JP5002765B2 - Processing method - Google Patents

Processing method Download PDF

Info

Publication number
JP5002765B2
JP5002765B2 JP2005289243A JP2005289243A JP5002765B2 JP 5002765 B2 JP5002765 B2 JP 5002765B2 JP 2005289243 A JP2005289243 A JP 2005289243A JP 2005289243 A JP2005289243 A JP 2005289243A JP 5002765 B2 JP5002765 B2 JP 5002765B2
Authority
JP
Japan
Prior art keywords
heat
processing
gas
processing furnace
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005289243A
Other languages
Japanese (ja)
Other versions
JP2007101021A (en
Inventor
謙也 岡崎
洋二 杉浦
孝 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2005289243A priority Critical patent/JP5002765B2/en
Publication of JP2007101021A publication Critical patent/JP2007101021A/en
Application granted granted Critical
Publication of JP5002765B2 publication Critical patent/JP5002765B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は,処理方法に関する。 The present invention also relates to the processing how.

還元鉄の製造方法として,酸化鉄を含有する鉄化合物を処理炉に入れ,水素等を含有する還元雰囲気中で加熱して,酸化物を還元する処理方法が知られている(特許文献1,2参照。)。   As a method for producing reduced iron, a treatment method is known in which an iron compound containing iron oxide is placed in a treatment furnace and heated in a reducing atmosphere containing hydrogen or the like to reduce the oxide (Patent Document 1, Patent Document 1). 2).

特開平11−106811号公報JP-A-11-106811 特開2004−225104号公報JP 2004-225104 A

上記処理炉内で行われる還元反応は吸熱反応であり,温度低下が生じるため,処理炉内は積極的に加熱する必要がある。しかしながら,従来の処理方法にあっては,処理炉の加熱効率を向上させることは難しかった。また,処理炉の加熱に使用する電気ヒーター等の加熱手段の負荷が大きく,電気料金などの加熱に要するコストが高い問題があった。特に,還元反応が開始された直後は,処理炉内の温度低下が著しく,処理炉内の温度を所定の値に上昇させるまでに長時間を要していた。そのため,処理効率を向上させることができなかった。   Since the reduction reaction performed in the processing furnace is an endothermic reaction and the temperature is lowered, the processing furnace needs to be actively heated. However, in the conventional processing method, it is difficult to improve the heating efficiency of the processing furnace. In addition, the load of heating means such as an electric heater used to heat the processing furnace is large, and there is a problem that the cost required for heating such as an electricity bill is high. In particular, immediately after the start of the reduction reaction, the temperature in the processing furnace has decreased significantly, and it took a long time to raise the temperature in the processing furnace to a predetermined value. As a result, the processing efficiency could not be improved.

本発明は,上記の点に鑑みてなされたものであり,吸熱反応が生じても,処理炉内を効率的に加熱できる処理方法を提供することを目的とする The present invention has been made in view of the above, even if the endothermic reaction, and to provide a processing method that can efficiently heat the inside of the processing furnace.

上記課題を解決するため,本発明によれば,被処理体を吸熱反応によって処理する処理方法であって,被処理体を処理炉内に投入する前に,加熱した処理ガスを処理炉内に供給しながら前記処理炉内を排気し,前記処理炉内から排気された排ガスの熱を蓄熱器に蓄熱させ,その後,前記処理炉内に被処理体を投入し,被処理体の吸熱反応処理を開始させ,前記吸熱反応処理を行う際は,前記処理炉内から排気された排ガスを前記蓄熱器に通過させ,前記蓄熱によって昇温させ,前記蓄熱によって昇温された排ガスと前記処理炉内に供給される処理ガスとの間で熱交換を行わせることで,前記処理ガスを加熱して,前記処理炉内に供給することを特徴とする,処理方法が提供される。 In order to solve the above problems , according to the present invention, there is provided a processing method for processing an object to be processed by an endothermic reaction, wherein the heated processing gas is introduced into the processing furnace before the object to be processed is put into the processing furnace. While exhausting, the inside of the processing furnace is exhausted, the heat of the exhaust gas exhausted from the inside of the processing furnace is stored in a regenerator, and then the object to be processed is put into the processing furnace, and the endothermic reaction treatment of the object to be processed is performed. When the endothermic reaction treatment is performed, the exhaust gas exhausted from the inside of the processing furnace is passed through the regenerator, the temperature is increased by the heat storage, and the exhaust gas heated by the heat storage and the inside of the processing furnace are A processing method is provided in which the processing gas is heated and supplied into the processing furnace by performing heat exchange with the processing gas supplied to the processing furnace.

この処理方法にあっては,前記熱交換によって加熱した前記処理ガスを,さらにヒーターによって加熱した後,前記処理炉内に供給するようにしても良い。また,前記排ガスを,前記処理炉に処理ガスとして供給しても良い。前記被処理体は酸化物を含有し,前記処理ガスは水素を含有し,前記吸熱反応は,酸化物を還元する還元反応であるとしてもよい。   In this processing method, the processing gas heated by the heat exchange may be further heated by a heater and then supplied into the processing furnace. Further, the exhaust gas may be supplied to the processing furnace as a processing gas. The object to be treated may contain an oxide, the treatment gas may contain hydrogen, and the endothermic reaction may be a reduction reaction that reduces the oxide.

本発明によれば,被処理体の処理が開始される前に,処理炉内に加熱した処理ガスを供給し,処理炉から排出された排ガスを蓄熱器に導入することで,排ガスの熱を蓄熱させることができる。被処理体の処理が開始されてからは,蓄熱器に蓄熱された熱を利用して,処理炉に供給される前の処理ガスを加熱してから,処理炉に供給することができる。従って,吸熱反応が生じても,処理炉内を効率的に加熱でき,ヒーターの負荷を低減できる。   According to the present invention, before the processing of the object to be processed is started, the heated processing gas is supplied into the processing furnace, and the exhaust gas discharged from the processing furnace is introduced into the regenerator so that the heat of the exhaust gas is reduced. Heat can be stored. After the processing of the object to be processed is started, the processing gas before being supplied to the processing furnace can be heated using the heat stored in the heat accumulator and then supplied to the processing furnace. Therefore, even if an endothermic reaction occurs, the inside of the processing furnace can be efficiently heated and the load on the heater can be reduced.

以下,本発明の好ましい実施形態を,被処理体を還元処理する処理装置に基づいて説明する。図1に示すように,本実施形態にかかる処理装置1は,被処理体が投入される処理室を有する処理炉2,処理炉2内(処理室)に水素(H)等を含有する還元性の処理ガスを供給する供給路3,処理炉2内から処理後の処理ガス等を排ガスとして排出する排出路4を備えている。被処理体は,酸化物としての酸化鉄(FeO)を含有する還元鉄粉である。 Hereinafter, a preferred embodiment of the present invention will be described based on a processing apparatus that performs a reduction process on an object to be processed. As shown in FIG. 1, the processing apparatus 1 according to the present embodiment contains hydrogen (H 2 ) or the like in a processing furnace 2 having a processing chamber into which an object to be processed is charged and in the processing furnace 2 (processing chamber). A supply path 3 for supplying a reducing process gas, and a discharge path 4 for discharging the treated process gas and the like from the process furnace 2 as exhaust gas are provided. The object to be processed is reduced iron powder containing iron oxide (FeO) as an oxide.

供給路3には,熱交換器10,処理炉2内の雰囲気を加熱するための加熱手段である電気ヒーター11が,上流側から処理炉2側に向かってこの順に設けられている。排出路4には,排ガスの熱を蓄熱する蓄熱器15及び熱交換器10が,処理炉2側から下流側に向かってこの順に介設されている。また,供給路3の上流端と排出路4の下流端は,送風機(ブロワ)18に接続されている。かかる構成においては,排出路4によって処理炉2の内部から排出された排ガスは,送風機18の作動により,供給路3に導入され,再び処理炉2の内部に処理ガスとして供給される。即ち,供給路3,処理炉2内,排出路4の順に処理ガスを循環させる循環ライン20が構成されている。また,排出路4において,熱交換器10と送風機18との間には,未使用の処理ガスを供給する供給源22に接続された導入路23が介設されている。導入路23は,切換開閉弁25を介して,排出路4に接続されている。この切換開閉弁25の操作により,導入路23から送風機18を介して供給路3に処理ガスが導入される状態と,排出路4から送風機18を介して供給路3に処理ガスが導入される状態と,を切り換えることができる。   In the supply path 3, an electric heater 11 that is a heating means for heating the atmosphere in the heat exchanger 10 and the processing furnace 2 is provided in this order from the upstream side toward the processing furnace 2 side. A heat accumulator 15 and a heat exchanger 10 for accumulating the heat of the exhaust gas are interposed in the discharge path 4 in this order from the processing furnace 2 side to the downstream side. The upstream end of the supply path 3 and the downstream end of the discharge path 4 are connected to a blower 18. In such a configuration, the exhaust gas discharged from the inside of the processing furnace 2 through the discharge path 4 is introduced into the supply path 3 by the operation of the blower 18 and is again supplied as processing gas into the processing furnace 2. That is, a circulation line 20 for circulating the processing gas in the order of the supply path 3, the processing furnace 2, and the discharge path 4 is configured. Further, in the discharge path 4, an introduction path 23 connected to a supply source 22 that supplies unused processing gas is interposed between the heat exchanger 10 and the blower 18. The introduction path 23 is connected to the discharge path 4 via a switching on / off valve 25. By the operation of the switching on-off valve 25, the processing gas is introduced from the introduction path 23 into the supply path 3 via the blower 18, and the processing gas is introduced from the discharge path 4 into the supply path 3 via the blower 18. The state can be switched.

熱交換器10には,供給路3において送風機18から処理炉2に向かう途中の処理ガスが導入されるとともに,排出路4において蓄熱器15から送風機18に向かう途中の排ガスが導入される。即ち,蓄熱器15の蓄熱によって昇温された排ガスが,排出路4において蓄熱器15の下流側に設けられた熱交換器10に供給され,排ガスと供給路3から処理炉2に供給される前の処理ガスとの間で,非接触状態で熱交換が行われることにより,処理ガスが加熱されるようになっている。このように蓄熱器15の蓄熱を利用して熱交換器10にて予備加熱された処理ガスは,供給路3において熱交換器10の下流側に設けられたヒーター11によって,さらに所定温度まで昇温された後,処理炉2に供給される。こうして,加熱された処理ガスにより,蓄熱器15の蓄熱とヒーター11の熱が処理炉2内に運ばれ,処理炉2内が加熱される構成になっている。   In the heat exchanger 10, a processing gas on the way from the blower 18 to the processing furnace 2 is introduced in the supply path 3, and an exhaust gas on the way from the heat accumulator 15 to the blower 18 is introduced in the discharge path 4. That is, the exhaust gas heated by the heat storage of the heat accumulator 15 is supplied to the heat exchanger 10 provided on the downstream side of the heat accumulator 15 in the discharge path 4 and supplied to the processing furnace 2 from the exhaust gas and the supply path 3. By performing heat exchange with the previous process gas in a non-contact state, the process gas is heated. The processing gas preheated in the heat exchanger 10 using the heat storage of the heat accumulator 15 in this way is further raised to a predetermined temperature by the heater 11 provided on the downstream side of the heat exchanger 10 in the supply path 3. After being heated, it is supplied to the processing furnace 2. Thus, the heated processing gas causes the heat storage of the heat accumulator 15 and the heat of the heater 11 to be carried into the processing furnace 2 so that the processing furnace 2 is heated.

図2に示すように,蓄熱器15は,流体としての排ガスが導入されるケーシング30,ケーシング30内に排ガスを導入する導入口31,及び,ケーシング30内から排ガスを導出する導出口32を備えている。ケーシング30の内部には,排ガスに接触して熱を蓄熱する蓄熱体33が備えられている。   As shown in FIG. 2, the heat accumulator 15 includes a casing 30 into which exhaust gas as a fluid is introduced, an inlet 31 for introducing exhaust gas into the casing 30, and an outlet 32 for deriving exhaust gas from the casing 30. ing. Inside the casing 30 is provided a heat storage body 33 that contacts the exhaust gas and stores heat.

ケーシング30は,4つの平板状の側壁を有する略角筒状をなす筒状部30aを備え,さらに,筒状部30aによって囲まれた空間の上部を閉塞する天井部30b,筒状部30aによって囲まれた空間の下部を閉塞する底部30cを備えている。底部30cは,筒状部30aを構成する各側壁の下部から内側に向かうようにそれぞれ設けられた,4つの平板状の底板からなり,各底板は,側壁側から内側に向かうに従い次第に下方に向かうように,傾斜させられている。従って,底部30cは,上方から下方に向かうに従い窄められた略四角錐面状に形成されている。また,図3に示すように,底部30cの下面周縁部には,外部の載置台や床面等に対してケーシング30を支持させるケーシング支持部材としての支柱35が,複数箇所,例えば8箇所に取り付けられている。   The casing 30 includes a cylindrical portion 30a having a substantially rectangular tube shape having four flat side walls, and further includes a ceiling portion 30b and a cylindrical portion 30a that closes an upper portion of a space surrounded by the cylindrical portion 30a. The bottom part 30c which obstruct | occludes the lower part of the enclosed space is provided. The bottom portion 30c is composed of four flat bottom plates provided inward from the lower portions of the side walls constituting the cylindrical portion 30a, and each bottom plate gradually moves downward as it goes inward from the side walls. So that it is tilted. Therefore, the bottom 30c is formed in a substantially quadrangular pyramid shape that is narrowed from the top to the bottom. Further, as shown in FIG. 3, support columns 35 as casing support members for supporting the casing 30 with respect to an external mounting table, a floor surface or the like are provided at a plurality of locations, for example, 8 locations, on the peripheral surface of the bottom surface of the bottom portion 30c. It is attached.

ケーシング30は,2枚以上の金属板を溶接加工などで接合させることにより形成されているが,図4に示すように,筒状部30aの側壁とその側壁に繋がる底部30cの底板との間の各角部37は,金属板を曲げ加工することにより形成することが好ましく,角部37には,溶接等による金属板同士の継ぎ目が無いことが好ましい。そうすれば,角部37の強度を確保することができ,角部37において亀裂や破断等の損傷が生じることを防止できる。例えば,筒状部30aと底部30cが角部37において溶接により継ぎ合わせられている場合,ケーシング30内が加熱されると,熱膨張により,筒状部30aの金属板は下方に向かって伸長しようとし,底部30cの金属板は,筒状部30a側に向かって斜め上方に伸長しようとする。そのため,角部37に応力が集中し,亀裂が発生するおそれがある。これに対し,角部37に継ぎ目が無い場合,筒状部30aや底部30cが熱膨張したときの耐久性を増すことができる。   The casing 30 is formed by joining two or more metal plates by welding or the like. As shown in FIG. 4, the casing 30 is provided between the side wall of the cylindrical portion 30a and the bottom plate of the bottom portion 30c connected to the side wall. Each of the corner portions 37 is preferably formed by bending a metal plate, and the corner portion 37 preferably has no joint between the metal plates by welding or the like. If it does so, the intensity | strength of the corner | angular part 37 can be ensured and it can prevent that damage, such as a crack and a fracture | rupture, occurs in the corner | angular part 37. For example, when the cylindrical portion 30a and the bottom portion 30c are joined together by welding at the corner portion 37, when the inside of the casing 30 is heated, the metal plate of the cylindrical portion 30a tends to expand downward due to thermal expansion. The metal plate of the bottom portion 30c tends to extend obliquely upward toward the cylindrical portion 30a side. For this reason, stress concentrates on the corner portion 37 and a crack may occur. On the other hand, when the corner portion 37 has no seam, durability when the cylindrical portion 30a and the bottom portion 30c are thermally expanded can be increased.

なお,図示の例では,底部30cの上部と筒状部30aの下部は,連続した一枚の金属板41を曲げ変形させることにより,一体的に成形されており,筒状部30aは,金属板41において曲げ変形させた部分より上側の平板状の部分と,他の金属板42とによって構成されている。金属板42の下縁部は,金属板41の上縁部に対し,溶接加工により接合させられている。金属板41,42同士の継ぎ目43は,後述する保持板52の上面とほぼ同じ高さに沿って配置されている。   In the illustrated example, the upper part of the bottom part 30c and the lower part of the cylindrical part 30a are integrally formed by bending and deforming a single continuous metal plate 41, and the cylindrical part 30a is made of metal. The plate 41 is constituted by a flat plate-like portion above the bent portion and another metal plate 42. The lower edge of the metal plate 42 is joined to the upper edge of the metal plate 41 by welding. The joint 43 between the metal plates 41 and 42 is disposed along substantially the same height as the upper surface of the holding plate 52 described later.

ケーシング30の内面及び外面には,断熱性を有する内部保温材45,外部保温材46がそれぞれ備えられている。内部保温材45は,筒状部30a,天井部30b,底部30cの内側の面全体を覆うように,所定の厚さの層状に設けられている。外部保温材46は,筒状部30a,天井部30b,底部30cの外側の面全体を覆うように,所定の厚さの層状に設けられている。内部保温材45の材質としては,例えばセラミックファイバー(ニチアス株式会社製,商品名:ファインフレックス)等を用いても良い。外部保温材46の材質としては,例えばグラスウール等を用いても良い。このように内部保温材45を設けることにより,ケーシング30の耐熱性及びケーシング30内の保温性を向上させることができる。また,外部保温材46を設けることにより,ケーシング30内の保温性をさらに向上させることができる。   An inner heat insulating material 45 and an outer heat insulating material 46 having heat insulation properties are respectively provided on the inner surface and the outer surface of the casing 30. The internal heat insulating material 45 is provided in layers having a predetermined thickness so as to cover the entire inner surface of the cylindrical portion 30a, the ceiling portion 30b, and the bottom portion 30c. The external heat insulating material 46 is provided in a layer shape having a predetermined thickness so as to cover the entire outer surface of the cylindrical portion 30a, the ceiling portion 30b, and the bottom portion 30c. As a material of the internal heat insulating material 45, for example, ceramic fiber (manufactured by NICHIAS Corporation, trade name: Fine Flex) may be used. As the material of the external heat insulating material 46, for example, glass wool or the like may be used. By providing the internal heat insulating material 45 in this way, the heat resistance of the casing 30 and the heat insulating property in the casing 30 can be improved. Further, by providing the external heat retaining material 46, the heat retaining property in the casing 30 can be further improved.

図2に示すように,導入口31は,蓄熱体33の上方において,天井部30bの中央部に開口されている。導入口31には,排ガスを処理炉2側から蓄熱器15に送気する上流側の排出路4aが接続されている。導入口31の下方において,導入口31と蓄熱体33との間には,導入口31から導入された排ガスを導入口31の下方から筒状部30aに向かう外側まで分散させる分散板47が設けられている。   As shown in FIG. 2, the introduction port 31 is opened at the center of the ceiling portion 30 b above the heat storage body 33. Connected to the inlet 31 is an upstream discharge path 4 a for sending exhaust gas from the processing furnace 2 side to the heat accumulator 15. Below the introduction port 31, a dispersion plate 47 is provided between the introduction port 31 and the heat storage body 33 to disperse the exhaust gas introduced from the introduction port 31 from below the introduction port 31 to the outside toward the cylindrical portion 30a. It has been.

導出口32は,蓄熱体33及び後述する蓄熱体保持体51の下方において,底部30cの中央下端部に開口されている。導出口32には,排ガスを蓄熱器15から熱交換器10に送気する下流側の排出路4bが接続されている。   The lead-out port 32 is opened at the center lower end portion of the bottom portion 30c below the heat storage body 33 and a heat storage body holding body 51 described later. Connected to the outlet 32 is a downstream discharge path 4 b for sending exhaust gas from the regenerator 15 to the heat exchanger 10.

蓄熱体33は,複数の略方形をなす薄板状の蓄熱材50によって構成されている。各蓄熱材50は,互いに略平行な姿勢で,それぞれ略鉛直方向(上下方向)に向けて立設させられており,また,略水平方向(横方向)において,隣り合う蓄熱材50同士の間に所定間隔を空けて並べて備えられている。   The heat storage body 33 is configured by a thin plate-shaped heat storage material 50 having a plurality of substantially square shapes. Each of the heat storage materials 50 is erected in a substantially parallel posture in the substantially vertical direction (vertical direction), and between the adjacent heat storage materials 50 in the substantially horizontal direction (lateral direction). Are arranged side by side with a predetermined interval.

また,蓄熱体33は,ケーシング30内の底部30cに設けられた蓄熱体保持体51によって保持されている。蓄熱体保持体51は,蓄熱体33を載せる略格子状の保持板52と,保持板52を載せる架台53とを備えている。   The heat storage body 33 is held by a heat storage body holding body 51 provided on the bottom 30 c in the casing 30. The heat storage body holding body 51 includes a substantially lattice-shaped holding plate 52 on which the heat storage body 33 is placed and a mount 53 on which the holding plate 52 is placed.

図5に示すように,保持板52は,複数の細長い縦板52aと横板52bとによって構成された格子状をなしており,各縦板52a,横板52bによって囲まれた複数の略正方形状の開口,即ち,保持板52に上下方向に貫通させて設けられた連通口52cを備えている。縦板52aは,所定の高さにおいて長さ方向を横向きにして延設されており,また,互いに略平行に,所定間隔を空けて並べて設けられている。横板52bは,各縦板52aに対して略垂直に交差するように,所定の高さにおいて長さ方向を横向きにして延設されており,また,互いに略平行に,所定間隔を空けて並べて設けられている。各蓄熱材50は,例えば縦板52aと略平行な方向に向けられ,下辺部を複数の横板52bの上縁に渡って接触させるようにして,保持板52の上面に載せられて保持されている。導入口31から導入された排ガスは,蓄熱体33の各蓄熱材50の間の隙間を通って下降し,各連通口52cを介して,保持板52の下方に流出し,導出口32によって導出されるようになっている。なお,保持板52の材質としては,剛性と耐熱性を有する材質を使用することが好ましく,例えばSUS304等の鋼材を用いても良い。   As shown in FIG. 5, the holding plate 52 has a lattice shape constituted by a plurality of elongated vertical plates 52a and horizontal plates 52b, and a plurality of substantially square shapes surrounded by the vertical plates 52a and the horizontal plates 52b. A communication opening 52c provided through the holding plate 52 in the vertical direction is provided. The vertical plates 52a are extended at a predetermined height with the length direction turned sideways, and are arranged in parallel with each other at a predetermined interval. The horizontal plates 52b are extended in a predetermined height at a predetermined height so as to cross each vertical plate 52a substantially vertically, and are substantially parallel to each other with a predetermined interval. It is provided side by side. Each heat storage material 50 is directed, for example, in a direction substantially parallel to the vertical plate 52a, and is placed on and held on the upper surface of the holding plate 52 so that the lower side is in contact with the upper edges of the plurality of horizontal plates 52b. ing. The exhaust gas introduced from the introduction port 31 descends through the gaps between the respective heat storage materials 50 of the heat storage body 33, flows out below the holding plate 52 through the respective communication ports 52 c, and is led out by the outlet port 32. It has come to be. In addition, as a material of the holding plate 52, it is preferable to use a material having rigidity and heat resistance. For example, a steel material such as SUS304 may be used.

図6に示すように,架台53は,筒状部30aの各側壁に沿って略方形の枠状に形成された枠部材61と,枠部材61の下面と底部30cとの間に設けられた複数の枠支持部材62とを備えている。枠部材61は枠支持部材62によって支持されており,枠支持部材62を介して,ケーシング30に取り付けられている。枠部材61の上面には,複数の断熱材63が備えられている。   As shown in FIG. 6, the gantry 53 is provided between the frame member 61 formed in a substantially rectangular frame shape along each side wall of the cylindrical portion 30a, and the lower surface of the frame member 61 and the bottom portion 30c. And a plurality of frame support members 62. The frame member 61 is supported by a frame support member 62 and is attached to the casing 30 via the frame support member 62. A plurality of heat insulating materials 63 are provided on the upper surface of the frame member 61.

図4に示すように,枠部材61は,底部61a,内側の側壁61b,及び,外側の側壁61cを備えている。側壁61bは,底部61aの内側の縁部に沿って,底部61aの上方に向かって立設されている。側壁61cは,底部61aの外側の縁部に沿って,底部61aの上方に向かって立設されている。即ち,枠部材61の各辺部の断面形状は,上方に開口を向けた略コの字状になっており,側壁61bと側壁61cとの間には,枠部材61の上面において開口された溝65が設けられている。溝65は,平面視において枠部材61の上面に沿って設けられている。   As shown in FIG. 4, the frame member 61 includes a bottom portion 61a, an inner side wall 61b, and an outer side wall 61c. The side wall 61b is provided upright above the bottom 61a along the inner edge of the bottom 61a. The side wall 61c is erected upward from the bottom 61a along the outer edge of the bottom 61a. That is, the cross-sectional shape of each side portion of the frame member 61 is substantially U-shaped with the opening facing upward, and an opening is formed between the side wall 61b and the side wall 61c on the upper surface of the frame member 61. A groove 65 is provided. The groove 65 is provided along the upper surface of the frame member 61 in plan view.

断熱材63は,略直方体形状をなし,上面が略水平になるようにして,溝65に挿入されている。また,枠部材61及び溝65に沿って,複数の断熱材63が略方形に並べて設けられている(図6参照)。各断熱材63の高さは,溝65の深さより高く,断熱材63の上部が溝65より上方に突出するようになっている。断熱材63の材質としては,例えばセラミックスを用いても良い。   The heat insulating material 63 has a substantially rectangular parallelepiped shape, and is inserted into the groove 65 so that the upper surface is substantially horizontal. A plurality of heat insulating materials 63 are arranged in a substantially square shape along the frame member 61 and the groove 65 (see FIG. 6). The height of each heat insulating material 63 is higher than the depth of the groove 65, and the upper portion of the heat insulating material 63 protrudes above the groove 65. As a material of the heat insulating material 63, for example, ceramics may be used.

かかる構成において,保持板52は,保持板52の下面周縁部が略方形に並べられた複数の断熱材63の上面に載せられた状態で,架台53上に支持されている。枠部材61は保持板52に接触しておらず,断熱材63のみが保持板52に接触させられている。こうして,保持板52と架台53との間に断熱材63が挟まれていることにより,蓄熱体33から保持板52,架台53を介してケーシング30の底部30cに熱が伝導して外部に逃げることを抑制できる。従って,蓄熱体33の蓄熱を効率的に行えるようになっている。   In such a configuration, the holding plate 52 is supported on the pedestal 53 in a state where the lower peripheral edge portion of the holding plate 52 is placed on the upper surfaces of a plurality of heat insulating materials 63 arranged in a substantially square shape. The frame member 61 is not in contact with the holding plate 52, and only the heat insulating material 63 is brought into contact with the holding plate 52. Thus, since the heat insulating material 63 is sandwiched between the holding plate 52 and the gantry 53, heat is conducted from the heat accumulator 33 to the bottom 30c of the casing 30 via the holding plate 52 and the gantry 53 and escapes to the outside. This can be suppressed. Therefore, heat storage of the heat storage body 33 can be performed efficiently.

枠支持部材62は,ケーシング30の底部30cにおいて,筒状部30aに近接した周縁部に沿って並べて配置されている。各枠支持部材62の下端部は,ケーシング30の底部30cの傾斜した上面に取り付けられており,上端部は枠部材61の底部61aの下面に取り付けられている。なお,枠支持部材62の上端部及び下端部は,枠部材61及び底部30cに対して溶接加工等により固着されている。   The frame support members 62 are arranged side by side along the peripheral edge adjacent to the cylindrical portion 30a at the bottom 30c of the casing 30. The lower end portion of each frame support member 62 is attached to the inclined upper surface of the bottom portion 30 c of the casing 30, and the upper end portion is attached to the lower surface of the bottom portion 61 a of the frame member 61. The upper end portion and the lower end portion of the frame support member 62 are fixed to the frame member 61 and the bottom portion 30c by welding or the like.

なお,蓄熱体保持体51の周縁部(保持板52及び架台53の周縁部)は,内部保温材45の内部に設けられていても外部に設けられていても良いが,ケーシング30の側壁(筒状部30a)には,接触していないことが好ましい。保持板52と筒状部30aとの間に設ける隙間は,例えば蓄熱時のケーシング30内の温度下における,縦板52aの端部や横板52bの端部の熱膨張による移動量よりも,大きくすることが好ましい。即ち,縦板52aや横板52bが熱膨張により横向きに伸長しても,筒状部30aに接触したり,ケーシング30が保持板52によって内側から押されたりしないようにすることが好ましい。この場合,保持板52とケーシング30との間で応力が発生することを防止でき,保持板52やケーシング30が応力により損傷することを防止できる。また,架台53と筒状部30aの内面との間にも,隙間が形成されていることが好ましい。即ち,架台53(側壁61c)が熱膨張により筒状部30a側に向かうように変形しても,筒状部30aに接触しないことが好ましい。これにより,架台53とケーシング30との間で応力が発生することを防止でき,架台53やケーシング30が損傷することを防止できる。   The peripheral part of the heat storage body holding body 51 (the peripheral part of the holding plate 52 and the gantry 53) may be provided inside or outside the internal heat insulating material 45, but the side wall ( The cylindrical part 30a) is preferably not in contact. The gap provided between the holding plate 52 and the cylindrical portion 30a is, for example, more than the amount of movement due to thermal expansion of the end of the vertical plate 52a and the end of the horizontal plate 52b under the temperature in the casing 30 during heat storage. It is preferable to enlarge it. That is, it is preferable that the vertical plate 52a and the horizontal plate 52b do not come into contact with the cylindrical portion 30a or the casing 30 is not pushed from the inside by the holding plate 52 even if the vertical plate 52a and the horizontal plate 52b extend sideways due to thermal expansion. In this case, it is possible to prevent stress from being generated between the holding plate 52 and the casing 30, and it is possible to prevent the holding plate 52 and the casing 30 from being damaged by the stress. Moreover, it is preferable that a gap is also formed between the gantry 53 and the inner surface of the cylindrical portion 30a. That is, even if the gantry 53 (side wall 61c) is deformed so as to be directed toward the cylindrical portion 30a due to thermal expansion, it is preferable not to contact the cylindrical portion 30a. Thereby, it can prevent that a stress generate | occur | produces between the mount frame 53 and the casing 30, and can prevent the mount frame 53 and the casing 30 from being damaged.

以上のように,蓄熱体33と蓄熱体保持体51は,ケーシング30の底部30cに対して支持されており,蓄熱体保持体51から底部30cに対して荷重が加えられるようになっている。そして,ケーシング30の側壁に対しては,蓄熱体33と蓄熱体保持体51が接触していない状態になっており,蓄熱体33と蓄熱体保持体51からケーシング30の側壁には荷重が加えられず,ケーシング30の側壁の損傷を防止できるようになっている。   As described above, the heat storage body 33 and the heat storage body holding body 51 are supported by the bottom 30c of the casing 30, and a load is applied from the heat storage body holding body 51 to the bottom 30c. The heat storage body 33 and the heat storage body holding body 51 are not in contact with the side wall of the casing 30, and a load is applied to the side wall of the casing 30 from the heat storage body 33 and the heat storage body holding body 51. Thus, damage to the side wall of the casing 30 can be prevented.

なお,保持板52,枠部材61,断熱材63は,互いに固着されていないので,ケーシング30内が加熱されたときに,保持板52,架台53,断熱材63がそれぞれ熱膨張しても,互いにずれながら変形することが可能になっている。従って,保持板52,枠部材61,断熱材63が応力により損傷することを防止できる。   Since the holding plate 52, the frame member 61, and the heat insulating material 63 are not fixed to each other, even if the holding plate 52, the base 53, and the heat insulating material 63 are thermally expanded when the inside of the casing 30 is heated, It is possible to deform while shifting from each other. Therefore, it is possible to prevent the holding plate 52, the frame member 61, and the heat insulating material 63 from being damaged by stress.

図3及び図4に示すように,ケーシング30の支柱35は,底部30cの各周辺部に対してそれぞれ2本ずつ,合計で8本設けられており,導出口32を囲むように配置されている。各支柱35は略直棒状をなし,長さ方向を略鉛直方向に向けて設けられている。各支柱35の上端部は,底部30cの外側の面,即ち下面に対して,溶接等により固着されている。各支柱35の下端部は,蓄熱器15の外部の載置台や床面等に載せられる。   As shown in FIG. 3 and FIG. 4, two columns 35 of the casing 30 are provided for each peripheral portion of the bottom portion 30 c, a total of eight, and are arranged so as to surround the outlet port 32. Yes. Each support column 35 has a substantially straight bar shape, and is provided with its length direction substantially vertical. The upper end portion of each column 35 is fixed to the outer surface of the bottom portion 30c, that is, the lower surface by welding or the like. The lower end of each column 35 is placed on a mounting table or a floor surface outside the heat accumulator 15.

各支柱35は,枠部材61の真下,即ち,平面視において枠部材61と重なる位置に配置されていることが好ましい。また,枠支持部材62の真下,即ち,側面視において,枠支持部材62と略同一の略鉛直な中心軸A上に配置されていることが好ましい。このようにすると,底部30cにおける枠部材61や枠支持部材62の真下の部分を,支柱35によって集中的に補強でき,底部30cが蓄熱体33,保持板52及び架台53の荷重によって損傷を受けることを防止できる。そして,蓄熱体33,保持板52及び架台53の荷重を,支柱35によってバランスよく受け止めることができる。また,蓄熱体33,保持板52,架台53等の荷重が,各支柱35に対して略鉛直方向に作用し,各支柱35が略鉛直方向に真っ直ぐに押される状態にすることができる。即ち,支柱35には主に中心軸A方向の圧縮応力が生じるようになり,架台53の外側や内側に向かう曲げ応力が生じることを抑制できる。従って,支柱35や底部30cの損傷を防止でき,蓄熱器15を確実に支持することができる。   Each support column 35 is preferably disposed directly below the frame member 61, that is, at a position overlapping the frame member 61 in plan view. In addition, it is preferable to be disposed just below the frame support member 62, that is, on a substantially vertical central axis A substantially the same as the frame support member 62 in a side view. In this way, the portion directly below the frame member 61 and the frame support member 62 in the bottom portion 30c can be reinforced intensively by the support column 35, and the bottom portion 30c is damaged by the load of the heat storage body 33, the holding plate 52, and the mount 53. Can be prevented. The loads of the heat storage body 33, the holding plate 52, and the gantry 53 can be received by the support column 35 with a good balance. Moreover, the load of the heat storage body 33, the holding plate 52, the pedestal 53, etc. can act on each column 35 in a substantially vertical direction, and each column 35 can be brought into a state of being pushed straight in the substantially vertical direction. That is, the column 35 is mainly subjected to compressive stress in the direction of the central axis A, and it is possible to suppress the occurrence of bending stress toward the outside or the inside of the gantry 53. Therefore, damage to the support column 35 and the bottom portion 30c can be prevented, and the heat accumulator 15 can be reliably supported.

次に,以上のように構成された処理装置1における処理方法について説明する。先ず,被処理体を処理炉2に投入する前に,処理炉2内を還元雰囲気にするとともに,処理炉2内の雰囲気を所定の温度に昇温させる前工程が行われる。即ち,供給路3によって還元性の処理ガスを処理炉2内に供給しながら,処理炉2内を排気させることにより,処理炉2内を還元性の雰囲気によってパージする。また,ヒーター11を作動させ,供給路3を通る処理ガスをヒーター11の発熱によって所定温度に加熱し,加熱した高温の処理ガスを処理炉2内に供給することにより,処理炉2内を昇温させる。このとき,供給路3から処理炉2に供給された高温の処理ガスは,排気路4によって処理炉2から排ガスとして排気され,さらに蓄熱器15に導入される。そして,蓄熱器15において,排ガス(処理ガス)が有する熱の一部が奪われて,蓄熱体33に蓄熱される。   Next, a processing method in the processing apparatus 1 configured as described above will be described. First, before putting the object to be processed into the processing furnace 2, a pre-process for making the inside of the processing furnace 2 a reducing atmosphere and raising the atmosphere in the processing furnace 2 to a predetermined temperature is performed. That is, the inside of the processing furnace 2 is purged with a reducing atmosphere by exhausting the inside of the processing furnace 2 while supplying the reducing processing gas into the processing furnace 2 through the supply path 3. In addition, the heater 11 is operated, the processing gas passing through the supply path 3 is heated to a predetermined temperature by the heat generated by the heater 11, and the heated high-temperature processing gas is supplied into the processing furnace 2, thereby raising the inside of the processing furnace 2. Let warm. At this time, the high-temperature processing gas supplied from the supply path 3 to the processing furnace 2 is exhausted as exhaust gas from the processing furnace 2 through the exhaust path 4 and further introduced into the heat accumulator 15. In the heat accumulator 15, a part of the heat of the exhaust gas (process gas) is taken and stored in the heat accumulator 33.

蓄熱器15においては,排出路4aから導入口31を介してケーシング30内に排ガスが導入され,分散板47によって蓄熱体33の上方全体に拡散された後,蓄熱体33の蓄熱材50同士の間を通って下降する。排ガスが蓄熱材50同士の間を下降する際,排ガスの熱が蓄熱材50に伝達して,蓄熱材50が加熱され,排ガスは降温される。蓄熱材50同士の間を通過した排ガスは,保持板52の各連通口52cを介して保持板52の下方に流出し,ケーシング30内から導出口32を介して排出路4bによって導出される。   In the heat accumulator 15, the exhaust gas is introduced into the casing 30 from the discharge path 4 a through the introduction port 31 and diffused to the entire upper part of the heat accumulator 33 by the dispersion plate 47, and then between the heat accumulators 50 of the heat accumulator 33. Descends through. When the exhaust gas descends between the heat storage materials 50, the heat of the exhaust gas is transmitted to the heat storage material 50, the heat storage material 50 is heated, and the exhaust gas is cooled. The exhaust gas that has passed between the heat storage materials 50 flows out of the holding plate 52 through the communication ports 52c of the holding plate 52 and is led out from the casing 30 through the outlet 32 by the discharge passage 4b.

こうして蓄熱材50に排ガスの熱が蓄熱されるが,蓄熱材50を支持する保持板52と架台53の間には断熱材63が設けられているので,蓄熱体33の熱がケーシング30から外部に逃がされることなく,効率的に蓄熱される。   Thus, the heat of the exhaust gas is stored in the heat storage material 50, but since the heat insulating material 63 is provided between the holding plate 52 that supports the heat storage material 50 and the mount 53, the heat of the heat storage body 33 is transferred from the casing 30 to the outside. The heat is stored efficiently without being lost.

蓄熱器15において降温された排ガスは,蓄熱器15から導出されて,送風機18の作動により,再び供給路3に処理ガスとして導入される。そして,再びヒーター11によって加熱された後,処理炉2に供給される。なお,この前工程においては,排出路4において蓄熱器15から熱交換器10に向かう排ガスの温度と,排出路4から供給路3に導入された処理ガスの温度とは,殆ど同じか,あるいは処理ガスの温度が自然放熱により排ガスよりも若干低くなる程度であり,熱交換器10においては,熱交換は殆ど行われない。   The exhaust gas lowered in temperature in the heat accumulator 15 is led out from the heat accumulator 15 and is again introduced into the supply path 3 as a processing gas by the operation of the blower 18. Then, after being heated again by the heater 11, it is supplied to the processing furnace 2. In this pre-process, the temperature of the exhaust gas from the heat accumulator 15 to the heat exchanger 10 in the discharge path 4 and the temperature of the processing gas introduced from the discharge path 4 to the supply path 3 are almost the same, or The temperature of the processing gas is slightly lower than the exhaust gas due to natural heat dissipation, and heat exchange is hardly performed in the heat exchanger 10.

こうして,ヒーター11の熱によって処理ガスを加熱し,ヒーター11の発熱の一部を処理ガスによって蓄熱器15に運びながら,処理炉2内を所定温度の還元雰囲気にしたら,処理炉2内に被処理体を投入し,処理炉2内を密閉状態にする。そして,処理炉2内の被処理体の還元処理(吸熱反応処理)工程を開始させる。還元処理中も,処理ガスはヒーター11によって加熱されながら,送風機18の作動により供給路3,処理炉2,排気路4の順に通過するように循環させられる。   In this way, when the processing gas is heated by the heat of the heater 11 and a part of the heat generated by the heater 11 is carried to the heat accumulator 15 by the processing gas while the inside of the processing furnace 2 is in a reducing atmosphere at a predetermined temperature, The processing body is charged and the inside of the processing furnace 2 is sealed. And the reduction process (endothermic reaction process) process of the to-be-processed object in the processing furnace 2 is started. Even during the reduction process, the processing gas is circulated so as to pass through the supply path 3, the processing furnace 2, and the exhaust path 4 by the operation of the blower 18 while being heated by the heater 11.

処理炉2内において,被処理体中の酸化鉄に処理ガス中の水素が供給されると,酸化鉄から酸素(O)が奪われる還元反応により,水分(HO)が発生し,酸化鉄が鉄に還元される。 In the processing furnace 2, when hydrogen in the processing gas is supplied to iron oxide in the object to be processed, moisture (H 2 O) is generated due to a reduction reaction in which oxygen (O) is deprived from the iron oxide. Iron is reduced to iron.

ここで,処理炉2内において生じる酸化鉄と水素との還元反応は,周囲の熱を奪う吸熱反応であるため,供給路3から処理炉2内に供給された処理ガスの温度は,処理炉2内から排出される排ガスの温度よりも低くなっている。即ち,ヒーター11の発熱によって処理ガスに与えられた熱の一部は,還元反応において吸熱され,蓄熱器15には,吸熱により冷却された排ガスが導入される。一方,蓄熱器15内の蓄熱材33には,前述した前工程において集められた熱が蓄熱されている。そのため,排ガスが蓄熱材33を通過すると,排ガスに蓄熱が与えられ,排ガスが昇温される。こうして,処理炉2から排出された直後よりも昇温された排ガスが,蓄熱器15から熱交換器10に導入される。   Here, since the reduction reaction between iron oxide and hydrogen generated in the processing furnace 2 is an endothermic reaction that takes away the surrounding heat, the temperature of the processing gas supplied from the supply path 3 into the processing furnace 2 is 2 is lower than the temperature of the exhaust gas discharged from inside. That is, a part of the heat given to the processing gas by the heat generated by the heater 11 is absorbed in the reduction reaction, and the heat storage 15 is introduced with the exhaust gas cooled by the heat absorption. On the other hand, the heat collected in the heat accumulator 15 stores the heat collected in the previous step. Therefore, when the exhaust gas passes through the heat storage material 33, the exhaust gas is stored with heat, and the exhaust gas is heated. In this way, the exhaust gas whose temperature is higher than that immediately after being discharged from the processing furnace 2 is introduced from the heat accumulator 15 into the heat exchanger 10.

熱交換器10においては,蓄熱器15において加熱された排ガスと,供給路3を通る処理ガスとの間で熱交換が行われ,排ガスから処理ガスに対して熱が与えられる。即ち,蓄熱器15と熱交換器10との間において,排ガスは,蓄熱器15の蓄熱を熱交換器10に運び処理ガスに伝達させる熱媒体として機能する。排ガスは,処理ガスの冷熱により冷却される。   In the heat exchanger 10, heat exchange is performed between the exhaust gas heated in the heat accumulator 15 and the processing gas passing through the supply path 3, and heat is applied from the exhaust gas to the processing gas. That is, between the heat accumulator 15 and the heat exchanger 10, the exhaust gas functions as a heat medium that carries the heat accumulated in the heat accumulator 15 to the heat exchanger 10 and transmits it to the processing gas. The exhaust gas is cooled by the cold heat of the processing gas.

熱交換器10から導出された排ガスは,排出路4から送風機18を介して供給路3に処理ガスとして供給される。   The exhaust gas derived from the heat exchanger 10 is supplied as a processing gas from the discharge path 4 to the supply path 3 via the blower 18.

供給路3においては,送風機18から熱交換器10に対して処理ガスが導入され,前述のように,排ガスとの間で熱交換が行われる。即ち,処理ガスに対して排ガスの熱が与えられ,処理ガスが加熱される。   In the supply path 3, the processing gas is introduced from the blower 18 to the heat exchanger 10, and heat exchange is performed with the exhaust gas as described above. That is, the heat of exhaust gas is given to the processing gas, and the processing gas is heated.

熱交換器10において加熱された処理ガスは,ヒーター11によってさらに高温に加熱された後,処理炉2に供給される。ここで,処理ガスは,ヒーター11によって加熱される前に,熱交換器10において予め予備加熱されているので,処理ガスを所定温度まで昇温させるために要するヒーター11の発熱量は,蓄熱器15や熱交換器10を設けない場合よりも,少ない発熱量に抑えることができる。従って,ヒーター11の電気料金などのランニングコストを削減することができる。特に,処理炉2内に被処理体を投入し還元処理を開始させた直後は,吸熱量が多く,排ガスの温度が急激に低下するので,ヒーター11のみで加熱する場合は,処理炉2内の温度や処理炉2内に供給する処理ガスの温度を所定温度に昇温させるまでの時間を短くすることが難しいが,蓄熱器15と熱交換器10によって処理ガスを予備加熱することにより,ヒーター11によって短時間で所定温度に昇温させることができ,還元処理を安定的に行うことができる。また,導入路23から供給路3に新たな処理ガスを供給する場合も,処理ガスを熱交換器10に通過させて予備加熱してからヒーター11に送ることができるので,処理ガスを効率的に加熱でき,ヒーター11のランニングコストを削減できる。   The processing gas heated in the heat exchanger 10 is heated to a higher temperature by the heater 11 and then supplied to the processing furnace 2. Here, since the processing gas is preheated in the heat exchanger 10 before being heated by the heater 11, the amount of heat generated by the heater 11 required to raise the temperature of the processing gas to a predetermined temperature is determined by the regenerator. As compared with the case where the heat exchanger 15 and the heat exchanger 10 are not provided, the calorific value can be reduced. Therefore, the running cost such as the electricity charge of the heater 11 can be reduced. In particular, immediately after the object to be processed is put into the processing furnace 2 and the reduction process is started, the endothermic amount is large and the temperature of the exhaust gas rapidly decreases. Although it is difficult to shorten the time required to raise the temperature of the gas and the temperature of the processing gas supplied into the processing furnace 2 to a predetermined temperature, by preheating the processing gas with the heat accumulator 15 and the heat exchanger 10, The heater 11 can raise the temperature to a predetermined temperature in a short time, and the reduction process can be performed stably. Further, when a new process gas is supplied from the introduction path 23 to the supply path 3, the process gas can be passed through the heat exchanger 10 and preheated before being sent to the heater 11. The running cost of the heater 11 can be reduced.

かかる処理装置1によれば,被処理体の還元処理工程が開始される前に,加熱された処理ガスを処理炉2に供給しながら,処理炉2から排出された排ガスを蓄熱器15に導入することで,排ガスの熱を蓄熱させることができる。還元処理工程が開始されてからは,蓄熱器15に蓄熱された熱を利用して,処理炉2に供給される前の処理ガスを予備加熱してから,ヒーター11によって加熱し,処理炉2に供給できる。従って,吸熱反応が生じても,処理炉2内を効率的に加熱でき,ヒーター11の負荷を低減できる。また,還元処理開始直後に処理炉2内の温度が急に下がっても,蓄熱器15の蓄熱を利用して処理ガスを加熱することで,処理炉2内の温度を迅速に昇温させることができる。これにより,還元反応の効率を向上させることができる。   According to the processing apparatus 1, the exhaust gas discharged from the processing furnace 2 is introduced into the heat accumulator 15 while the heated processing gas is supplied to the processing furnace 2 before the reduction process of the object to be processed is started. By doing so, the heat of the exhaust gas can be stored. After the reduction treatment process is started, the heat stored in the heat accumulator 15 is used to preheat the treatment gas before being supplied to the treatment furnace 2, and then heated by the heater 11. Can supply. Therefore, even if an endothermic reaction occurs, the inside of the processing furnace 2 can be efficiently heated, and the load on the heater 11 can be reduced. Further, even if the temperature in the processing furnace 2 suddenly decreases immediately after the start of the reduction process, the temperature in the processing furnace 2 can be quickly raised by heating the processing gas using the heat stored in the heat accumulator 15. Can do. Thereby, the efficiency of the reduction reaction can be improved.

また,蓄熱器15においては,蓄熱体33を蓄熱体保持体51によって保持し,蓄熱体保持体51をケーシング30の側壁に接触させないようにしたことにより,ケーシング30の側壁が損傷することを防止できる。従って,耐久性,耐熱性を向上させ,蓄熱器15の寿命を延ばすことができる。さらに,蓄熱体保持体51に断熱材65を設けたことにより,蓄熱体33からケーシング30に熱が逃げることを防止できる。従って,蓄熱を効率的に行うことができる。   Further, in the heat accumulator 15, the heat storage body 33 is held by the heat storage body holding body 51, and the heat storage body holding body 51 is prevented from contacting the side wall of the casing 30, thereby preventing the side wall of the casing 30 from being damaged. it can. Therefore, durability and heat resistance can be improved and the life of the heat accumulator 15 can be extended. Furthermore, by providing the heat storage body 51 with the heat insulating material 65, it is possible to prevent heat from escaping from the heat storage body 33 to the casing 30. Therefore, heat storage can be performed efficiently.

以上,本発明の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例または修正例に想到しうることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。例えば,以上の実施形態においては,酸化鉄を還元する装置及び方法について説明したが,本発明は,その他の酸化物を還元する装置及び方法にも適用できる。例えば酸化モリブデンの粉末を還元してモリブデン(Mo)を得る装置及び方法,また,酸化タングステンの粉末を還元してタングステン(W)を得る装置及び方法に適用できる。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes and modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to. For example, in the above embodiments, the apparatus and method for reducing iron oxide have been described, but the present invention can also be applied to apparatuses and methods for reducing other oxides. For example, the present invention can be applied to an apparatus and method for obtaining molybdenum (Mo) by reducing molybdenum oxide powder, and an apparatus and method for obtaining tungsten (W) by reducing tungsten oxide powder.

本発明者らは,処理装置1を用いた処理方法の実験を行った。図7に示すように,供給路3において,熱交換器10とヒーター11との間,ヒーター11と処理炉2との間に,それぞれ温度計T1,T2を設けた。また,排出路4において,処理炉2と蓄熱器15との間,蓄熱器15と熱交換器10との間,及び,熱交換器10と送風機18との間に,それぞれ温度計T3,T4,T5を設けた。そして,前工程において,処理炉2内の温度を610℃にした後,還元処理工程において,処理炉2内の温度の目標値を610℃とし,還元処理を開始させた。   The present inventors conducted an experiment of a processing method using the processing apparatus 1. As shown in FIG. 7, in the supply path 3, thermometers T <b> 1 and T <b> 2 are provided between the heat exchanger 10 and the heater 11 and between the heater 11 and the processing furnace 2, respectively. Further, in the discharge path 4, thermometers T3 and T4 are provided between the processing furnace 2 and the heat accumulator 15, between the heat accumulator 15 and the heat exchanger 10, and between the heat exchanger 10 and the blower 18, respectively. , T5. Then, after the temperature in the processing furnace 2 was set to 610 ° C. in the previous process, the target value of the temperature in the processing furnace 2 was set to 610 ° C. in the reduction processing process, and the reduction process was started.

還元反応を開始させた直後は,温度計T3の測定値が130℃程度まで降下したが,その後次第に上昇し,560℃程度になった。温度計T3の測定値が560℃であるとき,温度計T4の測定値は608℃,温度計T5の測定値は65℃,温度計T1の測定値は570℃,温度計T2の測定値は610℃であった。即ち,65℃程度で送風機18から送出された処理ガスの温度を,熱交換器10によって570℃程度の高温まで昇温させることができ,ヒーター11の負荷を大幅に減少させることができた。   Immediately after starting the reduction reaction, the measured value of the thermometer T3 dropped to about 130 ° C., but then gradually increased to about 560 ° C. When the measured value of thermometer T3 is 560 ° C., the measured value of thermometer T4 is 608 ° C., the measured value of thermometer T5 is 65 ° C., the measured value of thermometer T1 is 570 ° C., and the measured value of thermometer T2 is It was 610 ° C. That is, the temperature of the processing gas sent from the blower 18 at about 65 ° C. can be raised to a high temperature of about 570 ° C. by the heat exchanger 10, and the load on the heater 11 can be greatly reduced.

本発明は,例えば鉄,モリブデン,タングステンなどの各種金属を製造する際に用いられる処理方法に適用できる。 The present invention is applicable for example iron, molybdenum, the processing how that used in the production of various metal such as tungsten.

本実施の形態にかかる処理装置の構成を示した説明図である。It is explanatory drawing which showed the structure of the processing apparatus concerning this Embodiment. 蓄熱器の概略縦断面図である。It is a schematic longitudinal cross-sectional view of a heat storage device. 蓄熱器を底部側からみた状態を示した底面図である。It is the bottom view which showed the state which looked at the thermal accumulator from the bottom part side. 蓄熱器の蓄熱体保持体付近を拡大して示した縦断面図である。It is the longitudinal cross-sectional view which expanded and showed the thermal storage body holding body vicinity of the thermal storage device. 蓄熱体保持体の平面図である。It is a top view of a thermal storage body holder. 架台の概略斜視図である。It is a schematic perspective view of a mount. 実験において温度計を設けた位置を示した説明図である。It is explanatory drawing which showed the position which provided the thermometer in experiment.

符号の説明Explanation of symbols

1 処理装置
2 処理炉
3 供給路
4 排出路
10 熱交換器
11 ヒーター
15 蓄熱器
20 循環ライン
30 ケーシング
31 導入口
32 導出口
33 蓄熱体
51 蓄熱体保持体
52 保持板
53 架台
61 枠部材
62 枠支持部材
63 断熱材
DESCRIPTION OF SYMBOLS 1 Processing apparatus 2 Processing furnace 3 Supply path 4 Discharge path 10 Heat exchanger 11 Heater 15 Heat accumulator 20 Circulation line 30 Casing 31 Inlet port 32 Outlet port 33 Heat storage body 51 Heat storage body holder 52 Holding plate 53 Base 61 Frame member 62 Frame Support member 63 Insulation

Claims (4)

被処理体を吸熱反応によって処理する処理方法であって,A processing method for processing an object by an endothermic reaction,
被処理体を処理炉内に投入する前に,加熱した処理ガスを処理炉内に供給しながら前記処理炉内を排気し,前記処理炉内から排気された排ガスの熱を蓄熱器に蓄熱させ,  Before introducing the object to be processed into the processing furnace, the processing furnace is exhausted while supplying the heated processing gas into the processing furnace, and the heat of the exhaust gas exhausted from the processing furnace is stored in the regenerator. ,
その後,前記処理炉内に被処理体を投入し,被処理体の吸熱反応処理を開始させ,  Thereafter, the object to be processed is put into the processing furnace, and the endothermic reaction process of the object to be processed is started.
前記吸熱反応処理を行う際は,前記処理炉内から排気された排ガスを前記蓄熱器に通過させ,前記蓄熱によって昇温させ,  When performing the endothermic reaction treatment, exhaust gas exhausted from the processing furnace is passed through the regenerator, the temperature is increased by the heat storage,
前記蓄熱によって昇温された排ガスと前記処理炉内に供給される処理ガスとの間で熱交換を行わせることで,前記処理ガスを加熱して,前記処理炉内に供給することを特徴とする,処理方法。  The process gas is heated and supplied into the process furnace by causing heat exchange between the exhaust gas heated by the heat storage and the process gas supplied into the process furnace. Processing method.
前記熱交換によって加熱した前記処理ガスを,さらにヒーターによって加熱した後,前記処理炉内に供給することを特徴とする,請求項1に記載の処理方法。The processing method according to claim 1, wherein the processing gas heated by the heat exchange is further heated by a heater and then supplied into the processing furnace. 前記排ガスを,前記処理炉に処理ガスとして供給することを特徴とする,請求項1又は2に記載の処理方法。The processing method according to claim 1, wherein the exhaust gas is supplied as a processing gas to the processing furnace. 前記被処理体は酸化物を含有し,The object to be treated contains an oxide,
前記処理ガスは水素を含有し,  The process gas contains hydrogen;
前記吸熱反応は,酸化物を還元する還元反応であることを特徴とする,請求項1〜3のいずれかに記載の処理方法。  The processing method according to claim 1, wherein the endothermic reaction is a reduction reaction for reducing an oxide.
JP2005289243A 2005-09-30 2005-09-30 Processing method Expired - Fee Related JP5002765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289243A JP5002765B2 (en) 2005-09-30 2005-09-30 Processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289243A JP5002765B2 (en) 2005-09-30 2005-09-30 Processing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012033835A Division JP5542163B2 (en) 2012-02-20 2012-02-20 Heat accumulator

Publications (2)

Publication Number Publication Date
JP2007101021A JP2007101021A (en) 2007-04-19
JP5002765B2 true JP5002765B2 (en) 2012-08-15

Family

ID=38028149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289243A Expired - Fee Related JP5002765B2 (en) 2005-09-30 2005-09-30 Processing method

Country Status (1)

Country Link
JP (1) JP5002765B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101893402A (en) * 2010-07-16 2010-11-24 重庆智得热工工业有限公司 Heat accumulating type flue gas waste heat recovery device
ITCO20110011A1 (en) * 2011-03-22 2012-09-23 Nuovo Pignone Spa CONTAINER OF AN ACCUMULATION AND HEAT RELEASE APPARATUS, TOGETHER FOR ACCUMULATION AND RELEASE OF HEAT, AND ENERGY PRODUCTION PLANT
JP6084494B2 (en) * 2013-03-25 2017-02-22 株式会社東芝 Heat storage device
CN103411439B (en) * 2013-08-29 2014-12-17 广东石油化工学院 Electric furnace waste heat recovery stabilization system
CN104654808B (en) * 2013-11-17 2017-05-17 成都奥能普科技有限公司 Heat accumulator for heat exchange between heat energy of kiln discharges and heat accumulating ball blocks
CN117704396A (en) * 2023-12-25 2024-03-15 天华化工机械及自动化研究设计院有限公司 Bottom visualization device for incineration waste gas treatment equipment in coking industry

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276511U (en) * 1988-11-30 1990-06-12
JPH06159953A (en) * 1992-11-20 1994-06-07 Takata Kk Latent-heat storage device
JPH08247409A (en) * 1995-01-10 1996-09-27 Nippon Steel Corp Exhaust gas sensible heat recovering method of heating furnace
JPH11106811A (en) * 1997-10-07 1999-04-20 Nkk Corp Production of reduced iron and apparatus therefor
JP2001272180A (en) * 2000-03-27 2001-10-05 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2002020813A (en) * 2000-07-05 2002-01-23 Mitsubishi Heavy Ind Ltd Apparatus for producing reduced iron
JP3842692B2 (en) * 2001-05-30 2006-11-08 株式会社神戸製鋼所 Method for producing reduced metal and reduction equipment for metal oxide

Also Published As

Publication number Publication date
JP2007101021A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP5002765B2 (en) Processing method
JP4331768B2 (en) Heat treatment furnace and vertical heat treatment equipment
JP5248874B2 (en) Heat treatment furnace and vertical heat treatment equipment
KR101569557B1 (en) Heat treatment furnace and heat treatment apparatus
KR101368206B1 (en) Vertical heat treatment apparatus and, assembly of pressure detection system and temperature sensor
JP5542163B2 (en) Heat accumulator
JP5203598B2 (en) Solid electrolyte fuel cell module and air supply method for solid electrolyte fuel cell
JP4982762B2 (en) Heat treatment furnace
KR20240040690A (en) Car for kiln having heating structure and kiln comprising the same
JP2003002602A (en) Fuel reforming device
WO2001092800A1 (en) Heat treatment apparatus
JP2005078859A (en) Fuel cell system
JP4616496B2 (en) Fuel cell system
JP2007051038A (en) Continuous firing apparatus for flat glass plate
JP4683332B2 (en) Heat treatment equipment
JP2000256716A (en) Structure for holding refractory in furnace body
CN110895105A (en) Furnace bottom structure and furnace body
KR101569561B1 (en) Heat exchanger for heat treatment apparatus and heat treatment apparatus having the same
JP5260938B2 (en) Fuel cell device
JP7069648B2 (en) Heat exchange reactor
US7469489B2 (en) Method gas burner and a combined gas burner and cooler with gas insulation
JPH08203551A (en) Heat insulating structure of multiple tube board
JP2005336544A (en) Method for holding heat in hot blowing stove and heat-holding apparatus
JP6737684B2 (en) Heat treatment equipment
JP2015190723A (en) heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5002765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees