ステップS5において、ボール10内でゼット孔16aの位置に原尿が到達して尿が検知されたと判定すると(ステップS5:Yes)、CPU42は、時計部41の計時をスタートさせるとともに、処理をステップS6に移行する。一方、ステップS5において、尿が検知されていないと判定すると(ステップS5:No)、CPU42は、尿が検知されるまでこの処理を繰り返す。   If it is determined in step S5 that the original urine has reached the position of the zet hole 16a within the ball 10 and urine has been detected (step S5: Yes), the CPU 42 starts the timekeeping of the clock unit 41 and performs the processing step. The process proceeds to S6. On the other hand, if it is determined in step S5 that urine is not detected (step S5: No), the CPU 42 repeats this process until urine is detected.

ステップS6において、CPU42は、時計部41の計時する時間が前述の所定時間Tdとなったか否かを判定し、この所定時間Tdが経過したと判定すると(ステップS6:Yes)、処理をステップS6に移行する。一方、ステップS6において、所定時間Tdが経過していないと判定すると(ステップS6:No)、所定時間Tdが経過するまでこの処理を繰り返す。   In step S6, the CPU 42 determines whether or not the time measured by the clock unit 41 has reached the predetermined time Td. If the CPU 42 determines that the predetermined time Td has elapsed (step S6: Yes), the process proceeds to step S6. Migrate to On the other hand, if it is determined in step S6 that the predetermined time Td has not elapsed (step S6: No), this process is repeated until the predetermined time Td has elapsed.

このように、ステップS6において、経過時間を監視していて計測待機時間Tdが経過した時に、CPU42は、尿混入測定用溜水中のボール10の底部10c近傍における尿の混合状態が、本発明における所定の混合状態に達したと判断する。このとき、CPU42は、尿混合状態判断手段として機能する。   Thus, in step S6, when the elapsed time is monitored and the measurement standby time Td elapses, the CPU 42 determines that the urine mixing state in the vicinity of the bottom 10c of the ball 10 in the urine contamination measurement reservoir is in the present invention. It is determined that a predetermined mixed state has been reached. At this time, the CPU 42 functions as a urine mixed state determination unit.

ステップS7において、CPU42は、尿混入測定用溜水吸引処理を実行する。この処理において、CPU42は、シリンジポンプ34を作動させ、ゼット吐水ノズル16のゼット孔16aからボール10内の尿混入測定用溜水を所定の量だけ吸引し、この尿混入測定溜水を吸光度計36及び糖濃度計38に向けてそれぞれ排出、搬送する。この処理によって、ボール10内の底部近傍の尿混入測定用溜水の一部が計測サンプルとして採取され、ボール10外へ移送される。この処理が終了すると、CPU42は、処理をステップS8に移行する。   In step S <b> 7, the CPU 42 executes a urine contamination measurement accumulated water suction process. In this process, the CPU 42 operates the syringe pump 34 to suck a predetermined amount of the urine contamination measurement water in the ball 10 from the jet hole 16a of the jet water discharge nozzle 16, and this urine contamination measurement water is absorbed by an absorptiometer. 36 and the sugar concentration meter 38 are discharged and conveyed, respectively. As a result of this processing, a part of the urine contamination measuring water near the bottom in the ball 10 is collected as a measurement sample and transferred to the outside of the ball 10. When this process ends, the CPU 42 shifts the process to step S8.

ステップS8において、CPU42は、吸光度計測処理を実行する。この処理において、CPU42は、吸光度計36を作動させ、ステップS7においてボール10内から搬送された尿混入測定用溜水の計測サンプルの吸光度を計測する。これにより、尿混入測定用溜水中に含まれるメチレンブルーの吸光度(例えば、図8に示すS1)が計測され、このメチレンブルーの吸光度は、本発明における尿混入後基準物質濃度としてRAM46の所定領域に記憶される。この処理が終了すると、CPU42は、処理をステップS9に移行する。   In step S8, the CPU 42 executes an absorbance measurement process. In this process, the CPU 42 activates the absorbance meter 36, and measures the absorbance of the measurement sample of the urine-mixing measurement water stored in the ball 10 in step S7. As a result, the absorbance of methylene blue contained in the urine contamination measurement reservoir water (for example, S1 shown in FIG. 8) is measured, and the absorbance of this methylene blue is stored in a predetermined area of the RAM 46 as the urine contamination reference substance concentration in the present invention. Is done. When this process ends, the CPU 42 shifts the process to step S9.

ステップS9において、CPU42は、濃度計測処理を実行する。この処理において、CPU42は、糖濃度計38を作動させ、ステップS6においてボール10内から搬送された尿混入測定用溜水中の計測サンプルに含まれる糖の濃度を計測しRAM46の所定領域に記憶する。この処理が終了すると、CPU42は、処理をステップS10に移行する。   In step S9, the CPU 42 executes density measurement processing. In this process, the CPU 42 activates the sugar concentration meter 38, measures the concentration of sugar contained in the measurement sample in the urine contamination measurement water stored in the ball 10 in step S6, and stores it in a predetermined area of the RAM 46. . When this process ends, the CPU 42 shifts the process to step S10.

ステップS10において、CPU42は、尿中成分濃度算出処理を実行する。この処理において、CPU42は、ステップS4及びステップS7において各々RAM46に記憶された尿混入前基準物質濃度及び尿混入後基準物質濃度と、ステップS9においてRAM46に記憶された尿混入測定用溜水中に含まれる糖の濃度とに基いて、原尿中に含まれる糖の濃度を前述の[式13]を用いて算出する。この処理が終了すると、CPU42は、処理をステップS11に移行する。   In step S10, the CPU 42 executes a urine component concentration calculation process. In this process, the CPU 42 includes the urine contamination reference substance concentration and the urine contamination reference substance concentration respectively stored in the RAM 46 in step S4 and step S7, and the urine contamination measurement stored water stored in the RAM 46 in step S9. The concentration of sugar contained in the raw urine is calculated using the above-mentioned [Equation 13] based on the concentration of sugar. When this process ends, the CPU 42 shifts the process to step S11.

ステップS11において、CPU42は、結果表示処理を実行する。この処理において、CPU42は、ステップS10において算出された糖の濃度を操作・表示部4に所定の形式で表示する。この処理が終了すると、CPU42は、処理をステップS12に移行する。   In step S11, the CPU 42 executes a result display process. In this process, the CPU 42 displays the sugar concentration calculated in step S10 on the operation / display unit 4 in a predetermined format. When this process ends, the CPU 42 shifts the process to step S12.

ステップS12において、CPU42は、便器部2の便器制御部21から汚物洗浄処理の実行中である旨の洗浄処理信号を受信したか否かを判定し、洗浄処理信号を受信したと判定すると(ステップS12:Yes)、処理をステップS13に移行し、洗浄処理信号を受信していないと判定すると(ステップS12:No)、洗浄処理信号を受信するまでステップS12の処理を繰り返す。   In step S12, the CPU 42 determines whether or not the cleaning process signal indicating that the filth cleaning process is being executed is received from the toilet control unit 21 of the toilet unit 2, and determines that the cleaning process signal has been received (step S12). When the process proceeds to step S13 and it is determined that the cleaning process signal has not been received (step S12: No), the process of step S12 is repeated until the cleaning process signal is received.

ステップS13において、CPU42は、基準物質混入処理を実行する。この処理において、ステップS13の便器部2の汚物洗浄処理中おけるゼット吐水ノズル16のゼット洗浄が終了した旨の信号を便器部2の便器制御部21から受信すると、CPU42は、基準物質混入装置32を作動させ、配管R2の中途位置、すなわち、水路切替弁24から供給された洗浄水がリム吐水ノズル12へ至る前位置にて、この洗浄水にメチレンブルー液を供給し混入する。これにより、メチレンブルー液が混入された洗浄水は、リム吐水ノズル12からボール10内に吐水され、ボール10の内壁を上部から下部へ向って螺旋状に旋回しながら流下する。この螺旋状の流れにより洗浄水とメチレンブルー液とが均一に混合されて測定用溜水となり、次回動作時のボール10内における測定用溜水が準備されることとなる。この処理が終了すると、CPU42は、処理をステップS14に移行する。   In step S13, the CPU 42 executes a reference substance mixing process. In this process, when receiving a signal from the toilet control unit 21 of the toilet unit 2 that the zet cleaning of the jet water spouting nozzle 16 in the waste cleaning process of the toilet unit 2 in step S13 has been completed, the CPU 42 performs the reference substance mixing device 32. The methylene blue liquid is supplied and mixed in the wash water at a midway position of the pipe R2, that is, at a position before the wash water supplied from the water channel switching valve 24 reaches the rim water spouting nozzle 12. As a result, the wash water mixed with the methylene blue liquid is discharged from the rim water discharge nozzle 12 into the ball 10 and flows down while spirally turning the inner wall of the ball 10 from the upper part to the lower part. By this spiral flow, the cleaning water and the methylene blue liquid are uniformly mixed to form the measurement water, and the measurement water in the ball 10 at the next operation is prepared. When this process ends, the CPU 42 shifts the process to step S14.

ステップS14において、CPU42は、尿成分濃度測定装置5の電源がOFFにされたか否かを判定し、電源がOFFにされたと判定すると(ステップS15:Yes)、尿成分濃度測定装置5の動作を停止し、電源がOFFにされていないと判定すると(ステップS15:No)、ステップS2に処理を戻し、ステップS2からの処理を繰り返し実行する。   In step S14, the CPU 42 determines whether or not the power of the urine component concentration measuring device 5 has been turned off. If it is determined that the power has been turned off (step S15: Yes), the operation of the urine component concentration measuring device 5 is performed. If it stops and determines that the power is not turned off (step S15: No), the process returns to step S2, and the processes from step S2 are repeatedly executed.

このように、本発明の第1実施形態による尿成分濃度測定装置5によれば、尿混入測定用溜水中の尿糖濃度を計測する位置における基準物質濃度を尿糖濃度と併せて計測することによって、尿成分濃度を計測する部分の原尿の希釈率を考慮して原尿中に含まれる尿成分の濃度を算出するので、一般に測定用溜水と原尿との混合状態を均一とすることが困難である便器のボールを、尿を受ける受尿容器とすることが可能となる。このため、女性や子供でも容易に採尿することができ、測定の確実性を向上することができる。   As described above, according to the urine component concentration measuring apparatus 5 according to the first embodiment of the present invention, the reference substance concentration at the position where the urine sugar concentration in the urine contamination measurement reservoir water is measured is measured together with the urine sugar concentration. Therefore, the concentration of urine components contained in the raw urine is calculated in consideration of the dilution ratio of the raw urine in the portion where the urine component concentration is measured. This makes it possible to use a toilet bowl that is difficult to handle as a urine receiving container for receiving urine. For this reason, even women and children can easily collect urine, and the reliability of measurement can be improved.

なお、本実施形態では、尿混合判断手段としてのCPU42は、時計部41により計時される経過時間が所定時間以上経過したときに、尿混入測定用流水中における尿の混合状態が、所定の混合状態に達したと判断する場合を示したが、尿混合状態判断手段はこれに限定されるものではない。   In the present embodiment, the CPU 42 as the urine mixing determination unit determines that the mixing state of the urine in the urine mixed measurement running water is the predetermined mixing when the elapsed time counted by the clock unit 41 has exceeded a predetermined time. Although the case where it is determined that the state has been reached has been shown, the urine mixed state determination means is not limited to this.

すなわち、CPU42において、被験者が排尿を開始したタイミングを見計らってボール10内から吸光度計36へシリンジポンプ34を介して尿混入測定用溜水を継続的に搬送し、搬送された尿混入測定用溜水の基準物質の吸光度を吸光度計36により継続的に計測して、その吸光度が所定値以下となったときに、所定の混合状態に達したと判断するようにしてもよい。   In other words, the CPU 42 continuously conveys the urine contamination measurement reservoir water from the ball 10 to the absorbance meter 36 via the syringe pump 34 at the timing when the subject starts urination, and the conveyed urine contamination measurement reservoir is conveyed. The absorbance of the water reference substance may be continuously measured by the absorptiometer 36, and it may be determined that a predetermined mixed state has been reached when the absorbance falls below a predetermined value.

即ち、尿混入測定用溜水中に含まれる基準物質の吸光度は、尿混入測定用溜水中に含まれる尿量が増大することに伴って、低下する(図8参照)。従って、予め尿混入測定用溜水中の尿量を変化させたときの基準物質の吸光度と尿中の特定成分の濃度との関係を実験で求めて、特定成分の濃度がある値以上となる時の基準物質の吸光度を所定の混合状態の判定基準とすることによって、尿混入測定用溜水中における尿の混合状態が、所定の混合状態に達したと判断することができる。   That is, the absorbance of the reference substance contained in the urine contamination measurement reservoir water decreases as the amount of urine contained in the urine contamination measurement reservoir water increases (see FIG. 8). Therefore, when the relationship between the absorbance of the reference substance and the concentration of the specific component in the urine when the amount of urine in the urine measurement measurement water is changed in advance is experimentally determined, the concentration of the specific component exceeds a certain value. By using the absorbance of the reference substance as a determination criterion for the predetermined mixing state, it can be determined that the mixing state of the urine in the urine contamination measurement reservoir has reached the predetermined mixing state.

また、CPU42は、ボール10内に混入された尿量を計測する尿量計測手段(図示せず)を設け、ボール10内に混入された尿量が所定量以上となったときに、尿混入測定用溜水中における尿の混合状態が所定の混合状態に達したと判断するようにしてもよい。この場合、尿量計測手段は、ボール10の底部10cにボール10内の溜水と水路的に接続されて尿量計測手段を構成する水圧センサ(図示せず)を別途設け、この水圧センサが検知した水圧信号に基づいてボール10内に貯留された尿混入測定用溜水の水位を測定し、尿の混入前における測定用溜水の水位と尿の混入後における尿混入測定用溜水の水位とに基づいて混入された尿量を算出する。   Further, the CPU 42 is provided with a urine volume measuring means (not shown) for measuring the urine volume mixed in the ball 10, and when the urine volume mixed in the ball 10 exceeds a predetermined amount, urine mixing It may be determined that the mixed state of urine in the measurement water has reached a predetermined mixed state. In this case, the urine volume measuring means is separately provided with a water pressure sensor (not shown) constituting a urine volume measuring means that is connected to the bottom 10c of the ball 10 in a water channel with the accumulated water in the ball 10, and this water pressure sensor Based on the detected water pressure signal, the water level of the urine contamination measurement water stored in the ball 10 is measured, and the level of the measurement urine water before the urine contamination and the urine contamination measurement water retention after the urine contamination. The amount of mixed urine is calculated based on the water level.

(第1実施形態の変形例)
次に、第1実施形態の変形例について以下に説明する。第1実施形態の変形例は、測定用溜水の量を減らすための溜水減量機能をゼット吐水ノズル16に担わせる点が第1実施形態に係る尿成分濃度測定装置5と異なるだけで、その他の構成は同じであるため以下ではそれらの説明は省略する。
(Modification of the first embodiment)
Next, a modification of the first embodiment will be described below. The modification of the first embodiment is different from the urine component concentration measuring device 5 according to the first embodiment only in that the zet water discharge nozzle 16 has a function of reducing the amount of stored water for reducing the amount of stored water for measurement. Since other configurations are the same, description thereof will be omitted below.

本変形例では、尿混入後基準物質濃度計測手段としての吸光度計36及び溜水中成分濃度計測手段としての糖濃度計38による各計測を開始する前に、ゼット吐水ノズル16によって測定用溜水の量を減らすことにより、測定用溜水の量に対する尿量を相対的に増加させるように構成している。   In this modification, before starting each measurement by the absorbance meter 36 as the reference substance concentration measuring means after urine mixing and the sugar concentration meter 38 as the component concentration measuring means of the stored water, the reservoir water for measurement is measured by the jet water discharge nozzle 16. By reducing the amount, the amount of urine is increased relative to the amount of water for measurement.

即ち、第1実施形態と同じく本変形例でも使用されている通常の便器のボール10と洗浄水供給手段とを利用した測定用溜水供給手段の構成では、ボール10内へ貯留される測定用溜水もいわゆる便器の溢流水位の水量となるため、常に一定量とならざるを得ない。   That is, in the configuration of the measurement reservoir water supply means using the normal toilet bowl 10 and the washing water supply means used in the present modification as in the first embodiment, the measurement water stored in the ball 10 is used. Since the amount of accumulated water is the so-called overflow water level of the toilet, it must always be a constant amount.

一方、被験者が男性である場合には、便座6に着座した状態の座位で排尿するよりも、立った状態の立位で排尿することも想定される。この場合、測定用溜水への入射位置における尿の流速が座位での場合より大きくなり、入射後の尿混入測定用溜水中において尿の拡散速度の指向性が入射方向へ強くなる。そのため、尿の入射状態によっては、この拡散指向性の影響を強く受けてボール10の底部10c近傍に到達する尿量が減少する結果、ボール10の底部10c近傍位置であっても、尿混入測定用溜水中に含まれる尿の割合が相対的に少なくなる場合がある。   On the other hand, when the subject is a male, it is assumed that urination is performed while standing while standing, rather than urinating while sitting on the toilet seat 6. In this case, the flow rate of urine at the incident position on the measurement reservoir is larger than that at the sitting position, and the directivity of the diffusion rate of urine in the incident urine mixed measurement reservoir becomes stronger in the incident direction. Therefore, depending on the incident state of urine, the amount of urine that reaches the vicinity of the bottom 10c of the ball 10 is reduced due to the influence of this diffusion directivity. The proportion of urine contained in the stored water may be relatively small.

また、被験者によってはもともと排泄する尿量が少なく、ボール10の底部10c近傍に到達する尿量が標準的な被験者と比べて少ない場合も想定される。かかる場合に、ボール10の底部10c近傍の尿混入測定用溜水を糖濃度計38の計測対象としても、測定用溜水に対する尿の割合が小さくなる結果、計測対象物質である尿成分として糖も少なくなるため、計測対象の尿成分濃度が計測に必要な濃度以下となり正確な計測が出来ない可能性がある。   Also, depending on the subject, the amount of urine to be excreted is small, and the amount of urine reaching the vicinity of the bottom 10c of the ball 10 may be small compared to a standard subject. In such a case, even if the urine contamination measurement water in the vicinity of the bottom 10c of the ball 10 is used as a measurement target of the sugar concentration meter 38, the ratio of urine to the measurement water is reduced. Therefore, there is a possibility that the concentration of the urine component to be measured is less than the concentration necessary for measurement and accurate measurement cannot be performed.

したがって、変形例では、ゼット吐水ノズル16により測定用溜水の量を減らすことにより、測定用溜水の量に対する尿量を相対的に増加させて計測対象物質である尿成分濃度を高めるように構成している。   Therefore, in the modified example, by reducing the amount of the measurement reservoir water by the jet water discharge nozzle 16, the urine amount relative to the measurement reservoir water is relatively increased to increase the concentration of the urine component as the measurement target substance. It is composed.

以上のように構成された変形例の処理動作は、図11に示す第1実施形態におけるステップS1〜ステップS14までの処理動作とほぼ同じである。したがって、以下では第1実施形態における処理動作と異なる処理動作のみを説明する。   The processing operation of the modified example configured as described above is substantially the same as the processing operation from step S1 to step S14 in the first embodiment shown in FIG. Therefore, only processing operations different from the processing operations in the first embodiment will be described below.

変形例では、図11に示すように、CPU42は、被験者により操作・表示部4の測定スイッチが押下されたと判定すると(ステップS2:Yes)、処理をステップS3に移行する前に以下の溜水減量処理を実行する。   In the modified example, as shown in FIG. 11, when the CPU 42 determines that the measurement switch of the operation / display unit 4 has been pressed by the subject (step S2: Yes), before the process proceeds to step S3, Perform weight loss processing.

溜水減量処理において、CPU42は、ゼット吐水ノズル16から洗浄水を噴射する旨の制御信号を便器制御部21に送信し、便器制御部21の制御を介して、水路切替弁24を作動させ配管R3へ流路を切替える。   In the stored water reduction process, the CPU 42 sends a control signal to the effect that the washing water is jetted from the jet water discharge nozzle 16 to the toilet control unit 21 and operates the water channel switching valve 24 via the control of the toilet control unit 21 to perform piping. Switch the flow path to R3.

配管R3へ流路が切替えられると、ゼット吐水ノズル16から洗浄水が通常の便器洗浄時よりも短時間となる所定時間だけ噴射され、この洗浄水は、ボール10に貯留する測定用溜水を一部押し出して、トラップ排水口14bへと排出する。洗浄水の噴出後における測定用溜水の水位は、図12に示すように、ボール10の満水水位から封水水位18bを下回らないような所定の測定開始水位18aまで低下する。これにより、満水水位と所定の測定開始水位18aとの間における測定用溜水の分だけ、測定用溜水の量が減少する。   When the flow path is switched to the pipe R <b> 3, the cleaning water is jetted from the jet water discharge nozzle 16 for a predetermined time that is shorter than that during normal toilet flushing, and this cleaning water is used as the measurement water stored in the ball 10. A part is pushed out and discharged to the trap drain 14b. As shown in FIG. 12, the water level of the measurement reservoir after the washing water is ejected drops from the full water level of the ball 10 to a predetermined measurement start water level 18a that does not fall below the sealed water level 18b. As a result, the amount of measurement reservoir water is reduced by the amount of measurement reservoir water between the full water level and the predetermined measurement start water level 18a.

これら一連の溜水減量処理が終了すると、CPU42は、処理を図11に示すステップS3に移行する。   When these series of stored water reduction processes are completed, the CPU 42 shifts the process to step S3 shown in FIG.

このように、測定に際しては被験者の排尿開始前に測定用溜水の量を減らすため溜水水位が浅くなる結果として、計測部位であるボール10の底部10c近傍と排尿の着水ポイントとの物理的な距離が減水しない場合に比べて近くなるため、尿が底部10c近傍まで到達するに必要な時間が短くなり、到達する量も多くなる。   Thus, in the measurement, the amount of stored water before the start of urination of the subject is reduced, and as a result of the shallow water level, the physical relationship between the vicinity of the bottom 10c of the ball 10 that is the measurement site and the landing point of urination Therefore, the time required for urine to reach the vicinity of the bottom 10c is shortened, and the amount to be reached increases.

従って、ボール10の底部10c近傍の尿量が減水しない場合より同じ経過時間内では増加することとなり、その濃度も大きくなるため、ボール10の底部10c近傍の尿混入測定用溜水中における尿成分の濃度レベルが相対的により短時間で糖濃度計38による計測に必要な濃度レベル以上となるため、一回の測定時間を短縮することや確実な測定を実現することができる。   Accordingly, the amount of urine in the vicinity of the bottom 10c of the ball 10 increases within the same elapsed time as compared with the case where the water does not decrease, and the concentration increases. Since the concentration level is relatively higher than the concentration level required for the measurement by the sugar concentration meter 38 in a relatively short time, it is possible to shorten the measurement time for one measurement and to realize reliable measurement.

なお、本実施形態では減水時の水位を封水水位18bを下回らないような水位としたが、これはトイレ室内への下水管汚臭の逆流を防止するためであり、この逆流を防止する処置が別途施されている環境等この逆流恐れがない環境下では、封水水位18b以下の尿混入後基準物質濃度計測手段の計測が出来る範囲で任意の水位とすることも可能である。   In the present embodiment, the water level at the time of water reduction is set to a level that does not fall below the sealed water level 18b. This is to prevent the backflow of the sewage odor in the toilet room, and a measure for preventing this backflow. In an environment where there is no fear of backflow, such as an environment where the water is separately applied, it is possible to set the water level to an arbitrary level within a range that can be measured by the post-urine mixed reference substance concentration measuring means having a sealed water level of 18b or less.

[2.第2実施形態]
次に、図13を参照して、本発明の第2実施形態に係る尿成分濃度測定装置を説明する。図13は、本発明の第2実施形態に係る尿成分濃度測定装置を備えた便器装置が有する便器部の側断面図である。本発明の第2実施形態に係る尿成分濃度測定装置は、洗浄水を貯留する洗浄水貯留タンク60を備えている点、基準物質混入装置32の代わりに、基準物質混入装置232を備えている点、ゼット吐水ノズル16のゼット孔16aの代わりに、サンプル採取部として機能するサンプル採取機構80を備えている点、ゼット吐水ノズル16の一対の電極16c、16cの代わりに、尿検知部として機能する排尿時音センサ(図示せず)を備えている点が第1実施形態とは異なる。従って、ここでは、本実施形態の第1実施形態とは異なる点のみを説明し、同様の構成要素には同一の符号を付して説明を省略する。
[2. Second Embodiment]
Next, a urine component concentration measuring apparatus according to the second embodiment of the present invention will be described with reference to FIG. FIG. 13: is a sectional side view of the toilet part which the toilet device provided with the urine component concentration measuring apparatus which concerns on 2nd Embodiment of this invention has. The urine component concentration measuring apparatus according to the second embodiment of the present invention includes a cleaning water storage tank 60 that stores cleaning water, and includes a reference substance mixing apparatus 232 instead of the reference substance mixing apparatus 32. A point is provided with a sample collection mechanism 80 functioning as a sample collection unit instead of the zet hole 16a of the jet water discharge nozzle 16, and functions as a urine detection unit instead of the pair of electrodes 16c and 16c of the jet water discharge nozzle 16. This is different from the first embodiment in that a urination sound sensor (not shown) is provided. Accordingly, only the points of the present embodiment that are different from the first embodiment will be described here, and the same components are denoted by the same reference numerals and the description thereof will be omitted.

図13に示すように、本発明の第2実施形態に係る尿成分濃度測定装置200は、所定の水源に連通連結され、この水源から供給される洗浄水を貯留する洗浄水貯留タンク60と、シリンジポンプ34に連通連結され先端をボール10内に貯留される溜水18に挿入するサンプル採取部としてのサンプル採取機構80と、便器部2の所定の箇所に配設され制御部40に接続された排尿時音センサ(図示せず)と、を有している。   As shown in FIG. 13, the urine component concentration measuring apparatus 200 according to the second embodiment of the present invention is connected to a predetermined water source, and a wash water storage tank 60 that stores wash water supplied from the water source, A sample collection mechanism 80 serving as a sample collection unit that is connected to the syringe pump 34 and is inserted into the water 18 stored in the ball 10 at the tip thereof, and disposed at a predetermined location of the toilet unit 2 and connected to the control unit 40. And a urination sound sensor (not shown).

洗浄水貯留タンク60は、配管R202を介してリム吐水ノズル12と連通連結したタンク本体62と、タンク本体62の上部に配設され所定の水源に連通連結した手洗用吐水管64とを有し、手洗用吐水管64の下方であってタンク本体62の上端面に基準物質混入手段としての基準物質混入装置232を配設している。   The washing water storage tank 60 has a tank main body 62 communicated with the rim water spouting nozzle 12 via a pipe R202, and a hand-washing water discharge pipe 64 disposed on the tank main body 62 and connected to a predetermined water source. A reference substance mixing device 232 serving as a reference substance mixing means is disposed below the hand-washing water discharge pipe 64 and on the upper end surface of the tank main body 62.

基準物質混入装置232は、上部を手洗用吐水管64に向って開口し下部をタンク本体62の内部に連通させた漏斗状の容器66と、容器66の内部に収容され基準物質としてのメチレンブルーを含む水溶性の固形物68とを有している。   The reference substance mixing device 232 includes a funnel-shaped container 66 having an upper portion opened toward the hand-washing water discharge pipe 64 and a lower portion communicating with the inside of the tank main body 62, and methylene blue contained in the container 66 as a reference substance. And a water-soluble solid material 68.

かかる構成により、手洗用吐水管64から吐水される洗浄水は容器66に向って流下し、この洗浄水により容器66内の固形物68からメチレンブルー液が溶出しタンク本体62内に流下する。これにより、タンク本体62の内部には、メチレンブルー液が混入した状態の洗浄水(以下、貯留水と言う。)が貯留されることになる。タンク本体62のメチレンブルー液と洗浄水とが混合された貯留水が、タンク本体62及び配管R202を介してリム吐水ノズル12からボール10内に吐水されることによって、メチレンブルー液と洗浄水とが均一に混合された測定用溜水となる。なお、固形物68は、容器66の内部に収容されるのではなく、予めタンク本体62内の洗浄水に溶解するようにしても良い。また、固形物68は必ずしも固形である必要はなく、メチレンブルーの濃縮液でもよい。メチレンブルー濃縮液を毎回の便器洗浄動作に併せて、一定量ずつ貯留水に混入させておき、タンク本体62及び配管R202を介してリム吐水ノズル12からボール10内に吐水させて測定用溜水となるように構成してもよい。   With this configuration, the washing water discharged from the hand-washing water discharge pipe 64 flows down toward the container 66, and the methylene blue liquid is eluted from the solid material 68 in the container 66 by this washing water and flows down into the tank body 62. As a result, cleaning water (hereinafter referred to as “reserved water”) in which the methylene blue liquid is mixed is stored in the tank body 62. The water stored in the tank main body 62 in which the methylene blue liquid and the cleaning water are mixed is discharged into the ball 10 from the rim water spouting nozzle 12 through the tank main body 62 and the pipe R202, so that the methylene blue liquid and the cleaning water are uniform. It becomes the water for measurement mixed in. The solid material 68 may be dissolved in the cleaning water in the tank body 62 in advance, instead of being stored in the container 66. Moreover, the solid substance 68 does not necessarily need to be solid, and may be a concentrated liquid of methylene blue. The methylene blue concentrate is mixed into the stored water in a certain amount in conjunction with the toilet cleaning operation each time, and is discharged into the ball 10 from the rim water spouting nozzle 12 via the tank main body 62 and the pipe R202, and the water for measurement is collected. You may comprise so that it may become.

サンプル採取機構80は、制御部40に接続された所定の駆動モータ(図示せず)を備えワイヤ82が巻回された巻取ドラム84と、ボール10の底部側の一端にワイヤ82の一端が係止されると共に長手方向に異径のシリンダを複数連ねて伸縮自在に構成され、ボール10の上部側の他端がシリンジポンプ34に連通連結されたサンプル採取ノズル86とを有している。   The sample collection mechanism 80 includes a predetermined drive motor (not shown) connected to the control unit 40 and a winding drum 84 around which a wire 82 is wound, and one end of the wire 82 is connected to one end on the bottom side of the ball 10. The ball 10 has a sample collection nozzle 86 which is configured to be stretchable by connecting a plurality of cylinders having different diameters in the longitudinal direction and connected to the syringe pump 34 at the other end on the upper side of the ball 10.

排尿時音センサは、被験者の排泄する尿がボール10内に貯留された測定用溜水等と衝突するときの音を検知し、所定の検知信号を制御部40へ送信する。なお、被験者の排泄する尿を検知する尿検知部としては、排尿時音センサに限られず、尿の温度を検知する温度センサや、ボール10内に貯留される溜水等の重さを検知する重量センサ等を採用しても良い。   The urination sound sensor detects a sound generated when the urine excreted by the subject collides with the measurement water stored in the ball 10 and transmits a predetermined detection signal to the control unit 40. The urine detection unit that detects the urine excreted by the subject is not limited to the urination sound sensor, but detects the weight of a temperature sensor that detects the temperature of the urine, or the accumulated water stored in the ball 10. A weight sensor or the like may be employed.

以上のように構成された第2実施形態に係る尿成分濃度測定装置5について、その動作の一例を説明する。   An example of the operation of the urine component concentration measuring apparatus 5 according to the second embodiment configured as described above will be described.

まず、被験者により操作・表示部4の測定スイッチ(図示せず)が押下されると、制御部40のCPU42は、駆動モータを駆動させ、巻取ドラム84に巻回されていたワイヤ82を送り出し、複数連ねたシリンダをボール10内にて斜め下方に伸延させて、サンプル採取ノズル86の先端をボール10内に貯留される測定用溜水に挿入させる。   First, when a measurement switch (not shown) of the operation / display unit 4 is pressed by the subject, the CPU 42 of the control unit 40 drives the drive motor to send out the wire 82 wound around the winding drum 84. The plurality of cylinders are extended obliquely downward in the ball 10, and the tip of the sample collection nozzle 86 is inserted into the measurement water stored in the ball 10.

採尿ノズルの先端が測定用溜水に挿入された状態で、CPU42は、シリンジポンプ34を作動させ、サンプル採取ノズル86の先端からボール10内の測定用溜水を所定の量だけ吸引し、この測定用溜水を吸光度計36に向けて排出、搬送させる。そして、吸光度計36により、尿混入前の測定用溜水の吸光度が計測される点は、第1実施形態と同様であるのでここでは説明を省略する。   With the tip of the urine collection nozzle inserted into the measurement reservoir, the CPU 42 operates the syringe pump 34 to suck a predetermined amount of the measurement reservoir in the ball 10 from the tip of the sample collection nozzle 86. The measurement water is discharged toward the absorbance meter 36 and transported. And since the point which measures the light absorbency of the water for measurement before urine mixing with the absorptiometer 36 is the same as that of 1st Embodiment, it abbreviate | omits description here.

被験者によりボール10内に向けて排尿がなされると、CPU42は、排尿時音センサによる所定の検知信号を受信したことを条件として、シリンジポンプ34を作動させ、サンプル採取ノズル86の先端からボール10内の尿混入測定用溜水を所定の量だけ吸引し、この尿混入測定用溜水を吸光度計36及び糖濃度計38に向けて排出、搬送する。吸光度計36により、尿混入測定用溜水の吸光度が計測され、糖濃度計38により、尿混入測定用溜水の濃度が計測される点は、第1実施形態と同様であるのでここでは説明を省略する。   When the subject urinates into the ball 10, the CPU 42 operates the syringe pump 34 on the condition that a predetermined detection signal from the urination sound sensor has been received, and the ball 10 from the tip of the sample collection nozzle 86. The urine contamination measurement water is sucked in a predetermined amount, and the urine contamination measurement water is discharged and conveyed toward the absorbance meter 36 and the sugar concentration meter 38. Since the absorbance of the urine contamination measurement reservoir water is measured by the absorptiometer 36, and the concentration of the urine contamination measurement reservoir water is measured by the sugar concentration meter 38, it is the same as in the first embodiment, and will be described here. Is omitted.

ここまでの動作が終了すると、CPU42は、駆動モータを駆動させ、巻取ドラム84にワイヤ82を巻き取り、複数連ねたシリンダをボール10内にて斜め下方に縮退させて、サンプル採取ノズル86を機能部ケーシング9の中に収納する。その後、サンプル採取ノズル86の洗浄動作等が実行されるように構成しても良い。   When the operation so far is completed, the CPU 42 drives the drive motor, winds the wire 82 around the take-up drum 84, and retracts the plurality of connected cylinders obliquely downward in the ball 10 to move the sample collection nozzle 86. The functional unit casing 9 is accommodated. Thereafter, a cleaning operation or the like of the sample collection nozzle 86 may be executed.

次いで、一連の計測動作が終了し、被験者が便器部2の汚物洗浄スイッチ(図示せず)を押下すると、便器部2の便器制御部21が汚物洗浄処理を実行する。そして、便器制御部21から洗浄処理信号を受信すると、制御部40のCPU42は、タンク本体62の底部に設けられた図示しない開閉弁を開閉させて貯留水をリム吐水ノズル12から吐水させ
ることによってトラップ部14にサイホン現象を発生させてボール10内の洗浄処理を行うとともに、タンク本体62からボール10内に溜水となる水を供給する動作を行う。このとき、タンク本体62への給水動作も実行されてタンク本体62内には貯留水が貯留される。
Next, when a series of measurement operations are completed and the subject presses the filth washing switch (not shown) of the toilet unit 2, the toilet control unit 21 of the toilet unit 2 executes the filth washing process. And when the washing process signal is received from the toilet control unit 21, the CPU 42 of the control unit 40 opens and closes an opening / closing valve (not shown) provided at the bottom of the tank body 62 to discharge the stored water from the rim water discharge nozzle 12. A siphon phenomenon is generated in the trap unit 14 to perform a cleaning process in the ball 10, and an operation of supplying water to be stored in the ball 10 from the tank body 62 is performed. At this time, the operation of supplying water to the tank body 62 is also executed, and the stored water is stored in the tank body 62.

この動作によって、タンク本体62の内部に貯留されていた貯留水中においてメチレンブルー液と洗浄水とが混合された測定用溜水がボール10内に貯留される。これとともに、上述した通り、タンク本体62の内部には、メチレンブルー液が混合された新たな貯留水が貯留され、次回の測定準備が完了した待機状態になる。   By this operation, the measurement reservoir water in which the methylene blue liquid and the washing water are mixed in the stored water stored in the tank main body 62 is stored in the ball 10. At the same time, as described above, new reservoir water mixed with the methylene blue liquid is stored in the tank body 62, and the next measurement preparation is completed.

本実施形態の尿成分濃度測定装置200の他の動作は、本発明の第1実施形態と同様であるのでここでは説明を省略する。本発明の第2実施形態に係る尿成分濃度測定装置200によれば、洗浄水貯留タンク60、基準物質混入装置232、サンプル採取機構80及び排尿時音センサを設けることにより、簡易な構成で第1実施形態に係る尿成分濃度測定装置5と同様の効果を得ることができる。   Since other operations of the urine component concentration measuring apparatus 200 of the present embodiment are the same as those of the first embodiment of the present invention, description thereof is omitted here. According to the urine component concentration measuring apparatus 200 according to the second embodiment of the present invention, the cleaning water storage tank 60, the reference substance mixing apparatus 232, the sample collection mechanism 80, and the urinary sound sensor are provided with a simple configuration. The same effect as that of the urine component concentration measuring apparatus 5 according to the embodiment can be obtained.

また、上述した各実施形態に係る尿成分濃度測定装置においては、尿中に含まれる特定成分の濃度を測定する尿成分濃度測定方法を採用していたが、この濃度測定方法を尿以外の被検査溶液、例えば、人間の血液や汗などに適用しても良い。   In addition, in the urine component concentration measuring device according to each of the embodiments described above, a urine component concentration measuring method for measuring the concentration of a specific component contained in urine is employed. It may be applied to a test solution, for example, human blood or sweat.

かかる場合には、被検査溶液(例えば、血液や汗)中に含まれる特定成分の濃度を測定する被検査溶液成分濃度測定方法において、所定の液体(例えば、水等)に基準物質を混入して測定用溶液を作ると共に、測定用溶液の物性値を計測し、また、測定用溶液に、被検査溶液を混入して測定用混合溶液を作ると共に、測定用混合溶液の物性値(例えば、吸光度や蛍光強度)と、測定用混合溶液中に含まれる特定成分の濃度とを計測し、得られた測定用溶液の物性値と、測定用混合溶液の物性値と、測定用混合溶液中に含まれる特定成分の濃度とに基いて、被検査溶液中に含まれる特定成分の濃度を算出することを特徴とする被検査溶液成分濃度測定方法を提供することができる。   In such a case, a reference substance is mixed into a predetermined liquid (for example, water) in a method for measuring the concentration of a specific component in a solution to be inspected (for example, blood or sweat). The measurement solution is made, the physical property value of the measurement solution is measured, and the measurement solution is mixed with the solution to be inspected to form a measurement mixed solution, and the physical property value of the measurement mixed solution (for example, (Absorbance and fluorescence intensity) and the concentration of a specific component contained in the measurement mixed solution, and the physical property value of the obtained measurement solution, the physical property value of the measurement mixed solution, and the measurement mixed solution It is possible to provide a test solution component concentration measuring method characterized in that the concentration of the specific component contained in the test solution is calculated based on the concentration of the specific component contained.

以上、本発明の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。   As described above, some of the embodiments of the present invention have been described in detail with reference to the drawings. However, these are merely examples, and various embodiments can be made based on the knowledge of those skilled in the art including the aspects described in the section of the disclosure of the invention. The present invention can be implemented in other forms that have been modified or improved.

例えば、本発明における基準物質混入手段は、第1実施形態に係る尿成分濃度測定装置5が備えた基準物質混入装置32のように、給水手段が供給する水をボール内に排出する吐出孔より上流側において基準物質を混入させるものだけに限らず、ボール内に貯留される溜水に、基準物質を直接混入するように構成しても良い。この場合、溜水と基準物質とを均一に混合して所定濃度の基準物質を含んだ測定用溜水とするための攪拌手段を設けることが好ましい。   For example, the reference substance mixing means in the present invention is a discharge hole for discharging the water supplied by the water supply means into the ball, like the reference substance mixing apparatus 32 provided in the urine component concentration measuring apparatus 5 according to the first embodiment. The reference material is not limited to the material mixed with the reference material on the upstream side, and the reference material may be directly mixed into the water stored in the ball. In this case, it is preferable to provide a stirring means for uniformly mixing the stored water and the reference substance to obtain a measurement stored water containing the reference substance having a predetermined concentration.

また、前述した各実施形態では排尿前の測定用溜水の吸光度を吸光度計36により計測することによって求まる基準物質濃度を尿混入前基準物質濃度としているが、本発明における尿成分濃度測定装置においては、排尿前の尿混入前基準物質濃度は必ずしも計測して求めたものでなくとも良い。即ち、基準物質濃度が本発明における「所定濃度」に予め調製された水を測定用溜水として用いる構成として、所定濃度を尿混入前基準物質濃度としても良い。その場合は、吸光度計測は尿混入測定用溜水の一回だけで済むため、一回の測定時間が短くなる。   In each of the above-described embodiments, the reference substance concentration obtained by measuring the absorbance of the measurement reservoir before urination with the absorptiometer 36 is used as the reference substance concentration before urine mixing, but in the urine component concentration measuring apparatus according to the present invention. The urinary reference substance concentration before urination before urination does not necessarily have to be obtained by measurement. That is, the predetermined concentration may be used as the reference substance concentration before urine mixing, in which water prepared in advance as the “predetermined concentration” in the present invention is used as the measurement reservoir water. In this case, the absorbance measurement needs to be performed only once, and therefore the time required for one measurement is shortened.

それに対して、尿混入前基準物質濃度を計測して求める構成とすると、測定用溜水の基準物質濃度は多少幅を持つことが可能となるため、本実施形態のように、測定の都度、測定用溜水を調製する場合においては、基準物質混入手段の混入精度の要求水準が低くなりコストダウンが図れ。また、実際に測定する時の基準物質濃度を計測して前記尿混入前基準物質濃度とすることが出来るため、使用待機中に溜水の蒸発等によって基準物質濃度の変化があっても、高精度の測定が可能となる。   On the other hand, if it is configured to measure and determine the reference substance concentration before urine mixing, the reference substance concentration of the measurement water can be somewhat wide, so as in this embodiment, In the case of preparing the measurement water, the required level of the accuracy of mixing the reference material mixing means is lowered, and the cost can be reduced. In addition, since the reference substance concentration at the time of actual measurement can be measured and used as the reference substance concentration before urine mixing, even if there is a change in the reference substance concentration due to evaporation of stored water during use standby, Accuracy can be measured.

また、上記した各実施形態では、1つの吸光度計36が尿混入前物性値計測手段及び尿混入後物性値計測手段として機能する構成としたが、これに限らず、2つの吸光度計を設け、これらがそれぞれ尿混入前物性値計測手段及び尿混入後物性値計測手段として機能するようにしてもよい。   Further, in each of the above-described embodiments, one absorptiometer 36 functions as a physical property value measuring unit before urine mixing and a physical property value measuring unit after urine mixing, but not limited to this, two absorptiometers are provided, These may function as physical property value measuring means before urine mixing and physical property value measuring means after urine mixing.

本発明の実施の形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施の形態に記載されたものに限定されるものではない。   The effects described in the embodiments of the present invention are only the most preferable effects resulting from the present invention, and the effects of the present invention are limited to those described in the embodiments of the present invention. is not.

本発明の第1実施形態に係る尿成分濃度測定装置を備えた便器装置全体の外観図である。It is an external view of the whole toilet device provided with the urine component concentration measuring device concerning a 1st embodiment of the present invention. 図1に示す便器装置が備える便器部の側断面図である。It is a sectional side view of the toilet part with which the toilet device shown in FIG. 1 is provided. 図1に示す便器装置の全体構成及びその電気的構成を示す模式的説明図Schematic explanatory drawing showing the entire configuration of the toilet device shown in FIG. 1 and its electrical configuration 図2に示した便器部が備えるゼット吐水ノズルの部分拡大断面図である。It is the elements on larger scale of the jet water discharge nozzle with which the toilet part shown in FIG. 2 is provided. 基準物質混入装置の構成を示す模式的説明図である。It is typical explanatory drawing which shows the structure of a reference | standard substance mixing apparatus. シリンジポンプの構成を示す模式的説明図である。It is typical explanatory drawing which shows the structure of a syringe pump. 吸光度計の構成を示す模式的説明図である。It is typical explanatory drawing which shows the structure of an absorptiometer. 吸光度計により計測された測定用溜水等の吸光度と波長との関係の一例を示す吸光度スペクトル線図である。It is an absorbance spectrum diagram showing an example of the relationship between absorbance and wavelength of measurement water stored in an absorptiometer. 蛍光強度計により計測された尿混入測定用溜水の蛍光強度と波長との関係の一例を示す蛍光強度スペクトル線図である。It is a fluorescence-intensity spectrum diagram which shows an example of the relationship between the fluorescence intensity and the wavelength of the urine mixing measurement reservoir water measured by the fluorescence intensity meter. 尿を模擬した所定濃度のNaCl溶液をボール内に貯留される溜水に投入(混入)した場合における、溜水中のNaCl溶液の濃度の時間変化を示す図である。It is a figure which shows the time change of the density | concentration of the NaCl solution in stored water when the NaCl solution of the predetermined density | concentration which simulated urine is thrown in (mixed) in the stored water stored in a ball | bowl. 尿成分濃度測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a urine component concentration measuring apparatus. 測定用溜水の水位が変化する態様を示す図である。It is a figure which shows the aspect from which the water level of the water for measurement changes. 本発明の第2実施形態に係る尿成分濃度測定装置を備えた便器装置が有する便器部の側断面図である。It is a sectional side view of the toilet part which the toilet device provided with the urine component concentration measuring apparatus which concerns on 2nd Embodiment of this invention has.

符号の説明Explanation of symbols

1 便器装置
2 便器部
2a 便器本体
3 背面キャビネット
4 表示部
5 尿成分濃度測定装置
6 便座
7 便蓋
8 機能部ケーシング
9 機能部ケーシング
10 ボール
10a 隔壁
10b 上部
10c 底部
11 リム部
12 リム吐水ノズル
14 トラップ部
14a トラップ流入口
14b トラップ排水口
16 ゼット吐水ノズル
16a ゼット孔
16c 電極
18 溜水
18a 測定開始水位
18b 封水水位
20 洗浄部
21 便器制御部
22 給水弁
24 水路切替弁
30 測定部
32 基準物質混入装置
32a 基準物質貯留タンク
32b ポンプ
32c 逆止弁
34 シリンジポンプ
34a シリンダ
34b ピストン
34c シリンジ駆動モータ
34d リードスクリュウ機構
34e ポート
35 電動ロータリバルブ
35a ポート
35b ポート
35c ポート
36 吸光度計
36a サンプルセル
36b 光源
36c 光センサ
38 糖濃度計
40 制御部
41 時計部
42 CPU
44 ROM
46 RAM
50 測定制御回路
52 通信手段
60 洗浄水貯留タンク
62 タンク本体
64 手洗用吐水管
66 容器
68 固形物
80 サンプル採取機構
82 ワイヤ
84 巻取ドラム
86 サンプル採取ノズル
200 尿成分濃度測定装置
232 基準物質混入装置
Dn 希釈率
Ds 希釈率
F1 照射光
F2 透過光
R1 配管
R2 配管
R202 配管
R3 配管
R4 配管
U0 原尿中の尿糖濃度
U1 尿混入測定用溜水中の尿糖濃度
X1 波長帯
X2 波長帯
S 物質の物性値
S0 メチレンブルー液の吸光度
S1 メチレンブルー液の吸光度
Da 溶液Aの希釈率
Db 溶液Bの希釈率
Dax 混合溶液(A+B)中の位置xにおける溶液Aの希釈率
Dbx 混合溶液(A+B)中の位置xにおける溶液Bの希釈率
Ma 溶液Aの標的物質濃度
Max 混合溶液(A+B)中の位置xにおける標的物質濃度
Dn 原尿の希釈率
Ds 測定用溜水の希釈率
α 吸光係数
L 光路長
Q 特定物質濃度
溶液Bの測定物質濃度
混合溶液(A+B)の測定物質濃度
ΔT 計測待機下限時間
Td 計測待機時間
f(s) 関数
DESCRIPTION OF SYMBOLS 1 Toilet device 2 Toilet unit 2a Toilet body 3 Rear cabinet 4 Display unit 5 Urine component concentration measuring device 6 Toilet seat 7 Toilet lid 8 Functional unit casing 9 Functional unit casing 10 Ball 10a Bulkhead 10b Upper part 10c Bottom part 11 Rim part 12 Rim water discharge nozzle 14 Trap part 14a Trap inlet 14b Trap drain 16 Zet water discharge nozzle 16a Zet hole 16c Electrode 18 Reserved water 18a Measurement start water level 18b Sealed water level 20 Washing part 21 Toilet controller 22 Water supply valve 24 Water switch valve 30 Measuring part 32 Reference substance Mixing device 32a Reference substance storage tank 32b Pump 32c Check valve 34 Syringe pump 34a Cylinder 34b Piston 34c Syringe drive motor 34d Reed screw mechanism 34e Port 35 Electric rotary valve 35a Port 35b Port 35c Port 36 Absorbance meter 3 a sample cell 36b light source 36c photosensor 38 sugar concentration meter 40 the control unit 41 a clock unit 42 CPU
44 ROM
46 RAM
DESCRIPTION OF SYMBOLS 50 Measurement control circuit 52 Communication means 60 Washing water storage tank 62 Tank main body 64 Hand-washing water discharge pipe 66 Container 68 Solid substance 80 Sample collection mechanism 82 Wire 84 Winding drum 86 Sample collection nozzle 200 Urine component concentration measuring apparatus 232 Reference substance mixing apparatus Dn dilution rate Ds dilution rate F1 irradiation light F2 transmitted light R1 piping R2 piping R202 piping R3 piping R4 piping U0 urine sugar concentration U1 in raw urine X1 urine sugar concentration X1 in urine contamination measurement water wavelength band X2 wavelength band S of substance Physical property value S0 Absorbance of methylene blue solution S1 Absorbance of methylene blue solution Da Dilution rate of solution A Db Dilution rate of solution B Dax Dilution rate of solution A at position x in mixed solution (A + B) Position x in mixed solution (A + B) The dilution ratio Ma of the solution B in the solution is set to the position x in the mixed solution (A + B) Kicking analyte concentration ΔT measurement standby measurement substance concentration Q 1 mixed solution of the target substance concentration Dn dilution α absorption coefficient L pathlength Q particular substance concentration dilution Ds measuring accumulated water in the original urine Q 0 solution B (A + B) Lower limit time Td Measurement waiting time f (s) Function

Claims (12)

尿中に含まれる特定成分の濃度を測定する尿成分濃度測定装置において、
溜水を貯留し下水道に連通したボールを備え、被験者の排泄する尿を前記ボールで受けて前記溜水とともに前記下水道に排出する便器と、
前記尿が排出される前の前記溜水に混入される基準物質と、
前記溜水に前記基準物質を混入することにより当該基準物質の濃度を所定濃度である尿混入前基準物質濃度とした測定用溜水を、前記ボール内に供給する測定用溜水供給手段と、
前記尿の混入後における前記測定用溜水である尿混入測定用溜水の前記基準物質の濃度である尿混入後基準物質濃度を計測する尿混入後基準物質濃度計測手段と、
前記尿混入測定用溜水中に含まれる前記特定成分の濃度である溜水中成分濃度を計測する溜水中成分濃度計測手段と、
前記尿混入前基準物質濃度と、前記尿混入後基準物質濃度と、前記溜水中成分濃度とに基づいて、前記尿中に含まれる前記特定成分の濃度を算出する尿中成分濃度算出手段と、を有し、
前記尿混入後基準物質濃度計測手段は、前記溜水中成分濃度計測手段が前記溜水中成分濃度を計測する計測位置における前記尿混入測定用溜水を計測対象として、前記尿混入後基準物質濃度を計測することを特徴とする尿成分濃度測定装置。
In a urine component concentration measuring device that measures the concentration of a specific component contained in urine,
A toilet that stores water and communicates with a sewer, receives a urine excreted by a subject with the ball, and discharges the water together with the water to the sewer;
A reference substance mixed in the stored water before the urine is discharged;
A measurement reservoir water supply means for supplying, into the ball, measurement reservoir water in which the reference substance is mixed into the reservoir water so that the concentration of the reference substance is a predetermined concentration of the reference substance before urine mixing;
A post-urine-mixed reference substance concentration measuring means for measuring a post-urine-mixed reference substance concentration, which is the concentration of the reference substance, which is the concentration of the urine-mixed measurement reservoir water after the urine is mixed,
Reservoir component concentration measurement means for measuring the concentration of the specific component contained in the urine contamination measurement reservoir water, which is the concentration of the specific component;
Urine component concentration calculating means for calculating the concentration of the specific component contained in the urine based on the reference material concentration before urine mixing, the reference material concentration after urine mixing, and the component concentration of the stored water; Have
The post-urine-mixed reference substance concentration measuring means sets the post-urine-mixed reference substance concentration as a measurement target for the urine-mixed measurement reservoir water at a measurement position where the pooled water component concentration-measuring means measures the pooled water component concentration. A urine component concentration measuring device characterized by measuring.
前記溜水中成分濃度計測手段は、前記ボールの底部近傍を前記計測位置として計測を行なうことを特徴とする請求項1に記載の尿成分濃度測定装置。   2. The urine component concentration measuring apparatus according to claim 1, wherein the stored water component concentration measuring means measures the vicinity of the bottom of the ball as the measurement position. 前記ボールの底部に設けた開口部を備え、前記開口部から前記ボールの底部近傍における前記尿混入測定用溜水の一部を計測サンプルとして採取してその計測サンプルを前記ボール外に移送する計測サンプル採取手段を有するとともに、
前記ボール外に前記尿混入後基準物質濃度計測手段及び前記溜水中成分濃度計測手段を配設し、
前記計測サンプルを計測対象として、前記尿混入後基準物質濃度計測手段による前記尿混入後基準物質濃度、及び前記溜水中成分濃度計測手段による前記溜水中成分濃度の各計測を行なうことを特徴とする請求項2に記載の尿成分濃度測定装置。
A measurement that includes an opening provided at the bottom of the ball, collects a part of the urine contamination measurement water in the vicinity of the bottom of the ball from the opening as a measurement sample, and transfers the measurement sample to the outside of the ball Having sample collection means,
The post-urine mixed reference substance concentration measuring means and the stored water component concentration measuring means are disposed outside the ball,
The measurement sample is used as a measurement target, and the post-urine-mixed reference substance concentration measurement unit measures each of the post-urine-mixed reference substance concentration and the stored-water component concentration measurement unit measures the stored-water component concentration. The urine component concentration measuring apparatus according to claim 2.
前記開口部が前記ボールの底部に設けた便器洗浄水吐水口であることを特徴とする請求項3に記載の尿成分濃度測定装置。   4. The urine component concentration measuring apparatus according to claim 3, wherein the opening is a toilet flushing water spout provided at the bottom of the ball. 前記尿混入測定用溜水中における前記尿の混合状態が、所定の混合状態に達したか否かを判断する尿混合状態判断手段を有し、
前記尿混合状態判断手段が前記所定の混合状態に達したと判断したときに、前記尿混入後基準物質濃度計測手段による前記尿混入後基準物質濃度、及び前記溜水中成分濃度計測手段による前記溜水中成分濃度の各計測を開始することを特徴とする請求項1〜4のいずれか1項に記載の尿成分濃度測定装置。
Urine mixed state determination means for determining whether or not the mixed state of the urine in the urine contamination measurement reservoir has reached a predetermined mixed state;
When the urine mixing state determination means determines that the predetermined mixing state has been reached, the post-urine-mixed reference substance concentration measurement means by the post-urine-mixing reference substance concentration measurement means and the reservoir concentration by the stored water component concentration measurement means The urine component concentration measuring apparatus according to any one of claims 1 to 4, wherein each measurement of the component concentration in water is started.
前記尿混合状態判断手段は、前記測定用溜水への前記尿の混入を検知する尿混入検知手段と、前記尿混入検知手段により前記尿の混入が検知されてからの経過時間を計時する経過時間計測手段と、を有し、
前記経過時間計測手段により計時される前記経過時間が所定時間以上経過したときに、前記所定の混合状態に達したと判断することを特徴とする請求項5に記載の尿成分濃度測定装置。
The urine mixing state determination means includes a urine contamination detection means for detecting the urine contamination in the measurement reservoir, and a lapse of time elapsed after the urine contamination detection means detects the urine contamination. A time measuring means,
6. The urine component concentration measuring apparatus according to claim 5, wherein it is determined that the predetermined mixed state has been reached when the elapsed time measured by the elapsed time measuring means has exceeded a predetermined time.
前記測定用溜水の量を減らすための溜水減量手段を設けたことを特徴とする請求項1〜6のいずれか1項に記載の尿成分濃度測定装置。   The urine component concentration measuring device according to any one of claims 1 to 6, further comprising means for reducing the amount of stored water for reducing the amount of stored water for measurement. 前記尿混入前基準物質濃度及び前記尿混入後基準物質濃度は、吸光度、又は蛍光強度から算出される濃度であることを特徴とする請求項1〜7のいずれか1項に記載の尿成分濃度測定装置。   The urinary component concentration according to any one of claims 1 to 7, wherein the urinary reference material concentration and the urinary reference material concentration are concentrations calculated from absorbance or fluorescence intensity. measuring device. 前記測定用溜水供給手段は、所定の給水源から前記溜水となる水を供給する給水手段と、前記給水手段により供給される水に前記基準物質を混入する基準物質混入手段と、を有し、
前記基準物質混入手段は、前記基準物質の濃度が前記尿混入前基準物質濃度となる量の前記基準物質を前記水に混入することを特徴とする請求項1〜8のいずれか1項に記載の尿成分濃度測定装置。
The measurement water supply means has water supply means for supplying water as the water from a predetermined water supply source, and reference substance mixing means for mixing the reference substance into water supplied by the water supply means. And
The said reference substance mixing means mixes the said reference substance of the quantity from which the density | concentration of the said reference substance becomes the said reference substance density | concentration before urine mixing in the said water, The one of Claims 1-8 characterized by the above-mentioned. Urine component concentration measuring device.
前記特定成分は、糖やタンパク等の尿中に漏出する被験者の生体情報を反映する成分であることを特徴とする請求項1〜9のいずれか1項に記載の尿成分濃度測定装置。   The urine component concentration measuring apparatus according to any one of claims 1 to 9, wherein the specific component is a component that reflects biological information of a subject that leaks into urine such as sugar and protein. 請求項1〜請求項10のいずれか1項に記載の尿成分濃度測定装置を一体的に組み込んだ便器装置。   A toilet device in which the urine component concentration measuring device according to any one of claims 1 to 10 is integrated. 被検査溶液中に含まれる特定成分の濃度を測定する溶液成分濃度測定方法において、
所定の液体に基準物質を混入し当該基準物質の濃度を所定の濃度である混入前基準物質濃度とした測定用溶液を準備し、
前記測定用溶液に前記被検査溶液を混入して測定用混合溶液を作り、
前記測定用混合溶液中の任意の位置に含まれる前記特定成分の濃度である混合溶液成分濃度を計測すると共に、前記測定用混合溶液の前記基準物質の濃度である混合後基準物質濃度も併せて計測し、
前記混合前基準物質濃度と、前記混合後基準物質濃度と、前記混合溶液成分濃度とに基いて前記被検査溶液中に含まれる前記特定成分の濃度を算出することを特徴とする溶液成分濃度測定方法。
In a solution component concentration measurement method for measuring the concentration of a specific component contained in a solution to be tested,
Prepare a measurement solution in which a reference substance is mixed in a predetermined liquid and the concentration of the reference substance is set to a predetermined reference substance concentration before mixing,
The measurement solution is mixed with the solution to be inspected to make a measurement mixed solution,
The mixed solution component concentration that is the concentration of the specific component contained in an arbitrary position in the measurement mixed solution is measured, and the post-mixing reference material concentration that is the concentration of the reference material of the measurement mixed solution is also included. Measure and
Solution component concentration measurement, wherein the concentration of the specific component contained in the solution to be inspected is calculated based on the reference material concentration before mixing, the reference material concentration after mixing, and the concentration of the mixed solution component Method.
JP2008081678A 2007-03-27 2008-03-26 Urine component concentration measuring device, toilet device including urine component concentration measuring device, and solution component concentration measuring method Expired - Fee Related JP5003552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081678A JP5003552B2 (en) 2007-03-27 2008-03-26 Urine component concentration measuring device, toilet device including urine component concentration measuring device, and solution component concentration measuring method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007082870 2007-03-27
JP2007082870 2007-03-27
JP2008081678A JP5003552B2 (en) 2007-03-27 2008-03-26 Urine component concentration measuring device, toilet device including urine component concentration measuring device, and solution component concentration measuring method

Publications (2)

Publication Number Publication Date
JP2008268195A JP2008268195A (en) 2008-11-06
JP5003552B2 true JP5003552B2 (en) 2012-08-15

Family

ID=40047863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081678A Expired - Fee Related JP5003552B2 (en) 2007-03-27 2008-03-26 Urine component concentration measuring device, toilet device including urine component concentration measuring device, and solution component concentration measuring method

Country Status (1)

Country Link
JP (1) JP5003552B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435402B2 (en) * 2010-02-18 2014-03-05 Toto株式会社 Urination information measuring device
JP6212303B2 (en) * 2013-06-28 2017-10-11 景博 内田 Diabetes marker measurement method
US20190017994A1 (en) * 2015-12-28 2019-01-17 Symax Inc. Health monitoring system, health monitoring method, and health monitoring program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230006A (en) * 1993-02-03 1994-08-19 Inax Corp Closet provided with urine detector
JPH0735745A (en) * 1993-07-17 1995-02-07 Inax Corp Biological component measuring method in toilet stool equipped with biological component measuring unit
JPH10267925A (en) * 1997-01-27 1998-10-09 Aisin Seiki Co Ltd Urinalysis method and toilet equipment provided with urinalysis equipment
JP2000283981A (en) * 1999-03-30 2000-10-13 Sekisui Chem Co Ltd Method of measuring urine volume
JP2004279219A (en) * 2003-03-17 2004-10-07 Toto Ltd Urine information measuring device and western style toilet bowl unit using urine information measuring device

Also Published As

Publication number Publication date
JP2008268195A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
US20190090859A1 (en) Point of care urine tester and method
US20180168556A1 (en) Capillary Slit Urine Sampling System
JP5003552B2 (en) Urine component concentration measuring device, toilet device including urine component concentration measuring device, and solution component concentration measuring method
CN106872452A (en) A kind of free chlorine in-line analyzer and its application method
US10823665B2 (en) Smart toilet seat with excrement occult blood detection
KR910004247B1 (en) Urine component detecting apparatus and a chamber pat which is attached with detecting urine apparatus
US20230102589A1 (en) Excreta sampling toilet and inline specimen analysis system and method
US20040194206A1 (en) Screening methods and kits for gastrointestinal diseases
JPH0539494Y2 (en)
JPH07301630A (en) Toilet bowl with urine component measuring device
JP3672413B2 (en) Stool component inspection device
JPH0517662Y2 (en)
JPH0529266B2 (en)
JPH0517660Y2 (en)
CN110106956A (en) One kind can monitor glucose in urine squatting pan
JPH0517658Y2 (en)
JPH0517659Y2 (en)
JPH0432612Y2 (en)
JPH0517657Y2 (en)
JP2732168B2 (en) Occult blood quantitative analyzer and health determination toilet
TW202208851A (en) Liquid detecting system
US20240076865A1 (en) Urinal with built-in urine detection
JP2005106621A (en) Toilet unit
JP3642132B2 (en) Stool collection device
JP2004077321A (en) Urine inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5003552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees